EP1131389B1 - Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant - Google Patents
Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant Download PDFInfo
- Publication number
- EP1131389B1 EP1131389B1 EP99972244A EP99972244A EP1131389B1 EP 1131389 B1 EP1131389 B1 EP 1131389B1 EP 99972244 A EP99972244 A EP 99972244A EP 99972244 A EP99972244 A EP 99972244A EP 1131389 B1 EP1131389 B1 EP 1131389B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- reactor
- zone
- feed
- riser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G51/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
- C10G51/06—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural parallel stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
Definitions
- the present invention relates to a method and a device for the catalytic cracking of hydrocarbon charges.
- the cracking reaction takes place in an elongated enclosure of substantially circular cross section, the catalyst being admitted to the lower part of the enclosure and the hydrocarbon feed previously atomized.
- the contacting of the feedstock with the hot catalyst makes it possible to vaporize the hydrocarbons which then drive the catalyst towards the upper part of the reaction zone, the introduction of a driving fluid aiding the upward movement.
- the products formed during the reaction have a very wide range of boiling points.
- the products formed are generally distinguished according to their boiling point and their chemical nature: dry gases H2, H2S, molecules having 1 or 2 carbon atoms LPG (liquefied petroleum gases) molecules with 3 or 4 carbon atoms gasoline Molecules having at least 5 carbon atoms and boiling in less than 220 ° C LCO (light cycle oil) molecules whose boiling point is greater than 220 ° C and less than 360 ° C slurry molecules boiling in excess of 360 ° C coke heavy molecules (generally polyaromatic remaining adsorbed on the catalyst after the reaction).
- dry gases H2, H2S molecules having 1 or 2 carbon atoms
- LPG liquefied petroleum gases
- gasoline Molecules having at least 5 carbon atoms and boiling in less than 220 ° C LCO (light cycle oil) molecules whose boiling point is greater than 220 ° C and less than 360 ° C slurry molecules boiling in excess of 360 ° C coke heavy molecules (generally polyaromatic remaining adsorbed on the catalyst after the reaction).
- the yields that are generally obtained naturally depend on the quality of the treated feeds.
- the observed yields (in% weight of the load) on the units are: dry gas 1-5% LPG 10-25% gasoline 30-55% OCH 15-25% slurry 5-20% coke 3-10%
- the formed coke is burned in one or more chambers called regenerators to which the catalyst flows at its outlet from the reactor.
- the heat produced by the combustion of the coke makes it possible to heat the catalyst, which is then reintroduced at the reactor inlet and brought into contact with the feedstock.
- the catalytic cracking process is an adiabatic process.
- the heat recovered by the catalyst during its passage through the regeneration zone is equal to the heat lost by the catalyst as it passes through the reaction zone. This therefore imposes on the operator operating conditions that are not independent of each other.
- the operating conditions that affect the most efficiencies and selectivities for a given reactor are essentially the catalyst flow, which is generally related to the feed rate under the name C / O (C for Catalyst and O for Oil).
- OLC which may be of interest in countries where middle distillates are in high demand in the fuel market, but LPGs (including propylene) and gasoline are unlikely to be maximized.
- reaction zones generally used in the majority of cracking units current catalytic converters make it easy to operate under conditions of little cracking severe (C / O from 4 to 8 and reactor outlet temperatures of 500 to 550 ° C).
- Time to hydrocarbon residence in this reaction zone consisting at least of a tube of substantially circular and elongated section in which the fluids flow globally from bottom to top commonly called riser, and from a separation system cracking vapors and catalyst is generally greater than 2s, of the order of 2 to About 10s.
- the residence time of the hydrocarbons in contact with the catalyst is often itself greater than 1 s.
- the downstream reactor combined with a mixture, as described in patent WO / FR98 / 12279, makes it possible to optimize the selectivities in recoverable products (LPG, gasolines) by minimizing the products not recoverable (a small increase in coke compared to a conventional reactor, but in very different temperature and C / O conditions, about 30% less gas dry compared to conventional technology) and to maximize conversion, thanks to obtaining conditions of very serious severity.
- the main advantage of this type of device is to be able to contact catalyst and load optimally through the initial use of a downflow reactor.
- the amount of coke present on the catalyst varies between 0.7 and 1.5% by weight, depending on the feedstock treated, the catalyst, operating conditions and the dimensioning of the unit. We know that under these conditions, the residual activity of the catalyst is low. It is therefore illusory to want to reintroduce catalyst in a new reaction chamber.
- the catalyst from the downstream reactor can advantageously be introduced again into a reaction chamber such as a riser, optionally mixed with a regenerated catalyst stream (that is to say directly from the regeneration chamber).
- the object of the present invention is to remedy these shortcomings of the prior art by proposing a series of distinct reaction zones that can operate under conditions of temperature and C / O very different. More specifically, the invention relates to a method of catalytic cracking composed of a reaction zone having at least two reactors, with in at least one of these reactors a flow of fluids and catalyst globally downstream (dropper reactor) and in at least one of these reactors a fluid flow and generally upward catalyst (reactor riser), these reactors being characterized by the fact that in each reactor, hydrocarbons introduced into the reactor are brought into contact with hot catalyst which allows the vaporization of these hydrocarbons if they are introduced in liquid form, these vaporized hydrocarbons reacting in the presence of the catalyst, these reacted hydrocarbons are then separated from the catalyst by separation means (inertial separators and / or cyclones) and leave the reaction zone to undergo the usual downstream treatments (fractionation, ). Reactors are also characterized by the fact that the downstream reactor (s) is followed by at least one up
- the invention relates to a process for catalytic cracking in a bed or fluidized a hydrocarbon feedstock in two reaction zones, one to flow downstream catalyst, the other catalyst upflow, the process being characterized in that a feedstock and catalyst from at least one zone are introduced regeneration in the upper part of the downflow zone, circulate the filler and catalyst in said zone in a weight ratio: catalyst on filler C / O: 5 to 20, the cracked gases are separated from the coked catalyst from the flow zone descending into a first separation zone, the cracked gases are recovered, the coked catalyst in the lower part of the upflow zone, a charge in the lower part of said upflow zone, circulates the coked catalyst and said feedstock in a weight ratio C / O: 4 to 8, the catalyst is separated off wastewater produced in a second separation zone, the catalyst is stripped means of a gas filling in a stripping zone, the effluent and the gases of stripping and the used catalyst is recycled to the regeneration zone where it is regenerated at less in part by means of a regeneration gas
- the residence times of the load in the dropper and the riser are respectively in general from 50 to 650 ms in the dropper and from 600 to 3000 ms in the nser and preferably 100 to 500 m s in the dropper and 1000 to 2500 ms in the riser.
- the residence time is defined as the ratio of the volume of each of the reaction chambers (riser or dropper), referred to volume flow rate of the gaseous effluents from each chamber under the exit conditions.
- the spent catalyst can be regenerated in two zones of superimposed regeneration, the spent catalyst to be regenerated is introduced into a first zone regeneration, the catalyst thus at least partially regenerated being sent to the second upper regeneration zone and the regenerated catalyst from the zone of Higher regeneration is introduced into the downflow zone.
- the catalyst / oil ratio (C / O) may advantageously be between 7 and 15 for downflow reactor and between 5 and 7 for the upflow reactor.
- the catalyst temperature at the outlet of the dropper is generally greater than that at the outlet of the riser. It may be from 500 ° C. to 700 ° C. and advantageously from 550 ° C. to 600 ° C. while that of the catalyst at the riser outlet may be from 500 ° C. to 550 ° C. and advantageously from 515 ° C to 530 ° C. These temperatures are closely dependent on the values of the ratios of the C / O, the C / O ratio of the dropper being higher than that of the user.
- the feedstock supplying each of the reactors can be either a fresh load, ie a recycling of some of the products resulting from a fractionation downstream, or a mixture of both.
- the charge can be injected co-currently or countercurrently into each of the two reactors.
- the charge flow rate, for example, of recycle, in the Downstream reactor may be less than 50% by mass of the charge rate to be converted circulating in the riser reactor.
- the invention also relates to the device for implementing the method. It generally comprises a first substantially vertical downflow reactor having an upper inlet and a lower outlet, first regenerated catalyst feed means connected to at least one spent catalyst regenerator and connected to said upper inlet, first atomized charge feed means disposed below the first catalyst feed means, a first chamber for separating the catalyst from a gas phase connected to the lower outlet of the first downstream reactor and having a gas phase outlet and a coked catalyst outlet, a second substantially vertical upflow reactor having a lower inlet and an upper outlet, a second catalyst supply means being connected to the coked catalyst outlet of the first separation chamber and to the lower inlet of the second reactor, second feed means in a feed located above the lower inlet of the second reactor, a second spent catalyst separation chamber and a second gas phase connected to said upper outlet of the second reactor, said second chamber having a catalyst stripping chamber and having an upper gas phase outlet and a lower catalyst outlet used, said lower output being connected to the regenerator.
- FIG. 1 attached is a representation of the process under these conditions.
- the catalyst regenerated in a regeneration zone (3) is transported to the inlet of a reactor globally descending by transfer means (4), withdrawn from the downstream reactor by means of transport (5) and introduced into an upstream reactor (2), then having traveled the reactor ascending, is transported by a line (7) to the regeneration zone (3).
- the reactor ascendant can also be supplied with freshly regenerated catalyst by means (6) transporting the catalyst from the regeneration zone downward of the upstream reactor (2).
- the load supplying each of the reactors can be either a fresh charge (line (8) for the downstream reactor, line (9) for the upstream reactor), or a recycle of a part of products from the downstream fractionation (line (16) for the downstream reactor, line (14) for the riser reactor), a mixture of both. It is possible to introduce in each reactor of the recycles of the fractionation independently of the means of introduction of the cool load (line (15) for the downstream reactor, line (13) for the upstream reactor).
- the gaseous effluents from each reactor are transported to a zone of fractionation (10) of the various hydrocarbon cuts by conduits (11) for downstream reactor and (12) for the upstream reactor).
- Figure 1 there is shown a arrangement where the fractionation is common to both reaction chambers.
- the fractionation is independent for each of the reactors, which may be of great interest if the operating conditions of the two reaction zones are very different from each other. Indeed, in this case, the yield structures very different can economically justify the interest of effluent fractionation adapted to each of the reaction chambers.
- FIG. 2 describes a possible arrangement of the various constituents of the process the invention. It is indeed necessary for the catalyst to circulate correctly between the different speakers that the pressures of each of the speakers are compatible with the rates of catalyst and hydrocarbon circulation desired in each of the enclosures.
- the regeneration zone (3) consists of two enclosures (301) and (302) in which the catalyst is regenerated in a fluidized bed, air being introduced into each chamber.
- the catalyst is transported between the two chambers by means of a lift (303), in which gas introduced at the base at a sufficient speed can transport the catalyst between the two speakers. This transport gas can be air.
- the proportion of air needed to the regeneration is 30 to 70% in the enclosure (301), 5 to 20% in the lift (303) in order to transport the catalyst and 15 to 40% in the enclosure (302).
- the Gaseous flue gases are dusted off by passing through separators (such as cyclones, shown here schematically (306 and 307).
- separators such as cyclones, shown here schematically (306 and 307).
- each enclosure (301) and (302) can be controlled by valves on the lines allowing the evacuation of combustion effluents, at least partially dusted.
- FIG 2 shows how it is possible to transfer catalyst from a regeneration chamber (302) to the reactor (1).
- the catalyst is withdrawn into a wall through an inclined line (304) of an angle generally between 30 and 70 ° with respect to the horizontal conducting the catalyst to a enclosure (305) in which the circulation of the catalyst is slowed down to allow evacuation any gas bubbles to the regeneration chamber through a balancing line (308).
- the catalyst is then accelerated and descends through a transfer tube (309) to the reactor inlet.
- the catalyst is maintained in the fluidized state through the addition of small amounts of gas throughout the transport. If the catalyst is thus maintained in a fluid state, this makes it possible to obtain at the entrance to the zone reaction (1) a pressure higher than that of smoke from external cyclones (307).
- the reaction zone (1) defined as descending generally consists of means for introducing the catalyst (101), which may be a valve on a solid, an orifice, or simply opening a conduit, a contacting zone (103) located under (101) where the countercurrent catalyst, for example, encounters the hydrocarbon feed introduced by means (102), generally consisting of atomizers where the charge is finely divided into droplets usually using the introduction of auxiliary fluids such as steam of water.
- the means for introducing the catalyst are located above the means introduction of the charge.
- an area may optionally be reaction tube (104), of substantially elongate shape, shown vertically on the Figure 2 but this condition is not exclusive.
- the average residence time of hydrocarbons in zones 103 to 104 will be less than 650 ms, preferably between 50 and 500ms.
- the effluents of the dropper are then separated in a separator (105) described in application FR98 / 09672 incorporated as a reference where the residence time must be limited to maximum.
- the gaseous effluents (cracked gases) of the separator can then undergo a step additional dedusting through external cyclones (108) arranged downstream on a line (106).
- the gaseous effluents (cracked gases) are evacuated by a line (107).
- the catalyst in the fluidized bed (111) then undergoes stripping (contact with a light gas such as steam, nitrogen, ammonia, hydrogen or even hydrocarbons whose number of carbon atoms is less than 3 (by means which are well described in the prior art) before being transferred to the upward reaction zone (2) through the conduit (110).
- a light gas such as steam, nitrogen, ammonia, hydrogen or even hydrocarbons whose number of carbon atoms is less than 3 (by means which are well described in the prior art
- Effluents gaseous stripping is generally removed from the fluidized bed (111) through the same means (106) and (108) which allow the evacuation of gaseous effluents from the zone reaction (1) via line (107). All effluents can be cooled by means of quench (not shown) on lines (106) or (107)
- the reaction zone (2) is a substantially elongated tubular zone, many of which Examples are described in the prior art.
- the load of hydrocarbons is introduced by means (202), generally consisting of atomizers where the charge is finely divided into droplets, usually using the introduction of fluids auxiliaries such as water vapor, introduced at the base of the reactor.
- Means of introduction catalyst are located below the feed introduction means.
- the introduction of the charge must be located above at least one catalyst inlet.
- all the catalyst comes from the downstream reactor and the charge introduction means are therefore located above the pipe (110).
- the upstream reactor will then be fed by several catalyst streams, at least one from a reactor descending.
- the reaction is then carried out in the tubular or riser reactor (201).
- the effluents from the riser are then separated in a separator (203) such as that described in FIG. (2) and in PCTFR application 98/01866 incorporated as a reference.
- the catalyst from the separation (203) is then introduced into a fluidized bed (211) of a stripping chamber (212) through conduits or openings (204).
- the catalyst in (211) is then stripped (contact with a light gas such as water vapor, nitrogen, ammonia, hydrogen or even hydrocarbons with less than 3 carbon atoms means which are well described in the prior art) before being transferred to the regeneration (301) through conduits (7).
- the reaction gaseous effluents separated in (203) are discharged through a conduit (205) to a secondary separator (207) such that a cyclone before being directed to the fractionation section (10) via a conduit (206).
- the stripping gaseous effluents are generally discharged from the fluidized bed (211) through the same means (206) which allow the evacuation of gaseous effluents from the zone reactional (2).
- the coked catalyst is withdrawn from the stripping chamber (212) and recycled in the first regeneration chamber (301), located under the chamber 302 regeneration.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Description
gaz secs | H2, H2S, molécules possédant 1 ou 2 atomes de carbones |
GPL (gaz de pétrole liquéfiés) | molécules possédant 3 ou 4 atomes de carbone |
Essence | molécules ayant au moins 5 atomes de carbone et dont le point d'ébullition est inférieur à 220 °C |
LCO (light cycle oil) | molécules dont le point d'ébullition est supéneur à 220 °C et inférieur à 360 °C |
Slurry | molécules dont le point d'ébullition est supérieur à 360 °C |
coke | molécules lourdes (généralement polyaromatiques restant adsorbées sur le catalyseur après la réaction). |
gaz sec | 1-5 % |
GPL | 10-25 % |
Essence | 30-55 % |
LCO | 15-25% |
Slurry | 5-20 % |
coke | 3-10 % |
- la maximisation du propylène et du LCO
- la minimisation de l'essence lourde, la maximisation de l'essence légère
un premier moyen d'alimentation en catalyseur régénéré connecté à au moins un régénérateur de catalyseur usé et raccordé à ladite entrée supérieure,
un premier moyen d'alimentation en la charge atomisée disposé en dessous des premiers moyens d'alimentation en catalyseur,
une première enceinte de séparation du catalyseur d'une phase gazeuse raccordée à la sortie inférieure du premier réacteur descendant et ayant une sortie de la phase gazeuse et une sortie de catalyseur coké,
un deuxième réacteur ascendant sensiblement vertical ayant une entrée inférieure et une sortie supérieure,
un second moyen d'alimentation en catalyseur étant connecté à la sortie de catalyseur coké de la première enceinte de séparation et à l'entrée inférieure du deuxième réacteur,
un second moyen d'alimentation en une charge située au-dessus de l'entrée inférieure du deuxième réacteur,
une deuxième enceinte de séparation de catalyseur usé et d'une seconde phase gazeuse raccordée à ladite sortie supérieure du deuxième réacteur, ladite deuxième enceinte comportant une chambre de stripage de catalyseur et ayant une sortie supérieure d'une phase gazeuse et une sortie inférieure de catalyseur usé, ladite sortie inférieure étant connectée au régénérateur.
- la figure 1 montre une description schématique du procédé, l'écoulement du catalyseur étant en trait plein alors que celui des hydrocarbures est en pointillé.
- la figure 2 illustre schématiquement un dispositif comprenant un droppeur, un séparateur intermédiaire et un riser.
RA = réacteur ascendant
RD = réacteur descendant
REG1 : première enceinte de régénération
REG2 : deuxième enceinte de régénération
CUFCC : charge fraíche totale à l'entrée de l'unité de FCC.
C/O (catalyseur sur huile)
Claims (17)
- Procédé de craquage catalytique en lit entrainé ou fluidisé d'une charge d'hydrocarbures dans deux zones réactionnelles, l'une (1) à écoulement descendant de catalyseur, l'autre (2) à ecoulement ascendant de catalyseur, le procédé étant caractérisé en ce qu'on introduil une charge (102) et du catalyseur provenant d'au moins une zone de régénération (302) dans la partie supérieure de la zone à écoulement descendant, on fait circuler la charge et le catalyseur dans ladite zone selon un rapport pondéral : catalyseur sur charge C/O ; 5 à 20 durant un temps de séjour inférieur à 650 ms, on sépare les gaz craqués du catalyseur coké provenant de la zone à écoulement descendant dans une première zone de séparation (105), on récupère (107) les gaz craqués, on introduit le catalyseur coké dans la partie inférieure de la zone à écoulement ascendant, on introduit (202) une charge dans la partie inférieure de ladite zone (2) à écoulement ascendant, on y fait circuler le catalyseur coké et ladite charge selon un rapport pondéral C/O : 4 à 8, on sépare le catalyseur usé de l'effluent produit, dans une deuxième zone (203) de séparation, on strippe le catalyseur au moyen d'un gaz de stripage dans une zone (212) de stripage, on récupère (206) l'effluent et les gaz de stripage et on recycle (7) le catalyseur usé dans la zone de régénération où il est régénéré au moins en partie au moyen d'un gaz de régénération.
- Procédé selon la revendication 1, dans lequel le temps de séjour de la charge dans le réacteur descendant est de 100 à 500ms et celui de la charge dans le réacteur ascendant est de 600 à 3000 ms, de préférence 1000 à 2500ms.
- Procédé selon l'une des revendications 1 à 2, dans lequel le catalyseur usé est régénéré dans deux zones de régénération superposées, le catalyseur usé à régénérer est introduit dans une première zone de régénération inférieure, le catalyseur ainsi au moins en partie régénéré étant envoyé dans la deuxième zone de régénération supérieure et le catalyseur régénéré provenant de la zone de régénération supérieure est introduit dans la zone d'écoulement descendant.
- Procédé selon l'une des revendications 1 à 3, dans lequel le rapport C/O est compris entre 7 et 15 pour le réacteur à écoulement descendant et entre 5 et 7 pour le réacteur à écoulement ascendant.
- Procédé selon l'une des revendications 1 à 4, dans lequel la charge alimentant chacun des réacteurs est une charge fraíche, un recycle d'une partie des prodults issus d'un fractionnement en aval, ou un mélange des deux.
- Procédé selon l'une des revendications 1 à 5, dans lequel la catalyseur coké provenant de la zone à écoulement descendant est strippé par un gaz après avoir été séparé et avant d'être introduit dans le réacteur ascendant et les gaz de stripage sont récupérés.
- Procédé selon d'une des revendications 1 à 6, dans lequel la zone réactionnelle à écoulement ascendant est alimentée en outre par du catalyseur régénéré.
- procédé selon la revendication 7, dans lequel on introduit la charge entre les deux points d'introduction de catalyseur régénéré et de catalyseur coke dans la zone d'écoulement ascendant.
- Procédé selon la revendication 7 dans lequel on introduit la charge au-dessus du point d'introductoin du catalyseur coké et du point d'introduction du catalyseur régénéré dans le réacteur ascendant .
- Procédé selon l'une des revendications 1 à 8 dans lequel on introduit une charge fraíche dans le réacteur ascendant et ledit recycle au moins en partie dans le réacteur descendant.
- Procédé selon l'une des revendications 1 à 10, dans lequel le débit de charge et de préférence de recycle dans le réacteur descendant représente moins de 50 % en masse de débit de charge à convertir circulant dans le réacteur ascendant
- Dispositif pour le craquage catalytique en lit fluidisé ou entraíné d'une charge hydrocarbonée comportant :un premier réacteur descendant (1) sensiblement vertical ayant une entrée supérieure et une sortie inférieure.un premier moyen d'alimentation (101) en catalyseur régénéré connecté à au moins un régénérateur de catalyseur usé et raccordé à ladite entrée supérieure,un premier moyen d'alimentation (102) en la charge atomisée disposé en dessous des premiers moyens d'alimentation en catalyseur.une première enceinte de séparation (105) du catalyseur d'une phase gazeuse raccordée à la sortie inférieure du premier réacteur descendant (1) et ayant une sortie (106) de la phase gazeuse et une sortie de catalyseur coké,un deuxième réacteur ascendant (2) sensiblement vertical ayant une entrée inférieure et une sortie supérieure.un second moyen d'alimentation (110) en catalyseur étant connecté à la sortie de catalyseur coké de la première enceinte de séparation et à l'entrée inférieure du deuxième réacteur,un second moyen d'alimentation (202) en une charge située au-dessus de l'entrée inférieure du deuxième réacteur,une deuxième enceinte de séparation (203) de catalyseur usé et d'une seconde phase gazeuse raccordée à ladite sortie supérieure du deuxième réacteur, ladite deuxième enceinte comportant une chambre de stripage (212) de Catalyseur et ayant une sonie supérieure (206) d'une phase gazeuse et une sortie (7) inférieure de catalyseur usé, ladite sortie inférieure étant connectée au régénérateur (3D1).
- Dispositif selon la revendication 12, dans lequel la première anceinte (105) de séparation comporte une chambre (111) de stripage du catalyseur en communication avec celle-ci.
- Dispositif selon l'une des revendications 12 ou 13, dans lequel le deuxième réacteur ascendant comporte un moyen supplémentaire d'alimentation en catalyseur raccordé au régénérateur et disposé au-dessus du moyen d'alimentation en la charge.
- Dispositif selon l'une des revendications 12 ou 13, dans lequel le deuxième réacteur ascendant comporte un moyen supplémentaire d'alimentation en catalyseur raccordé au régénérateur et disposé au-dessous du moyen d'alimentation en la charge.
- Dispositif selon l'une des revendications 12 à 15 dans lequel des moyens de quench des effluents sont disposés en aval de la premiers enceinte de séparation.
- Dispositif selon l'une des revendications 12 à 16, qui comprend deux régénérateurs de catalyseur, dans lequel le second régénérateur (302) est connecté au premier moyen d'alimentation (309, 101) en catalyseur du premier réacteur descendant (1) et dans lequel le premier régénérateur (301) disposé au-dessous du second est raccordé à la deuxième enceinte (203,211) de séparation et de strippage.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9814319A FR2785907B1 (fr) | 1998-11-13 | 1998-11-13 | Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant |
FR9814319 | 1998-11-13 | ||
PCT/FR1999/002801 WO2000029508A1 (fr) | 1998-11-13 | 1999-11-12 | Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1131389A1 EP1131389A1 (fr) | 2001-09-12 |
EP1131389B1 true EP1131389B1 (fr) | 2004-07-14 |
Family
ID=9532733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99972244A Expired - Lifetime EP1131389B1 (fr) | 1998-11-13 | 1999-11-12 | Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant |
Country Status (9)
Country | Link |
---|---|
US (1) | US6641715B1 (fr) |
EP (1) | EP1131389B1 (fr) |
JP (1) | JP2002530467A (fr) |
KR (1) | KR100607922B1 (fr) |
AT (1) | ATE271114T1 (fr) |
DE (1) | DE69918710T2 (fr) |
ES (1) | ES2226502T3 (fr) |
FR (1) | FR2785907B1 (fr) |
WO (1) | WO2000029508A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024015599A1 (fr) * | 2022-07-14 | 2024-01-18 | Uop Llc | Procédé et appareil pour séparer un catalyseur d'un produit gazeux |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2802211B1 (fr) | 1999-12-14 | 2002-02-01 | Inst Francais Du Petrole | Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant |
FR2811327B1 (fr) * | 2000-07-05 | 2002-10-25 | Total Raffinage Distribution | Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives |
CN1205305C (zh) * | 2001-11-29 | 2005-06-08 | 中国石油化工股份有限公司 | 一种催化裂化反应-再生系统 |
FR2894849B1 (fr) * | 2005-12-20 | 2008-05-16 | Inst Francais Du Petrole | Nouveau reacteur a deux zones reactionnelles fluidisees avec systeme de separation gaz/solide integre |
CN101029248B (zh) * | 2006-02-28 | 2012-08-15 | 中国石油化工股份有限公司 | 一种增产轻烯烃的方法 |
US20080011645A1 (en) * | 2006-07-13 | 2008-01-17 | Dean Christopher F | Ancillary cracking of paraffinic naphtha in conjuction with FCC unit operations |
US20080011644A1 (en) * | 2006-07-13 | 2008-01-17 | Dean Christopher F | Ancillary cracking of heavy oils in conjuction with FCC unit operations |
FR2909897B1 (fr) * | 2006-12-13 | 2009-06-26 | Inst Francais Du Petrole | Nouveau systeme de separation gaz solide pour les regenerateurs des unites de craquage catalytique en lit fluidise |
FR2918070B1 (fr) * | 2007-06-27 | 2012-10-19 | Inst Francais Du Petrole | Zone reactionnelle comportant deux risers en parallele et une zone de separation gaz solide commune en vue de la production de propylene |
FR2935377B1 (fr) * | 2008-08-29 | 2013-02-15 | Inst Francais Du Petrole | Procede de conversion d'une charge lourde en essence et en propylene presentant une structure de rendement modulable |
KR20100091403A (ko) * | 2009-02-10 | 2010-08-19 | 에스케이에너지 주식회사 | 질소를 이용한 스트리핑 방법 |
EP2591073B1 (fr) | 2010-07-08 | 2019-07-03 | Indian Oil Corporation Ltd. | Procédé de craquage catalytique fluide à deux étages |
US20130172173A1 (en) | 2010-07-08 | 2013-07-04 | Indian Oil Corporation Ltd. | Upflow regeneration of fcc catalyst for multi stage cracking |
CN103814114B (zh) | 2011-07-27 | 2018-04-24 | 沙特阿拉伯石油公司 | 在下流式反应器中流化催化裂化链烷烃族石脑油 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3902856A (en) * | 1971-10-05 | 1975-09-02 | Texaco Inc | Hydrogenation reactor with improved flow distribution |
US4385985A (en) * | 1981-04-14 | 1983-05-31 | Mobil Oil Corporation | FCC Reactor with a downflow reactor riser |
US4424116A (en) * | 1982-03-25 | 1984-01-03 | Ashland Oil, Inc. | Converting and stripping heavy hydrocarbons in two stages of riser conversion with regenerated catalyst |
US4606810A (en) * | 1985-04-08 | 1986-08-19 | Mobil Oil Corporation | FCC processing scheme with multiple risers |
FR2615199B1 (fr) * | 1987-05-11 | 1991-01-11 | Inst Francais Du Petrole | Procede de vapocraquage dans une zone reactionnelle en lit fluide |
FR2667609B1 (fr) * | 1990-10-03 | 1993-07-16 | Inst Francais Du Petrole | Procede et dispositif de craquage catalytique en lit fluide a courant descendant. |
FR2690922B1 (fr) * | 1992-05-07 | 1994-07-22 | Inst Francais Du Petrole | Procede et dispositif de craquage catalytique dans deux zones reactionnelles successives. |
FR2715163B1 (fr) * | 1994-01-18 | 1996-04-05 | Total Raffinage Distribution | Procédé de craquage catalytique en lit fluidisé d'une charge d'hydrocarbures, notamment d'une charge à forte teneur en composés azotés basiques. |
FR2753453B1 (fr) * | 1996-09-18 | 1998-12-04 | Total Raffinage Distribution | Procede et dispositif de craquage catalytique en lit fluidise d'une charge d'hydrocarbures, mettant en oeuvre une zone de mise en contact amelioree |
FR2811327B1 (fr) * | 2000-07-05 | 2002-10-25 | Total Raffinage Distribution | Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives |
-
1998
- 1998-11-13 FR FR9814319A patent/FR2785907B1/fr not_active Expired - Lifetime
-
1999
- 1999-11-12 JP JP2000582495A patent/JP2002530467A/ja active Pending
- 1999-11-12 WO PCT/FR1999/002801 patent/WO2000029508A1/fr active IP Right Grant
- 1999-11-12 AT AT99972244T patent/ATE271114T1/de not_active IP Right Cessation
- 1999-11-12 DE DE69918710T patent/DE69918710T2/de not_active Expired - Lifetime
- 1999-11-12 EP EP99972244A patent/EP1131389B1/fr not_active Expired - Lifetime
- 1999-11-12 KR KR1020017005947A patent/KR100607922B1/ko active IP Right Grant
- 1999-11-12 US US09/831,659 patent/US6641715B1/en not_active Expired - Lifetime
- 1999-11-12 ES ES99972244T patent/ES2226502T3/es not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024015599A1 (fr) * | 2022-07-14 | 2024-01-18 | Uop Llc | Procédé et appareil pour séparer un catalyseur d'un produit gazeux |
Also Published As
Publication number | Publication date |
---|---|
KR20010089439A (ko) | 2001-10-06 |
ATE271114T1 (de) | 2004-07-15 |
DE69918710T2 (de) | 2004-12-02 |
JP2002530467A (ja) | 2002-09-17 |
KR100607922B1 (ko) | 2006-08-04 |
FR2785907B1 (fr) | 2001-01-05 |
WO2000029508A1 (fr) | 2000-05-25 |
ES2226502T3 (es) | 2005-03-16 |
DE69918710D1 (de) | 2004-08-19 |
US6641715B1 (en) | 2003-11-04 |
EP1131389A1 (fr) | 2001-09-12 |
FR2785907A1 (fr) | 2000-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1242569B1 (fr) | Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant | |
EP1131389B1 (fr) | Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant | |
EP1800742B1 (fr) | Réacteur à deux zones réactionnelles fluidisées avec système de séparation gaz/solide intégré | |
EP0208609B2 (fr) | Procédé et dispositif pour le craquage catalytique de charges d'hydrocarbures, avec contrôle de la température de réaction | |
CA2352018C (fr) | Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives | |
EP2336273B1 (fr) | Procédé de craquage catalytique avec maximisation des bases gazoles | |
EP2627736B1 (fr) | Procede de craquage et de stripage multi-etage dans une unite de fcc. | |
EP0171330B1 (fr) | Procédé et appareil pour craquage catalytique en lit fluide | |
EP0323297A1 (fr) | Procédé de conversion d'hydrocarbures en lit fluidisé | |
EP0489726B1 (fr) | Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee | |
JPH0645787B2 (ja) | 炭化水素の接触分解方法 | |
FR2659346A1 (fr) | Procede de craquage avec oligomerisation ou trimerisation des olefines presentes dans les effluents. | |
EP0291408B1 (fr) | Procédé de vapocraquage dans une zone réactionnelle en lit fluide | |
CA2095794C (fr) | Procede et dispositif de craquage catalytique dans deux zones reactionnelles successives | |
FR2770225A1 (fr) | Procede et dispositif de vaporisation selective des charges d'hydrocarbures en craquage catalytique | |
FR2682119A1 (fr) | Perfectionnements aux dispositifs de craquage catalytique a l'etat fluide de charges d'hydrocarbures. | |
FR2521157A1 (fr) | Preparation d'une charge de craquage catalytique fluide par vaporisation selective | |
WO1991003527A1 (fr) | Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee | |
EP0322276A1 (fr) | Procédé et dispositif pour le craquage catalytique de charges lourdes comportant un second strippage en lit fluide | |
LU84039A1 (fr) | Procede et appareil de vaporisation selective | |
FR2659976A1 (fr) | Craquage catalytique avec refroidissement brusque. | |
BE892090A (fr) | Preparation d'une charge de craquage catalytique fluide par vaporisation selective | |
FR3038904A1 (fr) | Procede permettant de realiser le bouclage du bilan thermique sur une unite de craquage catalytique de naphta dite ncc | |
FR2523997A1 (fr) | Procede et appareil de vaporisation selective pour l'elimination du carbone et des metaux contenus dans les fractions lourdes de petrole | |
FR2627187A1 (fr) | Procede de craquage a l'etat fluide d'une charge d'hydrocarbures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010613 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20040714 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040714 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040714 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040714 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040714 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040714 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69918710 Country of ref document: DE Date of ref document: 20040819 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041014 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041014 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20040714 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2226502 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
BERE | Be: lapsed |
Owner name: INSTITUT FRANCAIS DU PETROLE Effective date: 20041130 |
|
26N | No opposition filed |
Effective date: 20050415 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: INSTITUT FRANCAIS DU *PETROLE Effective date: 20041130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041214 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 69918710 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20181123 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181203 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20181214 Year of fee payment: 20 Ref country code: FR Payment date: 20181121 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69918710 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20191111 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20191113 |