EP1119323A1 - Procede et dispositif d'aberrometrie en ligne lors de la correction refractive des yeux - Google Patents

Procede et dispositif d'aberrometrie en ligne lors de la correction refractive des yeux

Info

Publication number
EP1119323A1
EP1119323A1 EP00951495A EP00951495A EP1119323A1 EP 1119323 A1 EP1119323 A1 EP 1119323A1 EP 00951495 A EP00951495 A EP 00951495A EP 00951495 A EP00951495 A EP 00951495A EP 1119323 A1 EP1119323 A1 EP 1119323A1
Authority
EP
European Patent Office
Prior art keywords
eye
optical system
lens
analysis
cornea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP00951495A
Other languages
German (de)
English (en)
Inventor
Manfred Dick
Eckhard SCHRÖDER
Joachim Fiedler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Meditec AG
Original Assignee
Asclepion Meditec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asclepion Meditec AG filed Critical Asclepion Meditec AG
Priority to EP10152328.0A priority Critical patent/EP2255760A3/fr
Publication of EP1119323A1 publication Critical patent/EP1119323A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength

Definitions

  • the invention relates to a method and a device for correcting visual defects in the human eye.
  • AI describes a method for improving a Shack-Hartmann sensor by means of which wave fronts can be measured in the field of astronomy for the measurement of stars.
  • a disadvantage of the prior art is the fact that the correction of the lenses takes place only on the basis of suboptimal data on the causes of the visual defects such as irregularities in the corneal surface or aberration in the beam path. As a result, corrections are only carried out in accordance with the standard lens formulas of geometric optics.
  • the object of the present invention was therefore to provide a method and a device which allow a complete correction of all refractive visual defects, including the aberrations of the beam path in the defective eye.
  • the object is achieved by a device for correcting visual defects in an eye, comprising a coherent light source, a beam modification device for shaping and deflecting a beam from the coherent light source, a wavefront analysis device being provided for analyzing a wavefront of the beam path in the eye.
  • a device for correcting visual defects in an eye comprising a coherent light source, a beam modification device for shaping and deflecting a beam from the coherent light source, a wavefront analysis device being provided for analyzing a wavefront of the beam path in the eye.
  • This device makes it possible to incorporate the data obtained from the analysis of the intraocular aberration into the correction of an existing optical system of an eye to be corrected. This makes the correction of the optical system of the eye even more precise.
  • a human eye is particularly suitable as an eye, but correction of the eyes of other living beings is also conceivable.
  • Visual defects are, in particular, refractive visual defects such as myopia or farsightedness, irregularities in the corneal surface or aberrations in the beam path
  • a laser particularly preferably a refractive laser, particularly preferably a spot scanning excimer laser system, is preferably provided as the coherent light source.
  • a spot scanner with laser light in other areas of the spectrum can also be thought of, such as a frequency-quintupled YAG laser, an IR laser at 3 ⁇ m, such as an erbium: YAG Laser that emits at 2.94 ⁇ m or a femto-second laser (FS laser).
  • a spot scanner with laser light in other areas of the spectrum can also be thought of, such as a frequency-quintupled YAG laser, an IR laser at 3 ⁇ m, such as an erbium: YAG Laser that emits at 2.94 ⁇ m or a femto-second laser (FS laser).
  • the beam modification device preferably consists of a device for shaping a beam and a device for deflecting and aligning the beam.
  • Lens systems, diffractive structures and refractive elements are preferably used as the device for shaping the beam.
  • Scanner arrangements, prisms and mirrors are preferably used as the device for deflecting and aligning the beam.
  • a Shack-Hartmann sensor can preferably be used as the wavefront analysis device. This is a sensor that is based on a method to analyze wave fronts. It is used particularly in astronomy (see above). With this wavefront analysis device, the entire wavefront emerging from the eye can be measured and information about the visual defects including the intraocular aberration of the beam path can also be obtained in the eye.
  • a device in which a topography analysis unit is additionally provided for analyzing the surface of the eye.
  • This analysis provides information about the curvature and contour of the surface of the eye - in particular the cornea. This provides the system with complete data on the refractive visual defects of the eye.
  • Both the possibly non-ideal surface contour of the eye - or the cornea - and the intraocular aberration can now be analyzed and are available to the system when correcting the optical system of the eye. This makes it possible to completely correct the visual defects of the eye and even achieve vision that is above that of the normal human eye.
  • a device in which a control unit for processing signals from the wavefront analysis unit and / or for processing signals from the topography analysis unit and / or for controlling the coherent light source and / or for controlling the beam modification device is also provided is.
  • the data determined by the analysis units can be evaluated by these control units. It is possible to process and evaluate the signals of the wavefront analysis unit and the signals of the topography analysis unit separately in the control unit or to process both amounts of data in one step.
  • the control unit preferably consists of several individual control units.
  • the parameters required for beam modification are determined from this data. These parameters can preferably be used in a further step to control the coherent light source, for example to predetermine the amplitude, pulse duration and energy of the beam. These parameters are also preferably used to control the beam modification device, in order to determine the target location and the geometry of the beam in the target via the deflection of the beam.
  • the shot positions for the production of the individual elements can be calculated.
  • a device in which the beam modification device is designed such that an intraocular lens and / or an eye lens and / or the cornea of the eye and / or a contact lens and / or a implantable contact lens (ICL) and / or an eyeglass lens can be processed.
  • an element or workpiece of the lens system can now be processed such that the visual error or aberration is completely corrected.
  • Such an element is preferably an intraocular lens (IOL) which is prefabricated before an appropriate operation. It is particularly preferably an ICL (implantable contact lens) that is placed on the lens.
  • This IOL or ICL can then be shaped on the basis of the entire information available about the visual defects, including the aberration of the eye, in such a way that it corrects all existing visual defects. It is also conceivable to carry out the correction by means of the beam on the eye lens itself, which is preferably controlled by the control device.
  • control unit is designed such that the analysis of the beam path in the eye and / or the Analysis of the surface of the eye can take place almost simultaneously with the processing of an optical element by the beam of the coherent light source.
  • This modification of the control unit makes it possible, during the processing of the optical element, that is to say, for example, during the processing of the cornea with the surgical laser beam, to carry out an “online” check of the beam path in the eye, as is currently modified by the operation, and / or to carry out the surface of this eye at the current time and to incorporate it into the further operation or processing.
  • the analysis of the beam path or the surface of the eye alternately with the processing of the optical element and thus to record the progress of the treatment or operation of the optical system, in particular the cornea, in sections. It is also conceivable for the scanning and analysis of the beam path or the surface of the eye to be temporal To interlock machining by the surgical laser beam. This enables continuous or quasi-continuous measurement with real device integration (e.g. every second) and continuous recalculation of the laser control.
  • the object is further achieved by a method according to the invention for correcting visual defects in an eye, the beam path of the eye being determined by means of a wavefront analysis and an ideal lens system being calculated which would lead to a correction of the visual defects in the eye.
  • This method is particularly preferably used using a device according to the invention. With this method, the intraocular aberration of the beam path is available for the calculation of the correction of the optical system for conversion into an ideal optical system.
  • the topography of the eye is particularly preferably additionally analyzed.
  • This method therefore provides further information about the ametropia of the eye, in particular about aberrations, asymmetrical cylinders and corneal irregularities.
  • the ideal optical system is provided on the basis of the data determined from the wavefront analysis and / or from the topography analysis. Only one element from this optical system is particularly preferably provided for this.
  • the correcting element or elements are produced in this way on the basis of the complete data of the ametropia. This procedure leads to the complete correction of the ametropia.
  • shot positions for producing the ideal optical system are generated by means of the wave front analysis and / or the topography analysis. calculated data.
  • the laser spot excimer method can advantageously be used to produce the individual elements of the optical system.
  • the shot positions are optimized depending on the materials to be used and taking the production time into account.
  • the old optical system of the eye is transformed into the calculated ideal optical system.
  • either elements of the old optical system are processed directly, correspondingly corrected elements are produced and used, or old elements are exchanged for new elements.
  • This process enables the old (defective) optical system of the eye to be converted into a (new) ideal optical system.
  • a new lens or an ICL according to the spot scanning principle is particularly preferably produced with an excimer laser.
  • a contact lens that is already arranged on the patient's eye is particularly preferably processed.
  • the patient preferably already wears a contact lens correcting the standard ametropia or, in the case of normal vision, only a therapeutic contact lens, which particularly preferably has good adhesion and has constant imaging properties without decentration.
  • the ablation is carried out on the standardized contact lens and a risk-free correction of the higher aberration of the eye is achieved non-invasively.
  • a therapeutic contact lens without refractive effect is also preferably used for this. All imaging errors on this contact lens are corrected with the laser.
  • Contact lenses made of PMMA or plastic lenses are particularly preferably used, which particularly preferably have less material removal for the laser used, for example a 193 nm ArF excimer laser compared to the human cornea. Also particularly preferred are all soft contact lenses, which show almost the same ablation properties as the cornea due to their high water content. In this way, the exact ablation rates can advantageously be determined before the treatment for any contact lens material standardized by the manufacturer and a desired refractive correction can thus be reproducibly carried out on the eye.
  • the correction option simulated in this way can serve as a preparation for a later real corneal operation, or a lens of this type with customized correction can be used for a predetermined time.
  • a lens of this type with customized correction can be used for a predetermined time.
  • long-term use can also take place.
  • a corresponding marking for the axis position is advantageously applied, which is taken into account when inserting.
  • the optical system preferably comprises as elements the eye lens and / or an intraocular lens and / or the cornea of the eye and / or a contact lens and / or an ICL and / or at least one spectacle lens.
  • the cornea of the eye can be reshaped to correct the existing ametropia
  • the object is achieved by an ideal optical system which was produced by a method according to the invention and / or by means of a device according to the invention, the optical system being made from materials suitable for implantation and / or adhesion and / or suitable for ablation, in particular plastic or glass, includes.
  • the optical system being made from materials suitable for implantation and / or adhesion and / or suitable for ablation, in particular plastic or glass.
  • the compatibility of the use of these elements is guaranteed by the choice of these materials of the lens system according to the invention.
  • Such materials are, for example, PMMA, acrylic, silicone or a combination of these materials.
  • an ideal optical system which comprises elements which comprise refractive and / or diffractive structures.
  • Refractive and / or diffractive structures have so far only been used in beam shaping.
  • a mini lens system directs and shapes the incoming beam in order to achieve a special beam distribution in the target plane.
  • the use of such refractive and / or diffractive structures on individual elements of an optical system allows the targeted correction of poor eyesight in an unusually ideal way.
  • the use of these structures makes it possible to correct individual non-continuous aberrations or to give the optical systems properties that a normal human eye does not have.
  • the object of the invention is further achieved by an element of an (ideal) lens system which has refractive and / or diffractive structures.
  • Such elements can be intraocular lenses, modified corneas, contact lenses, ICLs or spectacle lenses.
  • FIG. 1 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye on a lens 6; 2 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye, on which a lens 6 is applied, and FIG. 3 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye without a contact lens.
  • FIG. 1 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting vision defects of an eye on a lens.
  • a wavefront analysis unit 2 and a topography analysis unit 2 ⁇ are connected to a control unit 3.
  • the control unit 3 is connected to a laser 4 and a beam modification device 5 via a bus.
  • a lens 6 is shown behind the beam modification device 5.
  • An eye 1 is shown in front of the wavefront analysis unit 2 and the topography analysis unit 2 ⁇ . In the operating state, the rays of the wavefront analysis unit 2 and the topography analysis unit 2 scan the eye 1 and transmit the signals obtained to the control unit 3.
  • the rays used here are preferably rays from a coherent light source, particularly preferably rays from an IR diode or a green laser .
  • the signals are processed in the control unit 3 and the ideal optical system for this eye 1 is calculated.
  • an ideal lens 6 is calculated here as an element of the optical system.
  • all shot positions that are required for the laser 4 to produce the ideal lens 6 are calculated in the control unit 3 based on the data obtained from the signals, taking into account the laser-relevant data.
  • the control unit 3 then controls the laser 4 and determines the energy and pulse rate of the surgical beam 7.
  • the beam 7 is passed through the beam modification device 5.
  • the beam 7 is shaped and deflected in accordance with the calculated shot positions by the specifications of the control unit 3 via scanners and lens systems, so that the controlled surgical laser beam 7 produces the customer-specific lens 6 by ablation of material on the raw lens.
  • the control unit 3 can also preferably be embodied in a plurality of sub-control units which can be connected to individual components of the device.
  • FIG. 2 shows a block diagram for a further exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye, on which a lens is applied.
  • the structure corresponds to that of FIG. 1 with the difference that a contact lens 6 is applied directly to the eye 1 and the ablation is carried out there in situ.
  • the ablation of the lens material now takes place in situ on the eye, so that the analysis device 2 or 2 1 now, preferably online, parallel to the ablation, the beam path in the system of the eye 1 and the lens 6 and the surface of this system - in particular here the Lens 6 - can be analyzed and the treatment by the beam 7 can be checked and assessed directly.
  • the ideal lens 6 produced in this way now gives the interested party an impression of the complete optical system and the operating conditions, without having undergone an irreversible operation.
  • FIG. 3 shows a block diagram for an exemplary embodiment of a further device according to the invention for correcting aberration in the beam path of an eye without a contact lens.
  • the progress of the operation can now be observed online by the surgical beam 7, preferably simultaneously with the analysis of the eye 1 by the analysis device 2, 2 ′, and subsequent calculations can be carried out via the control device 3 during the operation, so that treatment of the eye 1 is carried out iteratively by the laser beam 7 which responds and is used to the current circumstances.
  • the progress of the operation can also be visually observed using a microscope, for example (not shown).
  • a point is particularly preferably projected onto the retina of the eye 1 with the aid of a light source of the analysis device 2, 2 '(light source not shown separately).
  • An almost parallel external beam path is used and the focusing effect of the optical device of the eye is used in order to be able to generate the smallest possible spot.
  • the intensities are so low according to the wavelength used and the duration of the radiation that no damage can occur to the retina, but there is sufficient reflected intensity.
  • the reflected wave as it passes through the optical system of the eye with aberration, captures all aberrations.
  • the corresponding deformed wavefront reaches the wavefront analysis device 2 or the topography analysis unit 2 ', from where the aberration data are preferably fed to a computer via appropriate electronics or control unit 3.
  • a current ablation profile is calculated from the aberration data, which controls the excimer laser 4 with the spot scanning system and realizes target-controlled treatment via the radiation modification device 5.
  • Such a measurement can also be carried out sporadically, for example during 80% of the treatment time.
  • the analysis device 2 or 2 ' can be arranged on a separate stand so that the laser and the measuring device alternately swivel in, or preferably the measuring device is integrated in the laser and measures when the laser bombardment is interrupted. Recalculation of the residual treatment is particularly preferably carried out at the request of the operator. This measurement can particularly preferably also be carried out continuously or quasi-continuously with device integration and continuous recalculation of the laser control.
  • the correction can be made by modifying an element of the optical system.
  • an element of the optical system To improve the eyesight of a patient with cataracts and ametropia, it is sufficient to completely correct the intraocular lens. In such a case, it is no longer necessary to perform a refractive surgery in addition to the cataract surgery.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Prostheses (AREA)
  • Eye Examination Apparatus (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

Procédé et dispositif de correction complète de défauts de la vision de l'oeil humain, en particulier combinaisons de procédés de mesure et de traitement qui permettent dans leur utilisation selon la présente invention la correction complète de l'oeil humain. A cet effet, on utilise des procédés de mesure qui peuvent déterminer avec précision la surface de la cornée et qui enregistrent les erreurs de représentation se produisant dans la suite de la trajectoire du faisceau jusqu'à la rétine. L'évaluation informatique de ces résultats de mesure donne la possibilité, en liaison avec le calcul de lentilles à correction idéale (par exemple après des opérations de la cataracte) ou de surfaces à correction idéales de la cornée, de fabriquer, en fonction de la topographie de l'oeil, une lentille spécifique au patient et/ou de façonner la cornée avec une correction idéale, de préférence à l'aide d'un laser excimer à balayage par points.
EP00951495A 1999-08-11 2000-08-11 Procede et dispositif d'aberrometrie en ligne lors de la correction refractive des yeux Ceased EP1119323A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10152328.0A EP2255760A3 (fr) 1999-08-11 2000-08-11 Procédé et dispositif d'aberrométrie en ligne lors de la correction refractive des yeux

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19938203 1999-08-11
DE19938203A DE19938203A1 (de) 1999-08-11 1999-08-11 Verfahren und Vorrichtung zur Korrektur von Sehfehlern des menschlichen Auges
PCT/EP2000/007821 WO2001012113A1 (fr) 1999-08-11 2000-08-11 Procede et dispositif d'aberrometrie en ligne lors de la correction refractive des yeux

Publications (1)

Publication Number Publication Date
EP1119323A1 true EP1119323A1 (fr) 2001-08-01

Family

ID=7918154

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10152328.0A Withdrawn EP2255760A3 (fr) 1999-08-11 2000-08-11 Procédé et dispositif d'aberrométrie en ligne lors de la correction refractive des yeux
EP00951495A Ceased EP1119323A1 (fr) 1999-08-11 2000-08-11 Procede et dispositif d'aberrometrie en ligne lors de la correction refractive des yeux

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10152328.0A Withdrawn EP2255760A3 (fr) 1999-08-11 2000-08-11 Procédé et dispositif d'aberrométrie en ligne lors de la correction refractive des yeux

Country Status (7)

Country Link
US (4) US6848790B1 (fr)
EP (2) EP2255760A3 (fr)
JP (1) JP2003506195A (fr)
AU (1) AU771939B2 (fr)
BR (1) BR0006996A (fr)
DE (1) DE19938203A1 (fr)
WO (1) WO2001012113A1 (fr)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086204A (en) * 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
DE60042339D1 (de) 1999-10-21 2009-07-16 Technolas Gmbh System für die patientenspezifische profilierung der hornhaut
WO2001028477A1 (fr) * 1999-10-21 2001-04-26 Technolas Gmbh Ophthalmologische Systeme Correction par etapes successives des defauts de refraction ophtalmiques au moyen d'un laser
DE19954523C2 (de) * 1999-11-12 2002-01-31 Johannes Junger Verfahren zur Oberflächenbearbeitung einer Kontaktlinse zur individuellen Anpassung an das System Auge
US7896916B2 (en) * 2002-11-29 2011-03-01 Amo Groningen B.V. Multifocal ophthalmic lens
SE0203564D0 (sv) 2002-11-29 2002-11-29 Pharmacia Groningen Bv Multifocal opthalmic lens
DE10333770A1 (de) * 2003-07-22 2005-02-17 Carl Zeiss Meditec Ag Verfahren zur Materialbearbeitung mit Laserimpulsen grosser spektraler Bandbreite und Vorrichtung zur Durchführung des Verfahrens
US7922326B2 (en) 2005-10-25 2011-04-12 Abbott Medical Optics Inc. Ophthalmic lens with multiple phase plates
CA2585250C (fr) * 2004-10-25 2014-12-16 Advanced Medical Optics, Inc. Lentille ophtalmique comprenant plusieurs lames de phase
EP1848389B1 (fr) 2005-02-15 2011-07-20 Carl Zeiss Meditec AG Procede pour etablir un programme d'ablatio et systeme pour mettre en oeuvre les procedes
DE102005046130A1 (de) * 2005-09-27 2007-03-29 Bausch & Lomb Inc. System und Verfahren zur Behandlung eines Auges eines Patienten, das mit hoher Geschwindigkeit arbeitet
DE102005053297A1 (de) * 2005-11-08 2007-05-10 Bausch & Lomb Inc. System und Verfahren zur Korrektur von ophthalmischen Brechungsfehlern
DE102006036086A1 (de) * 2006-08-02 2008-02-07 Bausch & Lomb Incorporated Verfahren und Vorrichtung zur Berechnung einer Laserschußdatei zur Verwendung in einem refraktiven Excimer-Laser
DE102006036085A1 (de) * 2006-08-02 2008-02-07 Bausch & Lomb Incorporated Verfahren und Vorrichtung zur Berechnung einer Laserschußdatei zur Verwendung in einem Excimer-Laser
US8685006B2 (en) * 2006-11-10 2014-04-01 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective eyesight, method of generating control data therefore, and method for surgical correction of defective eyesight
DE102007005699A1 (de) * 2007-02-05 2008-08-07 Carl Zeiss Meditec Ag Koagulationssystem
EP3308756B1 (fr) 2007-03-13 2020-02-19 Optimedica Corporation Appareil pour créer des incisions afin d'améliorer le placement de lentilles intraoculaires
EP2144582B1 (fr) 2007-05-11 2017-08-23 AMO Development, LLC Systèmes de front d'onde et de topographie combinés et procédés
US7988290B2 (en) * 2007-06-27 2011-08-02 AMO Wavefront Sciences LLC. Systems and methods for measuring the shape and location of an object
US7976163B2 (en) * 2007-06-27 2011-07-12 Amo Wavefront Sciences Llc System and method for measuring corneal topography
US20090161068A1 (en) * 2007-12-20 2009-06-25 Ming Lai Ophthalmic Measurement Apparatus
DE102008005053A1 (de) 2008-01-18 2009-07-30 Rowiak Gmbh Laserkorrektur von Sehfehlern an der natürlichen Augenlinse
DE102008028509A1 (de) * 2008-06-16 2009-12-24 Technolas Gmbh Ophthalmologische Systeme Behandlungsmusterüberwachungsvorrichtung
DE102008035995A1 (de) * 2008-08-01 2010-02-04 Technolas Perfect Vision Gmbh Kombination einer Excimer-Laserablation und Femtosekundenlasertechnik
WO2010025098A1 (fr) * 2008-08-28 2010-03-04 Bausch & Lomb Incorporated Techniques de modélisation et de mesure oculaires
DE102008053827A1 (de) 2008-10-30 2010-05-12 Technolas Perfect Vision Gmbh Vorrichtung und Verfahren zum Bereitstellen einer Laserschussdatei
US7988293B2 (en) 2008-11-14 2011-08-02 AMO Wavefront Sciences LLC. Method of qualifying light spots for optical measurements and measurement instrument employing method of qualifying light spots
MX339104B (es) * 2009-03-04 2016-05-12 Perfect Ip Llc Sistema para formar y modificar lentes y lentes formados por medio del mismo.
US8292952B2 (en) 2009-03-04 2012-10-23 Aaren Scientific Inc. System for forming and modifying lenses and lenses formed thereby
US8646916B2 (en) 2009-03-04 2014-02-11 Perfect Ip, Llc System for characterizing a cornea and obtaining an opthalmic lens
DE102009030464B4 (de) 2009-06-23 2022-04-14 Carl Zeiss Meditec Ag Lasergerät und Verfahren, insbesondere Betriebsverfahren für ein Lasergerät, zur Erstellung von Bestrahlungssteuerdaten für einen gepulsten Laser
US9943405B2 (en) 2011-05-16 2018-04-17 Ico, Inc. Filling and implanting accommodative intraocular lenses
US8622546B2 (en) 2011-06-08 2014-01-07 Amo Wavefront Sciences, Llc Method of locating valid light spots for optical measurement and optical measurement instrument employing method of locating valid light spots
RU2493803C2 (ru) * 2011-12-14 2013-09-27 Государственное бюджетное образовательное учреждение высшего профессионального образования "Амурская государственная медицинская академия" Минздравсоцразвития Российской Федерации Способ комплексного лечения рефракционной амблиопии больных миопией высокой степени
US9629750B2 (en) 2012-04-18 2017-04-25 Technolas Perfect Vision Gmbh Surgical laser unit with variable modes of operation
WO2013176979A1 (fr) 2012-05-25 2013-11-28 California Institute Of Technology Lentille intraoculaire composite à accommodation et procédés associés
KR20150050588A (ko) 2012-08-31 2015-05-08 에이엠오 그로닌겐 비.브이. 연장된 초점 심도를 위한 멀티-링 렌즈, 시스템 및 방법
WO2014063135A2 (fr) 2012-10-19 2014-04-24 1Co, Inc. Systèmes et procédés de personnalisation de lentilles intraoculaires réglables
US20150216409A1 (en) * 2014-02-05 2015-08-06 Pro Fit Optix, Inc. Methods And Apparatuses For Providing Laser Scanning Applications
US20150253846A1 (en) * 2015-02-18 2015-09-10 Daniel Vinnola Reusable Touchscreen Pad
AU2017218679B2 (en) 2016-02-09 2021-08-19 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
EP3595584A1 (fr) 2017-03-17 2020-01-22 AMO Groningen B.V. Lentilles intraoculaires de diffraction permettant une plage de vision étendue
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
AU2018292030B2 (en) 2017-06-28 2024-02-08 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
WO2019002384A1 (fr) 2017-06-28 2019-01-03 Amo Groningen B.V. Lentilles diffractives et lentilles intraoculaires associées pour le traitement de la presbytie
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
CN115380239A (zh) 2019-12-30 2022-11-22 阿莫格罗宁根私营有限公司 用于视力治疗的具有不规则宽度的衍射轮廓的镜片
US11713434B2 (en) 2020-08-18 2023-08-01 Zynon Technologies, Llc Cleaning solvent compositions exhibiting azeotrope-like behavior and their use
US11684799B2 (en) 2021-08-28 2023-06-27 Cutera, Inc. Image guided laser therapy

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099522A (en) 1989-02-06 2000-08-08 Visx Inc. Automated laser workstation for high precision surgical and industrial interventions
US5152788A (en) * 1989-12-27 1992-10-06 Minnesota Mining And Manufacturing Company Multifocal diffractive ophthalmic lens and method of manufacture
US5062702A (en) * 1990-03-16 1991-11-05 Intelligent Surgical Lasers, Inc. Device for mapping corneal topography
WO1992001417A1 (fr) 1990-07-19 1992-02-06 Horwitz Larry S Systeme de mesure et de correction de la vue
IT1244798B (it) 1990-10-19 1994-09-05 Italtel Spa Convertitore ca-cc
US5307097A (en) * 1992-11-05 1994-04-26 Kera-Metrics, Inc. Corneal topography system including single-direction shearing of holograph grating in orthogonal directions
CO4230054A1 (es) 1993-05-07 1995-10-19 Visx Inc Metodo y sistemas para tratamiento con laser de errores refractivos utilizando formacion de imagenes de desplazamiento
US5571107A (en) * 1993-10-26 1996-11-05 Shaibani; Sanan B. Laser surgical apparatus for sculpting a cornea using a diffractive optical element and method of using the same
US5980513A (en) 1994-04-25 1999-11-09 Autonomous Technologies Corp. Laser beam delivery and eye tracking system
US5493391A (en) 1994-07-11 1996-02-20 Sandia Corporation One dimensional wavefront distortion sensor comprising a lens array system
US6063072A (en) * 1994-12-08 2000-05-16 Summit Technology, Inc. Methods and systems for correction of hyperopia and/or astigmatism using ablative radiation
US6110166A (en) * 1995-03-20 2000-08-29 Escalon Medical Corporation Method for corneal laser surgery
US5782822A (en) 1995-10-27 1998-07-21 Ir Vision, Inc. Method and apparatus for removing corneal tissue with infrared laser radiation
US5629765A (en) 1995-12-15 1997-05-13 Adaptive Optics Associates, Inc. Wavefront measuring system with integral geometric reference (IGR)
EP0921764A1 (fr) * 1996-05-10 1999-06-16 California Institute Of Technology Systeme conoscopique d'obtention en temps reel d'une topographie de la cornee
US6052180A (en) 1996-07-10 2000-04-18 Wavefront Sciences, Inc. Apparatus and method for characterizing pulsed light beams
US5936720A (en) 1996-07-10 1999-08-10 Neal; Daniel R. Beam characterization by wavefront sensor
US6130419A (en) 1996-07-10 2000-10-10 Wavefront Sciences, Inc. Fixed mount wavefront sensor
US5864381A (en) 1996-07-10 1999-01-26 Sandia Corporation Automated pupil remapping with binary optics
US5785704A (en) * 1996-07-29 1998-07-28 Mrc Systems Gmbh Method for performing stereotactic laser surgery
DE19727573C1 (de) 1996-10-26 1998-05-20 Aesculap Meditec Gmbh Vorrichtung und Verfahren zur Formgebung von Oberflächen, insbesondere von Linsen
US6271914B1 (en) 1996-11-25 2001-08-07 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US20010041884A1 (en) 1996-11-25 2001-11-15 Frey Rudolph W. Method for determining and correcting vision
US5777719A (en) 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
DE19705119A1 (de) 1997-02-11 1998-08-13 Johannes Prof Dr Schwider Verfahren zur Erhöhung der Meßdynamik des Shack-Hartmann Sensors
US6234978B1 (en) 1997-02-12 2001-05-22 Kabushiki Kaisha Topcon Optical characteristic measuring apparatus
ES2180147T3 (es) * 1997-03-25 2003-02-01 Technomed Ges Fur Med Und Med Procedimiento para determinar datos para el tratamiento de la cornea de un ojo.
US5929970A (en) 1997-05-13 1999-07-27 Kabushiki Kaisha Topcon Optical characteristic measuring apparatus
US5920373A (en) 1997-09-24 1999-07-06 Heidelberg Engineering Optische Messysteme Gmbh Method and apparatus for determining optical characteristics of a cornea
JPH11137522A (ja) 1997-11-11 1999-05-25 Topcon Corp 光学特性測定装置
BR9714878A (pt) 1997-11-21 2001-01-09 Autonomous Technologies Corp Medição e correção objetivas de sistemas óticos que fazem uso da análise de frente de onda
US6547395B1 (en) * 1998-02-06 2003-04-15 Wavefront Sciences, Inc. Methods of measuring moving objects and reducing exposure during wavefront measurements
US6007204A (en) 1998-06-03 1999-12-28 Welch Allyn, Inc. Compact ocular measuring system
ATE222074T1 (de) 1998-08-19 2002-08-15 Autonomous Technologies Corp Gerät und verfahren zur messung von fehlsichtigkeiten eines menschlichen auges
US6598975B2 (en) 1998-08-19 2003-07-29 Alcon, Inc. Apparatus and method for measuring vision defects of a human eye
FR2788597B1 (fr) 1999-01-15 2001-02-23 Imagine Optic Sarl Procede et dispositif d'analyse de front d'onde a grande dynamique
DE19904753C1 (de) 1999-02-05 2000-09-07 Wavelight Laser Technologie Gm Vorrichtung für die photorefraktive Hornhautchirurgie des Auges zur Korrektur von Sehfehlern höherer Ordnung
US6129722A (en) 1999-03-10 2000-10-10 Ruiz; Luis Antonio Interactive corrective eye surgery system with topography and laser system interface
US6186628B1 (en) * 1999-05-23 2001-02-13 Jozek F. Van de Velde Scanning laser ophthalmoscope for selective therapeutic laser
US6050687A (en) * 1999-06-11 2000-04-18 20/10 Perfect Vision Optische Geraete Gmbh Method and apparatus for measurement of the refractive properties of the human eye
US6184974B1 (en) 1999-07-01 2001-02-06 Wavefront Sciences, Inc. Apparatus and method for evaluating a target larger than a measuring aperture of a sensor
US6376819B1 (en) 1999-07-09 2002-04-23 Wavefront Sciences, Inc. Sub-lens spatial resolution Shack-Hartmann wavefront sensing
DE60002330D1 (de) 1999-07-09 2003-05-28 Wavefront Sciences Inc Shack-hartmann wellenfrontsensor mit einem höheren als durch die linsenanordnung vorgegebenen räumlichem auflösungsvermögen
JP4267133B2 (ja) 1999-07-15 2009-05-27 株式会社トプコン 眼屈折力測定装置
US6305802B1 (en) 1999-08-11 2001-10-23 Johnson & Johnson Vision Products, Inc. System and method of integrating corneal topographic data and ocular wavefront data with primary ametropia measurements to create a soft contact lens design
EP1210042B1 (fr) 1999-09-10 2008-06-18 Haag-Streit Ag Dispositif de photoablation de la cornee par rayonnement laser
US6086204A (en) 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
JP2001095760A (ja) 1999-09-28 2001-04-10 Topcon Corp 眼の光学特性測定装置
WO2001028476A1 (fr) 1999-10-21 2001-04-26 Technolas Gmbh Ophthalmologische Systeme Reconnaissance et suivi de l'iris en vue d'un traitement optique
DE60042339D1 (de) 1999-10-21 2009-07-16 Technolas Gmbh System für die patientenspezifische profilierung der hornhaut
US7022117B1 (en) 1999-10-21 2006-04-04 Bausch & Lomb Incorporated Customized refractive correction
US6199986B1 (en) 1999-10-21 2001-03-13 University Of Rochester Rapid, automatic measurement of the eye's wave aberration
US6264328B1 (en) 1999-10-21 2001-07-24 University Of Rochester Wavefront sensor with off-axis illumination
EP1104663A3 (fr) 1999-11-15 2005-01-19 Kabushiki Kaisha Topcon Appareil de mesure des aberrations de l'oeil
DE19958436B4 (de) 1999-12-03 2014-07-17 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zur aktiven, physiologisch bewerteten, umfassenden Korrektur der Aberrationen des menschlichen Auges
EP1240539B1 (fr) 1999-12-23 2006-07-26 Shevlin Technologies Limited Dispositif d'affichage
EP1157657A4 (fr) 1999-12-27 2007-08-08 Topcon Corp Instrument de mesure de caracteristiques optiques
US6717661B1 (en) 2000-01-26 2004-04-06 Science & Technology Corporation @ University Of New Mexico Fourier moire wavefront sensor
US6452145B1 (en) 2000-01-27 2002-09-17 Aoptix Technologies, Inc. Method and apparatus for wavefront sensing
DE10006896A1 (de) 2000-02-16 2001-08-30 Wavelight Laser Technologie Ag Verfahren zum Herstellen einer künstlichen okularen Linse
US6220707B1 (en) 2000-02-25 2001-04-24 20/10 Perfect Vision Optische Geraete Gmbh Method for programming an active mirror to mimic a wavefront
US6234631B1 (en) 2000-03-09 2001-05-22 Lasersight Technologies, Inc. Combination advanced corneal topography/wave front aberration measurement
US6673062B2 (en) 2000-03-14 2004-01-06 Visx, Inc. Generating scanning spot locations for laser eye surgery
EP2042125A3 (fr) 2000-03-20 2009-04-15 California Institute of Technology Application sur des lentilles d'un capteur de front d'onde capable de modifier la puissance après fabrication
CA2375163A1 (fr) 2000-03-22 2001-11-22 Alcon Universal Ltd. Optimisation de correction par ablation de systeme optique et procedes associes
US6659613B2 (en) 2000-03-27 2003-12-09 Board Of Regents, The University Of Texas System Methods and systems for measuring local scattering and aberration properties of optical media
JP4491663B2 (ja) 2000-03-28 2010-06-30 株式会社トプコン 眼光学特性測定装置
CA2376756A1 (fr) 2000-04-19 2001-10-25 Alcon Universal Ltd. Capteur de front d'onde permettant d'effectuer une mesure objective d'un systeme optique, et procedes associes
US6702806B2 (en) 2000-04-19 2004-03-09 Alcon, Inc. Eye registration and astigmatism alignment control systems and method
US6565209B2 (en) 2000-04-25 2003-05-20 Alcon Universal Ltd. Range-extending system and spatial filter for enhancing Hartmann-Shack images and associated methods
AR030419A1 (es) 2000-04-25 2003-08-20 Alcon Inc Metodo y disposicion para mejorar la calidad de datos de imagen de sensor de un frente de onda que emerge de un ojo
US6338559B1 (en) 2000-04-28 2002-01-15 University Of Rochester Apparatus and method for improving vision and retinal imaging
US6460997B1 (en) 2000-05-08 2002-10-08 Alcon Universal Ltd. Apparatus and method for objective measurements of optical systems using wavefront analysis
EP1210003B1 (fr) 2000-05-08 2004-08-04 Alcon, Inc Appareil et procede de mesure et de correction objectives de systemes optiques par analyse de front d'ondes
JP4517211B2 (ja) 2000-05-12 2010-08-04 株式会社トプコン 眼特性測定装置
US6382795B1 (en) 2000-05-20 2002-05-07 Carl Zeiss, Inc. Method and apparatus for measuring refractive errors of an eye
US6382793B1 (en) 2000-05-20 2002-05-07 Carl Zeiss, Inc. Method and apparatus for measuring a wavefront
US6609793B2 (en) 2000-05-23 2003-08-26 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
JP4618592B2 (ja) 2000-07-28 2011-01-26 株式会社トプコン 眼光学特性測定装置
US6827444B2 (en) 2000-10-20 2004-12-07 University Of Rochester Rapid, automatic measurement of the eye's wave aberration

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAUTEK W. ET AL: "Femtosecond-Pulse Laser Ablation of Human Corneas", APPL. PHYS., vol. A58, 1994, pages 513 - 518 *
See also references of WO0112113A1 *
STERN D. ET AL: "Corneal Ablation by Nanosecond, Picosecond and Femtosecond Lasers at 532 and 625 nm", ARCH. OPHTHALMOL., vol. 107, April 1989 (1989-04-01), pages 587 - 592 *

Also Published As

Publication number Publication date
AU771939B2 (en) 2004-04-08
US8356897B2 (en) 2013-01-22
US7699467B2 (en) 2010-04-20
US20120041429A1 (en) 2012-02-16
DE19938203A1 (de) 2001-02-15
BR0006996A (pt) 2001-07-10
US8029136B2 (en) 2011-10-04
US6848790B1 (en) 2005-02-01
EP2255760A2 (fr) 2010-12-01
EP2255760A3 (fr) 2013-05-01
AU6441200A (en) 2001-03-13
JP2003506195A (ja) 2003-02-18
US20100274233A1 (en) 2010-10-28
WO2001012113A1 (fr) 2001-02-22
US20050159733A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
EP1119323A1 (fr) Procede et dispositif d'aberrometrie en ligne lors de la correction refractive des yeux
WO2001012114A1 (fr) Procede et dispositif permettant de corriger completement des defauts visuels de l'oeil humain
EP2389147B1 (fr) Dispositif et procédé de production de données de commande pour la correction opératoire d'un défaut de vision d'un oeil
EP2285322B1 (fr) Procédé de production de données de commande pour la chirurgie de l'oeil et dispositif de traitement pour la chirugie de l'oeil
EP1865827B1 (fr) Procede et dispositif pour augmenter la profondeur de champ d'un systeme optique
DE19904753C1 (de) Vorrichtung für die photorefraktive Hornhautchirurgie des Auges zur Korrektur von Sehfehlern höherer Ordnung
WO2001019303A1 (fr) Procede et dispositif de photoablation de la cornee par rayonnement laser
EP1171024A1 (fr) Procede de realisation d'une lentille oculaire artificielle
DE19958436A1 (de) Vorrichtung und Verfahren zur aktiven, physiologisch bewerteten, umfassenden Korrektur der Aberrationen des menschlichen Auges
WO2009124695A1 (fr) Système de chirurgie ophtalmologique par réfraction
EP3454802B1 (fr) Dispositif de planification et procede de generation de donnees de commande pour un dispositif de chirurgie ophtalmique
EP2080495A1 (fr) Dispositif destiné au traitement de tissu oculaire
WO2005011544A1 (fr) Procede, dispositif et systeme de determination d'un parametre systeme d'un systeme de traitement a faisceau laser
EP1154742A2 (fr) Dispositif pour la keratectomie photorefractive de l'oeil avec centrage
DE10024080A1 (de) Verfahren und Vorrichtung zur vollständigen Korrektur von Sehfehlern des menschlichen Auges
WO2021023799A1 (fr) Procédés et dispositifs de planification pour changer de manière précise un indice de réfraction
WO2001037031A1 (fr) Procede de traitement superficiel d'une lentille de contact en vue de l'adaptation individuelle au systeme oculaire
DE102004033819B4 (de) Verfahren zum Erzeugen von Steuerdaten eines Lasersystems für ophtalmologische Eingriffe
DE10025320A1 (de) Einrichtung zur Korrektion der individuellen Aberration
DE102019135609B4 (de) Verfahren zur Steuerung eines augenchirurgischen Lasers, sowie Behandlungsvorrichtung
DE102021124087A1 (de) Korrektur der Refraktion eines Auges durch Hornhautmodifikation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010822

17Q First examination report despatched

Effective date: 20060427

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APBV Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100222