EP1119323A1 - Method and device for performing online aberrometrie in refractive eye correction indices - Google Patents

Method and device for performing online aberrometrie in refractive eye correction indices

Info

Publication number
EP1119323A1
EP1119323A1 EP00951495A EP00951495A EP1119323A1 EP 1119323 A1 EP1119323 A1 EP 1119323A1 EP 00951495 A EP00951495 A EP 00951495A EP 00951495 A EP00951495 A EP 00951495A EP 1119323 A1 EP1119323 A1 EP 1119323A1
Authority
EP
European Patent Office
Prior art keywords
eye
optical system
lens
analysis
cornea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP00951495A
Other languages
German (de)
French (fr)
Inventor
Manfred Dick
Eckhard SCHRÖDER
Joachim Fiedler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Meditec AG
Original Assignee
Asclepion Meditec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asclepion Meditec AG filed Critical Asclepion Meditec AG
Priority to EP10152328.0A priority Critical patent/EP2255760A3/en
Publication of EP1119323A1 publication Critical patent/EP1119323A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength

Definitions

  • the invention relates to a method and a device for correcting visual defects in the human eye.
  • AI describes a method for improving a Shack-Hartmann sensor by means of which wave fronts can be measured in the field of astronomy for the measurement of stars.
  • a disadvantage of the prior art is the fact that the correction of the lenses takes place only on the basis of suboptimal data on the causes of the visual defects such as irregularities in the corneal surface or aberration in the beam path. As a result, corrections are only carried out in accordance with the standard lens formulas of geometric optics.
  • the object of the present invention was therefore to provide a method and a device which allow a complete correction of all refractive visual defects, including the aberrations of the beam path in the defective eye.
  • the object is achieved by a device for correcting visual defects in an eye, comprising a coherent light source, a beam modification device for shaping and deflecting a beam from the coherent light source, a wavefront analysis device being provided for analyzing a wavefront of the beam path in the eye.
  • a device for correcting visual defects in an eye comprising a coherent light source, a beam modification device for shaping and deflecting a beam from the coherent light source, a wavefront analysis device being provided for analyzing a wavefront of the beam path in the eye.
  • This device makes it possible to incorporate the data obtained from the analysis of the intraocular aberration into the correction of an existing optical system of an eye to be corrected. This makes the correction of the optical system of the eye even more precise.
  • a human eye is particularly suitable as an eye, but correction of the eyes of other living beings is also conceivable.
  • Visual defects are, in particular, refractive visual defects such as myopia or farsightedness, irregularities in the corneal surface or aberrations in the beam path
  • a laser particularly preferably a refractive laser, particularly preferably a spot scanning excimer laser system, is preferably provided as the coherent light source.
  • a spot scanner with laser light in other areas of the spectrum can also be thought of, such as a frequency-quintupled YAG laser, an IR laser at 3 ⁇ m, such as an erbium: YAG Laser that emits at 2.94 ⁇ m or a femto-second laser (FS laser).
  • a spot scanner with laser light in other areas of the spectrum can also be thought of, such as a frequency-quintupled YAG laser, an IR laser at 3 ⁇ m, such as an erbium: YAG Laser that emits at 2.94 ⁇ m or a femto-second laser (FS laser).
  • the beam modification device preferably consists of a device for shaping a beam and a device for deflecting and aligning the beam.
  • Lens systems, diffractive structures and refractive elements are preferably used as the device for shaping the beam.
  • Scanner arrangements, prisms and mirrors are preferably used as the device for deflecting and aligning the beam.
  • a Shack-Hartmann sensor can preferably be used as the wavefront analysis device. This is a sensor that is based on a method to analyze wave fronts. It is used particularly in astronomy (see above). With this wavefront analysis device, the entire wavefront emerging from the eye can be measured and information about the visual defects including the intraocular aberration of the beam path can also be obtained in the eye.
  • a device in which a topography analysis unit is additionally provided for analyzing the surface of the eye.
  • This analysis provides information about the curvature and contour of the surface of the eye - in particular the cornea. This provides the system with complete data on the refractive visual defects of the eye.
  • Both the possibly non-ideal surface contour of the eye - or the cornea - and the intraocular aberration can now be analyzed and are available to the system when correcting the optical system of the eye. This makes it possible to completely correct the visual defects of the eye and even achieve vision that is above that of the normal human eye.
  • a device in which a control unit for processing signals from the wavefront analysis unit and / or for processing signals from the topography analysis unit and / or for controlling the coherent light source and / or for controlling the beam modification device is also provided is.
  • the data determined by the analysis units can be evaluated by these control units. It is possible to process and evaluate the signals of the wavefront analysis unit and the signals of the topography analysis unit separately in the control unit or to process both amounts of data in one step.
  • the control unit preferably consists of several individual control units.
  • the parameters required for beam modification are determined from this data. These parameters can preferably be used in a further step to control the coherent light source, for example to predetermine the amplitude, pulse duration and energy of the beam. These parameters are also preferably used to control the beam modification device, in order to determine the target location and the geometry of the beam in the target via the deflection of the beam.
  • the shot positions for the production of the individual elements can be calculated.
  • a device in which the beam modification device is designed such that an intraocular lens and / or an eye lens and / or the cornea of the eye and / or a contact lens and / or a implantable contact lens (ICL) and / or an eyeglass lens can be processed.
  • an element or workpiece of the lens system can now be processed such that the visual error or aberration is completely corrected.
  • Such an element is preferably an intraocular lens (IOL) which is prefabricated before an appropriate operation. It is particularly preferably an ICL (implantable contact lens) that is placed on the lens.
  • This IOL or ICL can then be shaped on the basis of the entire information available about the visual defects, including the aberration of the eye, in such a way that it corrects all existing visual defects. It is also conceivable to carry out the correction by means of the beam on the eye lens itself, which is preferably controlled by the control device.
  • control unit is designed such that the analysis of the beam path in the eye and / or the Analysis of the surface of the eye can take place almost simultaneously with the processing of an optical element by the beam of the coherent light source.
  • This modification of the control unit makes it possible, during the processing of the optical element, that is to say, for example, during the processing of the cornea with the surgical laser beam, to carry out an “online” check of the beam path in the eye, as is currently modified by the operation, and / or to carry out the surface of this eye at the current time and to incorporate it into the further operation or processing.
  • the analysis of the beam path or the surface of the eye alternately with the processing of the optical element and thus to record the progress of the treatment or operation of the optical system, in particular the cornea, in sections. It is also conceivable for the scanning and analysis of the beam path or the surface of the eye to be temporal To interlock machining by the surgical laser beam. This enables continuous or quasi-continuous measurement with real device integration (e.g. every second) and continuous recalculation of the laser control.
  • the object is further achieved by a method according to the invention for correcting visual defects in an eye, the beam path of the eye being determined by means of a wavefront analysis and an ideal lens system being calculated which would lead to a correction of the visual defects in the eye.
  • This method is particularly preferably used using a device according to the invention. With this method, the intraocular aberration of the beam path is available for the calculation of the correction of the optical system for conversion into an ideal optical system.
  • the topography of the eye is particularly preferably additionally analyzed.
  • This method therefore provides further information about the ametropia of the eye, in particular about aberrations, asymmetrical cylinders and corneal irregularities.
  • the ideal optical system is provided on the basis of the data determined from the wavefront analysis and / or from the topography analysis. Only one element from this optical system is particularly preferably provided for this.
  • the correcting element or elements are produced in this way on the basis of the complete data of the ametropia. This procedure leads to the complete correction of the ametropia.
  • shot positions for producing the ideal optical system are generated by means of the wave front analysis and / or the topography analysis. calculated data.
  • the laser spot excimer method can advantageously be used to produce the individual elements of the optical system.
  • the shot positions are optimized depending on the materials to be used and taking the production time into account.
  • the old optical system of the eye is transformed into the calculated ideal optical system.
  • either elements of the old optical system are processed directly, correspondingly corrected elements are produced and used, or old elements are exchanged for new elements.
  • This process enables the old (defective) optical system of the eye to be converted into a (new) ideal optical system.
  • a new lens or an ICL according to the spot scanning principle is particularly preferably produced with an excimer laser.
  • a contact lens that is already arranged on the patient's eye is particularly preferably processed.
  • the patient preferably already wears a contact lens correcting the standard ametropia or, in the case of normal vision, only a therapeutic contact lens, which particularly preferably has good adhesion and has constant imaging properties without decentration.
  • the ablation is carried out on the standardized contact lens and a risk-free correction of the higher aberration of the eye is achieved non-invasively.
  • a therapeutic contact lens without refractive effect is also preferably used for this. All imaging errors on this contact lens are corrected with the laser.
  • Contact lenses made of PMMA or plastic lenses are particularly preferably used, which particularly preferably have less material removal for the laser used, for example a 193 nm ArF excimer laser compared to the human cornea. Also particularly preferred are all soft contact lenses, which show almost the same ablation properties as the cornea due to their high water content. In this way, the exact ablation rates can advantageously be determined before the treatment for any contact lens material standardized by the manufacturer and a desired refractive correction can thus be reproducibly carried out on the eye.
  • the correction option simulated in this way can serve as a preparation for a later real corneal operation, or a lens of this type with customized correction can be used for a predetermined time.
  • a lens of this type with customized correction can be used for a predetermined time.
  • long-term use can also take place.
  • a corresponding marking for the axis position is advantageously applied, which is taken into account when inserting.
  • the optical system preferably comprises as elements the eye lens and / or an intraocular lens and / or the cornea of the eye and / or a contact lens and / or an ICL and / or at least one spectacle lens.
  • the cornea of the eye can be reshaped to correct the existing ametropia
  • the object is achieved by an ideal optical system which was produced by a method according to the invention and / or by means of a device according to the invention, the optical system being made from materials suitable for implantation and / or adhesion and / or suitable for ablation, in particular plastic or glass, includes.
  • the optical system being made from materials suitable for implantation and / or adhesion and / or suitable for ablation, in particular plastic or glass.
  • the compatibility of the use of these elements is guaranteed by the choice of these materials of the lens system according to the invention.
  • Such materials are, for example, PMMA, acrylic, silicone or a combination of these materials.
  • an ideal optical system which comprises elements which comprise refractive and / or diffractive structures.
  • Refractive and / or diffractive structures have so far only been used in beam shaping.
  • a mini lens system directs and shapes the incoming beam in order to achieve a special beam distribution in the target plane.
  • the use of such refractive and / or diffractive structures on individual elements of an optical system allows the targeted correction of poor eyesight in an unusually ideal way.
  • the use of these structures makes it possible to correct individual non-continuous aberrations or to give the optical systems properties that a normal human eye does not have.
  • the object of the invention is further achieved by an element of an (ideal) lens system which has refractive and / or diffractive structures.
  • Such elements can be intraocular lenses, modified corneas, contact lenses, ICLs or spectacle lenses.
  • FIG. 1 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye on a lens 6; 2 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye, on which a lens 6 is applied, and FIG. 3 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye without a contact lens.
  • FIG. 1 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting vision defects of an eye on a lens.
  • a wavefront analysis unit 2 and a topography analysis unit 2 ⁇ are connected to a control unit 3.
  • the control unit 3 is connected to a laser 4 and a beam modification device 5 via a bus.
  • a lens 6 is shown behind the beam modification device 5.
  • An eye 1 is shown in front of the wavefront analysis unit 2 and the topography analysis unit 2 ⁇ . In the operating state, the rays of the wavefront analysis unit 2 and the topography analysis unit 2 scan the eye 1 and transmit the signals obtained to the control unit 3.
  • the rays used here are preferably rays from a coherent light source, particularly preferably rays from an IR diode or a green laser .
  • the signals are processed in the control unit 3 and the ideal optical system for this eye 1 is calculated.
  • an ideal lens 6 is calculated here as an element of the optical system.
  • all shot positions that are required for the laser 4 to produce the ideal lens 6 are calculated in the control unit 3 based on the data obtained from the signals, taking into account the laser-relevant data.
  • the control unit 3 then controls the laser 4 and determines the energy and pulse rate of the surgical beam 7.
  • the beam 7 is passed through the beam modification device 5.
  • the beam 7 is shaped and deflected in accordance with the calculated shot positions by the specifications of the control unit 3 via scanners and lens systems, so that the controlled surgical laser beam 7 produces the customer-specific lens 6 by ablation of material on the raw lens.
  • the control unit 3 can also preferably be embodied in a plurality of sub-control units which can be connected to individual components of the device.
  • FIG. 2 shows a block diagram for a further exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye, on which a lens is applied.
  • the structure corresponds to that of FIG. 1 with the difference that a contact lens 6 is applied directly to the eye 1 and the ablation is carried out there in situ.
  • the ablation of the lens material now takes place in situ on the eye, so that the analysis device 2 or 2 1 now, preferably online, parallel to the ablation, the beam path in the system of the eye 1 and the lens 6 and the surface of this system - in particular here the Lens 6 - can be analyzed and the treatment by the beam 7 can be checked and assessed directly.
  • the ideal lens 6 produced in this way now gives the interested party an impression of the complete optical system and the operating conditions, without having undergone an irreversible operation.
  • FIG. 3 shows a block diagram for an exemplary embodiment of a further device according to the invention for correcting aberration in the beam path of an eye without a contact lens.
  • the progress of the operation can now be observed online by the surgical beam 7, preferably simultaneously with the analysis of the eye 1 by the analysis device 2, 2 ′, and subsequent calculations can be carried out via the control device 3 during the operation, so that treatment of the eye 1 is carried out iteratively by the laser beam 7 which responds and is used to the current circumstances.
  • the progress of the operation can also be visually observed using a microscope, for example (not shown).
  • a point is particularly preferably projected onto the retina of the eye 1 with the aid of a light source of the analysis device 2, 2 '(light source not shown separately).
  • An almost parallel external beam path is used and the focusing effect of the optical device of the eye is used in order to be able to generate the smallest possible spot.
  • the intensities are so low according to the wavelength used and the duration of the radiation that no damage can occur to the retina, but there is sufficient reflected intensity.
  • the reflected wave as it passes through the optical system of the eye with aberration, captures all aberrations.
  • the corresponding deformed wavefront reaches the wavefront analysis device 2 or the topography analysis unit 2 ', from where the aberration data are preferably fed to a computer via appropriate electronics or control unit 3.
  • a current ablation profile is calculated from the aberration data, which controls the excimer laser 4 with the spot scanning system and realizes target-controlled treatment via the radiation modification device 5.
  • Such a measurement can also be carried out sporadically, for example during 80% of the treatment time.
  • the analysis device 2 or 2 ' can be arranged on a separate stand so that the laser and the measuring device alternately swivel in, or preferably the measuring device is integrated in the laser and measures when the laser bombardment is interrupted. Recalculation of the residual treatment is particularly preferably carried out at the request of the operator. This measurement can particularly preferably also be carried out continuously or quasi-continuously with device integration and continuous recalculation of the laser control.
  • the correction can be made by modifying an element of the optical system.
  • an element of the optical system To improve the eyesight of a patient with cataracts and ametropia, it is sufficient to completely correct the intraocular lens. In such a case, it is no longer necessary to perform a refractive surgery in addition to the cataract surgery.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Eye Examination Apparatus (AREA)
  • Prostheses (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

This invention relates to a method and a device for the complete correction of sight defects in the human eye. Combinations of measuring- and processing methods are described which when applied as disclosed in the invention, make it possible to fully correct sight defects in the human eye. Measuring methods are used which can precisely scan the surface of the cornea and also register other imaging defects in the light path up to the retina. Computer-aided of said measuring results determined when combined with calculation of ideally corrected ocular lenses (for example after cataract operations) or ideally corrected surfaces of the cornea opens up the possibility of manufacturing a patient-specific lens and/or achieving ideal correction of the cornea using preferably a topography-supported spot-scanning-excimer laser system.

Description

Verfahren und Vorrichtung zur online Aberro (metrie bei der refraktiven Korrektur von AugenMethod and device for online aberration (measurement in the refractive correction of eyes
Die Erfindung betrifft ein Verfahren und eine Vorichtung zur Korrektur von Sehfehlern des menschlichen Auges.The invention relates to a method and a device for correcting visual defects in the human eye.
In der Ophthalmologie ist es bekannt, die Hornhaut bei Seh- schwäche durch Ablation von Gewebe zu formen. Die Daten über die Aberration im Strahlengang des Auges werden dabei über eine Befragung des Patienten aufgrund von Korrekturen über standardisierte Korrekturlinsen vor dem Auge des Patienten nach seinem subjektiven Eindruck des Sehvermögens gewonnen. Daneben existieren Verfahren zur Vermessung der äußeren Kontur des Auges mittels Streifen- oder Ringprojektionssystemen, wie sie beispielsweise von den Firmen Orbtek, Tomey oder Technomed hergestellt werden.It is known in ophthalmology to shape the cornea in the case of poor eyesight by ablation of tissue. The data on the aberration in the beam path of the eye are obtained by questioning the patient on the basis of corrections via standardized correction lenses in front of the patient's eye according to his subjective impression of vision. In addition, there are methods for measuring the outer contour of the eye using stripe or ring projection systems, such as those manufactured by the companies Orbtek, Tomey or Technomed.
In der DE 197 05 119 AI wird ein Verfahren zur Verbesserung j eines Shack-Hartmann-Sensors beschrieben, mit dem Wellenfronten im Bereich der Astronomie zur Vermessung von Sternen gemessen werden können.DE 197 05 119 AI describes a method for improving a Shack-Hartmann sensor by means of which wave fronts can be measured in the field of astronomy for the measurement of stars.
In der DE 197 27 573 Cl wird in einem wertvollen Beitrag zum Stand der Technik eine Vorrichtung und ein Verfahren zur Formgebung von Oberflächen, insbesondere von Linsen, vermittels einer Laserabtragung der Oberflächen angegeben.DE 197 27 573 C1 provides a valuable contribution to the prior art of a device and a method for shaping surfaces, in particular lenses, by means of laser ablation of the surfaces.
Nachteilig am Stand der Technik wird die Tatsache empfunden, daß die Korrektur der Linsen nur aufgrund suboptimaler Daten über die Ursachen der Sehfehler wie Irregularitäten der Hornhautoberfläche oder Aberration im Strahlengang stattfindet. Es werden folglich nur Korrekturen entsprechend den Standardlinsenformeln der geometrischen Optik ausgeführt. Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren und eine Vorrichtung bereitzustellen, die eine vollständige Korrektur aller refraktiven Sehfehler einschließlich der Aberrationen des Strahlenganges im fehlsichtigen Auge erlau- ben.A disadvantage of the prior art is the fact that the correction of the lenses takes place only on the basis of suboptimal data on the causes of the visual defects such as irregularities in the corneal surface or aberration in the beam path. As a result, corrections are only carried out in accordance with the standard lens formulas of geometric optics. The object of the present invention was therefore to provide a method and a device which allow a complete correction of all refractive visual defects, including the aberrations of the beam path in the defective eye.
Diese Aufgabe wird durch die Vorrichtung und das Verfahren nach den unabhängigen Ansprüchen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angege- ben.This object is achieved by the device and the method according to the independent claims. Advantageous embodiments of the invention are specified in the subclaims.
Insbesondere wird die Aufgabe durch eine Vorrichtung zur Korrektur von Sehfehlern eines Auges gelöst, umfassend eine kohärente Lichtquelle, eine Strahlmodifikationseinrichtung zur Formung und Ablenkung eines Strahles der kohärenten Lichtquelle, wobei eine Wellenfrontanalyseeinrichtung zur Analyse einer Wellenfront des Strahlenganges im Auge vorgesehen ist. Durch diese Vorrichtung ist es möglich, die aus der Analyse der intraokularen Aberration gewonnenen Daten in die Korrektur eines bestehenden optischen Systems eines zu korrigierenden Auges einfließen zu lassen. Damit wird die Korrektur des optischen Systems des Auges nochmals präziser möglich.In particular, the object is achieved by a device for correcting visual defects in an eye, comprising a coherent light source, a beam modification device for shaping and deflecting a beam from the coherent light source, a wavefront analysis device being provided for analyzing a wavefront of the beam path in the eye. This device makes it possible to incorporate the data obtained from the analysis of the intraocular aberration into the correction of an existing optical system of an eye to be corrected. This makes the correction of the optical system of the eye even more precise.
Als Auge kommt insbesondere ein menschliches Auge in Betracht, denkbar ist aber auch die Korrektur von Augen anderer Lebewesen. Sehfehler sind insbesondere refraktive Sehfehler wie die Kurz- oder Weitsichtigkeit, Irregularitäten der Hornhautoberfläche oder Aberrationen im StrahlengangA human eye is particularly suitable as an eye, but correction of the eyes of other living beings is also conceivable. Visual defects are, in particular, refractive visual defects such as myopia or farsightedness, irregularities in the corneal surface or aberrations in the beam path
Als kohärente Lichtquelle ist bevorzugt ein Laser, besonders bevorzugt ein refraktiver Laser, insbesondere bevorzugt ein Spot-Scanning-Excimerlasersystem, vorgesehen. Daneben kann auch an ein Spot Scanner mit Laserlicht in anderen Bereichen des Spektrums gedacht werden wie ein frequenzverfünffachter YAG-Laser, ein IR-Laser bei 3μm, wie bspw. einen Erbium: YAG- Laser, der bei 2,94 μm emittiert, oder ein femto- Sekundenlaser (FS-Laser) .A laser, particularly preferably a refractive laser, particularly preferably a spot scanning excimer laser system, is preferably provided as the coherent light source. In addition, a spot scanner with laser light in other areas of the spectrum can also be thought of, such as a frequency-quintupled YAG laser, an IR laser at 3 μm, such as an erbium: YAG Laser that emits at 2.94 μm or a femto-second laser (FS laser).
Die Strahlenmodifikationseinrichtung besteht bevorzugt aus einer Einrichtung zur Formung eines Strahles und einer Einrichtung zur Ablenkung und Ausrichtung des Strahles. Als Einrichtung zur Formung des Strahles werden bevorzugt Linsensysteme, diffraktive Strukturen und refraktive Elemente eingesetzt. Als Einrichtung zur Ablenkung und Ausrichtung des Strahles werden bevorzugt Scanneranordnungen, Prismen und Spiegel verwendet.The beam modification device preferably consists of a device for shaping a beam and a device for deflecting and aligning the beam. Lens systems, diffractive structures and refractive elements are preferably used as the device for shaping the beam. Scanner arrangements, prisms and mirrors are preferably used as the device for deflecting and aligning the beam.
Als Wellenfrontanalyseeinrichtung kann bevorzugt ein Shack- Hartmann-Sensor verwendet werden. Hierbei handelt es sich um einen Sensor, der auf einem Verfahren beruht, um Wellenfronten zu analysieren. Er wird insbesondere in der Astronomie eingesetzt (s.o.). Durch diese Wellenfrontanalyseeinrichtung kann die gesamte aus dem Auge austretende Wellenfront gemessen werden und so Informationen über die Sehfehler ein- schließlich der intraokularen Aberration des Strahlenganges auch im Auge gewonnen werden.A Shack-Hartmann sensor can preferably be used as the wavefront analysis device. This is a sensor that is based on a method to analyze wave fronts. It is used particularly in astronomy (see above). With this wavefront analysis device, the entire wavefront emerging from the eye can be measured and information about the visual defects including the intraocular aberration of the beam path can also be obtained in the eye.
Bei einem weiteren Ausführungsbeispiel der vorliegenden Erfindung ist eine Vorrichtung vorgesehen, bei der zusätzlich eine Topographieanalyseeinheit zur Analyse der Oberfläche des Auges vorgesehen ist. Diese Analyse liefert die Information, welche Krümmung und Kontur die Augenoberfläche - also insbesondere die Cornea - aufweist. Dadurch stehen dem System die volständigen Daten über die refraktiven Sehfehler des Auges zur Verfügung. Sowohl die gegebenenfalls nicht ideale Oberflächenkontur des Auges - bzw. der Cornea - als auch die intraokulare Aberration kann nun analysiert werden und stehen dem System bei der Korrektur des optischen Systemes des Auges zur Verfügung. Dadurch ist es möglich, die Sehfehler des Auges vollständig zu korrigieren und sogar ein Sehvermögen zu erreichen, das über dem des normalen menschlichen Auges liegt . Bei einem weiteren Ausführungsbeispiel der Erfindung ist eine Vorrichtung vorgesehen, bei der weiterhin eine Steuereinheit zur Verarbeitung von Signalen der Wellenfrontanalyseneinheit und/ oder zur Verarbeitung von Signalen der Topographieanaly- seeinheit, und/ oder zur Steuerung der kohärenten Lichtquelle und/ oder zur Steuerung der Strahlmodifikationseinrichtung vorgesehen ist. Durch diese Steuereinheiten können die durch die Analyseeinheiten ermittelten Daten ausgewertet werden. Es ist möglich, die Signale der Wellenfrontanalyseneinheit und der Signale der Topographieanalyseeinheit in der Steuereinheit getrennt zu verarbeiten und auszuwerten oder beide Datenmengen in einem Schritt zu verarbeiten. Die Steuereinheit besteht bevorzugt aus mehreren einzelnen Steuereinheiten.In a further exemplary embodiment of the present invention, a device is provided in which a topography analysis unit is additionally provided for analyzing the surface of the eye. This analysis provides information about the curvature and contour of the surface of the eye - in particular the cornea. This provides the system with complete data on the refractive visual defects of the eye. Both the possibly non-ideal surface contour of the eye - or the cornea - and the intraocular aberration can now be analyzed and are available to the system when correcting the optical system of the eye. This makes it possible to completely correct the visual defects of the eye and even achieve vision that is above that of the normal human eye. In a further exemplary embodiment of the invention, a device is provided in which a control unit for processing signals from the wavefront analysis unit and / or for processing signals from the topography analysis unit and / or for controlling the coherent light source and / or for controlling the beam modification device is also provided is. The data determined by the analysis units can be evaluated by these control units. It is possible to process and evaluate the signals of the wavefront analysis unit and the signals of the topography analysis unit separately in the control unit or to process both amounts of data in one step. The control unit preferably consists of several individual control units.
Diese Daten dienen bevorzugt der Bereitstellung eines idealen optischen Systemes. Aus diesen Daten werden die für die Strahlmodifikation erforderlichen Parameter bestimmt. Diese Parameter können bevorzugt in einem weiteren Schritt zur Steuerung der kohärenten Lichtquelle benutzt werden, um beispielsweise Amplitude, Pulsdauer und Energie des Strahles vorzubestimmen . Weiterhin bevorzugt werden diese Parameter auch zur Steuerung der Strahlmodifikationseinrichtung eingesetzt, um hier über die Ablenkung des Strahles den Zielort und die Geometrie des Strahles im Ziel festzulegen.These data are preferably used to provide an ideal optical system. The parameters required for beam modification are determined from this data. These parameters can preferably be used in a further step to control the coherent light source, for example to predetermine the amplitude, pulse duration and energy of the beam. These parameters are also preferably used to control the beam modification device, in order to determine the target location and the geometry of the beam in the target via the deflection of the beam.
Dadurch können bei einem bevorzugten Ausführungsbeispiel insbesondere die Schußpositionen für die Herstellung der einzelnen Elemente berechnet werden.In this way, in a preferred embodiment, in particular the shot positions for the production of the individual elements can be calculated.
Bei einem weiteren bevorzugten Ausführungsbeispiel der vorliegenden Erfindung ist eine Vorrichtung vorgesehen, bei der die Strahlmodifikationseinrichtung so ausgebildet ist, daß mit dem Strahl eine Intraokularlinse und/ oder eine Augenlin- se und/ oder die Cornea des Auges und/ oder eine Kontaktlinse und/oder eine implantable Contact lens (ICL) und/ oder ein Brillenglas bearbeitbar ist. Durch den bevorzugt von der Steuereinheit gesteuerten Strahl kann nun ein Element bzw. Werkstück des Linsensystems derart bearbeitet werden, daß die Sehfehler bzw. Aberration vollständig korrigiert wird. Ein solches Element ist bevorzugt eine Intraokularlinse (IOL), die vor einer entsprechenden Operation vorgefertigt wird. Besonders bevorzugt handelt es sich um eine ICL (implantable contact lens), die auf die Linse aufgesetzt wird. Diese IOL bzw. ICL kann dann aufgrund der gesamten vorliegenden Information über die Sehfehler einschl. der Aberration des Auges so geformt werden, daß sie alle vorhandenen Sehfehler korrigiert. Denkbar ist auch, die Korrektur mittels des bevorzugt durch die Steuereinrichtung gesteuerten Strahles an der Augenlinse selbst vorzunehmen.In a further preferred exemplary embodiment of the present invention, a device is provided in which the beam modification device is designed such that an intraocular lens and / or an eye lens and / or the cornea of the eye and / or a contact lens and / or a implantable contact lens (ICL) and / or an eyeglass lens can be processed. By the preferred of the Control unit controlled beam, an element or workpiece of the lens system can now be processed such that the visual error or aberration is completely corrected. Such an element is preferably an intraocular lens (IOL) which is prefabricated before an appropriate operation. It is particularly preferably an ICL (implantable contact lens) that is placed on the lens. This IOL or ICL can then be shaped on the basis of the entire information available about the visual defects, including the aberration of the eye, in such a way that it corrects all existing visual defects. It is also conceivable to carry out the correction by means of the beam on the eye lens itself, which is preferably controlled by the control device.
Weiterhin ist es denkbar, eine Korrektur durch die Bearbeitung der Cornea vorzunehmen. Bevorzugt werden auch Kontaktlinsen gefertigt, die patientenspezifisch sämtliche individuellen über dem refraktiven Augenfehler hinausgehende Fehler wie Aberrationen, unsymmetrische Zylinder und Hornhaut- Irregularitäten korrigieren. Daneben ist es möglich, indivi- j duelle Brillengläser herzustellen. Hierfür können neben der Excimer-Spot-Bearbeitung auch Methoden der Optikindustrie wie beispielsweise das Single point diamond turning Verfahren eingesetzt werden. Hierdurch können sämtliche Elemente des betroffenen optischen Systemes zur Korrektur der Augenfehler verwendet werden.It is also conceivable to make a correction by processing the cornea. Contact lenses are also preferably produced, which correct all patient-specific errors such as aberrations, asymmetrical cylinders and corneal irregularities that go beyond refractive eye defects. In addition, it is possible to manufacture individual glasses. In addition to excimer spot machining, methods from the optics industry such as the single point diamond turning process can also be used for this. As a result, all elements of the optical system concerned can be used to correct the eye defects.
Es ist ebenfalls möglich, eine Kombination der einzelnen (teil-) korrigierten Elemente einzusetzen. Dies ist insbeson- dere dann vorteilhaft, wenn die theoretisch mögliche Korrektur über ein Element zu einer hohen Beanspruchung dieses Elements führen würde und eine solche Beanspruchung insbesondere aus medizinischer Sicht nicht angezeigt erscheint.It is also possible to use a combination of the individual (partially) corrected elements. This is particularly advantageous if the theoretically possible correction via an element would lead to a high stress on this element and such stress does not appear to be indicated, in particular from a medical point of view.
Bei einem weiteren bevorzugten Ausführungsbeispiel der erfindungsgemäßen Vorrichtung ist die Steuereinheit so ausgebildet, daß die Analyse des Strahlenganges im Auge und/oder die Analyse der Oberflache des Auges quasi zeitgleich mit der Bearbeitung eines optischen Elements durch den Strahl der kohärenten Lichtquelle erfolgen kann. Durch diese Modifikation der Steuereinheit ist es möglich, wahrend der Bearbeitung des optischen Elements, d.h. beispielsweise wahrend der Bearbeitung der Cornea mit dem Chirurgielaserstrahl, eine "online"-Uberprufung des Strahlenganges im Auge, wie es derzeit durch die Operation modifiziert ist, und/oder der Oberflache dieses Auges im aktuellen Zeitpunkt durchzufuhren und in die weitere Operation bzw. Bearbeitung einfließen zu lassen. Damit ist es möglich, daß man wahrend einer Laserbehandlung der Cornea zur Korrektur refraktiver Sehfehler des Auges standig den aktuellen refraktiven Wert des gesamten Sehapparates des Auges mißt und bei gegebenen störenden Einflüssen auf die Behandlung online den Behandlungsabiauf auf den Zielwert der Refraktion des Auges exakt einstellen kann. Durch diese Kombination der optischen Systeme eines Chirurgielasers zum Abtrag von Cornea-Gewebe bzw. Linsenmaterial und eines Aberrometers zur Wellenfrontanalyse bzw. der Oberflache des Auges wird diese optimierte Behandlung möglich. Besonders vorteilhaft ist hierbei die vollständige Erfassung der refraktiven Werte (spharozylindrische Aberrationen sowie Aberrationen höherer Ordnung) des gesamten optischen Apparates des Auges, welche in letzter Instanz repräsentativ sind für die Qualität des erzielten operativen Eingriffs. Durch die vollständige Erfassung online und ohne Unterbrechung des Behandlungsablaufes, wird hierdurch eine hinsichtlich des zeitlichen Ablaufs und der erzielbaren Präzision optimierte Vorrichtung bereitgestellt.In a further preferred exemplary embodiment of the device according to the invention, the control unit is designed such that the analysis of the beam path in the eye and / or the Analysis of the surface of the eye can take place almost simultaneously with the processing of an optical element by the beam of the coherent light source. This modification of the control unit makes it possible, during the processing of the optical element, that is to say, for example, during the processing of the cornea with the surgical laser beam, to carry out an “online” check of the beam path in the eye, as is currently modified by the operation, and / or to carry out the surface of this eye at the current time and to incorporate it into the further operation or processing. It is thus possible to constantly measure the current refractive value of the entire visual apparatus of the eye during laser treatment of the cornea to correct refractive vision defects and to be able to precisely adjust the treatment sequence online to the target value of the refraction of the eye given the disturbing influences on the treatment online , This optimized treatment is made possible by this combination of the optical systems of a surgical laser for the removal of corneal tissue or lens material and an aberrometer for the wavefront analysis or the surface of the eye. The complete recording of the refractive values (spherocylindrical aberrations as well as higher order aberrations) of the entire optical apparatus of the eye, which in the last instance are representative of the quality of the surgical intervention achieved, is particularly advantageous. Due to the complete recording online and without interruption of the treatment process, a device which is optimized with regard to the time process and the achievable precision is hereby provided.
Besonders bevorzugt ist es auch möglich, die Analyse des Strahlengangs bzw. der Oberflache des Auges im Wechsel mit der Bearbeitung des optischen Elements durchzufuhren und so abschnittsweise den Fortgang der Behandlung bzw. der Operati- on des optischen Systems, insbesondere der Cornea, zu erfassen. Es ist auch denkbar, die Abtastung und Analyse des Strahlengangs bzw. der Oberflache des Auges zeitlich m die Bearbeitung durch den Chirurgielaserstrahl zu verzahnen. Dadurch ist eine kontinuierliche bzw. quasi-kontinuierliche Messung bei echter Geräteintegration (z.B. jede Sekunde) und fortlaufende Neuberechnung der Lasersteuerung möglich.It is particularly preferably also possible to carry out the analysis of the beam path or the surface of the eye alternately with the processing of the optical element and thus to record the progress of the treatment or operation of the optical system, in particular the cornea, in sections. It is also conceivable for the scanning and analysis of the beam path or the surface of the eye to be temporal To interlock machining by the surgical laser beam. This enables continuous or quasi-continuous measurement with real device integration (e.g. every second) and continuous recalculation of the laser control.
Die Aufgabe wird weiterhin gelöst durch ein erfindungsgemäßes Verfahren zur Korrektur von Sehfehlern eines Auges, wobei der Strahlengang des Auges mittels einer Wellenfrontanalyse ermittelt wird und ein ideales Linsensystem berechnet wird, das zu einer Korrektur der Sehfehler des Auges führen würde. Besonders bevorzugt wird dieses Verfahren unter Einsatz einer erfindungsgemäßen Vorrichtung angewandt. Bei diesem Verfahren steht für die Berechnung der Korrektur des optischen Systemes zur Überführung in ein ideales optisches System die intraoku- lare Aberration des Strahlenganges zur Verfügung.The object is further achieved by a method according to the invention for correcting visual defects in an eye, the beam path of the eye being determined by means of a wavefront analysis and an ideal lens system being calculated which would lead to a correction of the visual defects in the eye. This method is particularly preferably used using a device according to the invention. With this method, the intraocular aberration of the beam path is available for the calculation of the correction of the optical system for conversion into an ideal optical system.
Besonders bevorzugt wird bei einem weiteren erfindungsgemäßen Verfahren zusätzlich die Topographie des Auges analysiert. Damit stehen in diesem Verfahren noch weitere Informationen über die Fehlsichtigkeit des Auges zur Verfügung, insbesondere über Aberrationen, unsymmetrische Zylinder und Hornhaut- Irregularitäten.In a further method according to the invention, the topography of the eye is particularly preferably additionally analyzed. This method therefore provides further information about the ametropia of the eye, in particular about aberrations, asymmetrical cylinders and corneal irregularities.
Bei einem weiteren bevorzugten Verfahren wird das ideale optischen System auf der Basis der aus der Wellenfrontanalyse und/ oder der aus der Topographieanalyse ermittelten Daten bereitgestellt. Besonders bevorzugt wird dafür nur ein Element aus diesem optischen System bereitgstellt . Auf diese Weise wird in einem weiteren Schritt das korrigierende Ele- ment oder die korrigierenden Elemente auf der Basis der kompletten Daten der Fehlsichtigkeit hergestellt. Dieses Vorgehen führt so zur vollständigen Korrektur der Fehlsichtigkeit .In a further preferred method, the ideal optical system is provided on the basis of the data determined from the wavefront analysis and / or from the topography analysis. Only one element from this optical system is particularly preferably provided for this. In a further step, the correcting element or elements are produced in this way on the basis of the complete data of the ametropia. This procedure leads to the complete correction of the ametropia.
Bei einem weiteren bevorzugten Verfahren werden Schußpositionen zur Herstellung des idealen optischen Systems mittels der aus der Wellenfrontanalyse und/ oder aus der Topographieana- lyse ermittelten Daten berechnet. Auf diese Weise kann vorteilhaft das Laser-Spot-Excimer-Verfahren zur Herstellung der einzelnen Elemente des optischen Systems genutzt werden. Die Schußpositionen werden je nach einzusetzenden Materialien und unter Berücksichtigung des Fertigungszeitaufwandes optimiert.In a further preferred method, shot positions for producing the ideal optical system are generated by means of the wave front analysis and / or the topography analysis. calculated data. In this way, the laser spot excimer method can advantageously be used to produce the individual elements of the optical system. The shot positions are optimized depending on the materials to be used and taking the production time into account.
Bei einem weiteren Verfahren der vorliegenden Erfindung wird das alte optischen System des Auges zu dem berechneten idealen optischen System umgeformt. Hierzu werden entweder Ele- mente des alten optischen Systems direkt bearbeitet oder entsprechend korrigierte Elemente hergestellt und eingesetzt bzw. alte Elemente gegen neue Elemente ausgetauscht. Durch dieses Verfahren ist die Überführung des alten (fehlsichtigen) optischen Systems des Auges in ein (neues) ideales optischen System möglich. Besonders bevorzugt wird eine neue Linse bzw. eine ICL nach dem Spot-Scanning-Prinzip mit einem Excimerlaser hergestellt.In another method of the present invention, the old optical system of the eye is transformed into the calculated ideal optical system. For this purpose, either elements of the old optical system are processed directly, correspondingly corrected elements are produced and used, or old elements are exchanged for new elements. This process enables the old (defective) optical system of the eye to be converted into a (new) ideal optical system. A new lens or an ICL according to the spot scanning principle is particularly preferably produced with an excimer laser.
Besonders bevorzugt wird beim erfindungsgemäßen Verfahren eine Kontaktlinse bearbeitet, die bereits auf dem Auge des Patienten angeordnet ist. Der Patient trägt während der Messung bevorzugt bereits eine die Standard-Fehlsichtigkeiten korrigierende Kontaktlinse bzw. bei Normalsichtigkeit nur eine therapeutische Kontaktlinse, die besonders bevorzugt eine gute Haftung besitzt und konstante Abbildungseigenschaften ohne Dezentrierung aufweist. Nun wird die Ablation auf der standardisierten Kontaktlinse vorgenommen und damit nicht invasiv eine risikolose Korrektur der höheren Aberration des Auges erzielt. Dadurch wird für den Patienten risikolos mit hoher Behandlungssicherheit insbesondere höhere Aberrationen korrigierbar, um den optischen Apparat des Auges zu befähigen, das Auflösungsvermögen der Retina auszunutzen und ein Supervisus zur Verfügung zu haben, der dem des normalsichtigen Auges überlegen ist. Patienten können nun ohne Rucksicht auf die Eigenschaften ihrer eigenen Augen mit Hinblick auf Transmissionswerte bzw. Austrocknung des Tränenfilms einen bevorzugten Supervisus erwerben und Erfahrungen im alltagli- chen Leben damit sammeln. Durch die Entfernung der Kontaktlinse ist die alte Seheigenschaft wieder hergestellt.In the method according to the invention, a contact lens that is already arranged on the patient's eye is particularly preferably processed. During the measurement, the patient preferably already wears a contact lens correcting the standard ametropia or, in the case of normal vision, only a therapeutic contact lens, which particularly preferably has good adhesion and has constant imaging properties without decentration. Now the ablation is carried out on the standardized contact lens and a risk-free correction of the higher aberration of the eye is achieved non-invasively. As a result, higher aberrations, in particular, can be corrected risk-free for the patient with a high level of treatment security, in order to enable the optical apparatus of the eye, to utilize the resolving power of the retina and to have a supervisor that is superior to that of the normal-sighted eye. Patients can now acquire a preferred supervisor regardless of the properties of their own eyes with regard to transmission values or drying out of the tear film and experience in everyday life. collect life with it. By removing the contact lens, the old visual quality is restored.
Bevorzugt wird hierfür auch eine therapeutische Kontaktlinse ohne refraktive Wirkung eingesetzt. Hierbei werden sämtliche Abbildungsfehler auf dieser Kontaktlinse mit dem Laser korrigiert.A therapeutic contact lens without refractive effect is also preferably used for this. All imaging errors on this contact lens are corrected with the laser.
Besonders bevorzugt werden Kontaktlinsen aus PMMA oder Kunst- stofflinsen genutzt, welche besonders bevorzugt einen geringeren Materialabtrag für den eingesetzten Laser, beispielsweise einen 193 nm ArF-Excimerlaser gegenüber der menschlichen Cornea aufweisen. Insbesondere bevorzugt sind auch alle weichen Kontaktlinsen, die aufgrund ihres hohen Wassergehalts nahezu die gleichen Ablationseigenschaften wie die Cornea zeigen. So können vorteilhaft vor der Behandlung für jegliches herstellungsseitig standardisiertes Kontaktlinsenmaterial die exakten Ablationsraten bestimmt werden und damit reproduzierbar eine gewünschte refraktive Korrektur auf dem Auge vorgenommen werden.Contact lenses made of PMMA or plastic lenses are particularly preferably used, which particularly preferably have less material removal for the laser used, for example a 193 nm ArF excimer laser compared to the human cornea. Also particularly preferred are all soft contact lenses, which show almost the same ablation properties as the cornea due to their high water content. In this way, the exact ablation rates can advantageously be determined before the treatment for any contact lens material standardized by the manufacturer and a desired refractive correction can thus be reproducibly carried out on the eye.
Die so simulierte Korrekturmöglichkeit kann für eine spätere echte Hornhautoperation vorbereitend dienen oder aber für eine vorbestimmte Zeit eine derartige Linse mit maßgeschnei- derter Korrektur genutzt werden. Insbesondere bei harten Kontaktlinsen kann auch eine längerfristige Benutzung erfolgen. Hierbei wird vorteilhafterweise eine entsprechende Markierung für die Achslage aufgebracht, die beim Einsetzen berücksichtigt wird.The correction option simulated in this way can serve as a preparation for a later real corneal operation, or a lens of this type with customized correction can be used for a predetermined time. In the case of hard contact lenses in particular, long-term use can also take place. In this case, a corresponding marking for the axis position is advantageously applied, which is taken into account when inserting.
Bevorzugt umfaßt das optischen System als Elemente die Augenlinse und/ oder eine Intraokularlinse und/ oder die Cornea des Auges und/ oder eine Kontaktlinse und/ oder eine ICL und/oder mindestens ein Brillenglas. Mittels refraktiver Chirurgie kann beispielsweise die Cornea des Auges umgeformt werden, um die bestehende Fehlsichtigkeit zu korrigierenThe optical system preferably comprises as elements the eye lens and / or an intraocular lens and / or the cornea of the eye and / or a contact lens and / or an ICL and / or at least one spectacle lens. Using refractive surgery, for example, the cornea of the eye can be reshaped to correct the existing ametropia
(z.Bsp. die Oberflache der Cornea über die Photorefraktive Keratektomie, PRK, oder durch Ablation innerer Gewebeschichten der Cornea durch die Laser assisted in situ Keratomileu- sis, LASIK) . Diese Elemente weisen nicht nur rotationsgeometrische Korrekturen auf, sondern individuelle Strukturen zur Korrektur der Fehlsichtigkeit der Patienten. So ist es möglich, Intraokularlinsen oder Kontaktlinsen, insbesondere ICL'S, herzustellen, die - einmal in das Linsensystem eingebracht - nicht nur wie bisher die Fehlsichtigkeit des Auges grob korrigieren, sondern darüber hinaus alle Irregularitä- ten, Unsymmetrien und Strahlverzerrungen mitkorrigieren. Damit kaum ein visus erreicht werden, der über dem des normalen menschlichen Auge liegt. Außerdem ist es mit diesem Verfahren möglich, Brillengläser herzustellen, die ebenfalls alle Irregularitäten, Unsymmetrien und Strahlverzerrungen des fehlsichtigen Auges bzw. des alten optischen Systemes mitkorrigieren.(e.g. the surface of the cornea over the photorefractive Keratectomy, PRK, or by ablation of inner tissue layers of the cornea by laser assisted in situ keratomileusis, LASIK). These elements not only have rotational geometry corrections, but individual structures to correct the patient's ametropia. It is thus possible to manufacture intraocular lenses or contact lenses, in particular ICL'S, which - once inserted into the lens system - not only roughly correct the defective vision of the eye as before, but also correct all irregularities, asymmetries and beam distortions. So that a visual acuity that is above that of the normal human eye can hardly be achieved. With this method it is also possible to manufacture spectacle lenses that also correct all irregularities, asymmetries and beam distortions of the defective eye or the old optical system.
Weiterhin wird die Aufgabe gelöst durch ein ideales optischen System, das nach einem erfindungsgemäßen Verfahren und/ oder mittels einer erfindungsgemäßen Vorrichtungen hergestellt wurde, wobei das optischen System Elemente aus implantationsgerechten und/ oder adhäsionsgerechten und/ oder ablationsge- eigneten Werkstoffen, insbesondere Kunststoff oder Glas, umfaßt. Durch die Wahl dieser Werkstoffe des erfindungsgemä- ßen Linsensystems ist die Verträglichkeit beim Einsatz dieser Elemente gewährleistet. Solche Werkstoffe sind beispielsweise PMMA, Acryl, Silikon oder eine Kombination dieser Werkstoffe.Furthermore, the object is achieved by an ideal optical system which was produced by a method according to the invention and / or by means of a device according to the invention, the optical system being made from materials suitable for implantation and / or adhesion and / or suitable for ablation, in particular plastic or glass, includes. The compatibility of the use of these elements is guaranteed by the choice of these materials of the lens system according to the invention. Such materials are, for example, PMMA, acrylic, silicone or a combination of these materials.
Bei einem weiteren Ausführungsbeispiel der vorliegenden Erfindung ist ein ideales optischen System vorgesehen, das Elemente umfaßt, die refraktive und/oder diffraktive Strukturen umfassen. Refraktive und/oder diffraktive Strukturen werden bisher nur in der Strahlformung verwendet. Ein Minilinsensystem lenkt und formt den eintretenden Strahl, um eine spezielle Strahlverteilung in der Zielebene zu erreichen. Der Einsatz derartiger refraktiver und/oder diffraktiver Strukturen auf einzelnen Elementen eines optischen Systems erlaubt die gezielte Korrektur von Sehschwächen in ungewöhnlich idealer Weise. So ist es durch den Einsatz dieser Strukturen möglich, einzelne nicht stetige Aberrationen zu korrigieren oder aber auch den optischen Systemen Eigenschaften zu ver- leihen, die ein normales menschliches Auge nicht aufweist.In a further exemplary embodiment of the present invention, an ideal optical system is provided which comprises elements which comprise refractive and / or diffractive structures. Refractive and / or diffractive structures have so far only been used in beam shaping. A mini lens system directs and shapes the incoming beam in order to achieve a special beam distribution in the target plane. The use of such refractive and / or diffractive structures on individual elements of an optical system allows the targeted correction of poor eyesight in an unusually ideal way. The use of these structures makes it possible to correct individual non-continuous aberrations or to give the optical systems properties that a normal human eye does not have.
Die Aufgabe der Erfindung wird weiterhin durch ein Element eines (idealen) Linsensystemes gelöst, das refraktive und/oder diffraktive Strukturen aufweist. Solche Elemente können Intraokularlinsen, modifizierte Cornea, Kontaktlinsen, ICL 's oder Brillengläser sein.The object of the invention is further achieved by an element of an (ideal) lens system which has refractive and / or diffractive structures. Such elements can be intraocular lenses, modified corneas, contact lenses, ICLs or spectacle lenses.
Ausführungsbeispiele der Erfindung und vorteilhafte Ausgestaltungen sollen im Folgenden anhand von Zeichnungen näher erläutert werden. Dabei zeigen:Exemplary embodiments of the invention and advantageous refinements are to be explained in more detail below with reference to drawings. Show:
Fig. 1 ein Blockschaltbild für ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Korrektur einer Aberration im Strahlengang eines Auges auf einer Linse 6; Fig. 2 ein Blockschaltbild für ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Korrektur einer Aberration im Strahlengang eines Auges, auf dem eine Linse 6 aufgebracht ist und Fig. 3 ein Blockschaltbild für ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Korrektur einer Aberration im Strahlengang eines Auges ohne Kontaktlinse.1 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye on a lens 6; 2 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye, on which a lens 6 is applied, and FIG. 3 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye without a contact lens.
In Figur 1 ist ein Blockschaltbild für ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Korrektur von Sehfehlern eines Auges auf einer Linse dargestellt. Eine Wellenfrontanalyseeinheit 2 und eine Topographieanalyseeinheit 2Λ sind mit einer Steuereinheit 3 verbunden. Die Steuereinheit 3 ist über einen Bus mit einem Laser 4 und einer Strahlmodifikationseinrichtung 5 verbunden. Hinter der Strahlmodifikationseinrichtung 5 ist eine Linse 6 dargestellt. Vor der Wellenfrontanalyseeinheit 2 und der Topographieanalyseeinheit 2Λ ist ein Auge 1 dargestellt. Im Betriebszustand tasten die Strahlen der Wellenfrontanalyseeinheit 2 und der Topographieanalyseeinheit 2 das Auge 1 ab und übermitteln die gewonnenen Signale an die Steuerein- heit 3. Als Strahlen werden hier bevorzugt Strahlen einer kohärenten Lichtquelle eingesetzt, besonders bevorzugt Strahlen einer IR-Diode oder eines grünen Lasers. In der Steuereinheit 3 werden die Signale verarbeitet und das ideale optischen System für dieses Auge 1 berechnet. Im dargestell- ten Fall wird hier als Element des optischen Systems eine ideale Linse 6 berechnet. Insbesondere werden in der Steuereinheit 3 ausgehend von den aus den Signalen gewonnenen Daten unter Berücksichtigung der laserrelevanten Daten sämtliche Schußpositionen berechnet, die für den Laser 4 zur Herstel- lung der idealen Linse 6 benötigt werden. Die Steuereinheit 3 steuert daraufhin den Laser 4 an und bestimmt Energie und Pulsrate des chirurgischen Strahles 7. Der Strahl 7 wird durch die Strahlmodifikationseinrichtung 5 geleitet. In der Strahlmodifikationseinrichtung 5 wird der Strahl 7 gemäß den berechneten Schußpositionenen durch die Vorgaben der Steuereinheit 3 über Scanner und Linsensysteme geformt und abgelenkt, so daß durch Ablation von Material auf der Rohlinse durch den gesteuerten chirurgischen Laserstrahl 7 die kundenspezifische Linse 6 hergestellt wird. Die Steuereinheit 3 kann auch bevorzugt in mehreren Teilsteuereinheiten ausgeführt sein, die mit einzelnen Bauteilen der Vorrichtung verbunden sein können.FIG. 1 shows a block diagram for an exemplary embodiment of a device according to the invention for correcting vision defects of an eye on a lens. A wavefront analysis unit 2 and a topography analysis unit 2 Λ are connected to a control unit 3. The control unit 3 is connected to a laser 4 and a beam modification device 5 via a bus. A lens 6 is shown behind the beam modification device 5. An eye 1 is shown in front of the wavefront analysis unit 2 and the topography analysis unit 2 Λ . In the operating state, the rays of the wavefront analysis unit 2 and the topography analysis unit 2 scan the eye 1 and transmit the signals obtained to the control unit 3. The rays used here are preferably rays from a coherent light source, particularly preferably rays from an IR diode or a green laser , The signals are processed in the control unit 3 and the ideal optical system for this eye 1 is calculated. In the case shown, an ideal lens 6 is calculated here as an element of the optical system. In particular, all shot positions that are required for the laser 4 to produce the ideal lens 6 are calculated in the control unit 3 based on the data obtained from the signals, taking into account the laser-relevant data. The control unit 3 then controls the laser 4 and determines the energy and pulse rate of the surgical beam 7. The beam 7 is passed through the beam modification device 5. In the beam modification device 5, the beam 7 is shaped and deflected in accordance with the calculated shot positions by the specifications of the control unit 3 via scanners and lens systems, so that the controlled surgical laser beam 7 produces the customer-specific lens 6 by ablation of material on the raw lens. The control unit 3 can also preferably be embodied in a plurality of sub-control units which can be connected to individual components of the device.
In Figur 2 ist ein Blockschaltbild für ein weiteres Ausfüh- rungsbeispiel einer erfindungsgemäßen Vorrichtung zur Korrektur einer Aberration im Strahlengang eines Auges, auf dem eine Linse aufgebracht ist, dargestellt. Im Prinzip entspricht der Aufbau dem der Figur 1 mit dem Unterschied, daß eine Kontaktlinse 6 direkt auf dem Auge 1 aufgebracht ist und dort in situ die Ablation vorgenommen wird. Hierzu wird der chirurgische Laserstrahl 7 von der Strahlenmodifikationseinrichtung 5, bevorzugt über weitere optische Element wie Spiegel (nicht dargestellt) , auf die Linse 6 gerichtet, die direkt auf dem Auge 1 aufliegt. Die Ablation des Linsenmaterials findet nun in situ auf dem Auge statt, so daß nun durch die Analyseeinrichtung 2 bzw. 21 bevorzugt online parallel zur Ablation der Strahlverlauf im System des Auges 1 und der Linse 6 sowie die Oberfläche dieses Systems - hier also insbesondere der Linse 6 - analysiert werden kann und die Behandlung durch den Strahl 7 direkt überprüft und beurteilt werden kann. Die so hergestellte ideale Linse 6 vermittelt dem Interessenten nun einen Eindruck des kompletten optischen Systems sowie der Operationsbedingungen, ohne daß er sich einer irreversiblen Operation unterzogen hätte.FIG. 2 shows a block diagram for a further exemplary embodiment of a device according to the invention for correcting an aberration in the beam path of an eye, on which a lens is applied. In principle, the structure corresponds to that of FIG. 1 with the difference that a contact lens 6 is applied directly to the eye 1 and the ablation is carried out there in situ. For this purpose, the surgical laser beam 7 from the beam modification device 5, preferably via further optical elements such as Mirror (not shown), directed to the lens 6, which rests directly on the eye 1. The ablation of the lens material now takes place in situ on the eye, so that the analysis device 2 or 2 1 now, preferably online, parallel to the ablation, the beam path in the system of the eye 1 and the lens 6 and the surface of this system - in particular here the Lens 6 - can be analyzed and the treatment by the beam 7 can be checked and assessed directly. The ideal lens 6 produced in this way now gives the interested party an impression of the complete optical system and the operating conditions, without having undergone an irreversible operation.
In Figur 3 ist ein Blockschaltbild für ein Ausführungsbei- spiel einer weiteren erfindungsgemäßen Vorrichtung zur Korrektur der Aberration im Strahlengang eines Auges ohne Kontaktlinse dargestellt. Hier kann nun durch den chirurgischen Strahl 7 bevorzugt zeitgleich mit der Analyse des Auges 1 durch die Analyseeinrichtung 2, 2' der Fortgang der Operation online beobachtet werden und über die Steuereinrichtung 3 während der Operation Nachberechnungen durchgeführt werden, so daß iterativ eine Behandlung des Auges 1 durch den jeweils auf die aktuellen Gegebenenheiten reagierenden und eingesetzten Laserstrahl 7 erfolgen kann. Daneben kann über beispiels- weise ein Mikroskop der Fortgang der Operation auch visuell beobachtet werden (nicht dargestellt) .FIG. 3 shows a block diagram for an exemplary embodiment of a further device according to the invention for correcting aberration in the beam path of an eye without a contact lens. Here, the progress of the operation can now be observed online by the surgical beam 7, preferably simultaneously with the analysis of the eye 1 by the analysis device 2, 2 ′, and subsequent calculations can be carried out via the control device 3 during the operation, so that treatment of the eye 1 is carried out iteratively by the laser beam 7 which responds and is used to the current circumstances. In addition, the progress of the operation can also be visually observed using a microscope, for example (not shown).
Besonders bevorzugt wird auf der Retina des Auges 1 mit Hilfe einer Lichtquelle der Analyseeinrichtung 2, 2' (Lichtquelle nicht gesondert dargestellt) ein Punkt projeziert. Dabei nutzt man einen nahezu parallelen externen Strahlengang und nutzt die fokussierende Wirkung des optischen Apparates des Auges, um einen möglichst kleinen Punkt erzeugen zu können. Die Intensitäten sind entsprechend der genutzten Wellenlänge und der Bestrahlungsdauer so gering, daß keinerlei Schaden auf der Retina entstehen kann, jedoch genügend reflektierte Intensität vorliegt. Die reflektierte Welle faßt bei ihrem Durchgang durch das aberrationsbehaftete optische System des Auges alle Abbildungsfehler. Die entsprechende deformierte Wellenfront ge- langt in die Wellenfront-Analyseeinrichtung 2 bzw. die Topographie-Analyseeinreinheit 2', von wo die Aberrationsdaten über eine entsprechende Elektronik bzw. Steuereinheit 3 bevorzugt einem Computer zugeführt werden. Mit Hilfe der Computersoftware wird aus den Aberrationsdaten jeweils ein aktuelles Ablationsprofil berechnet, welches den Excimerlaser 4 mit Spot-Scanning-System ansteuert und eine zielgesteuerte Behandlung über die Strahlenmodifikationseinrichtung 5 realisiert.A point is particularly preferably projected onto the retina of the eye 1 with the aid of a light source of the analysis device 2, 2 '(light source not shown separately). An almost parallel external beam path is used and the focusing effect of the optical device of the eye is used in order to be able to generate the smallest possible spot. The intensities are so low according to the wavelength used and the duration of the radiation that no damage can occur to the retina, but there is sufficient reflected intensity. The reflected wave, as it passes through the optical system of the eye with aberration, captures all aberrations. The corresponding deformed wavefront reaches the wavefront analysis device 2 or the topography analysis unit 2 ', from where the aberration data are preferably fed to a computer via appropriate electronics or control unit 3. With the aid of the computer software, a current ablation profile is calculated from the aberration data, which controls the excimer laser 4 with the spot scanning system and realizes target-controlled treatment via the radiation modification device 5.
Eine solche Messung kann auch sporadisch durchgeführt werden, während beispielsweise 80% der Behandlungszeit. Die Analyseeinrichtung 2 bzw. 2' können auf einem separaten Stand angeordnet werden, so daß Laser und Meßgerät abwechselnd einschwenken bzw. bevorzugt ist das Meßgerät im Laser integriert und mißt bei Unterbrechung des Laserbeschusses. Besonders bevorzugt wird eine Neuberechnung der Restbehandlung auf Anforderung des Bedieners durchgeführt. Diese Messung kann besonders bevorzugt auch kontinuierlich oder quasikontinuierlich bei Geräteintegration und fortlaufender Neube- rechnung der Lasersteuerung durchgeführt werden.Such a measurement can also be carried out sporadically, for example during 80% of the treatment time. The analysis device 2 or 2 'can be arranged on a separate stand so that the laser and the measuring device alternately swivel in, or preferably the measuring device is integrated in the laser and measures when the laser bombardment is interrupted. Recalculation of the residual treatment is particularly preferably carried out at the request of the operator. This measurement can particularly preferably also be carried out continuously or quasi-continuously with device integration and continuous recalculation of the laser control.
Auf diese Weise ist ein neues und vorteilhaftes Verfahren und eine Vorrichtung zur vollständigen Korrektur von Sehfehlern des menschlichen Auges angegeben worden. Es wurden Kombina- tionen von Meß- und Bearbeitungsverfahren angegeben, welche in ihrer erfindungsgemäßen Anwendung die vollständige Korrektur des menschlichen Auges ermöglichen. Dabei werden Meßverfahren eingesetzt, welche die Oberfläche der Cornea präzise erfassen können und auch die im weiteren Strahlengang bis zur Netzhaut entstehenden Abbildungsfehler registrieren. Die rechnergestützte Auswertung dieser Meßergebnisse ergibt in Verbindung mit der Berechnung ideal korrigierter Augenlinsen (beispielsweise nach Katarakt-Operationen) oder ideal korri- gierneder Corneaoberflachen die Möglichkeit, bevorzugt mit einem Spot-Scanning-Excimerlasersystem topographiegestützt eine patientenspezifische Linse herzustellen und/ oder die Hornhaut ideal korrigierend zu formen.In this way, a new and advantageous method and a device for the complete correction of visual defects of the human eye have been specified. Combinations of measurement and processing methods have been specified which, in their application according to the invention, enable the human eye to be completely corrected. Measurement methods are used that can precisely measure the surface of the cornea and also register the imaging errors that arise in the further beam path up to the retina. The computer-aided evaluation of these measurement results in connection with the calculation of ideally corrected eye lenses (for example after cataract operations) or ideally correcting the corneal surfaces, the possibility, preferably using a spot scanning excimer laser system, to produce a patient-specific lens with topography and / or to shape the cornea in an ideal corrective manner.
Insbesondere kann die Korrektur über die Modifikation eines Elements des optischen Systems erfolgen. So reicht es zur Verbesserung des Sehvermögens eines Patienten mit grauem Star und einer Fehlsichtigkeit aus, die intraokulare Linse vollständig zu korrigieren. In einem solchen Fall ist es nicht mehr erforderlich, neben der Katarakt-Operation noch eine refraktive Operation durchzuführen. In particular, the correction can be made by modifying an element of the optical system. To improve the eyesight of a patient with cataracts and ametropia, it is sufficient to completely correct the intraocular lens. In such a case, it is no longer necessary to perform a refractive surgery in addition to the cataract surgery.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Auge1 eye
2 Wellenfrontanalyseeinrichtung 2 ' Topographianalyseeinheit2 wavefront analysis device 2 'topography analysis unit
3 Steuereinheit3 control unit
4 kohärente Lichtquelle 5 Strahlenmodifikationseinrichtung4 coherent light source 5 beam modification device
6 optisches Element/Linse 6 optical element / lens

Claims

Patentansprüche claims
1. Vorrichtung zur Korrektur von insbesondere refraktiven Sehfehlern eines Auges (1) , umfassend eine kohärente Lichtquelle (4), eine Strahlmodifikationseinrichtung (5) zur Formung und Ablenkung eines Strahles der kohärenten Lichtquelle (4) dadurch gekennzeichnet, daß eine Wellenfrontanalyseeinrichtung (2) zur Analyse einer Wellenfront des Strahlenganges im Auge (1) vorgesehen ist.1. Device for the correction of refractive vision defects in particular of an eye (1), comprising a coherent light source (4), a beam modification device (5) for shaping and deflecting a beam of the coherent light source (4), characterized in that a wavefront analysis device (2) for Analysis of a wavefront of the beam path in the eye (1) is provided.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich eine Topographieanalyseeinheit (2λ) zur Analyse der Oberfläche des Auges (1) vorgesehen ist.2. Device according to claim 1, characterized in that a topography analysis unit (2 λ ) is additionally provided for analyzing the surface of the eye (1).
3. Vorrichtung nach einem der vorhergehenden auf eine Vorrichtung bezogenen Ansprüche dadurch gekennzeichnet, daß weiterhin eine Steuereinheit (3) zur Verarbeitung von Signalen der Wellenfrontanalyseneinheit (2) und/ oder zur Verarbeitung von Signalen der Topographieanalyseeinheit (2Λ) , und/ oder zur Steuerung der kohärenten Lichtquelle (4) und/ oder zur Steuerung der Strahlmodifikationseinrichtung (5) vorgesehen ist.3. Device according to one of the preceding claims related to a device, characterized in that a control unit (3) for processing signals of the wavefront analysis unit (2) and / or for processing signals of the topography analysis unit (2 Λ ), and / or for control the coherent light source (4) and / or for controlling the beam modification device (5) is provided.
4. Vorrichtung nach einem der vorhergehenden auf eine Vorrichtung bezogenen Ansprüche dadurch gekennzeichnet, daß die Strahlmodifikationseinrichtung (5) so ausgebildet ist, daß mit dem Strahl eine Intraokularlinse und/ oder eine Augenlinse und/ oder die Cornea des Auges (1) und/ oder eine Kontaktlinse und/ oder eine Implantable Contact Lens und/oder ein Brillenglas bearbeitbar ist. 4. Device according to one of the preceding claims related to a device, characterized in that the beam modification device (5) is designed such that an intraocular lens and / or an eye lens and / or the cornea of the eye (1) and / or a with the beam Contact lens and / or an implantable contact lens and / or a spectacle lens is editable.
5. Vorrichtung nach einem der vorhergehenden auf eine Vorrichtung bezogenen Ansprüche dadurch gekennzeichnet, daß die kohärente Lichtquelle (4) ein Laser, insbesondere ein Spot-Scanning-Excimerlasersystem, ist.5. Device according to one of the preceding claims related to a device, characterized in that the coherent light source (4) is a laser, in particular a spot scanning excimer laser system.
6. Vorrichtung nach einem der Ansprüche 3 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß die Steuereinheit (3) so ausgebildet ist, daß die Analyse des Strahlenganges im Auge (1) und/oder die Analyse der Oberfläche des Auges (1) quasi zeitgleich mit der Bearbeitung eines optischen Elements durch den Strahl der kohärenten Lichtquelle (4) erfolgen kann.6. Device according to one of claims 3 to 5, characterized in that the control unit (3) is designed such that the analysis of the beam path in the eye (1) and / or the analysis of the surface of the eye (1) virtually simultaneously with the processing of an optical element through the beam of the coherent light source (4).
7. Verfahren zur Korrektur insbesondere von refraktiven Sehfehlern eines Auges (1), insbesondere unter Einsatz einer Vorrichtung nach den vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß der Strahlengang des Auges mittels Wellenfrontanalyse ermittelt wird; und daß ein ideales optischen System berechnet wird, das zu einer Korrektur der Sehfehler des Auges (1) führen würde.7. A method for correcting refractive vision defects in particular of an eye (1), in particular using a device according to the preceding claims, characterized in that the beam path of the eye is determined by means of wavefront analysis; and that an ideal optical system is calculated which would lead to a correction of the visual defects of the eye (1).
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß zusätzlich die Topographie des Auges (1) analysiert wird.8. The method according to claim 7, characterized in that in addition the topography of the eye (1) is analyzed.
9. Verfahren nach einem der vorhergehenden Verfahrensansprüchen, dadurch gekennzeichnet, daß das ideale optischen System auf der Basis der aus der Wellenfrontanalyse und/ oder der aus der Topographieanalyse ermittelten Daten bereitgestellt wird.9. The method according to any one of the preceding method claims, characterized in that the ideal optical system is provided on the basis of the data determined from the wavefront analysis and / or from the data from the topography analysis.
10. Verfahren nach einem der vorhergehenden Verfahrensansprüchen, dadurch gekennzeichnet, daß weiterhin Schußpositionen zur Herstellung des idealen optischen Systems mittels der aus der Wellenfrontanalyse und/ oder aus der Topographieanalyse ermittelten Daten berechnet werden.10. The method according to any one of the preceding method claims, characterized in that that shot positions for producing the ideal optical system are also calculated using the data determined from the wavefront analysis and / or from the topography analysis.
11. Verfahren nach einem der vorhergehenden Verfahrensansprüchen, dadurch gekennzeichnet, daß das alte optischen System des Auges (1) zu dem berechne- ten idealen optischen System umgeformt wird.11. The method according to any one of the preceding method claims, characterized in that the old optical system of the eye (1) is transformed into the calculated ideal optical system.
12. Verfahren nach einem der vorhergehenden Verfahrensansprüchen, dadurch gekennzeichnet, daß das optische System die Augenlinse und/ oder eine Intrao- kularlinse und/ oder die Cornea des Auges und/ oder eine Kontaktlinse und/ oder eine ICL und/oder mindestens ein Brillenglas umfaßt.12. The method according to any one of the preceding claims, characterized in that the optical system comprises the eye lens and / or an intraocular lens and / or the cornea of the eye and / or a contact lens and / or an ICL and / or at least one spectacle lens.
13. Ideales optisches System, das nach einem der vorhergehenden Verfahrensansprüchen und/ oder mittels einer der Vorrichtungen gemäß den vorhergehenden auf Vorrichtungen bezogenen Ansprüchen hergestellt wurde dadurch gekennzeichnet, daß das optische System Elemente aus implantationsgerechten und/ oder adhäsionsgerechten und/ oder ablationsgeeigneten Werkstoffen, insbesondere Kunststoff oder Glas, umfaßt.13. Ideal optical system, which was produced according to one of the preceding method claims and / or by means of one of the devices according to the preceding claims relating to devices, characterized in that the optical system elements made of implantable and / or adhesive and / or ablation-suitable materials, in particular plastic or glass.
14. Ideales optischen System nach einem der vorhergehenden auf optisches System bezogenen Ansprüche dadurch gekennzeichnet, daß das optische System Elemente mit refraktiven und/ oder diffraktiven Strukturen umfaßt.14. Ideal optical system according to one of the preceding claims related to optical system, characterized in that the optical system comprises elements with refractive and / or diffractive structures.
15. Element zur Verwendung in einem optischen System, dadurch gekennzeichnet, daß das Element refraktive und/ oder diffraktive Strukturen aufweist .15. Element for use in an optical system, characterized in that that the element has refractive and / or diffractive structures.
16. Verwendung eines Verfahrens nach einem der vorhergehen- den Verfahrensansprüchen und/ oder einer Vorrichtung gemäß einer der vorhergehenden auf Vorrichtungen bezogenen Ansprüchen zur vollständigen Korrektur eines Sehfehlers eines Auges . 16. Use of a method according to one of the preceding method claims and / or a device according to one of the preceding claims relating to devices for the complete correction of a vision defect of an eye.
EP00951495A 1999-08-11 2000-08-11 Method and device for performing online aberrometrie in refractive eye correction indices Ceased EP1119323A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10152328.0A EP2255760A3 (en) 1999-08-11 2000-08-11 Method and device for performing online aberrometrie in refractive eye correction indices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19938203 1999-08-11
DE19938203A DE19938203A1 (en) 1999-08-11 1999-08-11 Method and device for correcting visual defects in the human eye
PCT/EP2000/007821 WO2001012113A1 (en) 1999-08-11 2000-08-11 Method and device for performing online aberrometrie in refractive eye correction indices

Publications (1)

Publication Number Publication Date
EP1119323A1 true EP1119323A1 (en) 2001-08-01

Family

ID=7918154

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10152328.0A Withdrawn EP2255760A3 (en) 1999-08-11 2000-08-11 Method and device for performing online aberrometrie in refractive eye correction indices
EP00951495A Ceased EP1119323A1 (en) 1999-08-11 2000-08-11 Method and device for performing online aberrometrie in refractive eye correction indices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10152328.0A Withdrawn EP2255760A3 (en) 1999-08-11 2000-08-11 Method and device for performing online aberrometrie in refractive eye correction indices

Country Status (7)

Country Link
US (4) US6848790B1 (en)
EP (2) EP2255760A3 (en)
JP (1) JP2003506195A (en)
AU (1) AU771939B2 (en)
BR (1) BR0006996A (en)
DE (1) DE19938203A1 (en)
WO (1) WO2001012113A1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086204A (en) * 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
WO2001028477A1 (en) * 1999-10-21 2001-04-26 Technolas Gmbh Ophthalmologische Systeme Multi-step laser correction of ophthalmic refractive errors
ES2326788T3 (en) 1999-10-21 2009-10-20 Technolas Perfect Vision Gmbh PERSONALIZED CORNEAL PROFILE TRAINING SYSTEM.
DE19954523C2 (en) * 1999-11-12 2002-01-31 Johannes Junger Process for surface treatment of a contact lens for individual adaptation to the eye system
US7896916B2 (en) * 2002-11-29 2011-03-01 Amo Groningen B.V. Multifocal ophthalmic lens
SE0203564D0 (en) 2002-11-29 2002-11-29 Pharmacia Groningen Bv Multifocal opthalmic lens
DE10333770A1 (en) 2003-07-22 2005-02-17 Carl Zeiss Meditec Ag Method for material processing with laser pulses of large spectral bandwidth and apparatus for carrying out the method
JP4926068B2 (en) * 2004-10-25 2012-05-09 アボット・メディカル・オプティクス・インコーポレイテッド Ophthalmic lens having a plurality of phase plates
US7922326B2 (en) * 2005-10-25 2011-04-12 Abbott Medical Optics Inc. Ophthalmic lens with multiple phase plates
ATE516786T1 (en) 2005-02-15 2011-08-15 Zeiss Carl Meditec Ag METHOD FOR PRODUCING AN ABLATION PROGRAM, DEPENDING ON THE SHAPE OF A LASER BEAM PROFILE AND ON AN INCLINE OF THE SURFACE TO BE ABLATED; MEANS OF PERFORMING THE PROCEDURES
DE102005046130A1 (en) * 2005-09-27 2007-03-29 Bausch & Lomb Inc. Excimer laser-eye surgical system, has eye tracing device sending instruction signal to laser device via bidirectional bus to fire shot, when preset position data is same as initial position data of scanning device for shot
DE102005053297A1 (en) * 2005-11-08 2007-05-10 Bausch & Lomb Inc. System and method for correcting ophthalmic refractive errors
DE102006036085A1 (en) 2006-08-02 2008-02-07 Bausch & Lomb Incorporated Method and apparatus for calculating a laser shot file for use in an excimer laser
DE102006036086A1 (en) * 2006-08-02 2008-02-07 Bausch & Lomb Incorporated Method and apparatus for calculating a laser shot file for use in a refractive excimer laser
US8685006B2 (en) * 2006-11-10 2014-04-01 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective eyesight, method of generating control data therefore, and method for surgical correction of defective eyesight
DE102007005699A1 (en) * 2007-02-05 2008-08-07 Carl Zeiss Meditec Ag coagulation
US20090012507A1 (en) 2007-03-13 2009-01-08 William Culbertson Method for patterned plasma-mediated modification of the crystalline lens
AU2008251316B2 (en) 2007-05-11 2014-05-29 Amo Development, Llc Combined wavefront and topography systems and methods
US7976163B2 (en) * 2007-06-27 2011-07-12 Amo Wavefront Sciences Llc System and method for measuring corneal topography
US7988290B2 (en) * 2007-06-27 2011-08-02 AMO Wavefront Sciences LLC. Systems and methods for measuring the shape and location of an object
US20090161068A1 (en) * 2007-12-20 2009-06-25 Ming Lai Ophthalmic Measurement Apparatus
DE102008005053A1 (en) 2008-01-18 2009-07-30 Rowiak Gmbh Laser correction of vision defects on the natural eye lens
US9335563B2 (en) 2012-08-31 2016-05-10 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
DE102008028509A1 (en) * 2008-06-16 2009-12-24 Technolas Gmbh Ophthalmologische Systeme Treatment pattern monitoring device
DE102008035995A1 (en) * 2008-08-01 2010-02-04 Technolas Perfect Vision Gmbh Combination of excimer laser ablation and femtosecond laser technique
WO2010025098A1 (en) * 2008-08-28 2010-03-04 Bausch & Lomb Incorporated Eye measurement and modeling techniques
DE102008053827A1 (en) 2008-10-30 2010-05-12 Technolas Perfect Vision Gmbh Apparatus and method for providing a laser shot file
US7988293B2 (en) 2008-11-14 2011-08-02 AMO Wavefront Sciences LLC. Method of qualifying light spots for optical measurements and measurement instrument employing method of qualifying light spots
CA2754775C (en) * 2009-03-04 2016-09-27 Aaren Scientific Inc. System for characterizing a cornea and obtaining an ophthalmic lens
US8292952B2 (en) 2009-03-04 2012-10-23 Aaren Scientific Inc. System for forming and modifying lenses and lenses formed thereby
US8646916B2 (en) 2009-03-04 2014-02-11 Perfect Ip, Llc System for characterizing a cornea and obtaining an opthalmic lens
DE102009030464B4 (en) 2009-06-23 2022-04-14 Carl Zeiss Meditec Ag Laser device and method, in particular operating method for a laser device, for creating irradiation control data for a pulsed laser
WO2012158773A2 (en) 2011-05-16 2012-11-22 Ico, Inc. Filling and implanting accommodative intraocular lenses
US8622546B2 (en) 2011-06-08 2014-01-07 Amo Wavefront Sciences, Llc Method of locating valid light spots for optical measurement and optical measurement instrument employing method of locating valid light spots
RU2493803C2 (en) * 2011-12-14 2013-09-27 Государственное бюджетное образовательное учреждение высшего профессионального образования "Амурская государственная медицинская академия" Минздравсоцразвития Российской Федерации Method of complex treatment of refractive amblyopia in patients with high degree of myopia
US9629750B2 (en) 2012-04-18 2017-04-25 Technolas Perfect Vision Gmbh Surgical laser unit with variable modes of operation
US9427312B2 (en) 2012-05-25 2016-08-30 California Institute Of Technology Accommodating intraocular composite lens and related methods
EP2908774B1 (en) 2012-10-19 2017-01-04 Ico, Inc. Systems and methods for customizing adjustable intraocular lenses
US20150216409A1 (en) * 2014-02-05 2015-08-06 Pro Fit Optix, Inc. Methods And Apparatuses For Providing Laser Scanning Applications
US20150253846A1 (en) * 2015-02-18 2015-09-10 Daniel Vinnola Reusable Touchscreen Pad
CA3013858A1 (en) 2016-02-09 2017-08-17 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
WO2018167302A1 (en) 2017-03-17 2018-09-20 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
US11262598B2 (en) 2017-06-28 2022-03-01 Amo Groningen, B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
EP3639084A1 (en) 2017-06-28 2020-04-22 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
WO2021136617A1 (en) 2019-12-30 2021-07-08 Amo Groningen B.V. Lenses having diffractive profiles with irregular width for vision treatment
US11713434B2 (en) 2020-08-18 2023-08-01 Zynon Technologies, Llc Cleaning solvent compositions exhibiting azeotrope-like behavior and their use
US11684799B2 (en) 2021-08-28 2023-06-27 Cutera, Inc. Image guided laser therapy

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099522A (en) * 1989-02-06 2000-08-08 Visx Inc. Automated laser workstation for high precision surgical and industrial interventions
US5152788A (en) * 1989-12-27 1992-10-06 Minnesota Mining And Manufacturing Company Multifocal diffractive ophthalmic lens and method of manufacture
US5062702A (en) * 1990-03-16 1991-11-05 Intelligent Surgical Lasers, Inc. Device for mapping corneal topography
WO1992001417A1 (en) 1990-07-19 1992-02-06 Horwitz Larry S Vision measurement and correction
IT1244798B (en) 1990-10-19 1994-09-05 Italtel Spa AC-DC CONVERTER
US5307097A (en) * 1992-11-05 1994-04-26 Kera-Metrics, Inc. Corneal topography system including single-direction shearing of holograph grating in orthogonal directions
CO4230054A1 (en) * 1993-05-07 1995-10-19 Visx Inc METHOD AND SYSTEMS FOR LASER TREATMENT OF REFRACTIVE ERRORS USING TRAVELING IMAGES FORMATION
US5571107A (en) * 1993-10-26 1996-11-05 Shaibani; Sanan B. Laser surgical apparatus for sculpting a cornea using a diffractive optical element and method of using the same
US5980513A (en) * 1994-04-25 1999-11-09 Autonomous Technologies Corp. Laser beam delivery and eye tracking system
US5493391A (en) * 1994-07-11 1996-02-20 Sandia Corporation One dimensional wavefront distortion sensor comprising a lens array system
US6063072A (en) * 1994-12-08 2000-05-16 Summit Technology, Inc. Methods and systems for correction of hyperopia and/or astigmatism using ablative radiation
US6110166A (en) * 1995-03-20 2000-08-29 Escalon Medical Corporation Method for corneal laser surgery
US5782822A (en) 1995-10-27 1998-07-21 Ir Vision, Inc. Method and apparatus for removing corneal tissue with infrared laser radiation
US5629765A (en) * 1995-12-15 1997-05-13 Adaptive Optics Associates, Inc. Wavefront measuring system with integral geometric reference (IGR)
US5909270A (en) * 1996-05-10 1999-06-01 California Institute Of Technology Conoscopic system for real-time corneal topography
US6052180A (en) * 1996-07-10 2000-04-18 Wavefront Sciences, Inc. Apparatus and method for characterizing pulsed light beams
US6130419A (en) * 1996-07-10 2000-10-10 Wavefront Sciences, Inc. Fixed mount wavefront sensor
US5936720A (en) * 1996-07-10 1999-08-10 Neal; Daniel R. Beam characterization by wavefront sensor
US5864381A (en) * 1996-07-10 1999-01-26 Sandia Corporation Automated pupil remapping with binary optics
US5785704A (en) * 1996-07-29 1998-07-28 Mrc Systems Gmbh Method for performing stereotactic laser surgery
DE19727573C1 (en) 1996-10-26 1998-05-20 Aesculap Meditec Gmbh Device and method for shaping surfaces, in particular lenses
US6271914B1 (en) * 1996-11-25 2001-08-07 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US20010041884A1 (en) * 1996-11-25 2001-11-15 Frey Rudolph W. Method for determining and correcting vision
US5777719A (en) * 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
DE19705119A1 (en) 1997-02-11 1998-08-13 Johannes Prof Dr Schwider Dynamic range increasing method for measurement through Shack-Hartmann sensor
US6234978B1 (en) * 1997-02-12 2001-05-22 Kabushiki Kaisha Topcon Optical characteristic measuring apparatus
ES2180147T3 (en) * 1997-03-25 2003-02-01 Technomed Ges Fur Med Und Med PROCEDURE FOR DETERMINING DATA FOR THE TREATMENT OF AN EYE'S CORNEA.
US5929970A (en) * 1997-05-13 1999-07-27 Kabushiki Kaisha Topcon Optical characteristic measuring apparatus
US5920373A (en) * 1997-09-24 1999-07-06 Heidelberg Engineering Optische Messysteme Gmbh Method and apparatus for determining optical characteristics of a cornea
JPH11137522A (en) * 1997-11-11 1999-05-25 Topcon Corp Optical characteristic-measuring apparatus
NZ505264A (en) * 1997-11-21 2003-07-25 Autonomous Technologies Corp Objective measurement and correction of optical systems using wavefront analysis
US6547395B1 (en) * 1998-02-06 2003-04-15 Wavefront Sciences, Inc. Methods of measuring moving objects and reducing exposure during wavefront measurements
US6007204A (en) * 1998-06-03 1999-12-28 Welch Allyn, Inc. Compact ocular measuring system
PT1105037E (en) * 1998-08-19 2002-11-29 Autonomous Technologies Corp APPARATUS AND METHOD FOR MEASURING VISION DEFECTS OF A HUMAN EYE
US6598975B2 (en) * 1998-08-19 2003-07-29 Alcon, Inc. Apparatus and method for measuring vision defects of a human eye
FR2788597B1 (en) * 1999-01-15 2001-02-23 Imagine Optic Sarl HIGH DYNAMIC WAVEFRONT ANALYSIS METHOD AND DEVICE
DE19904753C1 (en) * 1999-02-05 2000-09-07 Wavelight Laser Technologie Gm Device for photorefractive corneal surgery of the eye for correcting high-order visual defects
US6129722A (en) 1999-03-10 2000-10-10 Ruiz; Luis Antonio Interactive corrective eye surgery system with topography and laser system interface
US6186628B1 (en) * 1999-05-23 2001-02-13 Jozek F. Van de Velde Scanning laser ophthalmoscope for selective therapeutic laser
US6050687A (en) * 1999-06-11 2000-04-18 20/10 Perfect Vision Optische Geraete Gmbh Method and apparatus for measurement of the refractive properties of the human eye
US6184974B1 (en) * 1999-07-01 2001-02-06 Wavefront Sciences, Inc. Apparatus and method for evaluating a target larger than a measuring aperture of a sensor
ATE238535T1 (en) * 1999-07-09 2003-05-15 Wavefront Sciences Inc SHACK-HARTMANN WAVE FRONT SENSOR WITH A HIGHER SPATIAL RESOLUTION CAPACITY THAN THAT SPECIFIED BY THE LENS ARRANGEMENT
US6376819B1 (en) * 1999-07-09 2002-04-23 Wavefront Sciences, Inc. Sub-lens spatial resolution Shack-Hartmann wavefront sensing
JP4267133B2 (en) * 1999-07-15 2009-05-27 株式会社トプコン Eye refractive power measuring device
US6305802B1 (en) * 1999-08-11 2001-10-23 Johnson & Johnson Vision Products, Inc. System and method of integrating corneal topographic data and ocular wavefront data with primary ametropia measurements to create a soft contact lens design
ATE398433T1 (en) * 1999-09-10 2008-07-15 Haag Ag Streit DEVICE FOR PHOTOABLING THE CORNEA USING A LASER BEAM
US6086204A (en) 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
JP2001095760A (en) * 1999-09-28 2001-04-10 Topcon Corp Optical characteristic measuring apparatus for eyes
AU777228B2 (en) 1999-10-21 2004-10-07 Technolas Gmbh Ophthalmologische Systeme Method and apparatus for opthalmic refractive correction
US7146983B1 (en) 1999-10-21 2006-12-12 Kristian Hohla Iris recognition and tracking for optical treatment
US6264328B1 (en) * 1999-10-21 2001-07-24 University Of Rochester Wavefront sensor with off-axis illumination
ES2326788T3 (en) 1999-10-21 2009-10-20 Technolas Perfect Vision Gmbh PERSONALIZED CORNEAL PROFILE TRAINING SYSTEM.
US6199986B1 (en) * 1999-10-21 2001-03-13 University Of Rochester Rapid, automatic measurement of the eye's wave aberration
EP1104663A3 (en) * 1999-11-15 2005-01-19 Kabushiki Kaisha Topcon Eye aberration characteristic measuring apparatus
DE19958436B4 (en) * 1999-12-03 2014-07-17 Carl Zeiss Meditec Ag Apparatus and method for active, physiologically evaluated, comprehensive correction of the aberrations of the human eye
DE60029625T2 (en) * 1999-12-23 2007-07-12 Shevlin Technologies Ltd. INDICATOR
US6525883B2 (en) * 1999-12-27 2003-02-25 Kabushiki Kaisha Topcon Optical characteristic measuring instrument
US6717661B1 (en) * 2000-01-26 2004-04-06 Science & Technology Corporation @ University Of New Mexico Fourier moire wavefront sensor
US6452145B1 (en) * 2000-01-27 2002-09-17 Aoptix Technologies, Inc. Method and apparatus for wavefront sensing
DE10006896A1 (en) 2000-02-16 2001-08-30 Wavelight Laser Technologie Ag Production of an intraocular or optical contact lens a blank is produced mechanically and the surface profile material is removed by laser beams according to the calculated structure required to correct the vision
US6220707B1 (en) * 2000-02-25 2001-04-24 20/10 Perfect Vision Optische Geraete Gmbh Method for programming an active mirror to mimic a wavefront
US6234631B1 (en) * 2000-03-09 2001-05-22 Lasersight Technologies, Inc. Combination advanced corneal topography/wave front aberration measurement
US6673062B2 (en) * 2000-03-14 2004-01-06 Visx, Inc. Generating scanning spot locations for laser eye surgery
WO2001071411A2 (en) * 2000-03-20 2001-09-27 California Institute Of Technology Application of wavefront sensor to lenses capable of post-fabrication power modification
BR0105551A (en) * 2000-03-22 2002-03-05 Alcon Universal Ltd Correction optimization by ablation of an optical system and associated methods
US6659613B2 (en) * 2000-03-27 2003-12-09 Board Of Regents, The University Of Texas System Methods and systems for measuring local scattering and aberration properties of optical media
JP4491663B2 (en) * 2000-03-28 2010-06-30 株式会社トプコン Ophthalmic optical characteristic measuring device
AU780898B2 (en) * 2000-04-19 2005-04-21 Alcon Refractivehorizons, Inc. Wavefront sensor for objective measurement of an optical system and associated methods
ATE380498T1 (en) 2000-04-19 2007-12-15 Alcon Refractive Horizons Inc METHOD FOR EYE REGISTRATION CHECK
US6565209B2 (en) * 2000-04-25 2003-05-20 Alcon Universal Ltd. Range-extending system and spatial filter for enhancing Hartmann-Shack images and associated methods
BR0106429A (en) * 2000-04-25 2002-06-18 Alcon Universal Ltd Spatial filter to improve hartmann-shack images and associated methods
US6338559B1 (en) * 2000-04-28 2002-01-15 University Of Rochester Apparatus and method for improving vision and retinal imaging
US6460997B1 (en) * 2000-05-08 2002-10-08 Alcon Universal Ltd. Apparatus and method for objective measurements of optical systems using wavefront analysis
PT1210003E (en) 2000-05-08 2004-11-30 Alcon Inc MEDICATION OBJECTIVE AND CORRECTION OF OPTICAL SYSTEMS USING THE WAVE FRONT ANALYSIS
JP4517211B2 (en) * 2000-05-12 2010-08-04 株式会社トプコン Eye characteristic measuring device
US6382795B1 (en) * 2000-05-20 2002-05-07 Carl Zeiss, Inc. Method and apparatus for measuring refractive errors of an eye
US6382793B1 (en) * 2000-05-20 2002-05-07 Carl Zeiss, Inc. Method and apparatus for measuring a wavefront
US6609793B2 (en) * 2000-05-23 2003-08-26 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
JP4618592B2 (en) * 2000-07-28 2011-01-26 株式会社トプコン Ophthalmic optical characteristic measuring device
US6827444B2 (en) * 2000-10-20 2004-12-07 University Of Rochester Rapid, automatic measurement of the eye's wave aberration

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAUTEK W. ET AL: "Femtosecond-Pulse Laser Ablation of Human Corneas", APPL. PHYS., vol. A58, 1994, pages 513 - 518 *
See also references of WO0112113A1 *
STERN D. ET AL: "Corneal Ablation by Nanosecond, Picosecond and Femtosecond Lasers at 532 and 625 nm", ARCH. OPHTHALMOL., vol. 107, April 1989 (1989-04-01), pages 587 - 592 *

Also Published As

Publication number Publication date
US20050159733A1 (en) 2005-07-21
DE19938203A1 (en) 2001-02-15
EP2255760A2 (en) 2010-12-01
US8029136B2 (en) 2011-10-04
JP2003506195A (en) 2003-02-18
US20100274233A1 (en) 2010-10-28
BR0006996A (en) 2001-07-10
US6848790B1 (en) 2005-02-01
EP2255760A3 (en) 2013-05-01
US20120041429A1 (en) 2012-02-16
WO2001012113A1 (en) 2001-02-22
US7699467B2 (en) 2010-04-20
US8356897B2 (en) 2013-01-22
AU771939B2 (en) 2004-04-08
AU6441200A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
WO2001012113A1 (en) Method and device for performing online aberrometrie in refractive eye correction indices
WO2001012114A1 (en) Method and device for completely correcting visual defects of the human eye
EP2389147B1 (en) Device and method for producing control data for the surgical correction of defective eye vision
EP2285322B1 (en) Method for generating control data for eye surgery and eye-surgical treatment device
EP1865827B1 (en) Method and device for increasing an optical system focal depth
DE19904753C1 (en) Device for photorefractive corneal surgery of the eye for correcting high-order visual defects
WO2001019303A1 (en) Method and device for the photoablation of the cornea with a laser beam
EP1171024A1 (en) Method for producing an artificial ocular lens
DE19958436A1 (en) Device and method for active, physiologically assessed, comprehensive correction of aberrations in the human eye
WO2009124695A1 (en) System for refractive ophthalmologic surgery
EP3454802B1 (en) Planning device and method for generating control data for an ophthalmic surgery device
EP2080495A1 (en) Device for processing eye tissue
WO2005011544A1 (en) Method, device and system for determining a system parameter of a laser beam treatment system
WO2001045606A2 (en) Device used for the photorefractive keratectomy of the eye using a centering method
DE10024080A1 (en) Method and device for complete correction of sight defects in human eye uses rays from wave front and topography analyzers to scan eye and send signals to controller for processing into ideal optical system for that eye
DE102004033819B4 (en) Method for generating control data of a laser system for ophthalmological procedures
WO2021023799A1 (en) Planning methods and devices for precisely changing a refractive index
WO2001037031A1 (en) Method for surface treatment of a contact lens for individual adjustment to the eye system
DE10025320A1 (en) Unit to correct individual aberration in human eye; has one or more implantable or contact lenses, which are manufactured according to aberration measurement and implanted in eye or fitted on eye
DE102019135609B4 (en) Method for controlling an ophthalmic surgical laser and treatment device
DE102021124087A1 (en) Correction of the refraction of an eye by corneal modification

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010822

17Q First examination report despatched

Effective date: 20060427

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APBV Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100222