EP1112461B1 - Verfahren zum betrieb eines brenners und brenneranordnung - Google Patents

Verfahren zum betrieb eines brenners und brenneranordnung Download PDF

Info

Publication number
EP1112461B1
EP1112461B1 EP99968703A EP99968703A EP1112461B1 EP 1112461 B1 EP1112461 B1 EP 1112461B1 EP 99968703 A EP99968703 A EP 99968703A EP 99968703 A EP99968703 A EP 99968703A EP 1112461 B1 EP1112461 B1 EP 1112461B1
Authority
EP
European Patent Office
Prior art keywords
fuel
burner
opening
degree
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99968703A
Other languages
English (en)
French (fr)
Other versions
EP1112461A1 (de
Inventor
Eberhard Deuker
Gilbert Braun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1112461A1 publication Critical patent/EP1112461A1/de
Application granted granted Critical
Publication of EP1112461B1 publication Critical patent/EP1112461B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/16Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour in which an emulsion of water and fuel is sprayed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/08Controlling two or more different types of fuel simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/22Controlling water injection

Definitions

  • the invention relates to a method for operating a burner, which a fuel quantity of a fuel over a Fuel supply line is supplied, the amount of fuel on the degree of opening of an actuator depending on a preset power of the burner is set.
  • the invention also relates to a corresponding burner arrangement. Such a method and such an arrangement are out Document US-A-4,716,719 already known.
  • actuators for setting a mass flow of a medium depend on the density and the speed cause a drop in pressure in the medium.
  • K V is related to the maximum value k VS when the valve is fully open.
  • the value k VS V 0 ⁇ p V 0 ⁇ / ( ⁇ p V ⁇ 0 ) with the maximum flow V ⁇ 0 z. B. specified by the valve manufacturer.
  • the object of the invention is to provide a method of operation of a burner with a pre-selected output related supply of fuel. Another object of the invention is the specification of a corresponding burner arrangement.
  • the object is directed to a method solved by a method for operating a burner, the a fuel amount of a fuel via a fuel supply line is supplied, the amount of fuel over the degree of opening of an actuator depending on a selected one Power of the burner is set and where the Degree of opening determined based on this performance and immediately is set.
  • the invention is based on the knowledge that one, usually carried out, iterative regulation of the supplied Amount of fuel depending on the preselected output too sluggish compared to suddenly changed operational conditions is. With such an iterative regulation, the Degree of opening gradually regulated so that the preselected Performance.
  • the requested service e.g. through a generally very complex mechanical system directly converted into a manipulated variable, by which the degree of opening is determined.
  • the degree of opening is determined.
  • such Systems usually results in a very limited Variability in response to changes Boundary conditions, because an implementation of the preselected Performance in the opening degree only with a preset, established mechanism takes place.
  • a burner for a gas turbine comes as the burner in question, but the invention is also e.g. for an internal combustion engine suitable for a vehicle.
  • Fuel for the burner can e.g. B. be: petroleum, natural gas, diesel, gasoline or kerosene.
  • the degree of opening is first in the invention calculated based on the selected power and then immediately set.
  • This has the advantage that there is no iterative Regulation must be carried out. So there is a significant faster system response. So the system is very responsive much faster e.g. to external faults such as pump switching.
  • the current Operating conditions better and more flexibly can, as the degree of opening adapts to the respective operating conditions is calculated. For example, are changes in the Temperature, density or type of fuel or an am Burner location variable pressure in a simple way for the Regulation of the amount of fuel to be supplied can be used. Compared to control systems with a direct, mechanical implementation results from the preselected power in the degree of opening a significantly increased flexibility with regard to changed boundary conditions.
  • the calorific value of the fuel is preferably determined and used to calculate the degree of opening.
  • preferred dimensions becomes a mixture of at least two as fuel Fabrics used.
  • To determine the amount of fuel required the calorific value of the fuel is used because this also determines a power release from the combustion.
  • Such a determination of the calorific value is particularly important then an advantage if a fuel mixture is used possibly even with a time-variable composition.
  • An oil-water mixture is preferably used as fuel used, the energy consumption for one Evaporation of the water determined during combustion and for Calculation of the degree of opening is used.
  • Such Oil-water emulsion or dispersion is used to reduce Nitric oxide emissions used. By adding water the average combustion temperature is reduced. By the evaporation of the water becomes part of the energy of the Fuel consumes and therefore does not contribute to the desired Performance at.
  • the density of the fuel is preferably determined and Calculation of the degree of opening used.
  • About the density of fuel is the mass flow of fuel through determines the fuel supply line. Especially when used of a fuel mixture is the determination of the density of fuel is an advantage.
  • a pressure loss in the fuel supply line is preferred determined and to calculate the degree of opening used. Such a loss of pressure causes the mass flow of fuel through the fuel supply line co-determined, so that this pressure loss advantageously is taken into account when calculating the degree of opening.
  • the burner preferably opens into a combustion chamber in which Combustion chamber pressure prevails, the combustion chamber pressure being measured and is used to calculate the degree of opening.
  • the pressure in the combustion chamber affects the amount of in fuel entering the combustion chamber.
  • a flow comparison value is preferably determined for the actuator, in which a fuel mass flow through the actuator results under the prevailing pressure conditions, which leads to selected burner output, the degree of opening being determined by means of a known relationship between the flow comparison value and the degree of opening.
  • a flow comparison value is the k V value given from the cited paperback for mechanical engineering.
  • the burner is preferred for optional operation with designed at least two different fuels.
  • preferred dimensions is the burner both as a diffusion burner can also be operated as a premix burner.
  • the Burner designed for operation in a gas turbine, in particular for operation in a stationary gas turbine.
  • Such a burner is e.g. both with petroleum and with Natural gas can be operated.
  • It preferably has a central pilot burner which works as a diffusion burner, i.e. it there is no premixing of combustion air and fuel.
  • the central pilot burner is from a main burner surround that works as a premix burner, i.e. combustion air and fuel are mixed first and then incinerated.
  • the diffusion burner preferably has a flow / return nozzle, i.e.
  • the fuel especially petroleum
  • the remaining one Part of the fuel is returned via a return line returned to a fuel collection container.
  • the fed and the amount of fuel returned are each adjustable by its own actuator.
  • the regulation the amount of fuel supplied is for such a system very complex. Flexible adjustment of the degree of opening depends on the respective operating conditions special advantage.
  • a burner arrangement with a burner, which a fuel amount of a fuel via a fuel supply line can be supplied, the amount of fuel depending on the degree of opening of an actuator selected power of the burner is adjustable, with a control device is connected to the actuator, in which Control unit the degree of opening depending on the power, the type of fuel and a pressure drop in the Fuel supply line can be determined and a corresponding signal is so transferable to the actuator that this degree of opening is set.
  • the invention is based on the drawing in one embodiment explained in more detail.
  • the only figure shows schematically and not to scale a burner 1, which in a Gas turbine 2 is arranged.
  • the gas turbine 2 points one behind the other switched a compressor 4, a combustion chamber 6 and a turbine 8.
  • the burner 1 has a central one Diffusion burner 3 and the diffusion burner 3 in the form of an annular channel surrounding premix burner 5.
  • the diffusion burner 3 comprises a flow channel 7 and a return line 9.
  • the diffusion burner 3 opens out with a nozzle opening 11 into the combustion chamber 6.
  • the premix burner 5 is connected via a Flow path 13 from the compressor 4 compressor air supplied. Compressor air is also, not shown here, fed to the diffusion burner 3.
  • To the premix burner 5 leads a fuel supply line 15a.
  • the diffusion burner 3 guides a fuel supply line 15b. On The return line 9 is closed by a fuel return line 17 on.
  • An actuator 19a is in the fuel supply line 15a and an actuator 19b into the fuel supply line 15b built-in. With the pistons 20a, 20b, a respective one is clearly shown Degree of opening O shown for the actuators 19a, 19b.
  • An actuator 21 is in the fuel return line 17 built-in. It is also an opening degree with a piston 22 O illustrates for actuator 21.
  • the actuator 19a is via a line 23a, the actuator 19b via a Line 23b and the actuator 21 via a line 25 with a control device 27 connected. In this control device 27 continues to lead a line 28 through which a desired Power L is entered for the gas turbine 2.
  • the control device 27 is also connected via a line 29 connected to a pressure sensor 31 which is in the combustion chamber 6 is arranged.
  • the fuel supply lines 15a and 15b are connected to a pump 39. Before the pump is 39 a mixer 37 switched.
  • the mixer 37 is with a water tank 35 and an oil tank 33 connected. In the oil tank 33 The fuel return line 17 continues to open.
  • a negative calorific value HW H for the water H takes into account the energy consumption for the evaporation of the water H.
  • the desired degree of opening O is finally determined from the known relationship between the k V value and degree of opening O.
  • the respective degrees of opening O in the actuators 19a, 19b are set via signals SA, SB.
  • a signal SC for the actuator 21 in the return line 17 takes place in the same way as the calculation of the signals SA and SB.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Brenners, dem eine Brennstoffmenge eines Brennstoffes über eine Brennstoffzufuhrleitung zugeführt wird, wobei die Brennstoffmenge über den Öffnungsgrad eines Stellgliedes abhängig von einer vorgewählten Leistung des Brenners eingestellt wird. Die Erfindung betrifft auch eine entsprechende Brenneranordnung. Ein solches Verfahren und eine solche Anordnung sind aus Dokument US-A-4 716 719 schon bekannt.
In dem Buch "Die Gasturbine" von J. Kruschik, Springer-Verlag, Wien 1960, 2. Auflage, Seite 354 ff., sind verschiedene Regelsysteme für Brenner von Gasturbinen beschrieben. Je nach Einsatzgebiet der Gasturbine ergeben sich ganz unterschiedliche Ausbildungen der Regelsysteme. Gemeinsam ist den Regelsystemen, daß je nach einer vorgewählten Leistung der Gasturbine eine Brennstoffzufuhr zum Brenner geregelt wird. Dies geschieht z.B. drehzahlabhängig über die Regelung eines Stellgliedes in einer Brennstoffzufuhrleitung mittels eines Fliehkraftpendels. In dem Beispiel nach Abbildung 359 auf Seite 356 wird die dem Brenner zugeführte Brennstoffmenge abhängig vom durch den Verdichter der Gasturbine erzeugten Luftdruck geregelt. In einem weiteren Beispiel gemäß Abbildung 361 auf Seite 358 wird die zu verbrennende Brennstoffmenge mit einer Vorlauf-/Rücklaufdüse geregelt. Wie ab Seite 365 ausgeführt ist das Regelsystem für die Brennstoffzufuhr einer Flugzeugturbine besonders anspruchsvoll, da man hier großen Temperatur- und Druckschwankungen der Außenluft gerecht werden muß.
In "Dubbel, Taschenbuch für den Maschinenbau", herausgegeben von W. Baltz und K.H. Kütner, Springer-Verlag, 1990, 17. Auflage, Kapitel X15 6.4 wird ausgeführt, daß Stellglieder zur Einstellung eines Massenstroms eines Mediums abhängig von der Dichte und der Geschwindigkeit des Mediums einen Druckabfall verursachen. Den Durchfluß inkompressibler Medien kennzeichnet nach der VDI/VDE-Richtlinie 2173 der für jede Anordnung experimentell bestimmte kv-Wert (Kenngröße des Ventils) als Volumenstrom Wasser (Dichte ρo) bei Temperaturen von 5 bis 30°C und einem Druckabfall ΔpV0 von 0,98 bar. Beliebige Druckabfälle Δpv und andere Dichten ρ ergeben den Volumenstrom V V = kV ΔpV ρ0/(Δpv 0ρ)
Die Abhängigkeit des kV-Werts von der Stellgröße ist die Ventilkennlinie. KV wird auf den maximalen Wert kVS bei vollständig geöffnetem Ventil bezogen. Der Wert kVS = V 0 Δp V0ρ/(ΔpV ρ0) mit dem maximalen Durchfluß V ˙ 0 wird z. B. vom Ventilhersteller angegeben.
Aufgabe der Erfindung ist die Angabe eines Verfahrens zum Betrieb eines Brenners mit einer auf eine vorgewählte Leistung bezogenen Zufuhr von Brennstoff. Weitere Aufgabe der Erfindung ist die Angabe einer entsprechenden Brenneranordnung.
Erfindungsgemäß wird die auf ein Verfahren gerichtete Aufgabe gelöst durch ein Verfahren zum Betrieb eines Brenners, dem eine Brennstoffmenge eines Brennstoffes über eine Brennstoffzufuhrleitung zugeführt wird, wobei die Brennstoffmenge über den Öffnungsgrad eines Stellgliedes abhängig von einer gewählten Leistung des Brenners eingestellt wird und wobei der Öffnungsgrad anhand dieser Leistung bestimmt und unmittelbar eingestellt wird.
Der Erfindung liegt die Erkenntnis zugrunde, daß eine, üblicherweise durchgeführte, iterative Regelung der zugeführten Brennstoffmenge in Abhängigkeit von der vorgewählten Leistung zu träge gegenüber plötzlich geänderten betrieblichen Randbedingungen ist. Bei einer solchen iterativen Regelung wird der Öffnungsgrad schrittweise so geregelt, daß sich die vorgewählte Leistung einstellt. In anderen Regelsystemen wird die angeforderte Leistung z.B. durch ein in der Regel sehr komplexes mechanisches System direkt in eine Stellgröße umgesetzt, durch welche der Öffnungsgrad festgelegt ist. Bei solchen Systemen ergibt sich in der Regel eine sehr eingeschränkte Variabilität hinsichtlich der Reaktion auf geänderte Randbedingungen, da eine Umsetzung von der vorgewählten Leistung in den Öffnungsgrad nur mit einem voreingestellten, festgelegten Mechanismus erfolgt.
Als Brenner kommt insbesondere ein Brenner für eine Gasturbine in Frage, die Erfindung ist aber auch z.B. für eine Verbrennungsmaschine eines Fahrzeugs geeignet. Brennstoff für den Brenner kann z. B. sein: Erdöl, Erdgas, Diesel, Benzin oder Kerosin.
Demgegenüber wird bei der Erfindung der Öffnungsgrad zunächst anhand der gewählten Leistung berechnet und dann unmittelbar eingestellt. Damit ergibt sich der Vorteil, daß keine iterative Regelung durchgeführt werden muß. Somit erfolgt eine bedeutend schnellere Systemreaktion. Das System reagiert also sehr viel schneller z.B. auf äußere Störfälle wie eine Pumpenumschaltung. Weiterhin ergibt sich der Vorteil, daß man den aktuellen Betriebsbedingungen besser und variabler gerecht werden kann, da der Öffnungsgrad angepaßt an die jeweiligen Betriebsbedingungen berechnet wird. Z.B. sind Änderungen in der Temperatur, Dichte oder Art des Brennstoffes oder ein am Brennerort veränderlicher Druck in einfacher Weise für die Regulierung der zuzuführenden Brennstoffmenge heranziehbar. Gegenüber Regelsystemen mit einer direkten, mechanischen Umsetzung von der vorgewählten Leistung in den Öffnungsgrad ergibt sich also eine erheblich erhöhte Flexibilität hinsichtlich geänderter Randbedingungen.
Bevorzugt wird der Heizwert des Brennstoffes ermittelt und zur Berechnung des Öffnungsgrades herangezogen. Bevorzugtermaßen wird als Brennstoff ein Gemisch aus mindestens zwei Stoffen verwendet. Zur Ermittlung der benötigten Brennstoffmenge wird der Heizwert des Brennstoffes herangezogen, da dieser eine Leistungsfreisetzung aus der Verbrennung mitbestimmt. Eine solche Bestimmung des Heizwertes ist insbesondere dann von Vorteil, wenn ein Brennstoffgemisch verwendet wird, möglicherweise sogar mit einer zeitlich variablen Zusammensetzung. Vorzugsweise wird als Brennstoff ein Öl-Wasser-Gemisch verwendet, wobei der Energieverbrauch für eine Verdampfung des Wassers bei der Verbrennung ermittelt und zur Berechnung des Öffnungsgrades herangezogen wird. Eine solche Öl-Wasser-Emulsion oder Dispersion wird zur Verringerung von Stickoxidemissionen verwendet. Durch die Beimischung von Wasser wird die mittlere Verbrennungstemperatur abgesenkt. Durch die Verdampfung des Wassers wird ein Teil der Energie des Brennstoffes verbraucht und trägt damit nicht zur gewünschten Leistung bei.
Bevorzugt wird die Dichte des Brennstoffes ermittelt und zur Berechnung des Öffnungsgrades herangezogen. Über die Dichte des Brennstoffes ist der Massenström des Brennstoffes durch die Brennstoffzufuhrleitung mitbestimmt. Gerade bei Verwendung eines Brennstoffgemisches ist die Bestimmung der Dichte des Brennstoffes von Vorteil.
Bevorzugtermaßen wird ein Druckverlust in der Brennstoffzufuhrleitung ermittelt und zur Berechnung des Öffnungsgrades herangezogen. Durch einen solchen Druckverlust wird der Massenstrom des Brennstoffes durch die Brennstoffzufuhrleitung mitbestimmt, so daß dieser Druckverlust vorteilhafter Weise bei der Berechnung des Öffnungsgrades berücksichtigt wird.
Bevorzugt mündet der Brenner in eine Brennkammer, in der ein Brennkammerdruck herrscht, wobei der Brennkammerdruck gemessen und zur Berechnung des Öffnungsgrades herangezogen wird.
Der Druck in der Brennkammer wirkt sich auf die Menge des in die Brennkammer eintretenden Brennstoffes aus. Insbesondere bei einer Gasturbine herrscht in deren Brennkammer ein erheblich höherer Druck, verglichen mit dem Umgebungsdruck, da der Brennkammer Verbrennungsluft aus einem Verdichter zugeführt wird.
Bevorzugt wird für das Stellglied ein Durchflußvergleichswert ermittelt, bei dem sich unter den herrschenden Druckverhältnissen ein Brennstoffmassenstrom durch das Stellglied ergibt, der zu gewählten Leistung des Brenners führt, wobei der Öffnungsgrad mittels eines bekannten Zusammenhangs zwischen dem Durchflußvergleichswert und dem Öffnungsgrad bestimmt wird. Ein solcher Durchflußvergleichswert ist der aus dem zitierten Taschenbuch für den Maschinenbau angegebene kV-Wert.
Bevorzugt ist der Brenner für einen wahlweisen Betrieb mit mindestens zwei unterschiedlichen Brennstoffen ausgelegt. Bevorzugtermaßen ist der Brenner sowohl als Diffusionsbrenner als auch als Vormischbrenner betreibbar. Vorzugsweise ist der Brenner für einen Betrieb in einer Gasturbine ausgelegt, insbesondere für einen Betrieb in einer stationären Gasturbine. Ein solcher Brenner ist z.B. sowohl mit Erdöl als auch mit Erdgas betreibbar. Er weist bevorzugt einen zentralen Pilotbrenner auf, welcher als Diffusionsbrenner arbeitet, d.h. es erfolgt keine Vormischung von Verbrennungsluft und Brennstoff. Der zentrale Pilotbrenner ist von einem Hauptbrenner umgeben, der als Vormischbrenner arbeitet, d.h. Verbrennungsluft und Brennstoff werden zunächst gemischt und anschließend der Verbrennung zugeführt. Der Diffusionsbrenner weist bevorzugt eine Vorlauf-/Rücklaufdüse auf, d.h. der Brennstoff, insbesondere Erdöl, tritt über einen Vorlaufkanal in die Düse ein und teilweise aus der Düsenöffnung aus. Der verbleibende Teil des Brennstoffes wird über eine Rücklaufleitung wieder in einen Brennstoffsammelbehälter zurückgeführt. Die zugeführte und die zurückgeführte Brennstoffmenge sind dabei jeweils durch ein eigenes Stellglied einstellbar. Die Regelung der zugeführten Brennstoffmenge ist für ein solches System sehr komplex. Eine flexible Einstellung des Öffnungsgrades abhängig von den jeweiligen Betriebsbedingungen ist hier von besonderem Vorteil.
Erfindungsgemäß wird die auf eine Brenneranordnung gerichtete Aufgabe gelöst durch eine Brenneranordnung mit einem Brenner, dem eine Brennstoffmenge eines Brennstoffes über eine Brennstoffzufuhrleitung zuführbar ist, wobei die Brennstoffmenge über den Öffnungsgrad eines Stellgliedes abhängig von einer gewählten Leistung des Brenners einstellbar ist, wobei mit dem Stellglied eine Steuereinrichtung verbunden ist, in welcher Steuereinheit der Öffnungsgrad abhängig von der Leistung, der Art des Brennstoffes und einem Druckverlust in der Brennstoffzufuhrleitung bestimmbar und ein entsprechendes Signal an das Stellglied so übertragbar ist, daß dieser Öffnungsgrad eingestellt wird.
Die Vorteile einer solchen Brenneranordnung ergeben sich entsprechend den obigen Ausführungen zu den Vorteilen des Verfahrens zum Betrieb eines Brenners.
Die Erfindung wird anhand der Zeichnung in einem Ausführungsbeispiel näher erläutert. Die einzige Figur zeigt schematisch und nicht maßstäblich einen Brenner 1, welcher in einer Gasturbine 2 angeordnet ist. Die Gasturbine 2 weist hintereinander geschaltet einen Verdichter 4, eine Brennkammer 6 und eine Turbine 8 auf. Der Brenner 1 weist einen zentralen Diffusionsbrenner 3 und einen den Diffusionsbrenner 3 ringkanalförmig umgebenden Vormischbrenner 5 auf. Der Diffusionsbrenner 3 umfaßt einen Vorlaufkanal 7 und eine Rücklaufleitung 9. Der Diffusionsbrenner 3 mündet mit einer Düsenöffnung 11 in die Brennkammer 6. Dem Vormischbrenner 5 wird über einen Strömungsweg 13 aus dem Verdichter 4 Verdichterluft zugeführt. Verdichterluft wird auch, hier nicht näher dargestellt, dem Diffusionsbrenner 3 zugeführt. Zu dem Vormischbrenner 5 führt eine Brennstoffzufuhrleitung 15a. Zu dem Diffusionsbrenner 3 führt eine Brennstoffzufuhrleitung 15b. An der Rückleitung 9 schließt sich eine Brennstoffrückleitung 17 an. In die Brennstoffzufuhrleitung 15a ist ein Stellglied 19a und in die Brennstoffzufuhrleitung 15b ein Stellglied 19b eingebaut. Mit den Kolben 20a, 20b ist anschaulich ein jeweiliger Öffnungsgrad O für die Stellglieder 19a, 19b dargestellt. In die Brennstoffrückleitung 17 ist ein Stellglied 21 eingebaut. Es ist ebenfalls mit einem Kolben 22 ein Öffnungsgrad O für das Stellglied 21 veranschaulicht. Das Stellglied 19a ist über eine Leitung 23a, das Stellglied 19b über eine Leitung 23b und das Stellglied 21 über eine Leitung 25 mit einer Steuereinrichtung 27 verbunden. In diese Steuereinrichtung 27 führt weiterhin eine Leitung 28, über die eine gewünschte Leistung L für die Gasturbine 2 eingegeben wird. Weiterhin ist die Steuereinrichtung 27 über eine Leitung 29 mit einem Drucksensor 31 verbunden, welcher in der Brennkammer 6 angeordnet ist. Die Brennstoffzufuhrleitungen 15a und 15b sind an eine Pumpe 39 angeschlossen. Vor die Pumpe 39 ist ein Mischer 37 geschaltet. Der Mischer 37 ist mit einem Wassertank 35 und einem Öltank 33 verbunden. In den Öltank 33 mündet weiterhin die Brennstoffrückleitung 17.
Bei Betrieb der Gasturbine 2 wird über die Pumpe 39 Öl B aus dem Öltank 33 in den Mischer 37 gefördert. Weiterhin wird Wasser H aus dem Wassertank 35 in den Mischer 37 geleitet. Das Öl B und das Wasser H vermischen sich zu einem Brennstoff BH. Dieser wird über die Brennstoffzufuhrleitungen 15a und 15b dem Vormischbrenner 5 und dem Diffusionsbrenner 3 zugeführt. Der Brennstoff BH verbrennt sodann in der Brennkammer 6. Das entstehende heiße Abgas treibt die Turbine 8 an. Je nach der gewünschten Leistung für die Turbine 8 muß mehr oder weniger Brennstoff BH zugeführt werden. Dabei ist es auch oft wünschenswert, einen veränderlichen Gehalt an Wasser H im Brennstoff BH einzustellen. Mit dem veränderlichen Wassergehalt ändert sich sowohl der Heizwert des Brennstoffs BH als auch der Energieverbrauch zu einer Verdampfung des Wassers H. Es ändert sich auch die Dichte des Brennstoffes BH. Diese veränderlichen Größen beeinflussen eine Leistungsfreisetztung bei der Verbrennung, so daß die zugeführte Menge an Brennstoff BH zur Erzielung der gewünschten Leistung L entsprechend reguliert werden muß. Außerdem können z.B. plötzliche Druckeinbrüche eine sehr schnelle Regulierung der zugeführten Brennstoffmenge erforderlich machen. Diesen Anforderungen wird die gezeigte Anordnung dadurch gerecht, daß die gewünschte Leistung L an die Steuereinrichtung 27 gegeben wird, wo aus den physikalischen Randbedingungen unmittelbar der jeweilige Öffnungsgrad O der Stellglieder 19a,19b und 21 berechnet wird. Es erfolgt also keine langsame, iterative Nachregelung der zugeführten Brennstoffmenge. In die Berechnung der Öffnungsgrade O fließen die Art und Zusammensetzung des Brennstoffes BH ein, so daß man einer variablen Zusammensetzung des Brennstoffes BH gerecht wird. Im einzelnen erfolgt die Berechnung der Öffnungsgrade O z.B. wie folgt:
Zunächst wird der Heizwert HWBH des Brennstoffes BH anhand des Massenstromes m ˙ H und des Heizwertes HWH des Wassers H, des Massenstromes m ˙ B und des Heizwertes HWB des Heizöles B anhand folgender Formel ermittelt: HWBH = m H ·HWH + m B ·HWB m H + m B
Über einen negativen Heizwert HWH für das Wasser H wird hierbei der Energieverbrauch für die Verdampfung des Wassers H berücksichtigt.
In einem zweiten Schritt wird die Dichte DBH des Brennstoffes anhand der Dichte DB des Öles und der Dichte DH des Wassers anhand folgender Formel bestimmt: DBH = ( m H + m B DB ·DH m H ·DB + m B ·DH
Weiterhin wird der Druckverlust ΔpD im Diffusionsbrenner 3 aus einer für den Diffusionsbrenner 3 spezifischen, vom einlaufenden Massenstrom m ˙ VL und rücklaufenden Massenstrom m ˙ RL abhängigen Kennlinienwert K nach folgender Formel bestimmt: ΔpD = K ( m VL m RL ) · m 2 VL ·1 DBH
Der Rohrleitungsdruckverlust ΔpR in den Brennstoffzufuhrleitungen 15a und 15b wird anhand eines für diese Leitungen spezifischen kV-Wertes kVR anhand folgender Formel ermittelt: ΔpR = m 2 VL ·1 DBH ·1 k 2 VR
Mit Hilfe des in der Brennkammer 6 herrschenden Brennkammerdruckes pB wird nun der hinter den Stellglieder 19a,19b einzustellende Druck pS bestimmt aus: pS = pB + ΔpD + ΔpR
Der kV-Wert der Stellglieder 19a,19b ergibt sich nunmehr mit dem Druck pP hinter der Pumpe 39 zu: kV = m VL DBH ·(pP-pS)
Aus dem bekannten Zusammenhang zwischen dem kV-Wert und Öffnungsgrad O ist schließlich der gewünschte Öffnungsgrad O festgelegt. Über Signale SA,SB werden die jeweiligen Öffnungsgrade O bei den Stellgliedern 19a, 19b eingestellt. Ein Signal SC für das Stellglied 21 in der Rücklaufleitung 17 erfolgt sinngemäß genauso wie die Berechnung der Signale SA und SB.

Claims (11)

  1. Verfahren zum Betrieb eines Brenners (1), dem eine Brennstoffmenge eines Brennstoffes (BH) über eine Brennstoffzufuhrleitung (15) zugeführt wird, wobei die Brennstoffmenge uber den Öffnungsgrad (O) eines Stellgliedes (19) abhängig von einer gewählten Leistung (L) des Brenners (1) eingestellt wird,
    dadurch gekennzeichnet, daß der Heizwert des Brennstoffes (BH) ermittelt wird, und daß der Öffnungsgrad (O) anhand der gewählten Leistung (L) und anhand des Heizwertes des Brennstoffs (BH) berechnet und unmittelbar eingestellt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß als Brennstoff (BH) ein Gemisch aus mindestens zwei Stoffen (B, H) verwendet wird.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, daß als Brennstoff (BH) ein Öl/Wasser-Gemisch verwendet wird, wobei der Energieverbrauch für eine Verdampfung des Wassers (H) bei der Verbrennung ermittelt und zur Berechnung des Öffnungsgrades (O) herangezogen wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei die Dichte des Brennstoffes (BH) ermittelt und zur Berechnung des Öffnungsgrades (O) herangezogen wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß ein Druckverlust Δp in der Brennstoffzufuhrleitung (15) ermittelt und zur Berechnung des Öffnungsgrades (O) herangezogen wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Brenner (1) in eine Brennkammer (6) mündet, in der ein Brennkammerdruck (pB) herrscht, wobei der Brennkammerdruck (pB) gemessen und zur Berechnung des Öffnungsgrades (0) herangezogen wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß für das Stellglied (19) ein Durchflußvergleichswert (kV) ermittelt wird, bei dem sich unter den herrschenden Druckverhältnissen ein Brennstoffmassenstrom durch das Stellglied ergibt, der zur gewahlten Leistung (L) des Brenners (1) führt, wobei der Durchflußvergleichswert (kV) zur Berechnung des Öffnungsgrades (O) herangezogen wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß der Brenner (1) für einen wahlweisen Betrieb mit mindestens zwei unterschiedlichen Brennstoffen (BH, G) ausgelegt ist.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet, daß der Brenner (1) sowohl als Diffusionsbrenner (3) als auch als Vormischbrenner (5) betreibbar ist.
  10. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß der Brenner (1) für einen Betrieb in einer Gasturbine (2) ausgelegt ist, insbesondere in einer stationären Gasturbine (2).
  11. Brenneranordnung mit einem Brenner (1), dem eine Brennstoffmenge eines Brennstoffes (BH) über eine Brennstoffzufuhrleitung (15) zuführbar ist, wobei die Brennstoffmenge uber den Öffnungsgrad (O) eines Stellgliedes (19) abhängig von einer gewählten Leistung (L) des Brenners (1) einstellbar ist,
    dadurch gekennzeichnet, daß mit dem Stellglied (19) eine Steuereinrichtung (27) verbunden ist, in welcher Steuereinheit (27) eine Berechnung des Öffnungsgrades (O) abhängig von der gewählten Leistung (L) und abhängig vom Heizwert des Brennstoffs durchführbar ist, wobei ein Signal (S) zur Einstellung des Öffnungsgrades (O) von der Steuereinheit (27) an das Stellglied (19) übertragbar ist wodurch der Öffnungsgrad des Stellgliedes entsprechend der gewählten Leistung und dem Heizwert des Brennstoffes unmittelbar eingestellt wird.
EP99968703A 1998-09-10 1999-08-31 Verfahren zum betrieb eines brenners und brenneranordnung Expired - Lifetime EP1112461B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19841424 1998-09-10
DE19841424 1998-09-10
PCT/DE1999/002713 WO2000014451A1 (de) 1998-09-10 1999-08-31 Verfahren zum betrieb eines brenners und brenneranordnung

Publications (2)

Publication Number Publication Date
EP1112461A1 EP1112461A1 (de) 2001-07-04
EP1112461B1 true EP1112461B1 (de) 2004-04-14

Family

ID=7880526

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99968703A Expired - Lifetime EP1112461B1 (de) 1998-09-10 1999-08-31 Verfahren zum betrieb eines brenners und brenneranordnung

Country Status (5)

Country Link
US (1) US6490867B2 (de)
EP (1) EP1112461B1 (de)
JP (1) JP4331406B2 (de)
DE (1) DE59909192D1 (de)
WO (1) WO2000014451A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009026881A1 (de) 2009-06-10 2010-12-16 Air-Lng Gmbh Antrieb für eine Turbine nebst Antriebsverfahren

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049205A1 (de) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Verfahren und Vorrichtung zur Brennstoffversorgung eines Vormischbrenners
DE50112904D1 (de) * 2000-12-16 2007-10-04 Alstom Technology Ltd Verfahren zum Betrieb eines Vormischbrenners
US6637184B2 (en) * 2002-01-24 2003-10-28 Siemens Westinghouse Power Corporation Flow control system for liquid fuel engine having stage-specific control of fuel flow to several groups of nozzles in the engine
DE50305837D1 (de) * 2002-01-25 2007-01-11 Alstom Technology Ltd Verfahren zum betrieb einer gasturbogruppe
DE10345566A1 (de) * 2003-09-29 2005-04-28 Alstom Technology Ltd Baden Verfahren zum Betrieb einer Gasturbine sowie Gasturbinenanlage zur Durchführung des Verfahrens
EP1524423A1 (de) * 2003-10-13 2005-04-20 Siemens Aktiengesellschaft Verfahren und Vorrichung zum Ausgleichen von Schwankungen der Brennstoffzusammensetzung in einer Gasturbinenanlage
AU2005201746B2 (en) * 2004-10-12 2010-09-30 Lg Electronics Inc. Gas burner and method for controlling the same
US7640725B2 (en) * 2006-01-12 2010-01-05 Siemens Energy, Inc. Pilot fuel flow tuning for gas turbine combustors
US8001761B2 (en) * 2006-05-23 2011-08-23 General Electric Company Method and apparatus for actively controlling fuel flow to a mixer assembly of a gas turbine engine combustor
US7854110B2 (en) * 2006-11-16 2010-12-21 Siemens Energy, Inc. Integrated fuel gas characterization system
US7950216B2 (en) * 2007-01-30 2011-05-31 Pratt & Whitney Canada Corp. Gas turbine engine fuel control system
US20090025396A1 (en) * 2007-07-24 2009-01-29 General Electric Company Parallel turbine fuel control valves
US7628062B2 (en) * 2007-09-06 2009-12-08 General Electric Company Method and system to determine composition of fuel entering combustor
US7966802B2 (en) * 2008-02-05 2011-06-28 General Electric Company Methods and apparatus for operating gas turbine engine systems
JP4979615B2 (ja) * 2008-03-05 2012-07-18 株式会社日立製作所 燃焼器及び燃焼器の燃料供給方法
ITMI20090153A1 (it) * 2009-02-06 2010-08-07 Ansaldo Energia Spa Dispositivo e metodo per regolare l'alimentazione di gas ad una camera di combustione e impianto a turbina a gas comprendente tale dispositivo
DE102009010611A1 (de) * 2009-02-25 2010-08-26 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Steuerung einer mit mehreren Brennern ausgestatteten Turbine für flüssige oder gasförmige Brennstoffe
US8356484B2 (en) * 2009-05-01 2013-01-22 General Electric Company Hybrid Wobbe control during rapid response startup
EP2547961B1 (de) * 2010-03-19 2020-02-19 Technische Universität Berlin Verfahren und system zum regeln oder steuern des betriebsverhaltens einer gasturbinenverbrennungsanlage
EP2434221A1 (de) * 2010-09-22 2012-03-28 Siemens Aktiengesellschaft Verfahren und Anordnung zur Einspritzung einer Emulsion in eine Flamme
CH705965A1 (de) * 2012-01-09 2013-07-15 Alstom Technology Ltd Verfahren zum Betrieb einer Gasturbine.
EP2738374A1 (de) 2012-12-03 2014-06-04 Siemens Aktiengesellschaft Verfahren und Anordnung zur Steuerung der Kraftstoffzufuhr für eine Gasturbine
RU2518759C1 (ru) * 2013-01-23 2014-06-10 Общество с ограниченной ответственностью "Энерго Эстейт" Газомазутная горелка
US10371048B2 (en) * 2016-02-22 2019-08-06 Mitsubishi Hitachi Power Systems, Ltd. Combustor and gas turbine
DE102022102753A1 (de) 2022-02-07 2023-08-10 Vaillant Gmbh Verfahren zur Inbetriebnahme eines Heizgerätes, Computerprogramm, Regel- und Steuergerät, Heizgerät und Verwendung einer Drosseleinrichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006809A1 (en) * 1989-10-30 1991-05-16 Honeywell Inc. Microbridge-based combustion control

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472936A (en) * 1980-12-27 1984-09-25 Hitachi, Ltd. Method and apparatus for controlling combustion of gasified fuel
JPS61241425A (ja) * 1985-04-17 1986-10-27 Hitachi Ltd ガスタ−ビンの燃料ガス制御方法及び制御装置
US4761948A (en) * 1987-04-09 1988-08-09 Solar Turbines Incorporated Wide range gaseous fuel combustion system for gas turbine engines
AU627952B2 (en) * 1989-12-11 1992-09-03 Westinghouse Electric Corporation Gas turbine control system having maximum instantaneous load pickup limiter
JP3039947B2 (ja) * 1990-03-19 2000-05-08 株式会社日立製作所 ガスタービンの燃料制御装置
JP2961913B2 (ja) * 1991-02-26 1999-10-12 株式会社日立製作所 燃焼装置及びその制御方法
JP2954401B2 (ja) * 1991-08-23 1999-09-27 株式会社日立製作所 ガスタービン設備およびその運転方法
US5357741A (en) * 1992-05-01 1994-10-25 Dresser-Rand Company NOx and CO control for gas turbine
DE19627857C2 (de) * 1996-07-11 1998-07-09 Stiebel Eltron Gmbh & Co Kg Verfahren zum Betrieb eines Gasgebläsebrenners
US6199366B1 (en) * 1997-11-04 2001-03-13 Hitachi, Ltd. Gas turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006809A1 (en) * 1989-10-30 1991-05-16 Honeywell Inc. Microbridge-based combustion control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009026881A1 (de) 2009-06-10 2010-12-16 Air-Lng Gmbh Antrieb für eine Turbine nebst Antriebsverfahren

Also Published As

Publication number Publication date
WO2000014451A1 (de) 2000-03-16
US6490867B2 (en) 2002-12-10
DE59909192D1 (de) 2004-05-19
JP4331406B2 (ja) 2009-09-16
US20010023578A1 (en) 2001-09-27
EP1112461A1 (de) 2001-07-04
JP2002524715A (ja) 2002-08-06

Similar Documents

Publication Publication Date Title
EP1112461B1 (de) Verfahren zum betrieb eines brenners und brenneranordnung
DE102006008483B4 (de) Verbrennungssteuervorrichtung für eine Gasturbine
EP2977596B1 (de) Brennkraftmaschine mit einer regeleinrichtung
DE102006008714A1 (de) Verbrennungssteuervorrichtung für eine Gasturbine
WO1987006302A1 (en) System and device for metering fuel
DE3220832A1 (de) Verfahren und vorrichtung zur bestimmung der abgasrueckfuehrrate (arf-r) bei brennkraftmaschinen
EP0898064B1 (de) Gasmotor
DE3118787C2 (de) Vorrichtung zum Steuern der Abgasrückführung in einem Dieselmotor
EP0907052A2 (de) Pneumatischer Verhältnisregler
DE1220957B (de) Verfahren zum Betrieb einer mit mindestens zwei verschiedenen fliessfaehigen Brennstoffen beschickten Feuerungsanlage, insbesondere fuer eine Dampfkraft- oder eine Gasturbinenanlage
EP2071156B1 (de) Brennstoffverteilungssystem für eine Gasturbine mit mehrstufiger Brenneranordnung
DE865841C (de) Vorrichtung zur Brennstoffmengen- und Leistungsregelung fuer Gasturbinen und aehnliche Kraftanlagen
CH680749A5 (de)
EP2646678B1 (de) Verfahren und steuereinrichtung zum betrieb eines otto-gasmotors
DE1915824C3 (de) Regelanlage für Gasturbinentriebwerke
DE2941513A1 (de) Kraftmaschinenanlage
DE2906223A1 (de) Brennstoffsteuerung fuer turbinen-nachbrenner
DE2844350A1 (de) Vorrichtung zum regeln von gasturbinen
DE2533923A1 (de) Brennstoff-regelsysteme fuer gasturbinen
DE3149839C2 (de)
EP3628845B1 (de) Verfahren zum betreiben einer gasturbinenanordnung und gasturbinenanordnung
DE3217111C2 (de) Verfahren zum Prüfen und/oder Einstellen von querschnittsveränderbaren Drosselstellen sowie Vorrichtung zum Durchführen dieses Verfahrens
DE10196104B4 (de) Graphitkörper imprägniert mit einer Leichtmetall-Legierung, Verfahren zu dessen Herstellung und seine Verwendung
DE943022C (de) Brennstoffregelvorrichtung fuer Gasturbinen
DE60215899T2 (de) Gasdurchflussmesssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59909192

Country of ref document: DE

Date of ref document: 20040519

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040709

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180829

Year of fee payment: 20

Ref country code: FR

Payment date: 20180822

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180809

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181107

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59909192

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190830