EP1103599A1 - Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel - Google Patents

Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel Download PDF

Info

Publication number
EP1103599A1
EP1103599A1 EP00125168A EP00125168A EP1103599A1 EP 1103599 A1 EP1103599 A1 EP 1103599A1 EP 00125168 A EP00125168 A EP 00125168A EP 00125168 A EP00125168 A EP 00125168A EP 1103599 A1 EP1103599 A1 EP 1103599A1
Authority
EP
European Patent Office
Prior art keywords
rinse aid
particulate
weight
acid
ingredients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00125168A
Other languages
English (en)
French (fr)
Other versions
EP1103599B1 (de
Inventor
Peter Dr. Schmiedel
Gerard Veldman
Thomas Otto Dr. Gassenmeier
Wolfgang Von Dr. Rybinski
Jürgen Dr. Härer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7930640&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1103599(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1103599A1 publication Critical patent/EP1103599A1/de
Application granted granted Critical
Publication of EP1103599B1 publication Critical patent/EP1103599B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets

Definitions

  • the present invention relates to particulate rinse aid for machine dishwashing, containing 95 to 5% by weight of one or more carrier materials and / or binders, and, 5 to 95% by weight of one or more active substances, and 0 to 10% by weight of another Active ingredients and auxiliaries, a process for its production and particulate mechanical Dishwashing detergent (MGSM) containing the rinse aid particles.
  • MGSM particulate mechanical Dishwashing detergent
  • the automatic cleaning of dishes in domestic dishwashers usually includes a pre-rinse, a main rinse and a rinse cycle that of intermediate rinse to be interrupted.
  • the pre-rinse cycle is for heavily soiled crockery can be switched on, but is only used by the consumer in exceptional cases selected so that in most machines a main rinse cycle, an intermediate rinse cycle with pure water and a rinse aid.
  • the temperature of the main wash cycle varies between 40 and 65 ° C depending on the machine type and program level selection.
  • rinse aid is added from a dosing tank in the machine, which usually contain non-ionic surfactants as the main component. Such rinse aids are in liquid form and are widely described in the prior art.
  • the storage tank in the dishwasher must be rinse-aid at regular intervals be filled, whereby one filling is sufficient for 10 to 50 rinse cycles, depending on the machine type. If the refilling of the tank is forgotten, glasses in particular are worn out Limescale and deposits unsightly. There are therefore some proposed solutions in the prior art, a rinse aid in the detergent for machine dishwashing to integrate. These proposed solutions are based on the offer form of the compact Molded body bound.
  • European patent application EP-A-0 851 024 (Unilever) describes two-layer detergent tablets, the first layer of which contains peroxy bleach, builder and enzyme, while the second layer contains acidifying agents and a continuous medium with a melting point between 55 and 70 ° C. and scale inhibitors contains. Due to the high-melting continuous medium, the acid (s) and scale inhibitor (s) should be released with a delay and cause a rinse aid effect. Powdered machine dishwashing detergents or surfactant-containing rinse aid systems are not mentioned in this document.
  • the present invention was based on the object of the advantages of controlled release of ingredients, especially a rinse aid, both for powder detergents as well as for granules and detergent tablets.
  • a rinse aid both for powder detergents as well as for granules and detergent tablets.
  • an offer form should be provided that is both separate as a solid form of rinse aid to be dosed by the consumer as well as an admixing component can be used for powdered machine dishwashing detergents.
  • mixtures of carrier materials, active ingredients and optional other ingredients, such as enzymes, colors and fragrances etc. as well as suitable carrier materials and / or binders can be compressed such that the active substances as well as the further ingredients at a predetermined time or during a predetermined Period will be released.
  • the delayed release of the active ingredients and possibly other ingredients to a predetermined one Time or during a predetermined period in the cleaning process takes place in the particulate rinse aid according to the invention by adjusting the strength the molded body and depending on the amount and type of the respective components, especially the binder.
  • a usual process sequence in automatic dishwashing is that after the actual one The dishes are cleaned and then a so-called rinse cycle is carried out becomes.
  • the particles according to the invention can be compressed in such a way that the compressed ones Particles in the main rinse cycle remain largely unchanged or only soften, swell or only erode on the surface and disintegrate in the subsequent rinse cycle and the active substances, how to release the rinse aid and any other substances.
  • the one described here The delayed release process can also be referred to as "retarded decay" become.
  • the active substances to be incorporated into the rinse aid particles according to the invention can be used in the Processing temperature (i.e. the temperature at which the particles are produced) both in solid and in liquid form.
  • the active substances contained in the rinse aid particles fulfill certain tasks. Through the Separation of certain substances or by the accelerated or delayed time Release of additional substances can improve cleaning performance. Active substances, which are preferably incorporated into the rinse aid particles are therefore such ingredients of detergents and cleaning agents that are crucial to the washing or cleaning process involved.
  • rinse aid particles there are therefore one or more substances from the active substances Groups of surfactants, bleaches, bleach activators, corrosion inhibitors, scale inhibitors and / or cobuilders in amounts of 5 to 95% by weight, preferably 10 to 70% by weight and in particular from 10 to 60% by weight, based in each case on the particle weight.
  • Another class of active substances which are particularly advantageous in the invention Having rinse aid particles incorporated is bleach. Also are detergents can be produced for automatic dishwashing in such a way that additional rinse aid Bleach is released and so difficult stains, such as tea stains more effectively be removed.
  • the active substance (s) is / are selected from the group of oxygen or halogen bleaches, in particular the Chlorine bleach. These substances are also described in detail below.
  • Rinse aid particles Another class of compounds, which are preferred as active substances in the invention Rinse aid particles can be used are the bleach activators.
  • the important representatives from this group of substances are also described below.
  • Bleach activators especially from the groups of polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), the N-acylimides, in particular N-nonanoylsuccinimide (NOSI), the acylated phenol sulfonates, especially n-nonanoyl or Isononanoyloxybenzenesulfonat (n- or iso-NOBS), n-methyl-morpholinium-acetonitrile-methylsulfate (MMA).
  • TAED tetraacetylethylenediamine
  • NOSI N-nonanoylsuccinimide
  • acylated phenol sulfonates especially n-nonanoyl or Isononan
  • Fragrances can also be used as active substances in the rinse aid particles according to the invention incorporate. All fragrances described in detail below can be used as Active substance can be used. When fragrances are incorporated into the rinse aid particles This results in cleaning agents that release all or part of the perfume with a time delay. In this way, for example, cleaning agents for the machine are according to the invention Dishwashing can be produced, in which the consumer even after cleaning the dishes experienced the perfume note when opening the machine. In this way, the eliminates the undesirable "alkaline smell" that adheres to many automatic dishwashing detergents become.
  • Corrosion inhibitors can also be incorporated as active ingredients in the rinse aid particles, whereby substances familiar to the person skilled in the art can be used.
  • a coating inhibitor has, for example, a combination of enzyme (e.g. lipase) and lime soap dispersant proven.
  • the carrier materials and / or binders of component b) can be made from all of the State-of-the-art materials can be selected for the production of compacted Particles are suitable. It is obvious to a person skilled in the art that they are simultaneously as a carrier for the active substances and also as a binder in the particles according to the invention can work.
  • Suitable carrier materials b) are all substances which are solid at room temperature, which have sufficient absorption capacity for the active substance (s).
  • substances from the group of solid detergent and detergent ingredients can be used, preferably the zeolites, Bentonites, silicates, carbonates, hydrogen carbonates, sulfates, phosphates, and synthetic Polymers, e.g. cross-linked polycarboxylates, polyvinyl alcohols, and at room temperature solid organic polycarboxylic acids.
  • natural or semi-synthetic polymers such as starch derivatives and cellulose derivatives can be used
  • binders Tablets A large number of binders known from pharmacy are used as binders Tablets in question. They differ in their hydrophilicity / hydrophobicity, their solubility and resulting from their binding effect under the influence of the washing liquor.
  • substances from the group of polyalkylene glycols and polyoxyalkylene glycols different molecular weight can be used. Have proven themselves Higher molecular weight polyethylene glycols that are solid at room temperature.
  • other substances are also suitable, e.g.
  • Waxes paraffins, fatty acid salts (soaps), in particular Stearates; Fatty acids and fatty alcohols, fatty acid esters, cellulose derivatives, hydrocolloids, Mono-, oligo-, or polysaccharides and polymer compounds (e.g. polyacrylates) and resins.
  • the rinse aid particles according to the invention can contain further active ingredients as further ingredients Contain auxiliaries, such as. B. enzymes, colors and fragrances etc.
  • the particulate rinse aid according to the invention can be produced in various ways.
  • active ingredients are preferred one or more substances from the groups of surfactants including rinse aid surfactants, Bleach, bleach activator, corrosion inhibitors, scale inhibitors and / or cobuilders contain.
  • a mixture preferably one, is preferably first used Melt mixture of the ingredients including any other active and Excipients manufactured.
  • the active ingredients of component a) or active ingredients and h-substances are in liquid form, they can first be placed on suitable carrier materials applied and mixed with binder if necessary. Then the obtained one Mixture compressed according to the invention. Compression can be done in a manner known per se Way.
  • the compression in a tablet press is particularly preferred, all common press types can be used, e.g. hydraulic Presses, eccentric presses or rotary presses. Another possible compression method represents processing in roller presses.
  • the active substances are initially applied to a carrier in a manner known per se and then, if appropriate in the presence compressed by further components and / or binders. Applying the Active substances on the carrier material can be carried out in all usual mixing devices become.
  • the rinse aid particles according to the invention can be given directly to the consumer so that he also doses them to the cleaning agent as required. Because of this additional dosing step, however, would be in addition to the fixed form of supply and the addition in the same dosing compartment the advantages over liquid rinse aid minimized. It is therefore preferred that the rinse aid particles according to the invention are particulate to combine with automatic dishwashing detergents.
  • Another object of the present invention is therefore also a particulate mechanical Dishwashing detergent containing builders and optionally other ingredients the groups of surfactants, enzymes, bleaching agents, bleach activators, corrosion inhibitors, Polymers, dyes and fragrances, and a particulate rinse aid according to the invention in amounts of 0.5 to 30% by weight, preferably 1 to 25% by weight and in particular of 2 to 15 wt .-%, based on the total average.
  • the most important ingredients in automatic dishwashing detergents are builders.
  • builders usually used in detergents and cleaning agents, in particular, zeolites, silicates, carbonates, organic cobuilders, the phosphates.
  • the Builders mentioned below are all as carrier materials for the inventive Rinse aid particles are suitable, as already explained above.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x + 1 . H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates are Na 2 Si 2 O 5 . yH2O preferred.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments.
  • This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Commercially available and can preferably be used in the context of the present invention for example a co-crystallizate of zeolite X and zeolite A (approx ), which is sold by CONDEA Augusta SpA under the brand name VEGOBOND AX® and by the formula n Na 2 O. (1-n) K 2 O. Al 2 O 3 . (2 - 2.5) SiO 2 .
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • phosphates are also used as builder substances possible.
  • alkali metal phosphates with particular preference for pentasodium or pentapotassium triphosphate (Sodium or potassium tripolyphosphate) in the detergent and cleaning agent industry the greatest importance.
  • Alkali metal phosphates is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish between metaphosphoric acids (HPO 3 ) n and orthophosphoric acid H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts and lime incrustations in tissues and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91 gcm-3, melting point 60 °) and as a monohydrate (density 2.04 gcm-3). Both salts are white, water-soluble powders, which lose water of crystallization when heated and at 200 ° C into the weakly acidic diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and Maddrell's salt (see below).
  • NaH 2 PO 4 is acidic; it occurs when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (primary or monobasic potassium phosphate, potassium biphosphate, KDP), KH2PO4, is a white salt with a density of 2.33 gcm-3, has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) x ] and is easily soluble in water .
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very easily water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gcm -3 , water loss at 95 °), 7 mol. (Density 1.68 gcm -3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol. Water ( Density 1.52 gcm -3 , melting point 35 ° with loss of 5 H 2 O), becomes anhydrous at 100 ° and changes to the diphosphate Na 4 P 2 O 7 when heated to a greater extent. Disodium hydrogen phosphate is prepared by neutralizing phosphoric acid with soda solution using phenolphthalein as an indicator. Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is easily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals which, as dodecahydrate, have a density of 1.62 gcm -3 and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 O 5 ) have a density of 2.536 gcm -3 .
  • Trisodium phosphate is readily soluble in water with an alkaline reaction and is produced by evaporating a solution of exactly 1 mol of disodium phosphate and 1 mol of NaOH.
  • Tripotassium phosphate (tertiary or triphase potassium phosphate), K 3 PO 4 , is a white, deliquescent, granular powder with a density of 2.56 gcm -3 , has a melting point of 1340 ° and is easily soluble in water with an alkaline reaction. It arises, for example, when heating Thomas slag with coal and potassium sulfate. Despite the higher price, the more easily soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds in the cleaning agent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 gcm -3 , melting point 988 °, also given 880 °) and as decahydrate (density 1.815-1.836 gcm -3 , melting point 94 ° with loss of water) .
  • Substances are colorless crystals that are soluble in water with an alkaline reaction.
  • Na 4 P 2 O 7 is formed by heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying.
  • the decahydrate complexes heavy metal salts and hardness formers and therefore reduces the hardness of the water.
  • Potassium diphosphate potassium pyrophosphate
  • K 4 P 2 O 7 exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 gcm -3 , which is soluble in water, the pH value being 1% Solution at 25 ° is 10.4.
  • Sodium and potassium phosphates in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates. A large number of terms are used in particular for the latter: melt or glow phosphates, Graham's salt, Kurrol's and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O 10 (sodium tripolyphosphate)
  • sodium tripolyphosphate sodium tripolyphosphate
  • n 3
  • Approx. 17 g of the salt free from water of crystallization dissolve in 100 g of water at room temperature, approx. 20 g at 60 ° and around 32 g at 100 °; After heating the solution at 100 ° for two hours, hydrolysis produces about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the production of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dewatered by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate), is commercially available, for example, in the form of a 50% strength by weight solution (> 23% P 2 O 5 , 25% K 2 O). The potassium polyphosphates are widely used in the detergent and cleaning agent industry.
  • sodium potassium tripolyphosphates which can also be used in the context of the present invention. These occur, for example, when hydrolyzing sodium trimetaphosphate with KOH: (NaPO 3 ) 3 + 2 KOH ⁇ Na 3 K 2 P 3 O 10 + H 2 O
  • these are exactly like sodium tripolyphosphate, potassium tripolyphosphate or Mixtures of these two can be used; also mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can be used according to the invention.
  • organic cobuilders in the dishwasher detergents according to the invention in particular polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, Polyacetals, dextrins, other organic cobuilders (see below) and phosphonates be used. These classes of substances are described below.
  • Useful organic builders are, for example, those in the form of their sodium salts usable polycarboxylic acids, polycarboxylic acids being understood to mean such carboxylic acids that have more than one acid function.
  • these are citric acid, Adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, Sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such Use for ecological reasons is not objectionable, as well as mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, Succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids have a builder effect typically also the property of an acidifying component and serve thus also for setting a lower pH value of detergents or cleaning agents.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and to name any mixtures of these.
  • Polymeric polycarboxylates are also suitable as builders, for example the alkali metal salts polyacrylic acid or polymethacrylic acid, for example those with a relative molecular mass from 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), using a UV detector. The measurement was made against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship to the polymers investigated. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard. The molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are in particular polyacrylates, which preferably have a molecular weight of Have 2000 to 20,000 g / mol. Because of their superior solubility, this can Group in turn the short-chain polyacrylates, the molar masses from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may be preferred.
  • copolymeric polycarboxylates especially those of acrylic acid Methacrylic acid and acrylic acid or methacrylic acid with maleic acid.
  • copolymeric polycarboxylates especially those of acrylic acid Methacrylic acid and acrylic acid or methacrylic acid with maleic acid.
  • acrylic acid with maleic acid 50 to 90 % By weight of acrylic acid and 50 to 10% by weight of maleic acid.
  • Your molecular weight, based on free acids, is generally from 2000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be either as a powder or as an aqueous solution be used.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers can also allylsulfonic acids, such as for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as a monomer.
  • allylsulfonic acids such as for example, allyloxybenzenesulfonic acid and methallylsulfonic acid
  • biodegradable polymers made from more than two different ones Monomer units, for example those which are salts of acrylic acid as monomers and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers Contain salts of acrylic acid and 2-alkylallylsulfonic acid as well as sugar derivatives.
  • copolymers are those which are preferably acrolein and Have acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursor substances, for example polyaspartic acids or their salts and derivatives.
  • suitable builder substances are polyacetals, which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates obtained by partial hydrolysis of starches can.
  • the hydrolysis can be carried out according to customary methods, for example acid-catalyzed or enzyme-catalyzed Procedures are carried out. They are preferably hydrolysis products with average molecular weights in the range of 400 to 500000 g / mol.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Oxydisuccinates and other derivatives of disuccinates are other suitable cobuilders.
  • This is ethylenediamine-N, N'-disuccinate (EDDS) preferably used in the form of its sodium or magnesium salts.
  • EDDS ethylenediamine-N, N'-disuccinate
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are in formulations containing zeolite and / or silicate at 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which at least 4 carbon atoms and at least one hydroxyl group and at most contain two acid groups.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • aminoalkane phosphonates come preferably ethylenediaminetetramethylenephosphonate (EDTMP), Diethylene triamine pentamethylene phosphonate (DTPMP) as well as their higher homologues in question. They are preferably in the form of the neutral sodium salts, e.g. B.
  • the aminoalkane phosphonates also have a strong ability to bind heavy metals. Accordingly it can be preferred, especially if the agents also contain bleach, Aminoalkanephosphonate, especially DTPMP to use, or mixtures of the to use the named phosphonates.
  • Machine dishwashing detergents according to the invention are nonionic surfactants it is preferred that a part,, of the total surfactant contained in the cleaning agents in contains the rinse aid particles. This is particularly beneficial because this way Particulate dishwashing detergents can be provided in the main wash Develop cleaning performance and the surfactant from the rinse aid particles only in the rinse cycle release.
  • the presence of surfactants in the rinse aid of a machine Dishwashing has a positive effect on the gloss and the reduction of Limescale deposits.
  • the cleaning agent according to the invention contains nonionic surfactants, in particular nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohol with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols containing 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12-14 alcohol with 3 EO and C 12 _ 18 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants either as the sole nonionic surfactant or used in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated Fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular Fatty acid methyl ester.
  • nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (III), in which RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms, R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (IV) in which R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, C 1-4 -alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this rest.
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example Glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example Glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy or N-aryloxy-substituted compounds can, for example, by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst in the desired Polyhydroxy fatty acid amides are transferred.
  • nonionic surfactants in addition to the pure nonionic surfactants, other substances can of course also be used from the group of ionic surfactants, for example anionic or cationic surfactants, in the machine dishwashing detergents according to the invention may be included. You can do this be contained both in the basic detergent and in the rinse aid particles. In particular may contain alkyl sulfates in the rinse aid particles.
  • bleaching agents which can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracid salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • Cleaning agents according to the invention can also contain bleaching agents from the group of organic bleaching agents. Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
  • organic bleaching agents are peroxy acids, examples of which include alkyl peroxy acids and aryl peroxy acids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy-a-naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidanoic acid paprooxyacrylic acid , o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinates, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, Diperocysebacinklad, diperoxybrass
  • Suitable chlorine or bromine releasing materials include, for example heterocyclic N-bromo- and N-chloramides, for example trichloroisocyanuric acid, Tribromo isocyanuric acid, dibromo isocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium.
  • DICA dichloroisocyanuric acid
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydanthoin are also suitable.
  • the bleaches mentioned can also be used to achieve "post-bleaching" in the rinse cycle wholly or partly via the rinse aid particles according to the invention in the inventive machine dishwashing detergent.
  • Bleach activators that support the action of the bleach have already been mentioned above mentioned as a possible ingredient of the rinse aid particles.
  • Known bleach activators are Compounds containing one or more N or O acyl groups, such as substances from the class of anhydrides, esters, imides and acylated imidazoles or oximes.
  • Examples are tetraacetylethylenediamine TAED, tetraacetylmethylene diamine TAMD and tetraacetylhexylenediamine TAHD, but also pentaacetylglucose PAG, 1,5-diacetyl-2,2-dioxo-hexahydro-1,3,5-triazine DADHT and isatoic anhydride ISA.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetyloxy, 2,5-acetiacetyl, ethylene glycol 2,5-dihydrofuran, n-methyl-morpholinium-aceton
  • Bleaching catalysts are incorporated into the rinse aid particles.
  • these fabrics are bleach-enhancing transition metal salts or transition metal complexes such as Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands as well Co, Fe, Cu and Ru amine complexes can be used as bleaching catalysts.
  • Bleach activators from the group of multi-acylated alkylenediamines are preferred, especially tetraacetylethylenediamine (TAED), N-acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenol sulfonates, especially n-nonanoyl or isononanoyloxybenzene sulfonate (n- or iso-NOBS), n-methyl-morpholinium-acetonitrile-methyl sulfate (MMA), preferably in amounts up to 10% by weight, in particular 0.1% by weight to 8% by weight, particularly 2 to 8% by weight and particularly preferably 2 to 6% by weight, based on all the means used.
  • TAED tetraacetylethylenediamine
  • N-acylimides especially N-nonanoylsuccinimide (NOSI)
  • NOSI N-nonanoylsuccinimide
  • Bleach-enhancing transition metal complexes especially with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group consisting of manganese and / or Cobalt salts and / or complexes, particularly preferably the cobalt (ammin) complexes, the Cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or Manganese, the manganese sulfate are in conventional amounts, preferably in an amount up to 5% by weight, in particular from 0.0025% by weight to 1% by weight and particularly preferably from 0.01 wt .-% to 0.25 wt .-%, each based on the total agent used. But in In special cases, more bleach activator can be used.
  • hydrolases such as proteases, esterases, lipases or lipolytic Enzymes, amylases, glycosyl hydrolases and mixtures of the enzymes mentioned. All these hydrolases help remove soiling such as protein, fat or starch Stains on. Oxidoreductases can also be used for bleaching. Bact
  • proteases of the subtilisin type and in particular proteases derived from Bacillus lentus are used.
  • Enzyme mixtures are, for example, from Protease and amylase or protease and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes, but especially protease and / or lipase-containing Mixtures or mixtures with lipolytically active enzymes of particular Interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • To the suitable amylases include in particular alpha-amylases, iso-amylases, pullulanases and pectinases.
  • the enzymes can be adsorbed on carriers or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules can, for example, about 0.1 to 5 wt .-%, preferably 0.5 to about 4.5% by weight.
  • Dyes and fragrances can be added to the automatic dishwashing detergents according to the invention to improve the aesthetic impression of the resulting products and the consumer, in addition to performance, a visually and sensorially "typical and unmistakable" To provide product.
  • Individual as perfume oils or fragrances Fragrance compounds, e.g. synthetic products of the ester, ether, Aldehydes, ketones, alcohols and hydrocarbons can be used. Fragrance compounds of the ester type are e.g.
  • the ethers include, for example, benzyl ethyl ether Aldehydes e.g.
  • the linear alkanals with 8-18 C atoms citral, citronellal, citronellyloxyacetaldehyde, Cyclamenaldehyde, Hydroxycitronellal, Lilial and Bourgeonal
  • ketones e.g. the Jonone, ⁇ -isomethylionon and methylcedryl ketone
  • the alcohols anethole citronellol
  • to the hydrocarbons mainly include the terpenes like limes and pinene.
  • mixtures are preferred different fragrances are used, which together have an appealing fragrance produce.
  • Perfume oils of this type can also contain natural fragrance mixtures such as these are accessible from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, Lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, Galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the fragrances can also be incorporated into the rinse aid particles according to the invention, which leads to a scent impression when opening the machine (see above).
  • dyes In order to improve the aesthetic impression of the agents produced according to the invention, it (or parts thereof) are dyed with suitable dyes.
  • Preferred dyes the selection of which is no problem for the person skilled in the art has a high storage stability and insensitivity to the other ingredients of the agents and to light as well as no pronounced substantivity towards those to be treated with the agents Substrates such as glass, ceramics or plastic dishes so as not to stain them.
  • the cleaning agents according to the invention can protect the dishes or the machine Contain corrosion inhibitors, especially silver protection agents in the area of automatic dishwashing have a special meaning.
  • the known ones can be used State of the art substances.
  • silver protection agents in particular selected from the group of triazoles, benzotriazoles, bisbenzotriazoles, Aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes are used become.
  • Benzotriazole and / or alkylaminotriazole are particularly preferably to be used.
  • active chlorine-containing agents are often found in detergent formulations, which can significantly reduce the corroding of the silver surface.
  • organic and redox-active compounds containing oxygen and nitrogen such as di- and trihydric phenols, e.g. B. hydroquinone, pyrocatechol, hydroxyhydroquinone, Gallic acid, phloroglucin, pyrogallol or derivatives of these classes of compounds.
  • salt-like and complex-like inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts are selected from the group consisting of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammin) complexes, the cobalt (acetate) complexes, the Cobalt (carbonyl) complexes, the chlorides of cobalt or manganese and manganese sulfate.
  • Zinc compounds can also be used to prevent corrosion on the wash ware become.
  • composition of the rinse aid particles according to the invention is designed such that that they are not in the main wash cycle (and also in optional pre-wash cycles) or only in a subordinate one Dimensions disintegrate. This ensures that the active substances largely are only released in the rinse aid cycle and develop their effect here.
  • assembly is a physical one Packaging required so that the rinse aid particles when changing the water in the machine are not drained and are therefore no longer available for the rinse aid.
  • Domestic dishwashers contain in front of the drain pump, which the Water or the cleaning solution after the individual cleaning cycles from the machine pumps, a strainer that prevents the pump from becoming clogged with dirt should.
  • the rinse aid particles according to the invention are now regarding their size and shape preferably designed so that they are the sieve insert of the dishwasher even after the cleaning cycle, i.e. after exercise due to movement Machine and the cleaning solution, do not happen. This ensures that there are rinse aid particles in the dishwasher in the rinse aid, the active substance (s) release and bring the desired rinse aid effect.
  • the particulate rinse aid preferably has particle sizes between 2 and 30 mm between 2.5 and 25 mm and in particular between 3 and 20 mm.
  • the rinse aid particles become common powdered or granular machine dishwashing agents added.
  • the rinse aid particles become common with the ingredients of machine dishwashing detergents to form a combination product Dishwasher detergent and rinse aid processed.
  • Such products are preferably so-called Shaped bodies, also referred to as tablets in the prior art.
  • the combination products can be produced in a manner known per se.
  • the moldings and the rinse aid particles are produced separately and then connected to each other, the moldings can already be used for the particles have prefabricated recesses.
  • the connection can, for example, by simply insert into the recess or glue the two fixed components.
  • the rinse aid particles or the premix for this in a suitable tabletting device with the premix for the dishwashing liquid Molded bodies processed.
  • the rinse aid particles with the above protruding sizes from the matrix of the other particulate ingredients can also have sizes in the range mentioned so that overall a cleaning agent is formulated that consists of large cleaning agent and rinse aid particles.
  • Rinse aid particles are colored, for example a red, blue, green or yellow Color, it is for the appearance of the product, i.e. of the entire detergent an advantage if the rinse aid particles are visibly larger than the matrix the particles of the other ingredients in the detergent.
  • inventive particulate machine dishwashing detergent preferred (without taking into account the Rinse aid particles) particle sizes between 200 and 3000 pm, preferably between 300 and 2500 pm and in particular between 400 and 2000 microns.
  • the optical appeal of such compositions can, in addition to the coloring of the rinse aid particles also by contrasting coloring of the powder matrix or by the shape of the Rinse aid particles are increased. Because in the manufacture of rinse aid particles on technical uncomplicated procedures can be resorted to, it is easily possible to use these in to offer a wide variety of shapes. In addition to the cylindrical particle shape, for example approximately spherical or cube-shaped rinse aid particles can be produced and used. Other geometric shapes can also be realized. Special product designs can contain star-shaped rinse aid particles, for example. Also Disks or shapes that form the base of plants and animal bodies, for example trees, Show flower, blossom, sheep, fish, etc. can be easily produced. Interesting optical Incentives can also be created in this way by having the rinse aid particles in the form of a stylized glass to visually add the rinse aid effect to the product underline. There are no limits to your imagination.
  • the cleaning agents according to the invention are formulated as a powder mixture, especially with very different sizes of rinse aid particles and detergent matrix - on the one hand, partial separation occurs when the package is shaken, on the other hand, the dosage can differ in two successive cleaning cycles be because the consumer does not always necessarily have the same amount of detergent and Rinse aid particles dosed. Should be desired, technically always the same amount per To use the cleaning cycle, this can be done using the packaging of the agents according to the invention can be realized in bags made of water-soluble film. Also particulate automatic dishwashing detergents, in which a dosing unit consists of a bag water-soluble film is packaged, are the subject of the present invention.
  • the consumer only has one bag, for example a detergent powder and contains several optically prominent rinse aid particles in the dispenser to put in his dishwasher.
  • This embodiment of the present invention is therefore a visually appealing alternative to conventional detergent tablets.
  • the cleaning agents according to the invention can be produced in a manner known per se.
  • a process for producing powdered dishwasher detergents with a rinse aid effect, in which a powdered dishwasher detergent known per se with inventive Rinse aid particles are mixed is therefore another subject of present invention.
  • the combination of agent and sieve insert according to the invention allows the formulation of agents in which the rinse aid particles also have smaller particle sizes exhibit.
  • Kits-of-parts according to the invention in which the particle sizes of the machine Dishwashing detergent (taking into account the rinse aid particles) in the range from 400 to 2500 ⁇ m, preferably from 500 to 1600 ⁇ m and in particular from 600 to 1200 ⁇ m, are preferred.
  • kits-of-parts are preferred in which the mesh size or hole size of the sieve insert 1 is up to 4 mm and the rinse aid particles are larger than this mesh size or hole size of the sieve insert.
  • the kit of parts according to the invention is not restricted to the specific shape of the sieve insert, where it replaces or covers the insert in the machine. It it is also possible and preferred according to the invention to include a sieve insert in the kit of parts, which has the shape of a basket, which is in a known manner in the dishwasher - for example on the cutlery basket - can be hung. In this way A sieve insert designed in this way replaces the dosing chamber, i.e. the consumer doses the dishwasher detergent according to the invention directly into this sieve insert, which acts in the cleaning and rinse cycle in the manner described above.
  • the carrier material was incorporated into the melted rinse aid until the resulting compound had a granular structure.
  • the additive was then incorporated and the mixture was pressed into compacts using a hydraulic press.
  • the composition of the mixture (% by weight, based on the mixture) is given in the table below: Polypore 1 E200 20th - Water glass - 36 Poly Tergent SLF-18B-45 2 47 37 PEG 35000 33 27
  • the mass of the compacts can be between 0.5 g and 2 g.
  • the pressing force is so chosen that the compacts in the 65 ° C program of a dishwasher at the end of the rinse cycle have crumbled.
  • the compacts were placed in a cylindrical trough in the ordinary MGSM cleaning tabs used.
  • the tablet according to the invention has a sufficient amount of rinse aid transported in the rinse aid was carried out in a 65 ° C rinsing test with the inventive Tablet measured the surface tension of the rinse aid. It was receive a value of 28 mN / m, i.e. the maximum possible with the surfactant used Lowering of surface tension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Klarspülerpartikel zur Erzielung eines Klarspüleffektes in Haushaltsgeschirrspülmaschinen enthalten a) 5 bis 95 Gew.-% eines oder mehrerer Aktivstoffe, b) 95 bis 5 Gew.-% eines oder mehrerer Trägermaterialien und/oder Bindemittel, sowie c) 0 bis 10 Gew.-% weiterer Wirk- und Hilfsstoffe, wobei die die Komponenten a, b und ggf. c derart verdichtet sind, dass die Aktivstoffe der Komponente a und ggf. c zu einem vorbestimmten Zeitpunkt oder während eines vorgegebenen Zeitraums im Reinigungsvorgang freigesetzt werden. Die Teilchenförmigen Klarspüler eignen sich zur Inkorporation in pulverförmige Geschirrspülmittel.

Description

Die vorliegende Erfindung betrifft teilchenförmige Klarspüler für das maschinelle Geschirrspülen, enthaltend95 bis 5 Gew.-% eines oder mehrerer Trägermaterialien und/oder Bindemittel, sowie, 5 bis 95 Gew.-% eines oder mehrerer Aktivstoffe, sowie 0 bis 10 Gew.-% weiterer Wirk- und Hilfsstoffe, ein Verfahren zu dessen Herstellung und teilchenförmige maschinelle Geschirrspülmittel (MGSM), die die Klarspülerpartikel enthalten.
Das maschinelle Reinigen von Geschirr in Haushaltsgeschirrspülmaschinen umfaßt üblicherweise einen Vorspülgang, einen Hauptspülgang und einen Klarspülgang, die von Zwischenspülgängen unterbrochen werden. Bei den meisten Maschinen ist der Vorspülgang für stark verschmutzes Geschirr zuschaltbar, wird aber nur in Ausnahmefällen vom Verbraucher gewählt, so dass in den meisten Maschinen ein Hauptspülgang, ein Zwischenspülgang mit reinem Wasser und ein Klarspülgang durchgeführt werden. Die Temperatur des Hauptspülgangs variiert dabei je nach Maschinentyp und Programmstufenwahl zwischen 40 und 65°C. Im Klarspülgang werden aus einem Dosiertank in der Maschine Klarspülmittel zugegeben, die üblicherweise als Hauptbestandteil nichtionische Tenside enthalten. Solche Klarspüler liegen in flüssiger Form vor und sind im Stand der Technik breit beschrieben. Ihre Aufgabe besteht vornehmlich darin, Kalkflecken und Beläge auf dem gereinigten Geschirr zu verhindern. Neben Wasser und schwachschäumenden Niotensiden enthalten diese Klarspüler oft auch Hydrotope, pH-Stellmittel wie Citronensäure oder belagsinhibierende Polymere.
Der Vorratstank in der Geschirrspülmaschine muß in regelmäßigen Abständen mit Klarspüler aufgefüllt werden, wobei eine Füllung je nach Maschinentyp für 10 bis 50 Spülgänge ausreicht. Wird das Auffüllen des Tanks vergessen, so werden insbesondere Gläser durch Kalkflecken und Beläge unansehnlich. Im Stand der Technik existieren daher einige Lösungsvorschläge, einen Klarspüler in das Reinigungsmittel für das maschinelle Geschirrspülen zu integrieren. Diese Lösungsvorschläge sind an die Angebotsform des kompakten Formkörpers gebunden.
So beschreibt die europäische Patentanmeldung EP-A-0 851 024 (Unilever) zweischichtige Reinigungsmitteltabletten, deren erste Schicht Peroxy-Bleichmittel, Builder und Enzym enthält, während die zweite Schicht Acidifizierungsmittel und ein kontinuierliches Medium mit einem Schmelzpunkt zwischen 55 und 70°C sowie Belagsinhibitoren enthält. Durch das hochschmelzende kontinuierliche Medium sollen die Säure(n) und Belagsinhibitor(en) verzögert freigesetzt werden und einen Klarspüleffekt bewirken. Pulverförmige maschinelle Geschirrspülmittel oder tensidhaltige Klarspülsysteme werden in dieser Schrift nicht erwähnt.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, die Vorteile der kontrollierten Freisetzung von Inhaltsstoffen, insbesondere einen Klarspüleffekt, sowohl für pulverförmige Reinigungsmittel als auch für Granulate und Reiniger-Formkörper nutzbar zu machen. Hierbei sollte auf aufwendige Verfahrensschritte wie Beschichtung oder Mehrfachcoating verzichtet werden können. Vielmehr sollte eine Angebotsform bereitgestellt werden, die sowohl separat als vom Verbraucher zu dosierender Klarspüler in fester Form als auch als Zumischkomponente zu pulverförmigen maschinellen Geschirrspülmitteln einsetzbar ist.
Es wurde nun gefunden, dass sich Gemische aus Trägermaterialien, Aktivstoffen und optional weiteren Inhaltsstoffen, wie Enzymen, Farb- und Duftstoffen usw. sowie geeigneten Trägermaterialien und/oder Bindemitteln derart verdichtet werden können, dass die Aktivstoffe sowie die weiteren Inhaltsstoffe zu einem vorbestimmten Zeitpunkt oder während eines vorbestimmten Zeitraumes freigesetzt werden.
Gegenstand der vorliegenden Erfindung ist ein teilchenförmiger Klarspüler für das maschinelle Geschirrspülen, der
  • a) 5 bis 95 Gew.-% eines oder mehrerer Aktivstoffe,
  • b) 95 bis 5 Gew.-% eines oder mehrerer Trägermaterialien und/oder Bindemittel, sowie
  • c) 0 bis 10 Gew.-% weiterer Wirk- und Hilfsstoffe enthält,
  • dadurch gekennzeichnet, dass
    die Komponenten a und b und ggf. c derart verdichtet sind, dass die Aktivstoffe der Komponente a und ggf. die weiteren Inhaltsstoffe der Komponente c zu einem vorbestimmten Zeitpunkt oder während eines vorbestimmten Zeitraumes im Reinigungsprozeß freigesetzt werden.
    Die verzögerte Freisetzung der Aktivstoffe und ggf. weiterer Inhaltsstoffe zu einem vorbestimmten Zeitpunkt oder während eines vorbestimmten Zeitraumes im Reinigungsprozeß erfolgt im teilchenförmigen Klarspüler gemäß der Erfindung durch das Einstellen der Festigkeit der Formkörper und in Abhängigkeit von der Menge und der Art der jeweiligen Komponenten, insbesondere des Bindemittels.
    Ein beim maschinellen Geschirrspülen üblicher Verfahrensablauf ist, dass nach der eigentlichen Reinigung das Geschirr gespült und abschließend ein sog. Klarspülgang durchgeführt wird. Die erfindungsgemäßen Partikel lassen sich derart verdichten, dass die verdichteten Partikel im Hauptspülgang weitgehend unverändert bleiben bzw. nur aufweichen, quellen oder nur oberflächlich erodieren und im nachfolgenden Klarspülgang zerfallen und die Aktivsubstanzen, wie den Klarspüler und ggf. weitere Substanzen freisetzen. Das hier beschriebene Verfahren der verzögerten Freisetzung kann auch als "retardierter Zerfall" bezeichnet werden.
    Die in die erfindungsgemäßen Klarspülerpartikel einzuarbeitenden Aktivstoffe können bei der Verarbeitungstemperatur (d.h. bei der Temperatur, bei der die Partikel hergestellt werden) sowohl in fester als auch in flüssiger Form vorliegen.
    Die in den Klarspülerpartikeln enthaltenen Aktivstoffe erfüllen bestimmte Aufgaben. Durch die Trennung bestimmter Substanzen oder durch die zeitlich beschleunigte oder verzögerte Freisetzung zusätzlicher Substanzen kann die Reinigungsleistung verbessert werden. Aktivstoffe, die bevorzugt in die Klarspülerpartikel eingearbeitet werden, sind daher solche Inhaltsstoffe von Wasch- und Reinigungsmitteln, die entscheidend am Wasch- bzw. Reinigungsprozeß beteiligt sind.
    In bevorzugten Klarspülerpartikeln sind daher als Aktivstoffe ein oder mehrere Stoffe aus den Gruppen der Tenside, Bleichmittel, Bleichaktivatoren, Korrosionsinhibitoren, Belagsinhibitoren und/oder Cobuilder in Mengen von 5 bis 95 Gew.-%, vorzugsweise von 10 bis 70 Gew.-% und insbesondere von 10 bis 60 Gew.-%, jeweils bezogen auf das Partikelgewicht, enthalten.
    In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist/sind der bzw. die Aktivstoff(e) ausgewählt aus der Gruppe der nichtionischen Tenside, insbesondere der alkoxylierten Alkohole. Diese Substanzen werden weiter unten ausführlich beschrieben.
    Eine weitere Klasse von Aktivsubstanzen, die sich mit besonderem Vorteil in die erfindungsgemäßen Klarspülerpartikel einarbeiten lassen, sind Bleichmittel. Auch sind Reinigungsmittel für das maschinelle Geschirrspülen so herstellbar, dass im Klarspülgang zusätzliches Bleichmittel freigesetzt wird und so schwierige Flecken, beispielsweise Teeflecken wirkungsvoller entfernt werden.
    In bevorzugten teilchenförmigen Klarspülerpartikeln ist/sind daher der bzw. die Aktivstoff(e) ausgewählt aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel. Auch diese Substanzen werden weiter unten ausführlich beschrieben.
    Eine weitere Klasse von Verbindungen, die bevorzugt als Aktivsubstanzen in den erfindungsgemäßen Klarspülerpartikeln eingesetzt werden können, sind die Bleichaktivatoren. Auch die wichtigen Vertreter aus dieser Stoffgruppe werden weiter unten beschrieben. Im Rahmen der vorliegenden Erfindung bevorzugte Klarspülerpartikel enthalten als Aktivsubstanz Bleichaktivatoren, insbesondere aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), der N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acylierten Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA).
    Als Aktivsubstanzen lassen sich auch Duftstoffe in die erfindungsgemäßen Klarspülerpartikel einarbeiten. Sämtliche weiter unten ausführlich beschriebenen Duftstoffe können dabei als Aktivsubstanz verwendet werden. Bei Einarbeitung von Duftstoffen in die Klarspülerpartikel resultieren Reinigungsmittel, die das gesamte oder einen Teil des Parfüms zeitverzögert freisetzen. Auf diese Weise sind erfindungsgemäß beispielsweise Reinigungsmittel für das maschinelle Geschirrspülen herstellbar, bei denen der Verbraucher auch nach beendigter Geschirreinigung beim Öffnen der Maschine die Parfümnote erlebt. Auf diese Weise kann der unerwünschte "Alkaligeruch", der vielen maschinellen Geschirrspülmitteln anhaftet, beseitigt werden.
    Auch Korrosionsinhibitoren lassen sich als Aktivstoff in die Klarspülerpartikel einbringen, wobei auf die dem Fachmann geläufigen Substanzen zurückgegriffen werden kann. Als Belagsinhibitor hat sich beispielsweise eine Kombination aus Enzym (z.B. Lipase) und Kalkseifendispergiermittel bewährt.
    Die Trägermaterialien und/oder Bindemittel der Komponente b) können aus allen aus dem Stand der Technik bekannten Materialien ausgewählt werden, die zur Herstellung von verdichteten Partikeln geeignet sind. Für den Fachmann ist es offensichtlich, daß sie gleichzeitig als Trägerstoff für die Aktivstoffe und auch als Bindemittel in den erfindungsgemäßen Partikeln wirken können.
    Als Trägermaterialien b) kommen sämtliche bei Raumtemperatur festen Substanzen in Frage, die eine ausreichende Absorptionskapazität für den/die Aktivstoff(e) aufweisen. Man kann dabei Stoffe auch auswählen, die eine zusätzliche Wirkung entfalten, wobei sich Gerüststoffe besonders anbieten. Beispielsweise sind als Trägermaterialien Stoffe aus der Gruppe der festen Wasch- und Reinigungsmittel-Inhaltsstoffe einsetzbar, vorzugsweise der Zeolithe, Bentonite, Silicate, Carbonate, Hydrogencarbonate, Sulfate, Phosphate, sowie synthetischen Polymeren, wie z.B. quervernetzte Poycarboxylate, Polyvinylalkohole, und bei Raumtemperatur festen organischen Polycarbonsäuren. Auch natürliche oder halbsynthetische Polymere wie Stärkederivate und Cellulosederivate sind einsetzbar
    Die genannten bevorzugten Trägermaterialien werden weiter unten ausführlich beschrieben.
    Als Bindemittel kommen eine Vielzahl von aus der Pharmazie bekannten Bindemitteln für Tabletten in Frage. Sie unterscheiden sich durch ihre Hydrophilie/Hydrophobie, ihre Löslichkeit und daraus resultierend durch ihre Bindewirkung unter dem Einfluß der Spülflotte. Insbesondere können Stoffe aus der Gruppe der Polyalkylenglycole und Polyoxyalkylenglycole unterschiedlichen Molekulargewichtes eingesetzt werden. Besonders bewährt haben sich Polyethylenglycole höheren Molekulargewichtes, die bei Raumtemperatur fest sind. Daneben sind auch andere Stoffe geeignet, wie z.B. Wachse, Paraffine, Fettsäuresalze (Seifen), insbesondere Stearate; Fettsäuren und Fettalkohole, Fettsäureester, Cellulosederivate, Hydrokolloide, Mono-, Oligo-, oder Polysaccharide und Polymere Verbindungen (z.B. Polyacrylate) und Harze.
    Als weitere Inhaltsstoffe können die erfindungsgemäßen Klarspülpartikel weitere Wirk- und Hilfsstoffe enthalten, wie z. B. Enzyme, Farb- und Duftstoffen usw.
    Die erfindungsgemäßen teilchenförmigen Klarspüler lassen sich auf verschiedene Weise herstellen.
    Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung telchenförmiger Klarspüler, enthaltend
  • a) 5 bis 95 Gew.-% eines oder mehrerer Aktivstoffe,
  • b) 95 bis 5 Gew.-% eines oder mehrerer Trägermaterialien und/oder Bindemittel, sowie
  • d) 0 bis 10 Gew.-% weiterer Wirk- und Hilfsstoffe,
  • worin ein Gemisch aus den Komponenten a und b und ggf. c hergestellt wird und das Gemisch derart verdichtet wird, dass die Aktivstoffe der Komponente a und ggf. die weiteren Inhaltsstoffe der Komponente c zu einem vorbestimmten Zeitpunkt oder während eines vorbestimmten Zeitraumes im Reinigungsgang freigesetzt werden.
    Bezüglich der Inhaltsstoffe, die im erfindungsgemäßen Verfahren eingesetzt und zu den erfindungsgemäßen Klarspülerpartikeln verarbeitet werden, gilt analog das weiter oben Ausgeführte.
    Auch hinsichtlich der Aktivsubstanzen gilt das weiter oben Gesagte. Als Aktivstoffe sind vorzugsweise einer oder mehrere Stoffe aus den Gruppen der Tenside einschließlich Klarspültenside, Bleichmittel, Bleichaktivator, Korrosionsinhibitoren, Belagsinhibitoren und/oder Cobuilder enthalten.
    Zur Durchführung des Verfahrens wird vorzugsweise zunächst eine Mischung, ggf. eine Schmelzmischung der Inhaltsstoffe einschließlich der ggf. vorhandenen weiteren Wirk- und Hilfsstoffe hergestellt. Für den Fall, dass die Aktivstoffe der Komponente a) bzw. Wirk- und h-haltsstoffe in flüssiger Form vorliegen, können diese zunächst auf geeignete Trägermaterialien aufgebracht und falls erforderlich mit Bindemittel vermischt werden. Anschließend wird die erhaltene Mischung erfindungsgemäß verdichtet. Das Verdichten kann in an sich bekannter Weise erfolgen. In einer bevorzugten Ausführungsform wird das Verdichten in einer Tablettenpresse oder in einem Extruder durchgeführt. Das Verdichten in einer Tablettenpresse ist besonders bevorzugt, es können alle gängigen Pressentypen Verwendung finden, z.B. hydraulische Pressen, Exzenterpressen oder Rundläuferpressen. Ein weiteres mögliches Verdichtungsverfahren stellt die Verarbeitung in Walzenpressen dar.
    In einer weiteren Ausgestaltung der vorliegenden Erfindung werden die Aktivstoffe zunächst in an sich bekannter Weise auf einen Trägerstoff aufgebracht und anschließend, ggf. in Gegenwart von weitere Komponenten und/oder Bindemitteln verdichtet. Das Aufbringen der Aktivstoffe auf das Trägermaterial kann in sämtlichen üblichen Mischvorrichtungen durchgeführt werden.
    Die erfindungsgemäßen Klarspülerpartikel können dem Verbraucher direkt an die Hand gegeben werden, so dass er sie zusätzlich bedarfsgerecht dem Reinigungsmittel zudosiert. Aufgrund dieses zusätzlichen Dosierschritts würden aber außer der festen Anbietungsform und der Zugabe in das gleiche Dosierfach die Vorteile gegenüber flüssigen Klarspülmitteln minimiert. Bevorzugt ist es deshalb, die erfindungsgemäßen Klarspülerpartikel teilchenförmigen mit maschinellen Geschirrspülmitteln zu kombinieren.
    Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch ein teilchenförmiges maschinelles Geschirrspülmittel, enthaltend Gerüststoffe sowie optional weitere Inhaltsstoffe aus den Gruppen der Tenside, Enzyme, Bleichmittel, Bleichaktivatoren, Korrosionsinhibitoren, Polymere, Farb- und Duftstoffe, sowie einen erfindungsgemäßen teilchenförmigen Klarspüler in Mengen von 0,5 bis 30 Gew.-%, vorzugsweise von 1 bis 25 Gew.-% und insbesondere von 2 bis 15 Gew.-%, jeweils bezogen auf gesamtes Mittel.
    Die Inhaltsstoffe der maschinellen Geschirrspülmittel werden nachfolgend beschrieben. Zum Teil können diese auch als Aktivsubstanzen oder Trägermaterialien in den erfindungsgemäßen Klarspülerpartikeln enthalten sein.
    Die wichtigsten Inhaltsstoffe von maschinellen Geschirrspülmitteln sind Gerüststoffe. In den erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder die Phosphate. Die nachstehend genannten Gerüststoffe sind allesamt als Trägermaterialien für die erfindungsgemäßen Klarspülerpartikel geeignet, wie bereits weiter oben ausgeführt wurde.
    Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 . H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5 . yH2O bevorzugt.
    Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
    Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O . (1-n)K2O . Al2O3 . (2 - 2,5)SiO2 . (3,5 - 5,5) H2O beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 um (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
    Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
    Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
    Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
    Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
    Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
    Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
    Durch Kondensation des NaH2PO4 bzw. des KH2PO4entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
    Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche MetallVerbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert: (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
    Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
    Als organische Cobuilder können in den erfindungsgemäßen maschinellen Geschirrspülmitteln insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
    Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
    Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
    Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
    Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
    Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
    Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
    Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
    Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
    Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
    Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
    Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen, beispielsweise Polyasparaginsäuren bzw. deren Salze und Derivate.
    Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
    Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
    Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
    Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
    Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
    Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
    Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
    Neben den Gerüststoffen sind insbesondere Stoffe aus den Gruppen der Tenside, der Bleichmittel, der Bleichaktivatoren, der Enzyme, der Polymere sowie der Farb- und Duftstoffe wichtige Inhaltsstoffe von Reinigungsmitteln. Wichtige Vertreter aus den genannten Substanzklassen werden nachstehend beschrieben.
    Als Tenside werden in maschinellen Geschirrspülmitteln üblicherweise lediglich schwachschäumende nichtionische Tenside eingesetzt. Vertreter aus den Gruppen der anionischen, kationischen oder amphoteren Tenside haben dagegen eine geringere Bedeutung, sind aber nicht ausgeschlossen. Mit besonderem Vorzug enthalten die erfindungsgemäßen maschinellen Geschirrspülmittel nichtionische Tenside, wobei es wiederum bevorzugt ist, dass ein Teil, , des insgesamt in den Reinigungsmitteln enthaltenen Tensids in den Klarspülerpartikeln enthalten ist. Dies ist besonders von Vorteil, da auf diese Weise teilchenförmige Geschirrspülmittel bereitgestellt werden können, die im Hauptspülgang ihre Reinigungsleistung entfalten und das Tensid aus den Klarspülerpartikeln erst im Klarspülgang freisetzen. Die Anwesenheit von Tensiden im Klarspülgang eines maschinellen Geschirrspülverfahrens wirkt sich positiv auf den Glanz und die Verringerung von Kalkablagerungen aus.
    In besonders bevorzugten Ausführungsformen der vorliegenden Erfindung enthält das erfindungsgemäße Reinigungsmittel nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12_18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
    Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
    Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
    Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
    Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (III),
    Figure 00160001
    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
    Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (IV),
    Figure 00170001
    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
    [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können beispielsweise durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
    Neben den reinen nichtionischen Tensiden können selbstverständlich auch andere Stoffe aus der Gruppe der ionischen Tenside, beispielsweise der Anion- oder Kationtenside, in den erfindungsgemäßen maschinellen Geschirrspülmitteln enthalten sein. Dabei können diese sowohl in dem Basis-Reinigungsmittel als auch in den Klarspülpartikeln enthalten sein. Insbesondere können in den Klarspülpartikeln Alkylsulfate enthalten sein.
    Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Erfindungsgemäße Reinigungsmittel können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-a-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
    Als Bleichmittel in den erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet. Auch die genannten Bleichmittel können zur Erzielung einer "Nachbleiche" im Klarspülgang ganz oder teilweise über die erfindungsgemäßen Klarspülerpartikel in die erfindungsgemäßen maschinellen Geschirrspülmittel eingebracht werden.
    Bleichaktivatoren, die die Wirkung der Bleichmittel unterstützen, wurden bereits weiter oben als möglicher Inhaltsstoff der Klarspülerpartikel erwähnt. Bekannte Bleichaktivatoren sind Verbindungen, die eine oder mehrere N- bzw. O-Acylgruppen enthalten, wie Substanzen aus der Klasse der Anhydride, der Ester, der Imide und der acylierten Imidazole oder Oxime. Beispiele sind Tetraacetylethylendiamin TAED, Tetraacetylmethylendiamin TAMD und Tetraacetylhexylendiamin TAHD, aber auch Pentaacetylglucose PAG, 1,5-Diacetyl-2,2-dioxo-hexahydro-1,3,5-triazin DADHT und Isatosäureanhydrid ISA.
    Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfructose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.
    Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Klarspülerpartikel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
    Bevorzugt werden Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-% bezogen auf das gesamte Mittel, eingesetzt.
    Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.
    Als Enzyme kommen in den erfindungsgemäßen Reinigungsmitteln insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verfleckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipasehaltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen.
    Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.
    Farb- und Duftstoffe können den erfindungsgemäßen maschinellen Geschirrspülmitteln zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-ÖI. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
    Die Dufstoffe können auch in die erfindungsgemäßen Klarspülerpartikel eingearbeitet werden, was zu einem Dufteindruck beim Öffnen der Maschine (siehe oben) führt.
    Um den ästhetischen Eindruck der erfindungsgemäß hergestellten Mittel zu verbessern, kann es (oder Teile davon) mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den Mitteln zu behandelnden Substraten wie Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.
    Die erfindungsgemäßen Reinigungsmittel können zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
    Die erfindungsgemäßen Klarspülerpartikel sind von ihrer Zusammensetzung her so gestaltet, dass sie im Hauptspülgang (und auch in optionalen Vorspülgängen) nicht bzw. nur in untergeordnetem Maße zerfallen. Hierdurch wird erreicht, dass die Aktivsubstanzen weitgehend erst im Klarspülgang freigesetzt werden und hier ihre Wirkung entfalten. Neben dieser chemischen Konfektionierung ist je nach Typ der Geschirrspülmaschine eine physikalische Konfektionierung erforderlich, damit die Klarspülerpartikel beim Wasserwechsel in der Maschine nicht abgepumpt werden und damit dem Klarspülgang nicht mehr zur Verfügung stehen. Haushaltsübliche Geschirrspülmaschinen enthalten vor der Laugenpumpe, welche das Wasser bzw. die Reinigungslösung nach den einzelnen Reinigungsgängen aus der Maschine pumpt, einen Siebeinsatz, der ein Verstopfen der Pumpe durch Schmutzreste verhindern soll. Wird vom Verbraucher stark verunreinigtes Geschirr gespült, so muß dieser Siebeinsatz regelmäßig gereinigt werden, was aufgrund der leichten Zugänglichkeit und Herausnehmbarkeit problemlos möglich ist. Die erfindungsgemäßen Klarspülerpartikel sind nun hinsichtlich ihrer Größe und Form vorzugsweise so gestaltet, dass sie den Siebeinsatz der Geschirrspülmaschine auch nach dem Reinigungsgang, d.h. nach Belastung durch Bewegung in der Maschine und der Reinigungslösung, nicht passieren. Auf diese Weise wird sichergestellt, dass sich im Klarspülgang Klarspülerpartikel in der Geschirrspülmaschine befinden, die Aktivsubstanz(en) freisetzen und den gewünschten Klarspüleffekt bringen. Im Rahmen der vorliegenden Erfindung bevorzugte teilchenförmige Klarspülerpartikel sind dadurch gekennzeichnet, dass der teilchenförmige Klarspüler Teilchengrößen zwischen 2 und 30 mm, vorzugsweise zwischen 2,5 und 25 mm und insbesondere zwischen 3 und 20 mm aufweist.
    In einer Ausführungsform der vorliegenden Erfindung werden die Klarspülerpartikel üblichen pulverförmigen oder granulären Maschinengeschirrspülmitteln zugemischt.
    In einer weiterern bevorzugten Ausführungsform werden die Klarspülerpartikel gemeinsam mit den Inhaltsstoffen der Maschinengeschirrspülmitteln zu einem Kombinationsprodukt aus Geschirrspülmittel und Klarspüler verarbeitet. Derartige Produkte stellen vorzugsweise sogenannte Formkörper, in Stand der Technik auch als Tabletten bezeichnet werden, dar.
    Die Herstellung der Kombinationsprodukte kann in an sich bekannter Weise erfolgen. In einer möglichen Ausführungsform werden die Formkörper und die Klarspülerpartikel separat hergestellt und anschließend miteinander verbunden, dabei können die Formkörper bereits für die Partikel vorgefertige Aussparungen aufweisen. Das Verbinden kann beispielsweise durch einfaches Einlegen in die Aussparung oder Verkleben der beiden festen Komponenten erfolgen.
    In einer weiteren Ausführungsform werden die Klarspülerpartikel oder das Vorgemisch dafür in einer geeigneten Tablettiervorrichtung mit dem Vorgemisch für das Geschirrspülmittel zu Formkörpern verarbeitet.
    In den erfindungsgemäßen Geschirrspülmitteln können die Klarspülerpartikel mit den vorstehend genannten Größen aus der Matrix der anderen teilchenförmigen Inhaltsstoffe herausragen, die anderen Partikel können aber ebenfalls Größen aufweisen, die im genannten Bereich liegen, so dass insgesamt ein Reinigungsmittel formuliert wird, das aus großen Reinigungsmittel- und Klarspülerpartikeln besteht. Insbesondere, wenn die erfindungsgemäßen Klarspülerpartikel eingefärbt werden, beispielsweise also eine rote, blaue, grüne oder gelbe Farbe aufweisen, ist es für das Erscheinungsbild des Produkts, d.h. des gesamten Reinigungsmittels von Vorteil, wenn die Klarspülerpartikel sichtbar größer sind als die Matrix aus den Teilchen der übrigen Inhaltsstoffe des Reinigungsmittels. Hier sind erfindungsgemäße teilchenförmige maschinelle Geschirrspülmittel bevorzugt, die (ohne Berücksichtigung der Klarspülerpartikel) Teilchengrößen zwischen 200 und 3000 pm, vorzugsweise zwischen 300 und 2500 pm und insbesondere zwischen 400 und 2000 µm aufweisen.
    Der optische Reiz solcher Zusammensetzungen kann außer der Einfärbung der Klarspülerpartikel auch durch kontrastierende Einfärbung der Pulvermatrix oder durch die Form der Klarspülerpartikel erhöht werden. Da bei der Herstellung der Klarspülerpartikel auf technisch unkomplizierte Verfahren zurückgegriffen werden kann, ist es problemlos möglich, diese in den unterschiedlichsten Formen anzubieten. Neben der zylindrischen Partikelform, sind beispielsweise annähernd kugelförmige oder würfelförmige Klarspülpartikel herstell- und einsetzbar. Auch andere geometrische Formen lassen sich realisieren. Spezielle Produktausgestaltungen können beispielsweise sternchenförmige Klarspülerpartikel enthalten. Auch Scheiben bzw. Formen, die als Grundfläche Pflanzen und Tierkörper, beispielsweise Baum, Blume, Blüte, Schaf, Fisch usw. zeigen, sind problemlos herstellbar. Interessante optische Anreize lassen sich auf diese Weise auch dadurch schaffen, dass man die Klarspülerpartikel in Form eines stilisierten Glases herstellt, um den Klarspüleffekt auch im Produkt optisch zu unterstreichen. Der Phantasie sind hierbei keine Grenzen gesetzt.
    Werden die erfindungsgemäßen Reinigungsmittel als Pulvermischung formuliert, so kann - insbesondere bei stark unterschiedlichen Größen von Klarspülerpartikeln und Reinigungsmittel-Matrix - einerseits bei Rüttelbelastung des Pakets eine teilweise Entmischung eintreten, andererseits kann die Dosierung in zwei aufeinanderfolgenden Reinigungsgängen unterschiedlich sein, da der Verbraucher nicht immer zwingend gleich viel Reinigungsmittel und Klarspülerpartikel dosiert. Sollte gewünscht sein, technisch eine immer gleiche Menge pro Reinigungsgang einzusetzen, kann dies über die dem Fachmann geläufige Verpackung der erfindungsgemäßen Mittel in Beuteln aus wasserlöslicher Folie realisiert werden. Auch teilchenförmige maschinelle Geschirrspülmittel, bei denen eine Dosiereinheit in einen Beutel aus wasserlöslicher Folie verpackt vorliegt, sind Gegenstand der vorliegenden Erfindung.
    Hierdurch hat der Verbraucher nur noch einen Beutel, der beispielsweise ein Reinigungsmittel-Pulver und mehrere optisch hervortretende Klarspülerpartikel enthält, in das Dosierfach seiner Geschirrspülmaschine einzulegen. Diese Ausführungsform der vorliegenden Erfindung ist daher eine optisch reizvolle Alternative zu herkömmlichen Reinigungsmitteltabletten.
    Die erfindungsgemäßen Reinigungsmittel lassen sich in an sich bekannter Weise herstellen. Ein Verfahren zur Herstellung pulverförmiger maschineller Geschirrspülmittel mit Klarspüleffekt, bei dem ein an sich bekanntes pulverförmiges maschinelles Geschirrspülmittel mit erfindungsgemäßen Klarspülerpartikeln vermischt wird, ist daher ein weiterer Gegenstand der vorliegenden Erfindung.
    Die weiter oben beschriebene gewünschte Zurückhaltung der Klarspülerpartikel in der Maschine auch bei Wasserwechseln läßt sich außer der oben genannten Vergrößerung der Klarspülerpartikel auch durch eine Verkleinerung der Löcher im Siebeinsatz realisieren. Auf diese Weise kann man maschinelle Geschirrspülmittel formulieren, die eine einheitliche mittlere Teilchengröße aufweisen, welche kleiner als beispielsweise 4 bis 12 mm ist. Hierzu wird dem erfindungsgemäßen Produkt, bei dem auch die Klarspülerpartikel geringere Teilchengrößen aufweisen, ein Siebeinsatz beigegeben, der den in der Maschine befindlichen Einsatz ersetzt bzw. abdeckt. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Kit-of-parts, das ein erfindungsgemäßes pulverförmiges maschinelles Geschirrspülmittel und einen Siebeinsatz für Haushaltsgeschirrspülmaschinen umfaßt.
    Wie bereits erwähnt, erlaubt die erfindungsgemäße Kombination von Mittel und Siebeinsatz die Formulierung von Mitteln, in denen auch die Klarspülerpartikel geringere Teilchengrößen aufweisen. Erfindungsgemäße kits-of-parts, bei denen die Partikelgrößen des maschinellen Geschirrspülmittels (unter Berücksichtigung der Klarspülerpartikel) im Bereich von 400 bis 2500 µm, vorzugsweise von 500 bis 1600 µm und insbesondere von 600 bis 1200 µm liegen, sind dabei bevorzugt.
    Um Verstopfungen des beigelegten Siebeinsatzes durch Schmutzreste zu verhindern, sollte die Maschenweite bzw. Lochgröße nicht zu klein gewählt werden. Hier sind erfindungsgemäβe kits-of-parts bevorzugt, bei denen die Maschenweite bzw. Lochgröße des Siebeinsatzes 1 bis 4 mm beträgt und die Klarspülerpartikel größer sind als diese Maschenweite bzw. Lochgröße des Siebeinsatzes.
    Das erfindungsgemäße Kit-of-parts ist nicht auf die bestimmte Form des Siebeinsatzes beschränkt, bei dem dieser den in der Maschine befindlichen Einsatz ersetzt bzw. abdeckt. Es ist erfindungsgemäß auch möglich und bevorzugt, dem Kit-of-parts einen Siebeinsatz beizulegen, der die Form eines Körbchens aufweist, das in bekannter Weise in die Geschirrspülmaschine - beispielsweise an den Besteckkorb - eingehängt werden kann. Auf diese Weise ersetzt ein solchermaßen ausgestalteter Siebeinsatz die Dosierkammer, d.h. der Verbraucher dosiert das erfindungsgemäße maschinelle Geschirrspülmittel direkt in diesen Siebeinsatz, der im Reinigungs- und Klarspülgang in der vorstehend beschriebenen Weise wirkt.
    Beispiele:
    Das Trägermaterial wurde in das geschmolzene Klarspültensid eingearbeitet, bis das entstehende Compound eine granuläre Struktur aufwies. Anschließend wurde das Additiv eingearbeitet und die Mischung mit einer hydraulischen Presse zu Preßlingen verpreßt.
    Die Zusammensetzung des Gemisches (Gew.-%, bezogen auf das Gemisch) ist in der nachstehenden Tabelle angegeben:
    Polypore1 E200 20 -
    Wasserglas - 36
    Poly Tergent SLF-18B-452 47 37
    PEG 35000 33 27
    Die Masse der Preßlinge kann zwischen 0,5 g und 2 g betragen. Die Preßkraft wird dabei so gewählt, dass die Preßlinge im 65°C-Programm einer Spülmaschine am Ende des Klarspülganges zerfallen sind.
    Im vorliegenden Beispiel wurden die Preßlinge in eine zylindrische Mulde in gewöhnliche MGSM-Reinigertabs eingesetzt.
    Um zu zeigen, dass die erfindungsgemäße Tablette eine ausreichende Menge an Klarspültensid in den Klarspülgang transportiert, wurde in einem 65°C-Spülversuch mit der erfindungsgemäßen Tablette die Oberflächenspannung der Klarspüllauge gemessen. Es wurde ein Wert von 28 mN/m erhalten, also die mit dem eingesetzten Tensid maximal mögliche Erniedrigung der Oberflächenspannung

    Claims (21)

    1. Teilchenförmiger Klarspüler für das maschinelle Geschirrspülen, enthaltend
      a) 5 bis 95 Gew.-% eines oder mehrerer Aktivstoffe,
      b) 95 bis 5 Gew.-% eines oder mehrerer Trägermaterialien und/oder Bindemittel, sowie
      c) 0 bis 10 Gew.-% weiterer Wirk- und Hilfsstoffe,
      dadurch gekennzeichnet, dass
      die Komponenten a, b und ggf. c derart verdichtet sind, dass die Aktivstoffe der Komponente a und ggf. die weiteren Inhaltsstoffe der Komponente c zu einem vorbestimmten Zeitpunkt oder während eines vorgegebenen Zeitraums im Reinigungsvorgang freigesetzt werden.
    2. Teilchenförmiger Klarspüler nach Anspruch 1, dadurch gekennzeichnet, dass er als Aktivstoffe Tenside, Bleichmittel, Bleichaktivator, Korrosionsinhibitoren, Belagsinhibitoren und/oder Builder in Mengen von 5 bis 95 Gew.-%, vorzugsweise von 10 bis 70 Gew.-% und insbesondere von 10 bis 60 Gew.-%, jeweils bezogen auf das Partikelgewicht, enthält.
    3. Teilchenförmiger Klarspüler nach Ansprüche 1 oder 2, dadurch gekennzeichnet, dass er als Aktivstoff Tenside, vorzugsweise nichtionische Tenside, einer Menge bis 95 Gew.-%, vorzugsweise von 7,5 bis 70 Gew.-% und insbesondere von 10 bis 60 Gew.-%, jeweils bezogen auf das Teilchengewicht, enthält.
    4. Teilchenförmiger Klarspüler nach Anspruch 3, dadurch gekennzeichnet, dass als Tenside nichtionische Tenside, vorzugsweise alkoxylierte Alkohole, enthalten sind.
    5. Teilchenförmiger Klarspüler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er als Aktivsubstanz Bleichmittel aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel, enthält.
    6. Teilchenförmiger Klarspüler nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er als Aktivsubstanz Bleichaktivatoren, insbesondere aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), der N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acylierten Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), enthält.
    7. Teilchenförmiger Klarspüler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Bindemittel Polyethylenglykole, Paraffine, Wachse, Polymere Verbindungen (z.B. Polyacrylate), Hydrokolloide (z.B. Galaktomannan, Celluloseether), Mono-, Oligo- oder Polysaccharide und/oder Harze enthalten sind.
    8. Teilchenförmiger Klarspüler nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass er als Trägermaterialien Stoffe ausgewählt aus Zeolithen, Bentoniten, Silicaten, Carbonaten, Hydrogencarbonaten, Sulfaten, Phosphaten, synthetischen Polymeren, wie quervernetzten Polycarboxylaten, Polyvinylalkoholen, den bei Raumtemperatur festen Polycarbonsäuren oder natürliche oder halbsynthetische Polymere wie Stärke- oder Cellulosederivare enthält.
    9. Verfahren zur Herstellung teilchenförmiger Klarspüler, enthaltend
      a) 5 bis 95 Gew.-% eines oder mehrerer Aktivstoffe,
      b) 95 bis 5 Gew.-% eines oder mehrerer Trägermaterialien und/oder Bindemittel, sowie
      c) 0 bis 10 Gew.-% weiterer Wirk- und Hilfsstoffe enthält,
      dadurch gekennzeichnet, dass
      die Komponenten a und b und ggf. c derart verdichtet sind, dass die Aktivstoffe der Komponente a und ggf. die weiteren Inhaltsstoffe der Komponente c zu einem vorbestimmten Zeitpunkt oder während eines vorbestimmten Zeitraumes im Reinigungsgang freigesetzt werden.
    10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Verdichten der Teilchen in einer Presse oder durch Extrusion erfolgt.
    11. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass die Komponenten a) auf die Komponente b aufgebracht und anschließend ggf. unter Zusatz weiterer Stoffe verdichtet werden.
    12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die zu verdichtende Mischung als Aktivstoff einen oder mehrere Stoffe aus den Gruppen der Tenside, Bleichmittel, Bleichaktivator, Korrosionsinhibitoren, Belagsinhibitoren und/oder Cobuilder in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 10 bis 70 Gew.-% und insbesondere von 10 bis 60 Gew.-%, jeweils bezogen auf das Partikelgewicht, enthält.
    13. Teilchenförmiges maschinelles Geschirrspülmittel, enthaltend Gerüststoffe sowie optional weitere Inhaltsstoffe aus den Gruppen der Tenside, Enzyme, Bleichmittel, Bleichaktivatoren, Korrosionsinhibitoren, Polymere, Farb- und Duftstoffe, dadurch gekennzeichnet, dass es einen teilchenförmigen Klarspüler nach einem der Ansprüche 1 bis 10 in Mengen von 0,5 bis 30 Gew.-%, vorzugsweise von 1 bis 25 Gew.-% und insbesondere von 2 bis 15 Gew.-%, jeweils bezogen auf gesamtes Mittel, enthält.
    14. Teilchenförmiges maschinelles Geschirrspülmittel nach Anspruch 13, dadurch gekennzeichnet, dass der teilchenförmige Klarspüler Teilchengrößen zwischen 1 und 30 mm, vorzugsweise zwischen 1,5 und 25 mm und insbesondere zwischen 2 und 20 mm aufweist.
    15. Teilchenförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass es (ohne Berücksichtigung der Klarspülerpartikel) Teilchengrößen zwischen 200 und 3000 µm, vorzugsweise zwischen 300 und 2500 µm und insbesondere zwischen 400 und 2000 µm aufweist.
    16. Teilchenförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass es die Klarspülerpartikel nach einem der Ansprüche 1 bis 8 im Gemisch mit den weiteren für Maschinengeschirrspülmitteln üblichen Inhaltsstoffen enthält.
    17. Teilchenförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass es ein Formkörper ist, der die Klarspülerpartikel nach einem der Ansprüche 1 bis 8 und für Maschinengeschirrspülmittel übliche Inhaltsstoffe enthält.
    18. Teilchenförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass eine Dosiereinheit in einen Beutel aus wasserlöslicher Folie verpackt vorliegt.
    19. Kit-of-parts, umfassend ein pulverförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 15 bis 18 und einen Siebeinsatz für Haushaltsgeschirrspülmaschinen.
    20. Kit-of-parts nach Anspruch 20, dadurch gekennzeichnet, dass die Partikelgröße des maschinellen Geschirrspülmittels (unter Berücksichtigung der Klarspülerpartikel) im Bereich von 400 bis 2500 µm, vorzugsweise von 500 bis 1600 pm und insbesondere von 600 bis 1200 µm liegen.
    21. Kit-of-parts nach einem der Ansprüche 20 oder 21, dadurch gekennzeichnet, dass die Maschenweite bzw. Lochgröße des Siebeinsatzes 1 bis 4 mm beträgt und die Klarspülerpartikel größer sind als diese Maschenweite bzw. Lochgröße des Siebeinsatzes.
    EP00125168A 1999-11-27 2000-11-18 Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel Revoked EP1103599B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19957262A DE19957262A1 (de) 1999-11-27 1999-11-27 Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
    DE19957262 1999-11-27

    Publications (2)

    Publication Number Publication Date
    EP1103599A1 true EP1103599A1 (de) 2001-05-30
    EP1103599B1 EP1103599B1 (de) 2006-03-08

    Family

    ID=7930640

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00125168A Revoked EP1103599B1 (de) 1999-11-27 2000-11-18 Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel

    Country Status (4)

    Country Link
    EP (1) EP1103599B1 (de)
    AT (1) ATE319806T1 (de)
    DE (2) DE19957262A1 (de)
    ES (1) ES2259970T3 (de)

    Cited By (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001072949A1 (de) * 2000-03-28 2001-10-04 Henkel Kommanditgesellschaft Auf Aktien Teilchenförmige maschinelle geschirrspülmittel mit klarspüleffekt
    WO2003073002A1 (de) * 2002-02-26 2003-09-04 Rational Ag Verfahren zum reinigen eines gargeräts mit einem reinigungsmittel in tabform
    WO2003080918A1 (en) * 2002-03-22 2003-10-02 Reckitt Benckiser N.V. Cleaning method
    EP2014757A1 (de) * 2007-07-05 2009-01-14 JohnsonDiversey, Inc. Spülhilfe
    US7677163B2 (en) 2005-04-29 2010-03-16 Mkn Maschinenfabrik Kurt Neubauer Gmbh & Co. Cooking device with a cooking chamber outlet
    EP2392639A1 (de) * 2010-06-04 2011-12-07 Dalli-Werke GmbH & Co. KG Mischung aus einem Tensid mit einer Festverbindung zur Verbesserung der Spülleistung von automatischen Geschirrspülmitteln
    EP1404801B2 (de) 2001-07-11 2015-08-05 Reckitt Benckiser N.V. Geschirrspülmittel
    US9969959B2 (en) 2014-03-07 2018-05-15 Ecolab Usa Inc. Detergent composition that performs both a cleaning and rinsing function
    US10392584B2 (en) 2014-03-07 2019-08-27 Ecolab Usa Inc. Detergent composition comprising a polymer that performs both a cleaning and rinsing function
    US11932830B2 (en) 2017-11-14 2024-03-19 Ecolab Usa Inc. Solid controlled release caustic detergent compositions

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2021062143A1 (en) 2019-09-27 2021-04-01 Ecolab Usa Inc. Concentrated 2 in 1 dishmachine detergent and rinse aid

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5453216A (en) * 1994-04-28 1995-09-26 Creative Products Resource, Inc. Delayed-release encapsulated warewashing composition and process of use
    EP0851024A2 (de) * 1996-12-23 1998-07-01 Unilever N.V. Maschinengeschirrspülmitteltabletten mit verbesserten Klarspüleffekt
    DE19914363A1 (de) * 1999-03-30 2000-10-05 Henkel Kgaa Maschinelle Geschirrspülmittel mit teilchenförmigem Klarspüler
    WO2000060047A1 (de) * 1999-03-30 2000-10-12 Henkel Kommanditgesellschaft Auf Aktien Teilchenförmiger klarspüler und maschinelle geschirrspülmittel

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5453216A (en) * 1994-04-28 1995-09-26 Creative Products Resource, Inc. Delayed-release encapsulated warewashing composition and process of use
    EP0851024A2 (de) * 1996-12-23 1998-07-01 Unilever N.V. Maschinengeschirrspülmitteltabletten mit verbesserten Klarspüleffekt
    DE19914363A1 (de) * 1999-03-30 2000-10-05 Henkel Kgaa Maschinelle Geschirrspülmittel mit teilchenförmigem Klarspüler
    WO2000060047A1 (de) * 1999-03-30 2000-10-12 Henkel Kommanditgesellschaft Auf Aktien Teilchenförmiger klarspüler und maschinelle geschirrspülmittel

    Cited By (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001072949A1 (de) * 2000-03-28 2001-10-04 Henkel Kommanditgesellschaft Auf Aktien Teilchenförmige maschinelle geschirrspülmittel mit klarspüleffekt
    EP1404801B2 (de) 2001-07-11 2015-08-05 Reckitt Benckiser N.V. Geschirrspülmittel
    WO2003073002A1 (de) * 2002-02-26 2003-09-04 Rational Ag Verfahren zum reinigen eines gargeräts mit einem reinigungsmittel in tabform
    WO2003080918A1 (en) * 2002-03-22 2003-10-02 Reckitt Benckiser N.V. Cleaning method
    US7695523B2 (en) 2002-03-22 2010-04-13 Reckitt Benckiser N.V. Cleaning method
    US7677163B2 (en) 2005-04-29 2010-03-16 Mkn Maschinenfabrik Kurt Neubauer Gmbh & Co. Cooking device with a cooking chamber outlet
    EP2014757A1 (de) * 2007-07-05 2009-01-14 JohnsonDiversey, Inc. Spülhilfe
    EP2392639A1 (de) * 2010-06-04 2011-12-07 Dalli-Werke GmbH & Co. KG Mischung aus einem Tensid mit einer Festverbindung zur Verbesserung der Spülleistung von automatischen Geschirrspülmitteln
    US9969959B2 (en) 2014-03-07 2018-05-15 Ecolab Usa Inc. Detergent composition that performs both a cleaning and rinsing function
    US10392584B2 (en) 2014-03-07 2019-08-27 Ecolab Usa Inc. Detergent composition comprising a polymer that performs both a cleaning and rinsing function
    US10501708B2 (en) 2014-03-07 2019-12-10 Ecolab Usa Inc. Detergent composition that performs both a cleaning and rinsing function
    US11932830B2 (en) 2017-11-14 2024-03-19 Ecolab Usa Inc. Solid controlled release caustic detergent compositions

    Also Published As

    Publication number Publication date
    DE50012350D1 (de) 2006-05-04
    ATE319806T1 (de) 2006-03-15
    DE19957262A1 (de) 2001-05-31
    ES2259970T3 (es) 2006-11-01
    EP1103599B1 (de) 2006-03-08

    Similar Documents

    Publication Publication Date Title
    EP1299513B1 (de) Maschinelles geschirrspülmittel
    DE10148571B4 (de) Semiautomatische Dosierung
    DE19944416A1 (de) Klarspülmittel
    EP1363986B1 (de) "3 in 1" GESCHIRRSPÜLMITTEL UND VERFAHREN ZUR HERSTELLUNG DERSELBEN
    DE10019936A1 (de) Wasch- und Reinigungsmittel
    EP1103599B1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
    EP1213344A2 (de) Maschinelle Geschirrspülmittel und Klarspüler mit Geruchsabsorber
    EP1409625B1 (de) Maschinelle geschirrspülmittel mit tensiden bestimmten diffusionskoeffizientens
    DE10003429A1 (de) Wasch- oder Reinigungsmittelportion mit kontrollierter Wirkstofffreisetzung
    DE19958472A1 (de) Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs
    DE19914363A1 (de) Maschinelle Geschirrspülmittel mit teilchenförmigem Klarspüler
    DE10136000A1 (de) Maschinelles Geschirrspülmittel mit Tensiden niederer dynamischer Oberflächenspannung
    DE19934704A1 (de) Wasch- und Reinigungsmittelformkörper mit Dispersionsmitteln
    DE10062585A1 (de) Teilchenförmiges Additiv für Wasch- und Reinigungsmittel
    EP1173538B1 (de) Leistungsgesteigerte reinigungsmitteltabletten für das maschinelle geschirrspülen
    DE19914812A1 (de) Ein- oder mehrphasige Wasch- und Reinigungsmittelformkörper mit speziellen Bleichaktivatoren
    DE10035849A1 (de) Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs
    DE20014919U1 (de) Teilchenförmige maschinelle Geschirrspülmittel mit Klarspüleffekt
    EP1210404B1 (de) Reinigungsmittelkomponente mit feinteiligen feststoffen
    DE19914364A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
    DE10049657C2 (de) Maschinelles Geschirreinigungsverfahren und maschinelle Geschirrspülmittel mit verbessertem Korrosionsschutz
    DE19918457A1 (de) Leistungsgesteigerte teilchenförmige Reinigungsmittel für das maschinelle Geschirrspülen
    WO2001072949A1 (de) Teilchenförmige maschinelle geschirrspülmittel mit klarspüleffekt
    DE19958471A1 (de) Wasch- und Reingigungsmittel
    DE19957438A1 (de) Wasch- und Reinigungsmittelformkörper

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20001118

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20020118

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20060308

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060308

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060308

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060308

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50012350

    Country of ref document: DE

    Date of ref document: 20060504

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060608

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060608

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20060607

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060808

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2259970

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061130

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061130

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061130

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    26 Opposition filed

    Opponent name: RECKITT BENCKISER (UK) LIMITED

    Effective date: 20061208

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

    Free format text: ORIGINAL CODE: EPIDOSCOBS2

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    BERE Be: lapsed

    Owner name: HENKEL K.G.A.A.

    Effective date: 20061130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061118

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060609

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: HENKEL AG & CO. KGAA

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060308

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061118

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060308

    APBM Appeal reference recorded

    Free format text: ORIGINAL CODE: EPIDOSNREFNO

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APBQ Date of receipt of statement of grounds of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA3O

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    RDAF Communication despatched that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSNREV1

    APBM Appeal reference recorded

    Free format text: ORIGINAL CODE: EPIDOSNREFNO

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APBQ Date of receipt of statement of grounds of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA3O

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20141111

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R064

    Ref document number: 50012350

    Country of ref document: DE

    Ref country code: DE

    Ref legal event code: R103

    Ref document number: 50012350

    Country of ref document: DE

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    27W Patent revoked

    Effective date: 20150219

    GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

    Effective date: 20150219

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20151125

    Year of fee payment: 16

    Ref country code: GB

    Payment date: 20151118

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20151111

    Year of fee payment: 16

    Ref country code: FR

    Payment date: 20151119

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MA03

    Ref document number: 319806

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20150219