EP1103286A1 - Einrichtung zur Brandbekämpfung in Tunnels - Google Patents

Einrichtung zur Brandbekämpfung in Tunnels Download PDF

Info

Publication number
EP1103286A1
EP1103286A1 EP99123398A EP99123398A EP1103286A1 EP 1103286 A1 EP1103286 A1 EP 1103286A1 EP 99123398 A EP99123398 A EP 99123398A EP 99123398 A EP99123398 A EP 99123398A EP 1103286 A1 EP1103286 A1 EP 1103286A1
Authority
EP
European Patent Office
Prior art keywords
sector
tunnel
fire
valve
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99123398A
Other languages
English (en)
French (fr)
Inventor
Bruno Dr. Covelli
Markus Dr. Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to EP99123398A priority Critical patent/EP1103286A1/de
Priority to EP00113659A priority patent/EP1103284A3/de
Publication of EP1103286A1 publication Critical patent/EP1103286A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/02Fire prevention, containment or extinguishing specially adapted for particular objects or places for area conflagrations, e.g. forest fires, subterranean fires
    • A62C3/0221Fire prevention, containment or extinguishing specially adapted for particular objects or places for area conflagrations, e.g. forest fires, subterranean fires for tunnels
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/02Fire prevention, containment or extinguishing specially adapted for particular objects or places for area conflagrations, e.g. forest fires, subterranean fires
    • A62C3/0292Fire prevention, containment or extinguishing specially adapted for particular objects or places for area conflagrations, e.g. forest fires, subterranean fires by spraying extinguishants directly into the fire
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/58Pipe-line systems
    • A62C35/64Pipe-line systems pressurised
    • A62C35/645Pipe-line systems pressurised with compressed gas in pipework
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/36Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device

Definitions

  • the present invention relates to a device for fire fighting in tunnels, which with a fire alarm system.
  • the fire alarm system is preferably a fire or heat detection system, such as the linear heat detection system FibroLaser from Siemens Building Technologies AG, Cerberus Division.
  • This system includes a fiber optic cable mounted on the tunnel ceiling, its temperature based on the vibrations in the crystal lattice structure of the glass fiber is measured.
  • the size of the fire can be determined from the length of the heated cable section close, and the location of the fire is very accurate, can be located down to about 1.5 meters.
  • Fire alarm systems are a valuable aid for the fire brigade and are the prerequisite for effective fire fighting.
  • the recent tunnel fires have shown that it is, especially in tunnels with only one tube and without an emergency tube, for the fire brigade it is very difficult to get to the source of the fire and fight the fire.
  • the main reason for this is the immense heat development in the tunnel.
  • the invention is now intended to create a device which is capable of fighting fires in tunnels without the advance of emergency personnel during the fire to the location of the fire is required.
  • this problem is solved with a sprinkler system that can be triggered manually or automatically is not practical because it is very useful large water reserves would be required.
  • the tunnel wind can drop the water blow away.
  • the object is achieved according to the invention in that in the tunnel at intervals connected to a gas pipe acting as a storage for an inert gas and subsequently as sector valves designated opening fittings for the release of the inert gas via nozzles in one Tunnel sector are provided, and that when a fire is detected an automatic or Remote opening of at least the sector valve closest to the fire site he follows.
  • a first preferred embodiment of the device according to the invention is characterized in that that the sector valves on the ceiling or on a side wall of the tunnel are installed, and that the gas pipe is installed in the tunnel itself or in a parallel tunnel.
  • a second preferred embodiment is characterized in that the inert gas Nitrogen or argon formed and that the device is designed so that when opening a sector valve in its area an extinguishing concentration between 10 vol .-% and 12 vol .-% Oxygen is reached.
  • carbon dioxide has the best extinguishing effect, but is toxic and is harmful to health even at a concentration of 6 vol.% In the air we breathe. With an extinguishable concentration of CO 2 , this has fatal consequences after a few seconds.
  • Nitrogen on the other hand, is not toxic, so that with an extinguishable concentration of 10 to 12 vol.% Oxygen there is no immediate health hazard. For the intervention forces, nitrogen is not a hindrance to rescue, since it is non-toxic and does not tend to form fog. The same applies to argon.
  • a third preferred embodiment of the device according to the invention is characterized in that that the fire alarm system is formed by a linear heat alarm system, and that the sector valves can be actuated automatically by the heat detection system.
  • a fourth preferred embodiment of the device according to the invention for use in a tunnel having a ventilation device is characterized in that In the event of a fire, the ventilation device should be switched off immediately before opening a sector valve at the location of the fire and in a specific environment.
  • a fifth preferred embodiment of the device according to the invention is characterized in that that the fire alarm system is coupled to a video surveillance system, and that the sector valves are remotely controlled by the operators of the video surveillance system are operable.
  • the ventilation device is preferably switched off over a distance in the event of a fire about three times the length of a tunnel sector, before and after each Place of fire.
  • a seventh preferred embodiment of the device according to the invention is characterized in that that a sensor for monitoring the oxygen concentration in the concerned Tunnel sector or a timer is provided, by which or which The open sector valves are closed as soon as the oxygen concentration Falls below or would fall below a value of 11% by volume.
  • Another preferred embodiment of the device according to the invention is characterized in that that the pressure in the gas pipe 50 to 150 bar, preferably about 70 bar, and the Outside diameter of the gas pipe is 0.5 to 1.2 m, preferably about 0.7 m.
  • the drawing shows a perspective section of a Tunnels 1.
  • a fiber optic cable 2 On the ceiling of the tunnel 1, a fiber optic cable 2 is mounted, which is part of a FibroLaser type linear heat detection system (FibroLaser - registered trademark Siemens Building Technologies AG, Cerberus Division).
  • the system points in addition the fiber optic cable 2 still a laser light source and an opto-electronic receiver on.
  • the light generated by the laser is coupled into the fiber optic cable 2 and into it Guided in the longitudinal direction. Fluctuations in density of the quartz glass cause a continuous Scattering (Rayleigh scattering), which in turn attenuates the laser light. In addition a further light scatter occurs due to thermal lattice vibrations of the glass material so-called Raman scattering.
  • a fraction of the scattered light falls within the aperture angle of the waveguide and spreads both forward and backward.
  • the scattered light can be measured with a photo detector prove; by evaluating the intensity of the scatter, the local glass fiber temperature can be determined.
  • the local resolution of the temperature curve along the fiber optic cable 2 is done by measuring the attenuation of the waveguide light.
  • the size of the fire is one Function of the heated cable section: A short, heated section corresponds to a short one and a long, warmed distance corresponds to a big fire.
  • the glass fiber cable 2 is connected to an evaluation unit or control center 3, in which the signal of the optoelectronic receiver is evaluated.
  • the necessary displays such as the size of the fire, the tunnel sector affected by the fire, Direction of propagation and the like, and fire control systems are triggered.
  • Such Functions are for example traffic regulation, control of the ventilation system, control emergency lighting, control of an evacuation system, triggering an extinguishing device, Alarming of emergency services and information of people in the tunnel via acoustic and / or optical means, such as light panels or loudspeakers.
  • the extinguishing device is formed by a gas pipe 4, which is laid in a floor duct of the tunnel 1 or a parallel tunnel, or possibly mounted on the tunnel ceiling, which is filled with an inert gas, preferably with N 2 , and from which lines 5 via opening valves referred to as sector valves 6 are guided to nozzles 7 arranged at regular intervals on the tunnel ceiling.
  • the sector valves 6 are arranged as close as possible to the pressure-carrying gas pipe 4.
  • the lines 5, of which only one is shown in the drawing, are from the sector valve 6 to the Nozzles 7 normally free of pressure. They consist of an ascending one containing the sector valve 6 Branch and a horizontal branch carrying the nozzles 7 in the area of the tunnel ceiling. The ascending branch is laid in or on a side wall of the tunnel 1.
  • the sector valves 6 can be actuated individually via a control line 8 connected to the control center 3.
  • the pressure in the gas pipe 4 is approximately 50 to 150 bar and is preferably approximately 70 bar. Argon may possibly also be used as the inert gas.
  • the control center 3 evaluates the signal of the fiber optic cable 2 detects a fire the line 8 closest to the location of the fire is detected
  • the immediately adjacent sector valves 6 can also open one of the immediately adjacent sector valves 6 and thus a correspondingly longer tunnel area can be flooded with nitrogen.
  • the tunnel 1 is equipped with a ventilation 10, which by the Central 3 can be switched on and off in sections.
  • a ventilation 10 which by the Central 3 can be switched on and off in sections.
  • the FibroLaser system is activated by the control center 3 before the sector valve concerned is opened 6 the venilation in the area of this sector valve and an additional length of two up to three tunnel sections before and after the section valve mentioned, in total over one Length up to a maximum of one kilometer, parked. Then the deletion is triggered.
  • the oxygen concentration a value that is hazardous to health is reduced by oxygen sensors or possibly the section valve 6 is closed by a timer as soon as the oxygen concentration in the respective tunnel sector to a value of less than 11% by volume would decrease.
  • the fire fighting device described does not need to operate the sector valves necessarily a FibroLaser system or another linear heat detection system. Essential is that the tunnel is equipped with a false alarm-proof and fast fire alarm system is.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Fire Alarms (AREA)

Abstract

Die Einrichtung umfasst ein als Speicher für ein Inertgas wirkendes Gasrohr (4) und mit diesem verbundene und als Sektorventile (6) bezeichnete Öffnungsarmaturen für die Freisetzung des Inertgases über Düsen (7) in einen Tunnelsektor. Das Gasrohr (4) ist im Tunnel (1) selbst oder in einem Paralleltunnel verlegt. Bei Detektion eines Brandes erfolgt eine automatische oder ferngesteuerte Öffnung mindestens des dem Brandort am nächsten liegenden Sektorventils (6). Der Tunnel (1) ist mit einer Brandmeldeanlage ausgerüstet, welche durch ein lineares Wärmemeldesystem (3, 6) gebildet ist; die Sektorventile (6) sind durch das Wärmemeldesystem (3, 6) automatisch betätigbar. Das Inertgas ist vorzugsweise durch Stickstoff oder Argon gebildet. <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Einrichtung zur Brandbekämpfung in Tunnels, welche mit einer Brandmeldeanlage ausgerüstet sind.
Die Brandmeldeanlage ist vorzugsweise ein Brand- oder Hitzedetektionssystem, wie beispielsweise das lineare Wärmemeldesystem FibroLaser der Siemens Building Technologies AG, Cerberus Division. Dieses System enthält ein an der Tunneldecke montiertes Glasfaserkabel, dessen Temperatur anhand der Schwingungen in der Kristallgitterstruktur der Glasfaser gemessen wird. Aus der Länge der erwärmten Kabelstrecke lässt sich auf die Brandgrösse schliessen, und der Brandort ist sehr genau, bis auf etwa 1.5 Meter lokalisierbar.
Brandmeldeanlagen sind eine wertvolle Hilfe für die Feuerwehr und sind die Voraussetzung für eine effektive Brandbekämpfung. Andererseits haben die Tunnelbrände der letzten Zeit gezeigt, dass es, insbesondere in Tunnels mit nur einer Röhre und ohne Rettungsröhre, für die Feuerwehr sehr schwierig ist, bis zum Brandherd vorzudringen und das Feuer zu bekämpfen. Der Hauptgrund dafür liegt in der immensen Hitzeentwicklung im Tunnel.
Durch die Erfindung soll nun eine Einrichtung geschaffen werden, welche eine Brandbekämpfung in Tunnels ermöglicht, ohne dass während des Brandes das Vorrücken von Einsatzkräften an den Brandort erforderlich ist. Wie leicht einzusehen ist, ist eine Lösung dieser Aufgabe mit einer von Hand oder automatisch auslösbaren Sprinkleranlage nicht praktikabel, weil dafür sehr grosse Wasservorräte erforderlich wären. Ausserdem kann der Tunnelwind die Wassertropfen verwehen.
Die gestellte Aufgabe wird erfindungsgemäss dadurch gelöst, dass im Tunnel in Abständen mit einem als Speicher für ein Inertgas wirkenden Gasrohr verbundene und nachfolgend als Sektorventile bezeichnete Öffnungsarmaturen für die Freisetzung des Inertgases über Düsen in einen Tunnelsektor vorgesehen sind, und dass bei Detektion eines Brandes eine automatische oder ferngesteuerte Öffnung mindestens des dem Brandort am nächsten liegenden Sektorventils erfolgt.
Bei der Inertgas-Löschtechnik kommt der Brand zum Erlöschen, weil durch eine schnelle Flutung der Räume, im vorliegenden Fall des Tunnels, mit dem Inertgas der Sauerstoff verdrängt wird, wodurch eine wesentliche Bedingung für den Brandvorgang entfällt. Durch die automatische oder ferngesteuerte Öffnung mindestens des dem Brandort am nächsten liegenden Sektorventils ist es für die Löschung nicht erforderlich, dass am Brandort Einsatzkräfte anwesend sind. Selbstverständlich werden die Einsatzkräfte nach der Flutung des Tunnels an den Brandort vorrücken, aber sie haben dann weder mit Hitze- noch mit Rauchproblemen zu kämpfen.
Eine erste bevorzugte Ausführungsform der erfindungsgemässen Einrichtung ist dadurch gekennzeichnet, dass die Sektorventile an der Decke oder an einer Seitenwand des Tunnels montiert sind, und dass das Gasrohr im Tunnel selbst oder in einem Paralleltunnel verlegt ist.
Eine zweite bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass das Inertgas durch Stickstoff oder Argon gebildet und dass die Einrichtung so ausgelegt ist, dass beim Öffnen eines Sektorventils in dessen Bereich eine Löschkonzentration zwischen 10 Vol.-% und 12 Vol.-% Sauerstoff erreicht wird.
Von den bekannten Inertgasen, Kohlendioxid, Edelgase, Stickstoff und Gemischen daraus, hat Kohlendioxid die beste Löschwirkung, ist aber toxisch und wirkt schon bei einer Konzentration von 6 Vol.-% in der Atemluft gesundheitsschädigend. Bei einer löschfähigen Konzentration von CO2 hat dies nach wenigen Sekunden tödliche Folgen. Stickstoff ist hingegen nicht toxisch, so dass bei einer löschfähigen Konzentration von 10 bis 12 Vol.-% Sauerstoffanteil keine unmittelbare Gefahr für die Gesundheit besteht. Für die Interventionskräfte stellt Stickstoff keine Behinderung bei der Rettung dar, da er nicht toxisch ist und auch nicht zur Nebelbildung neigt. Ähnliches gilt für Argon.
Eine dritte bevorzugte Ausführungsform der erfindungsgemässen Einrichtung ist dadurch gekennzeichnet, dass die Brandmeldeanlage durch ein lineares Wärmemeldesystem gebildet ist, und dass die Sektorventile durch das Wärmemeldesystem automatisch betätigbar sind.
Eine vierte bevorzugte Ausführungsform der erfindungsgemässen Einrichtung zur Verwendung in einem eine Ventilationseinrichtung aufweisenden Tunnel ist dadurch gekennzeichnet, dass unmittelbar vor dem Öffnen eines Sektorventils im Brandfall eine Abschaltung der Ventilationseinrichtung am Brandort und in einer bestimmten Umgebung von diesem erfolgt.
Eine fünfte bevorzugte Ausführungsform der erfindungsgemässen Einrichtung ist dadurch gekennzeichnet, dass die Brandmeldeanlage mit einer Videoüberwachungsanlage gekoppelt ist, und dass die Sektorventile vom Bedienungspersonal der Videoüberwachungsanlage ferngesteuert betätigbar sind.
Eine sechste bevorzugte Ausführungsform der erfindungsgemässen Einrichtung ist dadurch gekennzeichnet, dass jedem Sektorventil eine Mehrzahl von Düsen zugeordnet ist, und dass jedes Sektorventil zusammen mit den zugeordneten Düsen einen Tunnelsektor oder Löschsektor definiert, dessen Länge etwa 100 bis 200 Meter beträgt.
Die Abschaltung der Ventilationseinrichtung im Brandfall erfolgt vorzugsweise über eine Strecke von etwa dem Dreifachen der Länge eines Tunnelsektors, und zwar jeweils vor und nach dem Brandort.
Eine siebte bevorzugte Ausführungsform der erfindungsgemässen Einrichtung ist dadurch gekennzeichnet, dass ein Sensor für die Überwachung der Sauerstoffkonzentration im betreffenden Tunnelsektor oder ein Zeitglied vorgesehen ist, durch welchen beziehungsweise welches eine Schliessung der offenenen Sektorventile erfolgt, sobald die Sauerstoffkonzentration einen Wert von 11 Vol.-% unterschreitet beziehungsweise unterschreiten würde.
Eine weitere bevorzugte Ausführungsform der erfindungsgemässen Einrichtung ist dadurch gekennzeichnet, dass der Druck im Gasrohr 50 bis 150 bar, vorzugsweise etwa 70 bar, und der Aussendurchmesser des Gasrohres 0.5 bis 1.2 m, vorzugsweise etwa 0.7 m beträgt.
Im folgenden wird die Erfindung anhand eines in der einzigen Zeichnung dargestellten Ausführungsbeispiels näher erläutert; die Zeichnung zeigt einen perspektivischen Ausschnitt eines Tunnels 1. An der Decke des Tunnels 1 ist ein Glasfaserkabel 2 montiert, welches Teil eines linearen Wärmemeldesystems des Typs FibroLaser (FibroLaser - eingetragenes Warenzeichen der Siemens Building Technologies AG, Cerberus Division) bildet. Das System weist neben dem Glasfaserkabel 2 noch eine Laser-Lichtquelle und einen opto-elektronischen Empfänger auf. Das vom Laser erzeugte Licht wird in das Glasfaserkabel 2 eingekoppelt und in dessen Längsrichtung geführt. Dichteschwankungen des Quarzglases bewirken eine kontinuierliche Streuung (Rayleigh-Streuung), die wiederum eine Dämpfung des Laserlichts bewirkt. Zusätzlich tritt durch thermische Gitterschwingungen des Glasmaterials eine weitere Lichtstreuung auf, die sogenannte Raman-Streuung.
Ein Bruchteil des Streulichts fällt in den Aperturwinkel des Wellenleiters und breitet sich sowohl in Vorwärts- als auch in Rückwärtsrichtung aus. Das Streulicht lässt sich mit einem Fotodetektor nachweisen; durch die Auswertung der Intensität der Streuung kann die lokale Glasfasertemperatur bestimmt werden. Die örtliche Auflösung des Temperaturverlaufs entlang des Glasfaserkabels 2 erfolgt durch Dämpfungsmessung des Wellenleiterlichts. Die Grösse des Feuers ist eine Funktion der erwärmten Kabelstrecke: Eine kurze, erwärmte Strecke entspricht einem kleinen und eine lange, erwärmte Strecke entspricht einem grossen Feuer.
Das Glasfaserkabel 2 ist an eine Auswerteeinheit oder Zentrale 3 angeschlossen, in welcher das Signal des optoelektronischen Empfängers ausgewertet wird. Ausserdem erfolgen in der Zentrale 3 die erforderlichen Anzeigen, wie Brandgrösse, vom Brand betroffener Tunnelsektor, Ausbreitungsrichtung und dergleichen, und es werden Brandfallsteuerungen ausgelöst. Derartige Funktionen sind beispielsweise Verkehrsregelung, Steuerung des Lüftungssystems, Steuerung der Notbeleuchtung, Steuerung eines Evakuationssystems, Auslösung einer Löscheinrichtung, Alarmierung der Notfalldienste und Information der Personen im Tunnel über akustische und/oder optische Mittel, wie beispielsweise Leuchttafeln beziehungsweise Lautsprecher.
Die Löscheinrichtung ist durch ein in einem Bodenkanal des Tunnels 1 oder eines Parallelstolens verlegtes, oder eventuell an der Tunneldecke montiertes, Gasrohr 4 gebildet, welches mit einem Inertgas, vorzugsweise mit N2, gefüllt ist und von welchem Leitungen 5 über als Sektorventile 6 bezeichnete Öffnungsarmaturen zu an der Tunneldecke in regelmässigen Abständen angeordneten Düsen 7 geführt sind.
Die Sektorventile 6 sind möglichst nahe am druckführenden Gasrohr 4 angeordnet. Die Leitungen 5, von denen in der Zeichnung nur eine eingezeichnet ist, sind vom Sektorventil 6 zu den Düsen 7 im Normalfall druckfrei. Sie bestehen aus einem das Sektorventil 6 enthaltenden aufsteigenden Ast und aus einem horizontalen, die Düsen 7 tragenden Ast im Bereich der Tunneldecke. Der aufsteigende Ast ist in oder auf einer Seitenwand des Tunnels 1 verlegt.
Die Sektorventile 6 sind über eine an die Zentrale 3 angeschlossene Steuerleitung 8 individuell betätigbar. Das Gasrohr 4, welches über einen Stutzen 9 mit N2 füllbar ist, bildet einen Stickstoff-Speicher. Der Druck im Gasrohr 4 beträgt etwa 50 bis 150 bar und liegt vorzugsweise bei etwa 70 bar. Eventuell kann als Inertgas auch Argon verwendet werden.
Jedes Sektorventil 6 definiert zusammen mit seiner Leitung 5 und den Düsen 7 einen Tunnelsektor oder Löschsektor, dessen Länge durch den Abstand der Sektorventile 6 bestimmt ist und etwa 150 bis 200 m beträgt. Sobald die Zentrale 3 bei der Auswertung des Signals des Glasfaserkabels 2 einen Brand detektiert, wird über die Leitung 8 das dem Brandort am nächsten liegende Sektorventil 6 geöffnet und der betreffende Löschsektor wird mit Stickstoff geflutet. Zusätzlich kann auch noch eines der unmittelbar benachbarten Sektorventile 6 geöffnet und damit ein entsprechend längerer Tunnelbereich mit Stickstoff geflutet werden.
Darstellungsgemäss ist der Tunnel 1 mit einer Ventilation 10 ausgerüstet, welche durch die Zentrale 3 abschnittweise ein- und ausschaltbar ist. Bei Detektion eines Brandes durch das FibroLaser-System wird durch die Zentrale 3 noch vor dem Öffnen des betreffenden Sektorventils 6 die Venilation im Bereich dieses Sektorventils und zusätzlich in einer Länge von zwei bis drei Tunnelsektionen vor und nach dem genannten Sektionsventil, insgesamt also über eine Länge bis zu maximal gut einem Kilometer, abgestellt. Dann wird die Löschung ausgelöst.
Um zu verhindern, dass durch zu langes Fluten mit Stickstoff die Sauerstoffkonzentration auf einen gesundheitsgefährdenden Wert absinkt, wird durch Sauerstoffsensoren oder eventuell durch ein Zeitglied das geöffnete Sektionsventil 6 geschlossen, sobald die Sauerstoffkonzentration im betreffenden Tunnelsektor auf einen Wert von unter 11 Vol.-% sinkt beziehungsweise sinken würde. Eine bestimmte Zeitspanne nach Beginn der Flutung mit Stickstoff, beispielsweise etwa 5 Minuten nach dem Öffnen der Düse, wird die Ventilation wieder gestartet.
Die beschriebene Brandbekämpfungseinrichtung benötigt zur Betätigung der Sektorventile nicht unbedingt ein FibroLaser-System oder ein anderes lineares Wärmemeldesystem. Wesentlich ist, dass der Tunnel mit einer fehlalarmsichern und schnellen Brandmeldeanlage ausgerüstet ist.
Wenn der Tunnel eine Videoanlage aufweist, ist es vorteilhaft, diese mit der Brandmeldeanlage zu koppeln, wobei das Auslösekonzept der Löscheinrichtung wie folgt ist:
  • Die Brandmeldeanlage, vorzugsweise das FibroLaser-System, meldet im Kommandoraum einen Alarm im Löschsektor XX.
  • Die Videokamera im Löschsektor XX wird auf den Bildschirm im Kommandoraum geschaltet.
  • Im Kommandoraum wird der Alarm visuell verifiziert. Je nach Ergebnis wird entweder manuell die Löschanlage im Sektor XX ausgelöst oder es wird eine Fehlalarmtaste betätigt.
  • Falls der Operateur bei Vorliegen eines Alarms innerhalb einer festgelegten Zeitspanne keine Aktion startet, wird die Löschanlage im Sektor XX automatisch ausgelöst.

Claims (12)

  1. Einrichtung zur Brandbekämpfung in Tunnels (1), welche mit einer Brandmeldeanlage ausgerüstet sind, dadurch gekennzeichnet, dass im Tunnel (1) in Abständen mit einem als Speicher für ein Inertgas wirkenden Gasrohr (4) verbundene und nachfolgend als Sektorventile (6) bezeichnete Öffnungsarmaturen für die Freisetzung des Inertgases über Düsen (7) in einen Tunnelsektor vorgesehen sind, und dass bei Detektion eines Brandes eine automatische oder ferngesteuerte Öffnung mindestens des dem Brandort am nächsten liegenden Sektorventils (6) erfolgt.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Sektorventile (6) an der Decke oder an einer Seitenwand des Tunnels (1) montiert sind, und dass das Gasrohr (4) im Tunnel (1) selbst oder in einem Paralleltunnel verlegt ist.
  3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Inertgas durch Stickstoff oder Argon gebildet und dass die Einrichtung so ausgelegt ist, dass beim Öffnen eines Sektorventils (6) in dessen Bereich eine Löschkonzentration zwischen 10 Vol.-% und 12 Vol.-% Sauerstoff erreicht wird.
  4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Brandmeldeanlage durch ein lineares Wärmemeldesystem (3, 6) gebildet ist, und dass die Sektorventile (6) durch das Wärmemeldesystem (3, 6) automatisch betätigbar sind.
  5. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Brandmeldeanlage mit einer Videoüberwachungsanlage gekoppelt ist, und dass die Sektorventile (6) vom Bedienungspersonal der Videoüberwachungsanlage ferngesteuert betätigbar sind.
  6. Einrichtung nach Anspruch 4 oder 5 zur Verwendung in einem eine Ventilationseinrichtung (10) aufweisenden Tunnel (1), dadurch gekennzeichnet, dass unmittelbar vor dem Öffnen eines Sektorventils (6) eine Abschaltung der Ventilationseinrichtung (10) am Brandort und in einer bestimmten Umgebung von diesem erfolgt.
  7. Einrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass jedem Sektorventil (6) eine Mehrzahl von Düsen (7) zugeordnet ist, und dass jedes Sektorventil (6) zusammen mit den zugeordneten Düsen (7) einen Tunnelsektor oder Löschsektor definiert, dessen Länge etwa 100 bis 200 Meter beträgt.
  8. Einrichtung nach den Ansprüchen 6 und 7, dadurch gekennzeichnet, dass die Abschaltung der Ventilationseinrichtung (10) im Brandfall über eine Strecke von etwa dem Dreifachen der Länge eines Löschsektors erfolgt, und zwar jeweils vor und nach dem Brandort.
  9. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass eine bestimmte Zeitspanne nach dem Öffnen eines Sektorventils (6) ein Wiedereinschalten der Ventilationseinrichtung (10) erfolgt, und dass die genannte Zeitspanne vorzugsweise etwa 5 Minuten beträgt.
  10. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass ein Sensor für die Überwachung der Sauerstoffkonzentration im betreffenden Tunnelsektor oder ein Zeitglied vorgesehen ist, durch welchen beziehungsweise welches eine Schliessung des offenenen Sektorventils (6) erfolgt, sobald die Sauerstoffkonzentration einen Wert von 11 Vol.-% unterschreitet beziehungsweise unterschreiten würde.
  11. Einrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Druck im Gasrohr (4) 50 bis 150 bar, vorzugsweise etwa 70 bar, beträgt.
  12. Einrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Aussendurchmesser des Gasrohres 0.5 bis 1.2 Meter, vorzugsweise etwa 0.7 Meter, beträgt.
EP99123398A 1999-11-24 1999-11-24 Einrichtung zur Brandbekämpfung in Tunnels Withdrawn EP1103286A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99123398A EP1103286A1 (de) 1999-11-24 1999-11-24 Einrichtung zur Brandbekämpfung in Tunnels
EP00113659A EP1103284A3 (de) 1999-11-24 2000-06-28 Brandbekämpfungssystem für Autotunnels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP99123398A EP1103286A1 (de) 1999-11-24 1999-11-24 Einrichtung zur Brandbekämpfung in Tunnels

Publications (1)

Publication Number Publication Date
EP1103286A1 true EP1103286A1 (de) 2001-05-30

Family

ID=8239453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99123398A Withdrawn EP1103286A1 (de) 1999-11-24 1999-11-24 Einrichtung zur Brandbekämpfung in Tunnels

Country Status (1)

Country Link
EP (1) EP1103286A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145136A1 (de) * 2001-09-13 2003-04-10 Bahn Station & Service Ag Deut Verfahren und Anordnung zur Abschottung von Feuer und Rauch an baulichen Anlagen
EP1312392A1 (de) * 2001-11-15 2003-05-21 Wagner Alarm- und Sicherungssysteme GmbH Verfahren und Vorrichtung zum Löschen von Bränden in Tunneln
DE10352437A1 (de) * 2003-11-10 2005-06-16 Wagner Alarm- Und Sicherungssysteme Gmbh Vorrichtung zum Verhindern und Löschen von Bränden
EP1550482A1 (de) * 2003-12-29 2005-07-06 Amrona AG Inertisierungsverfahren zum Löschen eines Brandes
WO2007118499A1 (en) * 2006-04-19 2007-10-25 A.P.T. Engineering S.R.L. System and method for protecting people in a tunnel affected by a fire
EP2149391A1 (de) * 2008-07-30 2010-02-03 Hansjürg Leibundgut Anordnung zum Verhindern von Bränden
EP2404645A3 (de) * 2010-06-17 2013-06-19 Kidde Technologies, Inc. Programmierbare Steuerung für ein Brandverhütungssystem
CN108175972A (zh) * 2018-01-29 2018-06-19 中海监理有限公司 一种室内气体消防系统
CN108635714A (zh) * 2018-03-29 2018-10-12 中国矿业大学 一种深部地下消防系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201873A (ja) * 1997-01-20 1998-08-04 Hochiki Corp トンネル防災システム
JPH10248951A (ja) * 1997-03-12 1998-09-22 Hochiki Corp トンネル防災システム
WO1999013949A1 (en) * 1997-09-15 1999-03-25 Sundholm Goeran Fire fighting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201873A (ja) * 1997-01-20 1998-08-04 Hochiki Corp トンネル防災システム
JPH10248951A (ja) * 1997-03-12 1998-09-22 Hochiki Corp トンネル防災システム
WO1999013949A1 (en) * 1997-09-15 1999-03-25 Sundholm Goeran Fire fighting apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13 30 November 1998 (1998-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14 31 December 1998 (1998-12-31) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145136A1 (de) * 2001-09-13 2003-04-10 Bahn Station & Service Ag Deut Verfahren und Anordnung zur Abschottung von Feuer und Rauch an baulichen Anlagen
EP1312392A1 (de) * 2001-11-15 2003-05-21 Wagner Alarm- und Sicherungssysteme GmbH Verfahren und Vorrichtung zum Löschen von Bränden in Tunneln
DE10156042A1 (de) * 2001-11-15 2003-05-28 Wagner Alarm Sicherung Verfahren und Vorrichtung zum Löschen von Bränden in Tunneln
DE10352437A1 (de) * 2003-11-10 2005-06-16 Wagner Alarm- Und Sicherungssysteme Gmbh Vorrichtung zum Verhindern und Löschen von Bränden
US7350591B2 (en) 2003-11-10 2008-04-01 Wagner Alarm-Und Sicherungssysteme Gmbh Device for preventing and extinguishing fires
US9220937B2 (en) 2003-12-29 2015-12-29 Amrona Ag Inerting method and device for extinguishing a fire
EP1550482A1 (de) * 2003-12-29 2005-07-06 Amrona AG Inertisierungsverfahren zum Löschen eines Brandes
WO2005063338A1 (de) * 2003-12-29 2005-07-14 Amrona Ag Inertisierungsverfahren und vorrichtung zum löschen eines brandes
WO2007118499A1 (en) * 2006-04-19 2007-10-25 A.P.T. Engineering S.R.L. System and method for protecting people in a tunnel affected by a fire
EP2149391A1 (de) * 2008-07-30 2010-02-03 Hansjürg Leibundgut Anordnung zum Verhindern von Bränden
EP2404645A3 (de) * 2010-06-17 2013-06-19 Kidde Technologies, Inc. Programmierbare Steuerung für ein Brandverhütungssystem
CN108175972A (zh) * 2018-01-29 2018-06-19 中海监理有限公司 一种室内气体消防系统
CN108635714A (zh) * 2018-03-29 2018-10-12 中国矿业大学 一种深部地下消防系统
CN108635714B (zh) * 2018-03-29 2023-06-13 中国矿业大学 一种深部地下消防系统

Similar Documents

Publication Publication Date Title
EP1634261B1 (de) Verfahren und vorrichtung zum erkennen und lokalisieren eines brandes
EP1046146B1 (de) Brandmelder und brandmeldeanlage
DE10125687B4 (de) Vorrichtung zum Detektieren von Brandherden oder Gasverunreinigungen
EP1332773B1 (de) Verfahren zur Steuerung von stationären Löschanlagen
EP1911498B1 (de) Mehrstufiges Inertisierungsverfahren zur Brandverhütung und Brandlöschung in geschlossenen Räumen
EP1682232B1 (de) Vorrichtung zum verhindern und löschen von bränden
EP1261396B1 (de) Inertisierungsverfahren mit stickstoffpuffer
DE102007061754A1 (de) Evakuierungsvorrichtung und Fluchtweganzeige hierfür
WO2010040771A1 (de) Inertgasfeuerlöschanlage zur minderung des risikos und zum löschen von bränden in einem schutzraum
DE19811851A1 (de) Inertisierungsverfahren zur Brandverhütung und -löschung in geschlossenen Räumen
DE2605598A1 (de) Feuer- und rauchabschirmvorrichtung
DE10164293A1 (de) Verfahren und Vorrichtung zum Messen des Sauerstoffgehaltes
EP1103286A1 (de) Einrichtung zur Brandbekämpfung in Tunnels
EP1312392B1 (de) Verfahren und Vorrichtung zum Löschen von Bränden in Tunneln
DE102009046556A1 (de) Brandmeldervorrichtung mit Prüfeinrichtung
EP1103284A2 (de) Brandbekämpfungssystem für Autotunnels
WO2001023041A1 (de) Sprinklervorrichtung mit einem ventil für löschflüssigkeit
DE102008059747B4 (de) Brandschutzvorrichtung für Hochhäuser
DE102007047048B4 (de) Kabelkanal und Brandschutzsystem
CH700709B1 (de) Abdichtungssystem für tunnelartigen Durchgang, sowie Brandbekämpfungssystem.
DE19702126A1 (de) Verfahren und Vorrichtung zum Havariemanagement in oder an Bauwerken, zum Facility-Management und zur Gebäude-Automatisierung mittels faseroptischer Sensoren
DE10019537A1 (de) Anordnung zur Sicherung der Flucht und Rettung unter Rauch-, Wärme- und Schadstoffbelastung
DE10121550B4 (de) Inertisierungsverfahren mit Stickstoffpuffer
DE3102865A1 (de) &#34;sicherheits-absperrvorrichtung fuer haus-gasanschluesse&#34;
EP2998002A1 (de) Inertgaslöschanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011120

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SCHWEIZ AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A62C 35/64 20060101ALI20140121BHEP

Ipc: A62C 37/36 20060101ALI20140121BHEP

Ipc: A62C 3/02 20060101AFI20140121BHEP

INTG Intention to grant announced

Effective date: 20140224

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: A62C0039000000

Ipc: A62C0003000000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: A62C0039000000

Ipc: A62C0003000000

Effective date: 20150107