EP1098694A1 - PROCEDE DE REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOx - Google Patents
PROCEDE DE REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOxInfo
- Publication number
- EP1098694A1 EP1098694A1 EP99942726A EP99942726A EP1098694A1 EP 1098694 A1 EP1098694 A1 EP 1098694A1 EP 99942726 A EP99942726 A EP 99942726A EP 99942726 A EP99942726 A EP 99942726A EP 1098694 A1 EP1098694 A1 EP 1098694A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- regeneration
- threshold value
- nox
- value
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1463—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/04—Sulfur or sulfur oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/12—Condition responsive control
Definitions
- the invention relates to a method for the regeneration of a NOx storage catalytic converter according to the preamble of the main claim.
- NOx storage catalysts are used for this. Due to their coating, these NOx storage catalytic converters are able to absorb NOx compounds from the exhaust gas that arise during lean combustion. During a regeneration phase, the absorbed or stored NOx compounds are converted into harmless compounds with the addition of a reducing agent.
- Reducing agents for lean-burn gasoline internal combustion engines can use CO, H 2 and HC (hydrocarbons). These are generated by briefly operating the internal combustion engine with a rich mixture and made available to the NOx storage catalytic converter as exhaust gas components, as a result of which the stored NOx compounds in the catalytic converter are broken down.
- the efficiency of such a NOx storage catalytic converter essentially depends on optimal regeneration. If the amount of regeneration agent is too small, the stored NOx is not broken down sufficiently, as a result of which the efficiency with which NOx is absorbed from the exhaust gas deteriorates. If the amount of regenerant is too high, optimal NOx conversion rates are achieved, but an inadmissibly high emission of reducing agent occurs. The optimal amount of regenerant fluctuates over the life of a Vehicle. The possible cause for this can be the change in the NOx mass flow emitted by the internal combustion engine.
- German patent application DE 197 05 335 by the same applicant describes a method for triggering sulfate regeneration for a NOx storage catalytic converter, in which a sulfate regeneration phase is carried out at predetermined times.
- a sulfate regeneration phase is carried out at predetermined times.
- the thermal aging of the NOx storage catalytic converter is also taken into account in addition to the amount of sulfate stored.
- EP 0 597 106 A1 discloses a method for regenerating a NOx storage catalytic converter, in which the amount of NOx compounds absorbed by the NOx storage catalytic converter is calculated as a function of operating data of the internal combustion engine. When a predetermined limit of NOx stored in the NOx storage catalytic converter is exceeded, a regeneration phase is initiated. In this way, however, reliable compliance with the exhaust gas emission limit values cannot be guaranteed.
- a NOx sensor is usually arranged downstream of the catalytic converter.
- a NOx sensor is for example from N. Kato et al. , "Performance of Thick Film NOx Sensor on Diesel and Gasoline Engines ", Society of Automotive Engmeers, Publ. No.970858.
- the invention is based on the object of specifying a method with which the regeneration of a NOx storage catalytic converter takes place in such a way that it is operated with optimum efficiency.
- a signal tapped at a NOx sensor is evaluated in order to determine whether the amount of regeneration agent was optimal.
- the signal used for this is picked up on an amperometric NOx sensor.
- the amount of regeneration agent to be supplied to the NOx storage catalyst is adapted to the optimum value. Since a strongly reduced reduction medium requirement results from a reduced storage capacity of the NOx storage catalytic converter, sulfate regeneration can preferably be carried out if the storage capacity is reduced too much.
- the advantage that can be achieved with the invention thus consists, in particular, in that the optimum amount of regeneration agent is supplied over the entire service life of the vehicle.
- FIG. 1 shows a schematic representation of an internal combustion engine with a NOx storage catalytic converter
- FIG. 2 shows a diagram with the time course of the output signal during regeneration of the NOx
- FIG. 3 shows a flow chart for carrying out the method
- FIG. 4 shows a schematic sectional illustration through a NOx sensor.
- FIG. 1 shows in the form of a block diagram an internal combustion engine with an exhaust gas aftertreatment system in which the method is used. Only the parts and components necessary for understanding the invention are shown.
- An internal combustion engine 10 has an intake tract 11 and an exhaust tract 12.
- a fuel metering device of which only one injection valve 13 is shown schematically.
- a pre-cat lambda probe 14 Provided in the exhaust tract 12 is a pre-cat lambda probe 14, a NOx storage catalytic converter 15 and, downstream thereof, a NOx sensor 16. With the help of the pre-cat lambda sensor 14, the air / fuel ratio in the exhaust gas upstream of the NOx storage catalytic converter 15 is determined.
- the NOx sensor 16 is used, among other things, to check the NOx storage catalytic converter 15.
- the operation of the internal combustion engine 10 is regulated by an operating control device 17 which has a memory 18 in which, among other things, a plurality of threshold values are stored.
- the operating control device 17 is connected to further measuring sensors and actuators via a schematically represented data and control line 19.
- the NOx sensor 16 present downstream of the NOx storage catalytic converter 15 is an amperometric sensor. It is shown in more detail in a schematic sectional illustration in FIG. 4 under reference number 34. It consists of a solid electrolyte 26, for example Zr0 2, and contains the exhaust gas to be measured, supplied via a diffusion barrier 33. The exhaust gas diffuses through the diffusion barrier 33 into a first measuring cell 20. The oxygen content in the measuring cell 20 is measured by means of a first Nernst voltage V0 between a first electrode 21 and a reference electrode 29 exposed to ambient air. The first electrode 21 can also be made in several parts or with multiple taps. Both electrodes 21, 29 are conventional platinum electrodes. The reference electrode 29 is arranged in an air duct 28 into which ambient air enters via an opening 27.
- the measured value of the first Nernst voltage V0 is used to set a control voltage VpO.
- the control voltage VpO drives a first oxygen-ion pumping current IpO through the solid electrolyte 26 between the first electrode 21 and an outer electrode 22.
- the control intervention of the first Nernst voltage V0 on the control voltage VpO, shown by a broken line, has the consequence that the oxygen ions Pump current IpO is set so that there is a certain oxygen concentration or a certain oxygen partial pressure in the first measuring cell 20.
- the first measuring cell 20 is connected to a second measuring cell 24 via a further diffusion barrier 23.
- the gas present in the first measuring cell 20 diffuses through this diffusion barrier 23. Due to the diffusion, a correspondingly lower, second suction is produced in the second measuring cell 24. material concentration or oxygen partial pressure.
- This second oxygen concentration is in turn measured via a Nernst voltage VI between a second electrode 25, which is also a conventional plate electrode, and the reference electrode 29, and is used to regulate a second oxygen ion pump current Ipl.
- the second oxygen-ion pumping current Ipl out of the first measuring cell 20 flows from the second electrode 25 through the solid electrolyte 26 to the outer electrode 22.
- the second Nernst voltage VI With the aid of the second Nernst voltage VI, the second oxygen-ion pumping current Ipl is regulated in such a way that In the second measuring cell 24 there is a certain, low, second oxygen concentration.
- the NOx not affected by the previous processes in the measuring cells 20 and 24 is now decomposed at the measuring electrode 30, which is designed to be catalytically effective, by applying the voltage V2, and the oxygen released as a measure of the NOx concentration at the measuring electrode 30 and thus pumped in the exhaust gas to be measured in a measuring current Ip2 to the reference electrode 29 hm.
- the following voltage is generated in the first measuring cell 20:
- First measuring cell RT / (4 F). (In Po 2 , first measuring cell ⁇ l n P ⁇ 2 , exhaust gas)
- Second measuring cell RT / (4 F). (In Po 2 , ambient air
- ambient / second measuring time is the oxygen partial pressure in the ambient air or the second measuring cell.
- the two measuring cells 20 and 24 are connected in series, so that in a first approximation at a sufficiently homogeneous temperature of the NOx sensor 34, a sufficiently low current IpO and a sufficiently equal oxygen partial pressure at the taps the inner electrode 21 has the following relationship:
- Lambda probe This differential voltage between the outer electrode 22 and the reference electrode 29 is used as the output signal US for the method for regenerating a NOx storage catalytic converter.
- the measurement error in the voltage in the first measuring cell 20 caused by the contact resistance R0 in equation (I) can advantageously be corrected.
- a certain resistance value is assumed and an IpO-dependent compensation is carried out.
- the output signal US can advantageously be corrected with respect to the temperature of the sensor 34.
- FIG. 2 shows the time course of the output signal US of the NOx sensor 16 during the regeneration phase of the NOx storage catalytic converter 15.
- the course of the pre-cat lambda setpoint LAMSOLL is also shown in this illustration. net.
- the internal combustion engine 10 is operated lean again.
- the output signal US is approximately 0.03 V. At the beginning of the regeneration phase, this voltage rises continuously. Towards the end of the regeneration phase, the lambda value UL on the NOx sensor 16 downstream of the NOx storage catalytic converter 15 drops below 1 and the output signal US rises steeply. Later, UL rises again to values for a lean mixture and US falls again.
- a first total value FL1 is calculated from the output signal US sampled at a certain frequency (e.g. 100 Hz) from the beginning of the regeneration phase until a threshold value SW (e.g. 0.25 V) is exceeded. This total value corresponds to the area identified by the reference symbol FL1 in FIG. 3.
- a second total value FL2 is calculated from the output signal US sampled at the same frequency from when the threshold value SW is exceeded until the threshold value SW is again fallen below. This total value corresponds to the area identified by the reference symbol FL2 in FIG. 3.
- the areas FL1 and FL2 can also be formed by continuous integration instead of by summation.
- Storage catalytic converter 15 is supplied when the total value FL2 is greater than a threshold value SW1 and the total value FL2 lies between a lower threshold value USW2 and an upper threshold value OSW2.
- step S1 the total values or areas FL1 and FL2 are calculated and buffered.
- the threshold value SW1 for the total value FL1 and the threshold values USW2 and OSW2 for the total value FL2 are then read out from the memory 18 of the operating control device 17 (step S2).
- step S3 it is checked whether the amount of regenerant supplied is optimal. This is the case when the total value FL1 lies above the threshold value SW1 and the total value FL2 lies within the range delimited by the lower threshold value USW2 and the upper threshold value OSW2. If these two conditions are met (step S4), no intervention is necessary, the amount of regenerant used was optimal and the process is ended (step S11).
- step S3 If it turns out that these two conditions are not met (step S3), a non-optimal amount of regenerant was supplied to the NOx storage catalytic converter 15 in the regeneration phase.
- the amount of regeneration agent has to be increased or decreased in order to achieve optimal regeneration of the NOx storage catalytic converter 15. For this purpose, it is first checked whether the total value FL1 is above the threshold value SW1 and the total value FL2 is below the lower threshold value USW2 (step S5). If this is the case, the amount of regenerant is too small and must be increased (step S11, case A).
- the amount of regeneration agent can be increased by changing m the air ratio during the regeneration phase in the bold direction.
- the regeneration phase can also be carried out for a longer time, which is preferable to m as the variation of the Lamb ⁇ a value in the regeneration phase is only narrow Limits (e.g. between 0.75 and 0.85) is possible. If a larger amount of regeneration agent has been set for the following regeneration phases, the method is ended (step S11).
- step S7 If it is found in step 5 that the total value FL1 is below the threshold value SW2 and the total value FL2 is above the lower threshold value USW2, it is checked whether the total value FL1 is above the threshold value SW2 and the total value FL2 is above the upper threshold value OSW2 (step S7) . Then the amount of regenerant is too large and must be reduced (step S8, case B). The reduction in the amount of regenerant can be done analogously to the increase in case A. If a smaller amount of regeneration agent has been stored for future regeneration phases of the NOx storage catalytic converter 15, the method is ended (step S11).
- Storage catalyst 15 has dropped (case C).
- the storage phase In order to achieve optimal conversion behavior of the exhaust system, the storage phase must therefore be shortened. This can be done, for example, by reducing the storage capacity used in a computational catalyst model.
- the threshold value SW1 must also be lowered. If the threshold value SW1 falls below a lower limit value during the useful life of the internal combustion engine 10, this means that the catalyst capacity has reached a minimum value, which can be caused, for example, by sulfate storage. In this case, a sulfate regeneration is preferably requested and carried out, as is the case, for example, in Germany. see patent application 197 05 335 is described. After sulfate regeneration has taken place, the threshold value SW1 can be reset to the initial value.
- the mentioned threshold values SW, SW1, USW2, OSW2 are determined on a test bench.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19830829 | 1998-07-09 | ||
DE19830829A DE19830829C1 (de) | 1998-07-09 | 1998-07-09 | Verfahren zur Regeneration eines NOx-Speicherkatalysators |
PCT/DE1999/001907 WO2000002648A1 (fr) | 1998-07-09 | 1999-07-01 | PROCEDE DE REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOx |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1098694A1 true EP1098694A1 (fr) | 2001-05-16 |
EP1098694B1 EP1098694B1 (fr) | 2004-03-10 |
Family
ID=7873543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99942726A Expired - Lifetime EP1098694B1 (fr) | 1998-07-09 | 1999-07-01 | PROCEDE DE REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOx |
Country Status (5)
Country | Link |
---|---|
US (1) | US6385966B2 (fr) |
EP (1) | EP1098694B1 (fr) |
JP (1) | JP2002520530A (fr) |
DE (2) | DE19830829C1 (fr) |
WO (1) | WO2000002648A1 (fr) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19852240A1 (de) * | 1998-11-12 | 2000-05-18 | Volkswagen Ag | Überwachungsverfahren für NOx-Speicherkatalysatoren und Abgasreinigungsvorrichtung zur Durchführung dieses Verfahrens |
JP4625189B2 (ja) * | 1999-05-19 | 2011-02-02 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 電気化学的ガスセンサによる燃焼混合物の定義されたリッチ/リーン制御のための方法 |
DE19922962C2 (de) * | 1999-05-19 | 2003-02-27 | Daimler Chrysler Ag | Verfahren zur periodischen Desulfatisierung eines Stickoxid- oder Schwefeloxid-Speichers einer Abgasreinigungsanlage |
DE19923498A1 (de) * | 1999-05-21 | 2000-11-23 | Volkswagen Ag | Verfahren zur Steuerung einer Regeneration eines NOx-Speicherkatalysators |
JP3805562B2 (ja) * | 1999-06-03 | 2006-08-02 | 三菱電機株式会社 | 内燃機関の排気浄化装置 |
DE19926146A1 (de) * | 1999-06-09 | 2000-12-14 | Volkswagen Ag | Verfahren zur Initiierung und Überwachung einer Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator |
DE19931223C2 (de) * | 1999-07-06 | 2002-10-31 | Siemens Ag | Verfahren zum Erkennen und Aufrechterhalten der Betriebsbereitschaft eines NOx-Speicherkatalysators |
DE19945374A1 (de) * | 1999-09-22 | 2001-03-29 | Volkswagen Ag | Verfahren zur Funktionsüberwachung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Sensors |
DE19963624A1 (de) * | 1999-12-29 | 2001-07-12 | Bosch Gmbh Robert | Verfahren zum Betrieb eines NOx-Speicherkatalysators bei Brennkraftmaschinen |
DE19963927A1 (de) * | 1999-12-31 | 2001-07-12 | Bosch Gmbh Robert | Verfahren zum Betreiben eines Speicherkatalysators einer Brennkraftmaschine |
DE10001310A1 (de) * | 2000-01-14 | 2001-07-19 | Volkswagen Ag | Vorrichtung und Verfahren zur Steuerung einer NOx-Regeneration eines NOx-Speicherkatalysators |
DE10001432A1 (de) * | 2000-01-15 | 2001-08-16 | Volkswagen Ag | Verfahren und Vorrichtung zur Steuerung einer Entschwefelung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators |
DE10003612A1 (de) * | 2000-01-28 | 2001-08-02 | Volkswagen Ag | Verfahren und Vorrichtung zur Ermittlung einer NOx-Speicherkapazität eines NOx-Speicherkatalysators |
DE10005474C2 (de) * | 2000-02-08 | 2003-04-17 | Bayerische Motoren Werke Ag | Verfahren und Vorrichtung zur Desulfatisierung eines NOx-Speicherkatalysators mit einem NOx-Sensor |
DE10005473C2 (de) * | 2000-02-08 | 2002-01-17 | Bayerische Motoren Werke Ag | Verfahren und Vorrichtung zur Desulfatisierung eines Stickoxidspeicherkatalysators |
JP3858554B2 (ja) * | 2000-02-23 | 2006-12-13 | 株式会社日立製作所 | エンジン排気浄化装置 |
US6438944B1 (en) * | 2000-03-17 | 2002-08-27 | Ford Global Technologies, Inc. | Method and apparatus for optimizing purge fuel for purging emissions control device |
US6843051B1 (en) * | 2000-03-17 | 2005-01-18 | Ford Global Technologies, Llc | Method and apparatus for controlling lean-burn engine to purge trap of stored NOx |
DE10017203A1 (de) * | 2000-04-06 | 2001-10-11 | Audi Ag | Verfahren zur Entschwefelung eines im Abgasstrang einer Diesel-Brennkraftmaschine angeordneten Oxidationskatalysators |
DE10024773A1 (de) * | 2000-05-19 | 2001-11-22 | Volkswagen Ag | Direkteinspritzende und fremdgezündete Verbrennungskraftmaschine und Verfahren zur Minderung eines Restsauerstoffgehaltes im Abgas derselben |
DE10032560B4 (de) * | 2000-07-05 | 2010-04-08 | Volkswagen Ag | Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator |
DE10036453A1 (de) * | 2000-07-26 | 2002-02-14 | Bosch Gmbh Robert | Verfahren und Steuergerät zum Betreiben eines Stickoxid (NOx)-Speicherkatalysators |
JP3558036B2 (ja) * | 2000-12-21 | 2004-08-25 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
DE10217455B4 (de) * | 2002-04-19 | 2010-01-07 | Audi Ag | Verfahren zum Betrieb eines NOx-Adsorbers sowie NOx-Adsorber-Steuerung |
DE10244125B4 (de) * | 2002-09-23 | 2008-01-31 | Siemens Ag | Verfahren zur Bewertung des Zeitverhaltens eines NOx-Sensors |
DE10249610B4 (de) * | 2002-10-18 | 2010-10-07 | Volkswagen Ag | Verfahren und Vorrichtung zur Steuerung eines NOx-Speicherkatalysators |
JP4118784B2 (ja) * | 2003-10-30 | 2008-07-16 | 本田技研工業株式会社 | 排気ガス浄化装置の劣化診断装置 |
DE102004007523B4 (de) | 2004-02-17 | 2007-10-25 | Umicore Ag & Co. Kg | Verfahren zur Bestimmung des Umschaltzeitpunktes von der Speicherphase zur Regenerationsphase eines Stickoxid-Speicherkatalysators und zur Diagnose seines Speicherverhaltens |
DE102004021372B4 (de) * | 2004-04-30 | 2014-05-28 | Robert Bosch Gmbh | Verfahren zum Dosieren eines Reagenzmittels zur Reinigung des Abgases von Brennkraftmaschinen und Vorrichtung zur Durchführung des Verfahrens |
DE102007001417B4 (de) * | 2007-01-09 | 2009-11-12 | Ford Global Technologies, LLC, Dearborn | Vorrichtung zur Abschätzung des Beladungszustandes eines NOx-Speicherkatalysators |
US8701390B2 (en) * | 2010-11-23 | 2014-04-22 | International Engine Intellectual Property Company, Llc | Adaptive control strategy |
CN102179258B (zh) * | 2011-03-24 | 2012-10-24 | 清华大学 | 一种V2O5-WO3/TiO2催化剂碱金属中毒后的再生方法 |
KR102329672B1 (ko) * | 2015-03-31 | 2021-11-23 | 삼성전자주식회사 | 사이클론 집진장치 및 이를 포함하는 진공 청소기 |
US10920645B2 (en) | 2018-08-02 | 2021-02-16 | Ford Global Technologies, Llc | Systems and methods for on-board monitoring of a passive NOx adsorption catalyst |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2636883B2 (ja) * | 1988-04-30 | 1997-07-30 | 日本碍子株式会社 | NOx濃度測定装置 |
WO1993008383A1 (fr) * | 1991-10-14 | 1993-04-29 | Toyota Jidosha Kabushiki Kaisha | Dispositif d'echappement et d'epuration pour moteurs a combustion interne |
US5437153A (en) * | 1992-06-12 | 1995-08-01 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of internal combustion engine |
EP0636770B1 (fr) * | 1993-01-19 | 1999-09-08 | Toyota Jidosha Kabushiki Kaisha | Dispositif de nettoyage de gaz d'echappement pour moteur a combustion interne |
WO1995014226A1 (fr) * | 1993-11-19 | 1995-05-26 | Ceramatec, Inc. | Detecteur multifonctions pour systemes de combustion |
DE4447033C2 (de) * | 1994-12-28 | 1998-04-30 | Bosch Gmbh Robert | Meßfühler zur Bestimmung des Sauerstoffgehaltes in Gasgemischen |
DE19511548A1 (de) * | 1995-03-29 | 1996-06-13 | Daimler Benz Ag | Verfahren und Vorrichtung zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine |
US5554269A (en) * | 1995-04-11 | 1996-09-10 | Gas Research Institute | Nox sensor using electrochemical reactions and differential pulse voltammetry (DPV) |
US5948964A (en) * | 1995-10-20 | 1999-09-07 | Ngk Insulators, Ltd. | NOx sensor and method of measuring NOx |
JPH1068346A (ja) * | 1996-06-21 | 1998-03-10 | Ngk Insulators Ltd | エンジン排ガス系の制御法 |
JPH1071325A (ja) * | 1996-06-21 | 1998-03-17 | Ngk Insulators Ltd | エンジン排ガス系の制御方法および触媒/吸着手段の劣化検出方法 |
DE19640161A1 (de) * | 1996-09-28 | 1998-04-02 | Volkswagen Ag | NOx-Abgasreinigungsverfahren |
DE19705335C1 (de) * | 1997-02-12 | 1998-09-17 | Siemens Ag | Verfahren zur Regeneration eines Speicherkatalysators |
DE19852244C1 (de) * | 1998-11-12 | 1999-12-30 | Siemens Ag | Verfahren und Vorrichtung zur Abgasreinigung mit Trimmregelung |
-
1998
- 1998-07-09 DE DE19830829A patent/DE19830829C1/de not_active Expired - Fee Related
-
1999
- 1999-07-01 JP JP2000558904A patent/JP2002520530A/ja not_active Withdrawn
- 1999-07-01 EP EP99942726A patent/EP1098694B1/fr not_active Expired - Lifetime
- 1999-07-01 DE DE59908818T patent/DE59908818D1/de not_active Expired - Lifetime
- 1999-07-01 WO PCT/DE1999/001907 patent/WO2000002648A1/fr active IP Right Grant
-
2001
- 2001-01-09 US US09/757,330 patent/US6385966B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0002648A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP1098694B1 (fr) | 2004-03-10 |
JP2002520530A (ja) | 2002-07-09 |
WO2000002648A1 (fr) | 2000-01-20 |
DE19830829C1 (de) | 1999-04-08 |
US20010002539A1 (en) | 2001-06-07 |
US6385966B2 (en) | 2002-05-14 |
DE59908818D1 (de) | 2004-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1098694A1 (fr) | PROCEDE DE REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOx | |
DE19844082C1 (de) | Verfahren zum Regenerieren eines NOx-Speicherkatalysators | |
DE69933091T2 (de) | Abgasreinigungssystem und- verfahren für eine Brennkraftmaschine | |
DE19953601C2 (de) | Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine | |
EP0950801B1 (fr) | Procédé pour la détection de la détérioration d'un catalyseur adsorbant d'oxydes d'azote | |
EP1373700B1 (fr) | Procede pour purifier des gaz d'echappement provenant d'un moteur a combustion interne | |
DE602005000930T2 (de) | Abgassteuervorrichtung und abgassteuerverfahren für verbrennungsmotor | |
EP1097299A1 (fr) | PROCEDE DE VERIFICATION DU RENDEMENT D'UN POT CATALYTIQUE A ACCUMULATION DE NOx | |
DE10103772C2 (de) | Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält | |
DE19961165A1 (de) | Verfahren zur Entschwefelung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators | |
DE19801625A1 (de) | Diagnose eines NOx-Speicherkatalysators beim Betrieb von Verbrennungsmotoren | |
DE19801626A1 (de) | Diagnose eines NOx-Speicherkatalysators beim Betrieb von Verbrennungsmotoren | |
WO2000000729A1 (fr) | PROCEDE DE REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOx D'UN MOTEUR A COMBUSTION INTERNE | |
DE19843859A1 (de) | Katalysatorregenerationsverfahren | |
DE19851843B4 (de) | Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine | |
DE10027347B4 (de) | Abgasemissionssteuerungs/regelungsvorrichtung für einen Verbrennungsmotor | |
EP0986697B1 (fr) | PROCEDE DE REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOx | |
DE19962675A1 (de) | Diagnosevorrichtung und -Verfahren für ein Adsorptionsmittel | |
DE19844745C1 (de) | Regenerationsverfahren für einen NOx-Speicherkatalysator einer Brennkraftmaschine | |
DE102015200762A1 (de) | Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage | |
DE102015200751A1 (de) | Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage | |
DE102020202136A1 (de) | Lambdakompensation mit Abgasbrenner | |
DE19912832A1 (de) | Luft-Kraftstoffverhältnissteuerung für einen Verbrennungsmotor | |
EP1143131A2 (fr) | Système d'échappement multiple et procédé pour la régulation du rapport air/carburant et pour le contrôle de la régénération d'un catalyseur d'accumulation des oxydes d'azote | |
DE10019245A1 (de) | Verfahren und System zur Regelung des Regenerierzyklus eines Mager-NOx-Auffanggefässes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20001127 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20021016 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040310 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59908818 Country of ref document: DE Date of ref document: 20040415 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041213 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080715 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080722 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090701 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120731 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59908818 Country of ref document: DE Effective date: 20140201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 |