EP1093132B1 - Elément résistif ajustable, son application et procédé de fabrication - Google Patents

Elément résistif ajustable, son application et procédé de fabrication Download PDF

Info

Publication number
EP1093132B1
EP1093132B1 EP00115803A EP00115803A EP1093132B1 EP 1093132 B1 EP1093132 B1 EP 1093132B1 EP 00115803 A EP00115803 A EP 00115803A EP 00115803 A EP00115803 A EP 00115803A EP 1093132 B1 EP1093132 B1 EP 1093132B1
Authority
EP
European Patent Office
Prior art keywords
layer
contact layer
trimming resistor
contact
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00115803A
Other languages
German (de)
English (en)
Other versions
EP1093132A3 (fr
EP1093132A2 (fr
Inventor
Walter Emili
Herbert Goebel
Harald Wanka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1093132A2 publication Critical patent/EP1093132A2/fr
Publication of EP1093132A3 publication Critical patent/EP1093132A3/fr
Application granted granted Critical
Publication of EP1093132B1 publication Critical patent/EP1093132B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/22Elongated resistive element being bent or curved, e.g. sinusoidal, helical

Definitions

  • the invention relates to a planar balancing resistor with a substrate and a deposited thereon Resistor layer, a resistance bridge circuit and a sensor comprising such Use balance resistor, and procedure for the preparation of the balancing resistor or the resistance bridge circuit or the Sensor.
  • Balancing resistors are used in circuits, the first made with a certain tolerance and their behavior afterwards by adjusting the resistance value of said Adjustment resistors is set exactly.
  • This advantage is achieved in that a contact layer, which has better conductivity than that Resistor layer, on the resistance layer is arranged so that they at least to individual places with the latter in managerial contact stands, and the at least locally ablative Treatment is accessible. If at one such adjustment resistor, the contact layer locally is eliminated, this has the consequence that a Electricity that otherwise flowed through the contact layer at least partially into the resistance layer is pushed, so that by the removal the contact layer of the resistance value controlled is increased. At the same time as the resistance layer exist under the ablated contact layer remains, the substrate opposite one changes electrically conductive surface of the Reconciliation resistance is not, and its capacity is not changed by the removal process.
  • the contact layer may over the Limits of the resistive layer out on the substrate extend. However, those areas are allowed the contact layer, not above the Resistive layer lie, not be removed, otherwise the surface of the balance resistor would be reduced and the capacity thus nevertheless would be undesirable. To such To rule out problems, it is appropriate to the Contact layer during the production of the balancing resistor so that they do not have the Resists edges of the resistive layer.
  • the contact layer and the resistance layer are preferably formed strip-shaped. connecting contacts are at opposite ends of the contact layer strip intended.
  • the Stripes can be zigzag or meandering in a space-saving manner be arranged on the substrate.
  • the balance resistor has a passivation layer on that the resistance layer essentially covered and only locally individual Window has the conductive contact allow the contact layer with the resistive layer.
  • the contact layer is particularly easy to cut, their severance causes a electric current, otherwise through the contact layer would have flowed between the two windows must take the path over the resistance layer.
  • the passivation layer is not just for protection the resistance layer from environmental influences, their Window structure has the additional advantage that it is sufficient, the contact layer on a small To cut length between two windows to the current path in the resistance layer around the im Compared to this length greater distance between to extend two windows.
  • a preferred application of the balancing resistor is a resistance bridge circuit.
  • the Resistance elements and the at least one balancing resistor formed on the same substrate. So the resistance elements and the Balancing resistor partly with the same process steps getting produced.
  • balancing resistor is a sensor that is a deformable Substrate and at least one resistive element, its resistance by deformation of the substrate is changeable and an inventive Matching resistor is assigned.
  • This resistance element can in turn be part of a Be resistance bridge circuit.
  • the sensor may advantageously be act a pressure sensor; the substrate can be part a pressure capsule of such a sensor.
  • the invention further relates to a defined in claim 16 method for Producing a balancing resistor, in which a Resistance layer on an insulated substrate is separated and structured, and in which over the resistance layer in at least local Contact with this one contact layer formed which is better in conductivity than the resistance layer Has.
  • the windows to manufacture having the local contact.
  • the different layers are suitable photolithographic Procedure or - especially for sensors advantageous - laser structuring method.
  • the Contact layer can in particular also by sputtering of the layer material are generated. Also conceivable is the application of the material of Contact layer directly through a mask, so that the contact layer on the resistance layer (separated by the passivation) immediately in the desired shape arises.
  • the adjustment of the resistance is preferably carried out by severing the contact layer between two Windows, preferably by laser ablation. These Laser ablation is with the same equipment feasible, which may also be previously for the laser structuring used the different layers have been.
  • Figures 1, 2 and 3 show a section of a Inventive balancing resistor in one Top view or in two sections.
  • a substrate 1 here a stainless steel sheet with an insulating layer 2 built of silica on it.
  • He includes one Resistance layer 3 of a material with moderate good conductivity, on the insulation layer 2 forms a meandering or zigzag pattern, of which two complete periods are shown in FIG are.
  • the contact layer 6 is over the Window 4 with the resistance layer 3 in conductive Contact.
  • the conductivity of the contact layer 6 significantly better than that of the resistive layer 3 flows in the unbalanced state of the balancing resistor a current applied through the contact terminals in the essentially through the contact layer 6.
  • a bottleneck e.g. to area 7 cut.
  • the method of laser ablation is suitable in particular with an excimer laser. That's it readily possible, one on the area 7 irradiated laser energy so that the Contact layer 6 at the relevant point is removed without at the same time the underlying Resistor layer 3 with damaged becomes.
  • the materials the contact layer 6 and the resistance layer 3 and the wavelength of the laser can be chosen so that the ablation of the contact layer.
  • the composition of the Passivation layer 5 serve.
  • the penetration depth of the laser radiation adjust so that these on the Total thickness of the passivation layer 5 away from this is absorbed and so their energy in their distributed throughout the entire volume.
  • the penetration depth of the radiation at the metals or semiconductor materials of the contact layer or the resistance layer essential smaller, so that the induced by the laser heating these layers are on a thin surface layer concentrated and sufficient of these to evaporate this surface layer.
  • Figures 4 and 5 show a preferred application example of the balancing resistor described above.
  • FIG. 4 is a plan view of the membrane 12 of FIG Pressure sensor, here the role of the substrate 1 plays.
  • this membrane are four resistor elements R1, R2, R3, R4 with terminals A1, A2, A3, A4 connected to a Wheatstone bridge. Balancing resistors A1, A2 with reference to figures 1 to 3 described with the resistance elements R3, R4 connected in series.
  • the resistance elements and the balancing resistors are in a common process, to which later is received in more detail on the membrane 12th generated; the resistor elements R1, R2, R3, R4 have a resistive layer, that of the resistive layer 3 corresponds to the balancing resistances, however, they do not have a continuous one Contact layer, and the passivation layer 5 is over the resistive elements R1, R2, R3, R4 with Exception of their connecting pads throughout.
  • FIG. 5 shows the membrane 12 of FIG. 4 in cross section. It is part of a high pressure sensor 11 and is integral with a rigid metal frame thirteenth connected. Located between the two sides the diaphragm 12 a pressure gradient, this leads to a deformation of the membrane 12, and it comes to Example if the pressure below the membrane is higher is as above, in the field of resistance elements R1 and R2 to a compression and in the area of the resistance elements R3 and R4 to an elongation at the Surface of the membrane. These deformations influence the conductivity of the resistive layers the resistance elements and cause a detuning the Wheatstone Bridge leading to one two of the terminals K1 to K4 tapped, of Zero different measuring voltage leads.
  • the resistance layer expediently, a material chosen, the one distinct dependence of the specific resistance from deformation.
  • materials are here e.g. polycrystalline silicon, Chrome-nickel alloy or platinum to mention.
  • NiCr layers show virtually no Temperature dependence of the resistance, but one relatively small effect when bending while polycrystalline silicon has a non-linear temperature dependence, but for a much larger Has bending effect.
  • Platinum shows also a significant effect in a linear Temperature dependence of the resistance.
  • suitable Layer thicknesses are in the range of 500 to 600 nm for polycrystalline silicon and from 50 to 100 nm for CrNi or platinum.
  • the layer thicknesses should be selected so that the layer conductivity of the resistance layer smaller than that of the contact layer, regardless the specific conductivities of these Layers of used materials.
  • Stage A shows the still empty substrate 1 and the pressure box of Figure 5, consisting of the Frame 13 and the membrane 12.
  • This substrate is initially subjected to an incoming control for roughness and then wet and then final purification by argon-back sputtering.
  • the thus treated substrate is then on preheated to about 300 ° C to make it for a PECVD oxide deposition prepare.
  • the Insulation layer 2 in a thickness of 7-10 microns Deposited silicon oxide. This isolation layer on the substrate is sampled for thickness and tension controlled.
  • the resistance layer 3 by sputtering applied.
  • the surface resistance is checked by the 4-point method, and the layer thickness is determined by X-ray fluorescence (Level C).
  • a structuring step in which the initially applied over a large area resistive layer the meander structure shown in FIG will be produced.
  • the photolithographic Technique involves the application of a Lacquer layer, exposing the lacquer layer with the desired pattern and its evolution, a afterchemical etching of those areas through the development has lost its lacquer coating, and finally the removal of the rest Paint layer.
  • the laser structuring stops particularly advantageous structuring method Hereby, laser light becomes suitable energy density through a mask on the surface of the membrane irradiated. With the help of the recess at the Rear side of the membrane 12 (see Figure 5) is it possible, the sensor suitable for structuring to center. In addition, the coated level automatically brought into the focal plane.
  • the Laser exposure through the mask causes the with the laser radiation acted upon layer material removed (ablated), so that the multiplicity the steps of the photolithographic process can be omitted.
  • the strength of the absorption of the excimer laser radiation used in the insulation layer 2 can by setting a desired silicon content the insulation layer can be varied. This makes possible it, that radiation, towards the end of the ablation the resistance layer 3, the insulating layer 2 achieved absorbed over the entire thickness absorbed is and so is the interface between Substrate and insulation layer not or not in of such strength that it becomes one could cause damage to this boundary layer.
  • a Such silicon-rich oxide layer can also be advantageously by a sputtered silicon oxide layer to reach.
  • Such a sputtered layer also has the advantage that thereby the subsequent to be applied resistance layer a higher Achieved long-term stability, because thereby the resistance layer protected from the hydrogen is usually in PECVD oxide or Nitride layers incorporated in the deposition becomes. Consequently, then should also before Passivation of the resistive layer a sputtered Oxide layer can be provided.
  • Stage (D) shows the substrate with the finished textured Resistive layer 3.
  • a subsequent structuring of the passivation layer 5 can turn a photolithographic Technique or laser structuring applied as already for the structuring of the resistance layer 3 described.
  • windows 4 are each above the remaining pieces of the resistance layer 3 generated. Those pieces that one of the Resistive elements R1 to R4 to form obtained two windows for the passage of the connection contacts, those pieces that match the balance resistors A1, A2 should receive a variety of distributed over its surface Windows.
  • the finished structured passivation layer 5 (Step F) is optically controlled.
  • the contact layer becomes 6 applied by sputtering.
  • the material for the contact layer 6 is preferably Gold - also because of its stability against Environmental influences - with a layer thickness of 0.3 used to 0.5 nm. If necessary, but will including a metallic adhesive layer and a another metal as a diffusion barrier in the same Step up. Aluminum or nickel come as materials also in question.
  • the thickness of the Contact layer 6 is then by means of X-ray fluorescence controlled.
  • the photolithographic Method or method of laser structuring in question.
  • the nominal dimensions of the contact layer areas, the contact layer of the balancing resistors are to be formed, are chosen in consideration of mask tolerances and other manufacturing inaccuracies guaranteed is that the remaining after structuring Contact layer at no point over the edge protrudes the underlying resistance layer.
  • This measure ensures that the capacitance of the resistive elements and the balancing resistors exclusively through the area their resistive layers 3 is fixed and of any inaccuracies in positioning the contact layers can not be affected. So it is possible to use the bridge circuit with a high degree of symmetry of the capacity of their individual To produce branches. Consequently, the bridge circuit in a wide frequency range of input voltages be operated without unequal distributions the capacity on the individual Branches their output voltage frequency dependent influence.
  • Stage (H) shows the sensor with finished structured contact layer 6. At this stage of production, after complete completion of all coating and structuring steps, the calibration of the bridge circuit can take place.
  • the proposed method is excellent for the production of high pressure sensors in Large series, because the manufacturing steps up to Stage (H) can be used advantageously in a holder for a large number of sensors are performed simultaneously without having to take steps in between that are a single treatment of Sensors require; after the adjustment is the Sensor completely finished, without further coating steps would be required.
  • the sensor can even be adjusted only then be when the membrane 12 with the metal frame 13th - Figure 5 - have been welded to a discharge nozzle is what may be a minor Can lead to detuning of the resistance bridge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Claims (22)

  1. Résistance d'équilibrage plane comportant :
    un substrat (1),
    une couche résistive (3) séparée sur le substrat (1),
    une couche de contact (6) disposée sur la couche résistive (3), la couche de contact (6) présentant une meilleure conductibilité que la couche résistive (3), est en contact conducteur celle-ci en au moins des points individuels (4), et étant accessible au moins localement (7) au dessus de la couche résistive (3) d'un traitement érodant,
    caractérisée en ce que
    la couche résistive (3) est incluse entre le substrat (1) et une couche passivante (5), la couche passivante présentant des fenêtres (4) au travers desquelles la couche de contact (6) touche la couche résistive.
  2. Résistance d'équilibrage selon la revendication 1,
    caractérisée en ce que
    la couche de contact (6) ne dépasse pas des bords de la couche résistive (3).
  3. Résistance d'équilibrage selon la revendication 1 ou 2,
    caractérisée en ce que
    la couche de contact (6) et la couche résistive (3) sont en forme de bande, et des contacts de connexion sont prévus aux extrémités opposées de la couche de contact (6).
  4. Résistance d'équilibrage selon la revendication 3,
    caractérisée en ce que
    les bandes sont disposées en dents de scie ou en méandre sur le substrat (1).
  5. Résistance d'équilibrage selon l'une des revendications précédentes,
    caractérisée en ce qu'
    une couche isolante (2) est disposée entre la couche résistive (3) et le substrat (1).
  6. Résistance d'équilibrage selon la revendication 1,
    caractérisée en ce que
    la couche de contact (6) présente respectivement un étranglement (7) entre deux fenêtres (4).
  7. Résistance d'équilibrage selon la revendication 1 ou 6,
    caractérisée en ce que
    la couche de contact (6) est séparée en au moins un point (7) entre deux fenêtres (4).
  8. Résistance d'équilibrage selon l'une des revendications précédentes,
    caractérisée en ce que
    la couche résistive (3) est en alliage nickel-chrome, en platine ou en polysilicium.
  9. Résistance d'équilibrage selon l'une des revendications précédentes,
    caractérisée en ce que
    la couche de contact (6) comprend une couche d'or.
  10. Résistance d'équilibrage selon l'une des revendications précédentes,
    caractérisée en ce que
    la couche de contact (6) présente une couche adhérente et/ou une barrière de diffusion sur son côté inférieur.
  11. Montage de résistance en pont,
    caractérisé en ce qu'
    il présente au moins une résistance d'équilibrage (A1, A2) selon l'une des revendications précédentes.
  12. Montage de résistance en pont selon la revendication 11,
    caractérisé en ce que
    les éléments résistifs (R1, R2, R3, R4) du montage de résistance en pont et la résistance d'équilibrage (A1, A2) sont formés sur un substrat (1) identique.
  13. Capteur avec un substrat déformable (1, 12) et au moins un élément résistif (R3, R4),
    caractérisé en ce qu'
    une résistance d'équilibrage (A1, A2) selon l'une des revendications 1 à 10 est attribuée à l'élément résistif (R3, R4).
  14. Capteur selon la revendication 13,
    caractérisé en ce que
    l'élément résistif (R3, R4) fait partie d'un montage de résistance en pont.
  15. Capteur selon la revendication 13 ou 14,
    caractérisé en ce que
    le substrat (1, 12) fait partie d'une capsule de pression.
  16. Procédé de fabrication d'une résistance d'équilibrage selon lequel une couche résistive (3) est séparée et structurée sur un substrat isolé (1), une couche de contact (6) étant formée par la couche résistive (3) ayant au moins un contact local avec celle-ci, qui a une meilleure conductibilité que la couche résistive,
    caractérisé en ce qu'
    une couche passivante (5), qui présente des fenêtres (4) pour réaliser le contact local, est appliquée sur la couche résistive (3) avant la formation de la couche de contact (6)
  17. Procédé selon la revendication 16,
    caractérisé en ce que
    la couche résistive (3) et/ou éventuellement la couche passivante (5) sont structurées de manière photolithographique et/ou par rayonnement laser.
  18. Procédé selon la revendication 16 ou 17,
    caractérisé en ce que
    la couche de contact (6) est créée par pulvérisation cathodique ou par métallisation sous vide.
  19. Procédé selon l'une des revendications 16 à 18,
    caractérisé en ce qu'
    une couche isolante (2) est créée par pulvérisation cathodique d'une couche de silicium sur le substrat (1) avant de créer la couche résistive (3).
  20. Procédé selon l'une des revendications 16 à 19,
    caractérisé en ce que
    le matériau de la couche de contact (6) est appliqué au travers d'un masque.
  21. Procédé selon l'une des revendications 16 à 20,
    caractérisé en ce que
    la couche de contact (6) est séparée entre deux fenêtres (4) pour l'équilibrage de la résistance (A1, A2), afin de forcer un flux de courant par la couche résistive (3).
  22. Procédé selon la revendication 21,
    caractérisé en ce que
    la séparation est réalisée par ablation au laser ou étincelage.
EP00115803A 1999-10-15 2000-07-22 Elément résistif ajustable, son application et procédé de fabrication Expired - Lifetime EP1093132B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19949607A DE19949607A1 (de) 1999-10-15 1999-10-15 Planarer Abgleichwiderstand, Anwendungen und Verfahren zu seiner Herstellung
DE19949607 1999-10-15

Publications (3)

Publication Number Publication Date
EP1093132A2 EP1093132A2 (fr) 2001-04-18
EP1093132A3 EP1093132A3 (fr) 2004-06-02
EP1093132B1 true EP1093132B1 (fr) 2005-12-28

Family

ID=7925674

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00115803A Expired - Lifetime EP1093132B1 (fr) 1999-10-15 2000-07-22 Elément résistif ajustable, son application et procédé de fabrication

Country Status (3)

Country Link
US (1) US6667683B1 (fr)
EP (1) EP1093132B1 (fr)
DE (2) DE19949607A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6647614B1 (en) * 2000-10-20 2003-11-18 International Business Machines Corporation Method for changing an electrical resistance of a resistor
AU2002325723A1 (en) * 2001-09-10 2003-03-24 Microbridge Technologies Inc. Method for trimming resistors
JP3915586B2 (ja) * 2002-04-24 2007-05-16 株式会社デンソー 力学量検出装置の製造方法
US20060039419A1 (en) * 2004-08-16 2006-02-23 Tan Deshi Method and apparatus for laser trimming of resistors using ultrafast laser pulse from ultrafast laser oscillator operating in picosecond and femtosecond pulse widths
US7598841B2 (en) 2005-09-20 2009-10-06 Analog Devices, Inc. Film resistor and a method for forming and trimming a film resistor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996551A (en) * 1975-10-20 1976-12-07 The United States Of America As Represented By The Secretary Of The Navy Chromium-silicon oxide thin film resistors
US4150366A (en) * 1976-09-01 1979-04-17 Motorola, Inc. Trim network for monolithic circuits and use in trimming a d/a converter
US4200970A (en) * 1977-04-14 1980-05-06 Milton Schonberger Method of adjusting resistance of a thermistor
US4201970A (en) * 1978-08-07 1980-05-06 Rca Corporation Method and apparatus for trimming resistors
US4586988A (en) * 1983-08-19 1986-05-06 Energy Conversion Devices, Inc. Method of forming an electrically conductive member
JPH01184942A (ja) * 1988-01-20 1989-07-24 Toshiba Corp トリミング素子とその電気短絡方法
DE3919059A1 (de) * 1989-06-10 1991-01-03 Bosch Gmbh Robert Drucksensor zum erfassen von druckschwankungen einer druckquelle
JPH0677021A (ja) * 1992-08-27 1994-03-18 Murata Mfg Co Ltd 抵抗体の抵抗値調整方法
US5363084A (en) * 1993-02-26 1994-11-08 Lake Shore Cryotronics, Inc. Film resistors having trimmable electrodes

Also Published As

Publication number Publication date
US6667683B1 (en) 2003-12-23
DE50011959D1 (de) 2006-02-02
DE19949607A1 (de) 2001-04-19
EP1093132A3 (fr) 2004-06-02
EP1093132A2 (fr) 2001-04-18

Similar Documents

Publication Publication Date Title
EP0129736B1 (fr) Capteur avec résistances en silicium polycristalline
DE4230338B4 (de) Verfahren zur Herstellung von Solarzellen aus amorphem Silizium mittels Naßätzen von Löchern oder Gräben durch Rückseitenelektroden und amorphes Silizium
DE68923141T2 (de) Abgleichbares Widerstandselement für eine mikroelektronische Schaltung.
DE69005785T2 (de) Elektrischer Widerstand in Chip-Bauweise für Oberflächenbestückung und Verfahren zu seiner Herstellung.
DE69410100T2 (de) Verfahren zur Herstellung von Dünnschichtwiderständen aus SiCr mit verbessertem Temperaturkoeffizienten und Schichtwiderstand
EP0082934B1 (fr) Détecteur d'humidité et procédé de sa fabrication
DE10245313A1 (de) Dünnfilm-Thermistor und Verfahren zum Einstellen des Widerstands desselben
DE2719731A1 (de) Mehrschichtschaltung
DE19835443C2 (de) Chip-Thermistor und Verfahren zum Einstellen eines Chip-Thermistors
EP1093132B1 (fr) Elément résistif ajustable, son application et procédé de fabrication
WO1986001290A1 (fr) Procede de fabrication d'une sonde de mesure destinee a la mesure de la temperature ou de la masse d'un fluide en ecoulement
DE2340142B2 (de) Verfahren zur massenproduktion von halbleiteranordnungen mit hoher durchbruchspannung
DE10039710B4 (de) Verfahren zur Herstellung passiver Bauelemente auf einem Halbleitersubstrat
DE19848832B4 (de) Thermistoren und Verfahren zum Einstellen und Erzeugen von Thermistoren
EP0001038A1 (fr) Procédé de fabrication d'un masque de silicium et son utilisation
EP0234487B1 (fr) Circuit à couche mince et procédé pour sa fabrication
EP0016263B1 (fr) Résistance en couche mince à coefficient de température élevé et procédé pour sa fabrication
DE10014984A1 (de) Herstellungsverfahren für ein Dünnschicht-Bauelement, insbesondere einen Dünnschicht-Hochdrucksensor
DE3640340C2 (de) Variable Interferometeranordnung
DE19845537A1 (de) Sensor und Verfahren zu seiner Herstellung
DE4007129A1 (de) Temperatursensor
WO2002071419A1 (fr) Procede pour produire des puces resistances a couche mince
DE2706418C3 (de) Verfahren zur Herstellung eines Temperaturmeßwiderstandes für ein Widerstandsthermometer
DE3041952A1 (de) Verfahren zur erzeugung einer duennschicht-sensoranordnung
DE2724942C2 (de) Dünnschichtkryotron und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20041202

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20050125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50011959

Country of ref document: DE

Date of ref document: 20060202

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060405

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100924

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120723

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120803

Year of fee payment: 13

Ref country code: IT

Payment date: 20120725

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50011959

Country of ref document: DE

Effective date: 20130201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130722

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130722

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731