EP1089245A1 - Passiv-Infrarotmelder - Google Patents

Passiv-Infrarotmelder Download PDF

Info

Publication number
EP1089245A1
EP1089245A1 EP99119496A EP99119496A EP1089245A1 EP 1089245 A1 EP1089245 A1 EP 1089245A1 EP 99119496 A EP99119496 A EP 99119496A EP 99119496 A EP99119496 A EP 99119496A EP 1089245 A1 EP1089245 A1 EP 1089245A1
Authority
EP
European Patent Office
Prior art keywords
reflectors
sensor
passive infrared
sub
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99119496A
Other languages
English (en)
French (fr)
Other versions
EP1089245B1 (de
Inventor
Kurt Dr. Müller
Martin Dr. Allemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PT99119496T priority Critical patent/PT1089245E/pt
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to DE59909044T priority patent/DE59909044D1/de
Priority to EP99119496A priority patent/EP1089245B1/de
Priority to AT99119496T priority patent/ATE263403T1/de
Priority to DK99119496T priority patent/DK1089245T3/da
Priority to ES99119496T priority patent/ES2218927T3/es
Priority to DE50005874T priority patent/DE50005874D1/de
Priority to EP20000111473 priority patent/EP1089244B1/de
Priority to AT00111473T priority patent/ATE263402T1/de
Priority to IL13805900A priority patent/IL138059A/en
Priority to US09/663,494 priority patent/US6559448B1/en
Publication of EP1089245A1 publication Critical patent/EP1089245A1/de
Application granted granted Critical
Publication of EP1089245B1 publication Critical patent/EP1089245B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/193Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using focusing means

Definitions

  • the present invention relates to a passive infrared detector with a heat sensitive Sensor and a focusing means for bundling the from the surveillance room on the Detector falling heat rays on the sensor, the focusing means focusing elements for surveillance areas with different locations in the surveillance room.
  • Passive infrared detectors of this type have been known and widely used for years. They serve in particular to determine the presence or intrusion of unauthorized persons into the surveillance room by proving the typical sent out by these people Infrared radiation, which is directed onto the sensor by the focusing means.
  • Fresnel lenses which are in the on the front of the detector housing arranged entrance windows for the infrared radiation are integrated (see for example EP-A-0 559 110), or a mirror arranged inside the detector housing, the consists of individual reflectors (see, for example, EP-A-0 303 913).
  • Usually several rows of reflectors are provided, each row of a certain surveillance zone, e.g. Far zone, middle zone, near zone and look-down zone.
  • Both the Fresnel lenses and the mirrors are designed so that each surveillance zone divided into monitoring areas and thus the room to be monitored with the detector outgoing surveillance areas is covered in a fan shape. So each reflector determines a surveillance area with a defined position in the surveillance room. As soon as an object emitting heat radiation penetrates into a monitoring area is detected the sensor detects the heat radiation emitted by this object, the detection on safest is when the object moves across the surveillance area.
  • Passive infrared detectors of today's generation can intrude within the effective range of the detector very reliably, but they are usually not able to Being able to distinguish people from larger pets, such as dogs, and also give an alarm when an animal is detected. These false alarms become longer the longer less tolerated and the security of passive infrared detectors called pet immunity from false alarms triggered by pets moving in the surveillance room have recently become an essential requirement of the market. Increasingly Passive infrared detectors in the lower price segment are also required to: have pet immunity.
  • the focusing means formed by a lens arrangement a plurality of differently oriented, non-overlapping visual fields or monitoring areas that fan-shaped from the lens arrangement in the Monitoring room run. These surveillance areas are staggered vertically, with between gaps of approximately the same size are formed in the individual areas. An intruder with a certain minimum size will always cross at least one surveillance area and thus always generate a sensor signal and an intruder below this minimum size will alternately cross surveillance areas and only gaps and in the latter case none Generate sensor signal. In this way, a human being moves around in the surveillance room generate a steady sensor signal with approximately constant amplitude, whereas an animal triggers a pulse-shaped signal of much lower maximum amplitude.
  • the invention is now to provide a passive infrared detector of the type mentioned the ability to differentiate between humans and animals is significantly improved is.
  • each focusing element consists of a number of sub-elements, so that the monitoring areas are vertical in subzones are split with slightly different elevation, and that the distinction between Humans and animals are based on the amplitude of the sensor signal.
  • the solution according to the invention has the advantage that a pet, however large, can last as long its height is less than that of a human, always with certainty from a human is distinguished. Because an upright person always becomes several subzones cross from far and middle zones, or middle and near zones, etc. and thereby one more trigger larger sensor signal than an animal of lower height. Because this becomes clear cross fewer subzones and generate a significantly reduced sensor signal. A dog from Normal size will cross a subzone or at most two, but only partially, and is compared to the detector described in EP-A-0 303 913 Trigger half or a third of the reduced signal.
  • a first preferred embodiment of the passive infrared detector according to the invention is characterized in that the elevation of the sub-elements is selected so that the Most of the surveillance areas only a slight overlap of the subzones he follows.
  • a second preferred embodiment is characterized in that the number of sub-elements and accordingly the number of subzones with decreasing radial distance of the respective monitoring area increases from the detector.
  • a third preferred embodiment of the detector according to the invention is characterized in that that the subzones are stacked on top of each other, and that the layering is selected in such a way that a sequence of dense curtains arises, the sensitivity in the individual subzones is approximately the same. The latter is done by avoiding overlaps of the individual subzones.
  • a fourth preferred embodiment of the detector according to the invention is characterized in that that the weighting of the individual sub-elements, in particular their optical aperture and area, is selected such that a crosswise to that formed by the monitoring areas Cover pattern moving animal of a selectable size for all distances between animal and detector delivers approximately the same small signal.
  • said animal formed by a hairy dog 80 cm long and 60 cm high.
  • a fifth preferred embodiment of the detector according to the invention is characterized in that that the focusing means is formed by a mirror arrangement with the focusing elements Reflectors formed and each reflector is split into sub-areas.
  • a sixth preferred embodiment is characterized in that the mirror arrangement a first row of reflectors for a far zone, a second row of reflectors for a central zone, a third row of reflectors for a near zone and a fourth row of reflectors for a look-down Zone, and that the reflectors of the first and the reflectors of the second row in each three sections, the reflectors of the third row in four sections and the reflector of the fourth row is or are split into five sub-areas.
  • Another preferred embodiment of the detector according to the invention is characterized in that that the sensor has four sensor elements combined in pairs, which form two independent channels and that in each channel an evaluation of the respective Signal occurs.
  • the mirror arrangement 1 shown in FIGS. 1 and 2 is a further development of that in FIG of the mirror described in EP-A-0 303 913, by which this mirror is improved, that he is immune to pets in his area.
  • Mirror arrangement 1 instead of Mirror arrangement 1 also a Fresnel lens arrangement can be used.
  • the mirror assembly 1 consists of a number of reflectors, which are designed so that the area to be monitored has monitoring areas emanating from the detector is covered in a fan shape, with corresponding distances several such "subject areas" or surveillance zones are provided by the detector. A distinction is made between four surveillance zones, a far zone, a middle zone, a near zone and a so-called look-down zone, offset by four in the vertical direction Rows of reflectors are covered.
  • These rows are in the mirror arrangement 1 the row R 1 for the far zone, the row R 2 for the middle zone, the row R 3 for the near zone and the row R 4 for the look-down zone, the latter row only a single reflector having.
  • the fan-shaped coverage is achieved by mutually displacing the reflectors of each row in the horizontal direction, the number of reflectors per row increasing with the distance of the respective monitoring zone from the detector in order to achieve an approximately uniform coverage pattern.
  • Each reflector "looks" in a certain solid angle of a certain zone, receives the from this solid angle incoming heat radiation and bundles it on the heat sensitive Sensor S (Fig. 2), which is formed for example by a pyro sensor.
  • the Pyro sensor is preferably a so-called standard dual pyro sensor, as it is for example in the passive infrared detectors of Siemens Building Technologies AG, Cerberus Division, formerly Cerberus AG, is used (see also EP-A-0 303 913).
  • the reflector row R 1 for the far zone consists of seven paraboloid-shaped, strip-like reflectors 2 to 8, the reflector row R 2 for the central zone consists of five reflectors 9 to 13, the reflector row R 3 for the near zone consists of three reflectors 14 to 16 and the reflector row R. 4 for the near zone from a single reflector 17.
  • This arrangement is the same as that described in EP-A-0 303 913.
  • the individual reflectors do not consist of a single, continuously curved surface, but rather each have a plurality of partial surfaces of different vertical orientation, as a result of which the assigned monitoring areas are correspondingly split into subzones.
  • the transitions between the partial areas are indicated in FIGS. 1 and 2 by dashed horizontal lines or curves.
  • the reflectors 2 to 8 exist for the far zone and the reflectors 9 to 13 for the central zone each of three, the reflectors 14 to 16 for the near zone of four and the reflector 17 for the look-down zone from five sub-areas.
  • the single ones Subareas are weighted in this way, i.e. their optical aperture and surface are chosen so that a dog moving transversely to the covering pattern (FIG. 3) has a certain size (for example, hairy dog, 80 cm long and 60 cm high) generates a signal that for each The distance from the dog to the detector is approximately the same.
  • FIG. 3 shows the coverage pattern of the monitoring areas corresponding to the reflectors of the mirror arrangement 1 (FIG. 1) on the floor of the room to be monitored
  • FIG. 4 shows the course of the heat radiation from the monitoring areas to the detector denoted by reference number 18 along the horizontal diagonal of the square symbolized in FIG. 3 by dash-dotted lines and symbolizing a square surveillance space.
  • the monitoring areas along the diagonal are analogous to Fig. 1 with 5 1 , 5 2 5 3 for the far zone, 11 1 , 11 2 , 11 3 for the central zone, 15 1 , 15 2 , 15 3 , 15 4 for the Near zone and 17 1 , 17 2 , 17 3 , 17 4 and 17 5 designated for the look-down zone.
  • the side reflectors 2-4 and 6-7 of the R 1 series for the far zone, 9, 10 and 12, 13 of the R 2 series for the central zone and 14 and 16 of the R 3 series for the near zone are for reasons of better clarity not designated by reference numerals.
  • the monitoring areas have become much longer due to the division into subzones.
  • the subzones are stacked on top of one another. They touch each other, but at most overlap very little so that no areas of greater sensitivity arise.
  • heat radiation would be focused on the sensor from the two respective monitoring areas at the same time, and a correspondingly stronger signal would thereby be generated.
  • the mutual non-overlap does not apply to the monitoring areas 5 1 , 5 2 , 5 3 of the far zone, because an overlap cannot be avoided here due to the flat course of the beams.
  • the elevation of the partial areas is selected such that the monitoring areas overlap in the manner shown in FIG. 4.
  • the far zone is at a relatively large distance of around 12 to 15 m in front of the detector, fluctuations in the signal amplitude are not critical here.
  • the detector 18 is 2.25 m above the ground, the two horizontal lines H and M correspond to a height of 0.6 and 1.8 m, respectively, and symbolize them thus the movement of a dog or a person in the surveillance room.
  • a dog crosses only one in the effective area of the detector Subzone full or two subzones partially, so that compared to the mirror arrangement after EP-A-0 303 913, where there are no subzones and therefore always a complete one Monitoring area corresponding to 3 or more subzones is crossed, the signal from the sensor S (Fig. 1) is reduced by about 50% to 70%.
  • an upright intruder crosses always several subzones from the far and middle zone or middle and near zone or Close-up and look-down zone and thereby generates a signal several times larger than the dog.
  • a less expensive but less effective variant compared to the Quadpyrosensor would be to use longflake pyros.
  • the illustration covers the standard flakes a medium-sized dog significantly more than 50% of the height of the flakes (sensor elements), and the image of an upright person rises far above the height of the flakes addition, the part protruding beyond the flakes contributes nothing to the sensor signal. If for example, if you doubled the amount of flakes, the difference would be between the signals triggered by a dog and a human being much larger, which would improve distinctness.
  • the gain factor (enlargement of the signal of a human) compared to a dual sensor would be about 1.4, for a quad sensor it would be 2.5 to 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Glass Compositions (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

Der Passiv-Infrarotmelder enthält eine wärmeempfindlichen Sensor und ein Fokussiermittel zur Bündelung der aus dem Überwachungsraum auf den Melder fallenden Wärmestrahlung auf den Sensor, wobei das Fokussiermittel Fokussierelemente für Überwachungsbereiche mit unterschiedlicher Lage im Überwachungsraum aufweist. Jedes Fokussierelement besteht aus einer Anzahl von Teilelementen, so dass die Überwachungsbereiche vertikal in Subzonen (51-53, 111-113, 151-154, 171-175) mit leicht unterschiedlicher Elevation aufgespaltet sind. In der Mehrzahl der Überwachungsbereiche überlappen die Subzonen (51-53, 111-113, 151-154, 171-175) einander höchstens geringfügig. Die Unterscheidung zwischen Mensch und Tier erfolgt anhand der Amplitude des Sensorsignals. Die Anzahl der Teilelemente und entsprechend die Anzahl der Subzonen (51-53, 111-113, 151-154, 171-175) nimmt mit abnehmender radialer Entfernung des jeweiligen Überwachungsbereichs vom Melder zu. <IMAGE>

Description

Die vorliegende Erfindung betrifft einen Passiv-Infrarotmelder mit einem wärmeempfindlichen Sensor und einem Fokussiermittel zur Bündelung der aus dem Überwachungsraum auf den Melder fallenden Wärmestrahlen auf den Sensor, wobei das Fokussiermittel Fokussierelemente für Überwachungsbereiche mit unterschiedlicher Lage im Überwachungsraum aufweist.
Passiv-Infrarotmelder dieser Art sind seit Jahren bekannt und weit verbreitet. Sie dienen insbesondere zur Feststellung der Anwesenheit oder des Eindringens von unbefugten Personen in den Überwachungsraum durch Nachweis der von diesen Personen ausgesandten typischen Infrarotstrahlung, welche durch das Fokussiermittel auf den Sensor gelenkt wird. Als Fokussiermittel werden entweder Fresnellinsen verwendet, die in das an der Frontseite des Meldergehäuses angeordnete Eintrittsfenster für die Infrarotstrahlung integriert sind (siehe dazu beispielsweise EP-A-0 559 110), oder ein im Inneren des Meldergehäuses angeordneter Spiegel, der aus einzelnen Reflektoren besteht (siehe dazu beispielsweise EP-A-0 303 913). In der Regel sind mehrere Reihen von Reflektoren vorgesehen, wobei jede Reihe einer bestimmten Überwachungszone, z.B. Fernzone, Mittelzone, Nahzone und Look-down Zone, zugeordnet ist.
Sowohl die Fresnellinsen als auch die Spiegel sind so ausgebildet, dass jede Überwachungszone in Überwachungsbereiche aufgeteilt und somit der zu überwachende Raum mit vom Melder ausgehenden Überwachungsbereichen fächerförmig überdeckt ist. Somit bestimmt jeder Reflektor einen Überwachungsbereich mit einer definierten Lage im Überwachungsraum. Sobald ein Wärmestrahlung aussendendes Objekt in einen Überwachungsbereich eindringt, detektiert der Sensor die von diesem Objekt ausgesandte Wärmestrahlung, wobei die Detektion am sichersten ist, wenn sich das Objekt quer zum Überwachungsbereich bewegt.
Passiv-Infrarotmelder der heutigen Generation können zwar Eindringlinge innerhalb des Wirkbereichs des Melders sehr zuverlässig detektieren, sie sind aber in der Regel nicht in der Lage, Menschen von grösseren Haustieren, wie beispielsweise Hunden, unterscheiden zu können, und geben auch bei Detektion eines Tiers Alarm. Diese Fehlalarme werden aber je länger desto weniger geduldet und die als Haustier-Immunität bezeichnete Sicherheit von Passiv-Infrarotmeldern vor Fehlalarmen, die durch sich im Überwachungsraum bewegende Haustiere ausgelöst werden, entwickelt sich in letzter Zeit zu einer wesentlichen Anforderung des Marktes. Zunehmend wird auch von Passiv-Infrarotmeldern des unteren Preissegments verlangt, dass sie über Haustier-Immunität verfügen.
Wenn heute Passiv-Infrarotmelder bereits über eine Haustier-Immunität verfügen, dann wird diese bis auf wenige Ausnahmen dadurch erreicht, dass die Ansprechempfindlichkeit des Melders entsprechend gesenkt wird, was eine unerwünschte Reduktion der Detektionssicherheit bedeutet.
Bei einem in der US-A-4 849 635 beschriebenen Passiv-Infrarotmelder mit Haustierimmunität wird diese dadurch erreicht, dass das durch eine Linsenanordnung gebildete Fokussiermittel eine Mehrzahl von unterschiedlich ausgerichteten, einander nicht überlappenden Gesichtsfeldern oder Überwachungsbereichen aufweist, die von der Linsenanordnung fächerförmig in den Überwachungsraum verlaufen. Diese Überwachungsbereiche sind vertikal gestaffelt, wobei zwischen den einzelnen Bereichen etwa gleich grosse Lücken gebildet sind. Ein Eindringling mit einer bestimmten Mindestgrösse wird immer mindestens einen Überwachungsbereich kreuzen und damit immer ein Sensorsignal erzeugen, und ein Eindringling unterhalb dieser Mindestgrösse wird abwechselnd Überwachungsbereiche und nur Lücken kreuzen und im letzteren Fall kein Sensorsignal erzeugen. Auf diese Weise wird ein Mensch bei seiner Bewegung im Überwachungsraum ein stetiges Sensorsignal mit angenähert konstanter Amplitude erzeugen, wogegen ein Tier ein pulsförmiges Signal von wesentlich geringerer maximaler Amplitude auslöst.
Da bei diesem bekannten System die Unterscheidung zwischen Mensch und Haustier anhand der Signalform erfolgt, und da die vertikale Staffelung der Überwachungsbereiche eine Apparatekonstante ist, ist die Gefahr relativ gross, dass grosse Haustiere nicht von kleinen Menschen unterschieden werden können und umgekehrt.
Durch die Erfindung soll nun ein Passiv-Infrarotmelder der eingangs genannten Art angegeben werden, dessen Unterscheidungsvermögen zwischen Menschen und Tieren wesentlich verbessert ist.
Die gestellte Aufgabe wird erfindungsgemäss dadurch gelöst, dass jedes Fokussierelement aus einer Anzahl von Teilelementen besteht, so dass die Überwachungsbereiche vertikal in Subzonen mit leicht unterschiedlicher Elevation aufgespaltet sind, und dass die Unterscheidung zwischen Mensch und Tier anhand der Amplitude des Sensorsignals erfolgt.
Die erfindungsgemässe Lösung hat den Vorteil, dass ein auch noch so grosses Haustier, solange seine Höhe kleiner ist als diejenige eines Menschen, immer mit Sicherheit von einem Menschen unterschieden wird. Denn ein aufrecht gehender Mensch wird immer mehrere Subzonen von Fern- und Mittelzonen, oder Mittel- und Nahzonen, usw. kreuzen und dadurch ein mehrfach grösseres Sensorsignal auslösen als ein Tier von geringerer Höhe. Denn dieses wird deutlich weniger Subzonen kreuzen und ein deutlich reduziertes Sensorsignal erzeugen. Ein Hund von normaler Grösse wird eine Subzone kreuzen oder höchstens zwei, aber diese nur teilweise, und wird dadurch verglichen mit dem in der EP-A-0 303 913 beschriebenen Detektor ein auf die Hälfte oder ein Drittel reduziertes Signal auslösen.
Eine erste bevorzugte Ausführungsform des erfindungsgemässen Passiv-Infrarotmelders ist dadurch gekennzeichnet, dass die Elevation der Teilelemente so gewählt ist, dass bei der Mehrzahl der Überwachungsbereiche höchstens eine geringfügige Überlappung der Subzonen erfolgt.
Eine zweite bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass die Anzahl der Teilelemente und entsprechend die Anzahl der Subzonen mit abnehmender radialer Entfernung des jeweiligen Überwachungsbereichs vom Melder zunimmt.
Eine dritte bevorzugte Ausführungsform des erfindungsgemässen Melders ist dadurch gekennzeichnet, dass die Subzonen stapelartig aufeinander geschichtet sind, und dass die Schichtung so gewählt ist, dass eine Folge von dichten Vorhängen entsteht, wobei die Empfindlichkeit in den einzelnen Subzonen etwa gleich ist. Letzteres wird durch die Vermeidung von Überlappungen der einzelnen Subzonen erreicht.
Eine vierte bevorzugte Ausführungsform des erfindungsgemässen Melders ist dadurch gekennzeichnet, dass die Gewichtung der einzelnen Teilelemente, insbesondere deren optische Apertur und Fläche, so gewählt ist, dass ein sich quer zu dem durch die Überwachungsbereiche gebildeten Überdeckungsmuster bewegendes Tier einer wählbaren Grösse ein für alle Distanzen zwischen Tier und Melder etwa gleich kleines Signal liefert. Vorzugsweise ist das genannte Tier durch einen behaarten Hund von 80 cm Länge und 60 cm Höhe gebildet.
Eine fünfte bevorzugte Ausführungsform des erfindungsgemässen Melders ist dadurch gekennzeichnet, dass das Fokussiermittel durch eine Spiegelanordnung mit die Fokussierelemente bildenden Reflektoren gebildet und jeder Reflektor in Teilflächen aufgespaltet ist.
Diese Teilflächen, welche in der Regel Paraboloid-Teilflächen sind, können für die Herstellung des Spritzgusswerkzeugs für die Spiegelanordnung zu Gruppen von zusammenhängenden Spiegelbereichen zusammengefasst werden, woraus sich eine kostengünstigere Herstellung und Wartung des genannten Spritzgusswerkzeuges ergibt.
Eine sechste bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass die Spiegelanordnung eine erste Reflektorreihe für eine Fernzone, eine zweite Reflektorreihe für eine Mittelzone, eine dritte Reflektorreihe für eine Nahzone und eine vierte Reflektorreihe für eine Look-down Zone aufweist, und dass die Reflektoren der ersten und die Reflektoren der zweiten Reihe in je drei Teilflächen, die Reflektoren der dritten Reihe in vier Teilflächen und der Reflektor der vierten Reihe in fünf Teilflächen aufgespaltet ist beziehungsweise sind.
Eine weitere bevorzugte Ausführungsform des erfindungsgemässen Melders ist dadurch gekennzeichnet, dass der Sensor vier paarweise zusammengefasste Sensorelemente aufweist, welche zwei unabhängige Ka-näle bilden, und dass in jedem Kanal eine Auswertung des jeweiligen Signals erfolgt.
Im folgenden wird die Erfindung anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert; es zeigt:
Fig. 1
eine schematische Vorderansicht der durch eine Spiegelanordnung gebildeten Fokussiermittel eines erfindungsgemässen Melders,
Fig. 2
einen Schnitt nach der Linie II- II von Fig. 1,
Fig. 3
eine Draufsicht auf das mit der Spiegelanordnung der Fig. 1 und 2 erzeugte Überdekkungsmuster; und
Fig. 4
eine Seitenansicht des Überdeckungsmusters von Fig. 3.
Die in den Figuren 1 und 2 dargestellte Spiegelanordnung 1 ist eine Weiterentwicklung des in der EP-A-0 303 913 beschriebenen Spiegels, durch welche dieser Spiegel so verbessert wird, dass er gegen Haustiere in seinem Wirkbereich immun ist. Selbstverständlich kann anstelle der Spiegelanordnung 1 auch eine Fresnellinsenanordnung verwendet werden. Wie in der genannten EP-A-0 303 913, auf deren Offenbarung hiermit ausdrücklich Bezug genommen wird, beschrieben ist, besteht die Spiegelanordnung 1 aus einer Anzahl von Reflektoren, welche so ausgebildet sind, dass der zu überwachende Raum mit vom Melder ausgehenden Überwachungsbereichen fächerförmig überdeckt ist, wobei entsprechend zu verschiedenen Abständen vom Melder mehrere solcher "Fächerbereiche" oder Überwachungszonen vorgesehen sind. Man unterscheidet beispielsweise vier Überwachungszonen, eine Fernzone, eine Mittelzone, eine Nahzone und eine sogenannte Look-down Zone, die durch vier in vertikaler Richtung versetzte Reihen von Reflektoren abgedeckt sind.
Diese Reihen sind bei der Spiegelanordnung 1 die Reihe R1 für die Fernzone, die Reihe R2 für die Mittelzone, die Reihe R3 für die Nahzone und die Reihe R4 für die Look-down Zone, wobei die letztere Reihe nur einen einzigen Reflektor aufweist. Die fächerförmige Überdeckung wird durch gegenseitige Versetzung der Reflektoren jeder Reihe in horizontaler Richtung erreicht, wobei zur Erzielung eines annähernd gleichförmigen Überdeckungsmusters die Anzahl der Reflektoren pro Reihe mit dem Abstand der jeweiligen Überwachungszone vom Melder zunimmt.
Jeder Reflektor "blickt" in einen bestimmten Raumwinkel einer bestimmte Zone, empfängt die aus diesem Raumwinkel einfallende Wärmestrahlung und bündelt diese auf den wärmeempfindlichen Sensor S (Fig. 2), welcher beispielsweise durch einen Pyrosensor gebildet ist. Der Pyrosensor ist vorzugsweise ein sogenannter Standard-Dualpyrosensor, wie er beispielsweise in den Passiv-Infrarotdetektoren der Siemens Building Technologies AG, Cerberus Division, früher Cerberus AG, eingesetzt wird (siehe dazu auch EP-A-0 303 913). Sobald ein Objekt, welches Wärmestrahlung aussendet, in einen Überwachungsbereich eindringt, detektiert der Sensor die von diesem Objekt ausgesandte Wärmestrahlung, worauf der Melder ein Alarmsignal abgibt. Dieses Alarmsignal gibt an, dass sich ein Objekt, beispielsweise ein Eindringling, im Überwachungsraum befindet.
Darstellungsgemäss besteht die Reflektorreihe R1 für die Fernzone aus sieben paraboloidförmigen, streifenartigen Reflektoren 2 bis 8, die Reflektorreihe R2 für die Mittelzone aus fünf Reflektoren 9 bis 13, die Reflektorreihe R3 für die Nahzone aus drei Reflektoren 14 bis 16 und die Reflektorreihe R4 für die Nahzone aus einem einzigen Reflektor 17. Diese Anordnung ist gleich mit der in der EP-A-0 303 913 beschriebenen. Im Unterschied zur letzteren Anordnung bestehen jedoch die einzelnen Reflektoren nicht aus einer einzelnen, stetig gekrümmten Fläche, sondern weisen jeweils mehrere Teilflächen von unterschiedlicher vertikaler Orientierung auf, wodurch die zugeordneten Überwachungsbereiche entsprechend in Subzonen aufgespaltet werden. Die Übergänge zwischen den Teilflächen sind in den Fig. 1 und 2 durch gestrichelte horizontale Linien oder Kurven angedeutet.
Wie insbesondere Fig. 1 zu entnehmen ist, bestehen die Reflektoren 2 bis 8 für die Fernzone und die Reflektoren 9 bis 13 für die Mittelzone aus je drei, die Reflektoren 14 bis 16 für die Nahzone aus je vier und der Reflektor 17 für die Look-down Zone aus fünf Teilflächen. Die einzelnen Teilflächen sind so gewichtet, d.h. ihre optische Apertur und ihre Fläche sind so gewählt, dass ein sich quer zum Überdeckungsmuster (Fig. 3) bewegender Hund ein bestimmten Grösse (beispielsweise behaarter Hund, 80 cm lang und 60 cm hoch) ein Signal erzeugt, dass für jede Distanz vom Hund zum Melder etwa gleich klein ist.
Fig. 3 zeigt das Überdeckungsmuster der den Reflektoren der Spiegelanordnung 1 (Fig. 1 ) auf dem Boden des zu überwachenden Raumes entsprechenden Überwachungsbereiche, Fig. 4 zeigt den Verlauf der Wärmestrahlung von den Überwachungsbereichen zu dem mit dem Bezugszeichen 18 bezeichneten Melder entlang der horizontalen Diagonale des in Fig. 3 mit strichpunktierten Linien eingezeichneten, einen quadratischen Überwachungsraum symbolisierenden, Quadrats. Die Überwachungsbereiche entlang der genannten Diagonale sind in Analogie zu Fig. 1 mit 51, 52 53 für die Fernzone, 111, 112, 113 für die Mittelzone, 151, 152, 153, 154 für die Nahzone und 171, 172, 173, 174 und 175 für die Look-down Zone bezeichnet. Die den seitlichen Reflektoren 2-4 und 6-7 der Reihe R1 für die Fernzone, 9, 10 und 12, 13 der Reihe R2 für die Mittelzone und 14 und 16 der Reihe R3 für die Nahzone sind aus Gründen der besseren Übersichtlichkeit nicht mit Bezugszeichen bezeichnet.
Wenn man das dargestellte Überdeckungsmuster mit dem in Fig. 3 der EP-A-0 303 913 dargestellten vergleicht, sieht man, dass die Aufspaltung der Reflektoren in Teilflächen zu einer wesentlich dichteren Überdeckung des Überwachungsraums führt, weil jetzt im Überwachungsraum wesentlich mehr Überwachungsbereiche vorhanden sind. Sind bei dem in der EP-A-0 303 913 beschriebenen Melder sechzehn Überwachungsbereiche vorhanden, so sind es jetzt 53. Diese 53 Paraboloid-Teilflächen sind zu 9 zusammenhängenden Spiegelbereichen zusammengefasst, die bei der Herstellung des Spritzwerkzeugs für den Spiegel 1 (Fig. 1 ) als zusammenhängende Teile gefräst werden können, woraus sich eine kostengünstigere Herstellung und Wartung des Spritzgusswerkzeugs ergibt.
Die Überwachungsbereiche sind durch die Aufspaltung in Subzonen wesentlich länger geworden. Wie insbesondere Fig. 4 entnommen werden kann, sind die Subzonen stapelartig aufeinander geschichtet. Sie berühren einander, überlappen sich aber höchstens ganz wenig, so dass keine Bereiche grösserer Empfindlichkeit entstehen. Bei Überlappungen würde ja im Überlappungsbereich aus den beiden jeweiligen Überwachungsbereichen gleichzeitig Wärmestrahlung auf den Sensor fokussiert und dadurch ein entsprechend stärkeres Signal erzeugt werden. Die gegenseitige Nicht-Überlappung gilt nicht für die Überwachungsbereiche 51, 52, 53 der Fernzone, weil hier durch den flachen Verlauf der Strahlenbündel eine Überlappung nicht zu vermeiden ist. Hier ist aufgrund der Geometrie der Reflektoren 2 bis 8 die Elevation der Teilflächen so gewählt, dass sich die Überwachungsbereiche auf die in Fig. 4 dargestellte Art überlappen. Da sich die Fernzone aber in relativ grosser Distanz von etwa 12 bis 15 m vor dem Melder befindet, sind hier Schwankungen der Signalamplitude nicht kritisch.
In Fig. 4 befindet sich der Melder 18 in einer Höhe von 2.25 m über dem Boden, die beiden horizontalen Linien H und M entsprechen einer Höhe von 0.6 bzw. 1.8 m und symboli-sieren damit die Bewegung eines Hundes bzw. eines Menschen im Überwachungsraum. Wie der Figur zu entnehmen ist, kreuzt ein Hund im Wirkbereich des Melders in den meisten Fällen nur eine Subzone voll oder zwei Subzonen teilweise, so dass verglichen mit der Spiegelanordnung nach der EP-A-0 303 913, wo keine Subzonen vorhanden sind und daher stets ein vollständiger Überwachungsbereich entsprechend 3 oder mehr Subzonen gekreuzt wird, das Signal des Sensors S (Fig. 1 ) um etwa 50% bis 70% reduziert ist. Dagegen kreuzt ein aufrecht gehender Eindringling stets mehrere Subzonen von Fern- und Mittelzone oder Mittel- und Nahzone oder Nah- und Look-down Zone und erzeugt dadurch ein mehrfach grösseres Signal als der Hund.
Die soeben geschilderten Verhältnisse sind in Fig. 4 für drei verschiedene Entfernungen vom Melder, E1 = 2.5 m, E2 = 5 m und E3 = 10 m verdeutlicht. Im Abstand E1 kreuzt ein Mensch (Linie M) die Subzonen 152, 151, 113, 112 und 111, ein Hund (Linie H) dagegen nur die Subzonen 152 und 151. Im Abstand E2 kreuzt ein Mensch die Subzonen 113, 112, 111, 53, 52 und 51, ein Hund die Subzonen 113 und 112. Im Abstand E3 kreuzt ein Mensch die Subzonen 111, 53, 52 und 51, ein Hund nur die Subzone 111.
Praktische Versuche haben gezeigt, dass innerhalb eines Wirkbereichs von 12 bis 13 m das von einem Hund von etwa 30 kg Körpergewicht ausgelöste Sensorsignal höchstens 50% der Detektionsschwelle beträgt, so dass dieser Hund mit Sicherheit keinen Fehlalarm auslösen kann. Ausserhalb des genannten Wirkbereichs steigt des Signal des Hundes bis knapp unter die Detektionsschwelle an. Wenn die Fernzonen des Melders ohne Begrenzung durch eine Wand über den Wirkbereich "hinaussehen" können, dann können Fehlalarme durch grosse Hunde nicht ausgeschlossen werden.
Man kann dieses Problem dadurch eliminieren, dass man als Sensor S anstelle eines Standard-Dualpyrosensors (siehe dazu EP-A-0 303 913) einen Quadpyrosensor mit 4 Flakes oder Sensorelementen verwendet. Bei einem derartigen Sensor bildet jedes Paar von Sensorelementen einen Kanal, wobei die beiden Kanäle wirkungsmässig einer vertikalen Aufspaltung der Überwachungsbereiche entsprechen. Von diesen beiden Kanälen "schaut" der untere bei etwa 20 m Abstand vom Melder in den Boden, so dass dadurch die Reichweite begrenzt ist, wenn man für einen Alarm ein Signal in beiden Kanälen verlangt. Andererseits wird auch ein grosser Hund niemals im oberen Kanal ein Signal oberhalb der Detektionsschwelle liefern können, so dass auch grosse Hunde ausserhalb des Melderwirkbereichs keine Fehlalarm auslösen können.
Eine verglichen mit dem Quadpyrosensor kostengünstigere, aber weniger effektive Variante wäre die Verwendung von Longflake-Pyros. Bei den Standardflakes bedeckt die Abbildung eines Hundes mittlerer Grösse deutlich mehr als 50% der Höhe der Flakes (Sensorelemente), und die Abbildung eines aufrecht gehenden Menschen ragt weit über die Höhe der Flakes hinaus, wobei der über die Flakes hinausragende Teil zum Sensorsignal nichts beiträgt. Wenn man beispielsweise die Höhe der Flakes verdoppeln würde, dann wäre der Unterschied zwischen den von einem Hund und einem Menschen ausgelösten Signalen wesentlich grösser, was die Unterscheidbarkeit verbessern würde. Der Gewinnfaktor (Vergrösserung des Signals eines Menschen) gegenüber einem Dualsensor wäre etwa 1.4, beim Quadsensor wäre er 2.5 bis 3.

Claims (10)

  1. Passiv-Infrarotmelder mit einem wärmeempfindlichen Sensor (S) und einem Fokussiermittel zur Bündelung der aus dem Überwachungsraum auf den Melder fallenden Wärmestrahlung auf den Sensor (S), wobei das Fokussiermittel Fokussierelemente für Überwachungsbereiche mit unterschiedlicher Lage im Überwachungsraum aufweist, dadurch gekennzeichnet, dass jedes Fokussierelement aus einer Anzahl von Teilelementen besteht, so dass die Überwachungsbereiche vertikal in Subzonen (51-53, 111-113, 151-154, 171-175) mit leicht unterschiedlicher Elevation aufgespaltet sind, und dass die Unterscheidung zwischen Mensch und Tier anhand der Amplitude des Sensorsignals erfolgt.
  2. Passiv-Infrarotmelder nach Anspruch 1, dadurch gekennzeichnet, dass die Elevation der Teilelemente so gewählt ist, dass bei der Mehrzahl der Überwachungsbereiche höchstens eine geringfügige Überlappung der Subzonen (51-53, 111-113, 151-154, 171-175) erfolgt.
  3. Passiv-Infrarotmelder nach Anspruch 2, dadurch gekennzeichnet, dass die Anzahl der Teilelemente und entsprechend die Anzahl der Subzonen (51-53, 111-113, 151-154, 171-175) mit abnehmender radialer Entfernung des jeweiligen Überwachungsbereichs vom Melder zunimmt.
  4. Passiv-Infrarotmelder nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Subzonen (51-53, 111-113, 151-154, 171-175) stapelartig aufeinander geschichtet sind, und dass die Schichtung so gewählt ist, dass eine Folge von dichten Vorhängen entsteht, wobei die Empfindlichkeit in den einzelnen Subzonen (51-53, 111-113, 151-154, 171-175) etwa gleich ist.
  5. Passiv-Infrarotmelder nach Anspruch 4, dadurch gekennzeichnet, dass die Gewichtung der einzelnen Teilelemente, insbesondere deren optische Apertur und Fläche, so gewählt ist, dass ein sich quer zu dem durch die Überwachungsbereiche gebildeten Überdeckungsmuster bewegendes Tier einer bestimmten Grösse ein für alle Distanzen zwischen Tier und Melder etwa gleich kleines Signal liefert.
  6. Passiv-Infrarotmelder nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Fokussiermittel durch eine Spiegelanordnung (1) mit die Fokussierelemente bildenden Reflektoren (2-17) gebildet und jeder Reflektor (2-17) in Teilflächen aufgespaltet ist.
  7. Passiv-Infrarotmelder nach Anspruch 6, dadurch gekennzeichnet, dass die Spiegelanordnung (1) eine erste Reflektorreihe (R1) für eine Fernzone, eine zweite Reflektorreihe (R2) für eine Mittelzone, eine dritte Reflektorreihe (R3) für eine Nahzone und eine vierte Reflektorreihe (R4) für eine Look-down Zone aufweist, und dass die Reflektoren (2-8) der ersten und die Reflektoren (9-13) der zweiten Reihe in je drei Teilflächen, die Reflektoren (14-16) der dritten Reihe in vier Teilflächen und der Reflektor (17) der vierten Reihe in fünf Teilflächen aufgespaltet sind.
  8. Passiv-Infrarotmelder nach Anspruch 6, dadurch gekennzeichnet, dass der Sensor (S) vier paarweise zusammengefasste Sensorelemente aufweist, welche zwei unabhängige Kanäle bilden, und dass in jedem Kanal eine Auswertung des jeweiligen Signals erfolgt.
  9. Passiv-Infrarotmelder nach Anspruch 6, dadurch gekennzeichnet, dass der Sensor (S) zwei Sensorelemente aufweist, deren Höhe verglichen mit den Sensorelementen eines Standard-Dualpyrosensors deutlich verlängert ist.
  10. Passiv-Infrarotmelder nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Fokussiermittel durch eine Fresnellinsenanordnung gebildet ist.
EP99119496A 1999-10-01 1999-10-01 Passiv-Infrarotmelder Expired - Lifetime EP1089245B1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE59909044T DE59909044D1 (de) 1999-10-01 1999-10-01 Passiv-Infrarotmelder
EP99119496A EP1089245B1 (de) 1999-10-01 1999-10-01 Passiv-Infrarotmelder
AT99119496T ATE263403T1 (de) 1999-10-01 1999-10-01 Passiv-infrarotmelder
DK99119496T DK1089245T3 (da) 1999-10-01 1999-10-01 Passiv infraröd detektor
ES99119496T ES2218927T3 (es) 1999-10-01 1999-10-01 Detector pasivo de infrarrojos.
PT99119496T PT1089245E (pt) 1999-10-01 1999-10-01 Identificador passivo de infravermelhos
DE50005874T DE50005874D1 (de) 1999-10-01 2000-05-29 Spiegelanordnung für Passiv-Infrarotmelder
EP20000111473 EP1089244B1 (de) 1999-10-01 2000-05-29 Spiegelanordnung für Passiv-Infrarotmelder
AT00111473T ATE263402T1 (de) 1999-10-01 2000-05-29 Spiegelanordnung für passiv-infrarotmelder
IL13805900A IL138059A (en) 1999-10-01 2000-08-24 Passive infrared detector
US09/663,494 US6559448B1 (en) 1999-10-01 2000-09-18 Passive infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP99119496A EP1089245B1 (de) 1999-10-01 1999-10-01 Passiv-Infrarotmelder

Publications (2)

Publication Number Publication Date
EP1089245A1 true EP1089245A1 (de) 2001-04-04
EP1089245B1 EP1089245B1 (de) 2004-03-31

Family

ID=8239099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99119496A Expired - Lifetime EP1089245B1 (de) 1999-10-01 1999-10-01 Passiv-Infrarotmelder

Country Status (8)

Country Link
US (1) US6559448B1 (de)
EP (1) EP1089245B1 (de)
AT (2) ATE263403T1 (de)
DE (2) DE59909044D1 (de)
DK (1) DK1089245T3 (de)
ES (1) ES2218927T3 (de)
IL (1) IL138059A (de)
PT (1) PT1089245E (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755052B2 (en) * 2003-03-14 2010-07-13 Suren Systems, Ltd. PIR motion sensor

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075431B2 (en) * 2003-08-18 2006-07-11 Honeywell International Inc. Logical pet immune intrusion detection apparatus and method
US7034675B2 (en) * 2004-04-16 2006-04-25 Robert Bosch Gmbh Intrusion detection system including over-under passive infrared optics and a microwave transceiver
CA2645870C (en) * 2006-03-17 2014-06-03 Adt Security Services, Inc. Motion detector having asymmetric zones for determining direction of movement and method therefor
US8678287B2 (en) * 2008-02-12 2014-03-25 Datalogic ADC, Inc. Two-plane optical code reader for acquisition of multiple views of an object
US8353457B2 (en) * 2008-02-12 2013-01-15 Datalogic ADC, Inc. Systems and methods for forming a composite image of multiple portions of an object from multiple perspectives
WO2009102616A2 (en) 2008-02-12 2009-08-20 Datalogic Scanning, Inc. Systems and methods for forming a composite image of multiple portions of an object from multiple perspectives
US8608076B2 (en) * 2008-02-12 2013-12-17 Datalogic ADC, Inc. Monolithic mirror structure for use in a multi-perspective optical code reader
US8322621B2 (en) 2008-12-26 2012-12-04 Datalogic ADC, Inc. Image-based code reader for acquisition of multiple views of an object and methods for employing same
US8261990B2 (en) * 2008-12-26 2012-09-11 Datalogic ADC, Inc. Data reader having compact arrangement for acquisition of multiple views of an object
US20110118817A1 (en) * 2009-11-17 2011-05-19 Boston Scientific Scimed, Inc. Stent delivery system
EP2498232A1 (de) * 2011-03-10 2012-09-12 Siemens Aktiengesellschaft Detektor
EP3080567B1 (de) 2013-12-09 2023-09-27 Greenwave Systems PTE. LTD. Bewegungsdetektion
NL2012327B1 (en) 2013-12-13 2016-06-21 Utc Fire & Security B V Selective intrusion detection systems.
US9301412B2 (en) 2014-06-02 2016-03-29 Greenwave Systems Pte. Ltd. Dual fixed angle security mount
US9611978B2 (en) 2014-06-02 2017-04-04 Greenwave Systems Pte Ltd Magnetic mount for security device
US9943241B2 (en) 2014-06-12 2018-04-17 PhysioWave, Inc. Impedance measurement devices, systems, and methods
US10130273B2 (en) * 2014-06-12 2018-11-20 PhysioWave, Inc. Device and method having automatic user-responsive and user-specific physiological-meter platform
US10122847B2 (en) * 2014-07-20 2018-11-06 Google Technology Holdings LLC Electronic device and method for detecting presence and motion
WO2017136485A1 (en) 2016-02-03 2017-08-10 Greenwave Systems PTE Ltd. Motion sensor using linear array of irdetectors
WO2017147462A1 (en) 2016-02-24 2017-08-31 Greenwave Systems PTE Ltd. Motion sensor for occupancy detection and intrusion detection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3112529A1 (de) * 1981-03-30 1982-11-11 Fritz Fuss Kg, 7470 Albstadt Spiegelanordnung fuer eine meldeeinrichtung
US4697081A (en) * 1985-02-08 1987-09-29 U.S. Philips Corp. Infra-red radiation detector devices
US4880980A (en) * 1987-08-11 1989-11-14 Cerberus Ag Intrusion detector
US4990783A (en) * 1988-09-22 1991-02-05 Cerberus A.G. Range insensitive infrared intrusion detector
US5187360A (en) * 1990-11-30 1993-02-16 Combined Optical Industries Limited Aspheric lens having a plurality of lenslets disposed substantially contiguously in an array
US5923250A (en) * 1997-01-27 1999-07-13 Digital Security Controls Ltd. Size discriminating dual element PIR detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121523U (de) * 1986-01-24 1987-08-01

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3112529A1 (de) * 1981-03-30 1982-11-11 Fritz Fuss Kg, 7470 Albstadt Spiegelanordnung fuer eine meldeeinrichtung
US4697081A (en) * 1985-02-08 1987-09-29 U.S. Philips Corp. Infra-red radiation detector devices
US4880980A (en) * 1987-08-11 1989-11-14 Cerberus Ag Intrusion detector
US4990783A (en) * 1988-09-22 1991-02-05 Cerberus A.G. Range insensitive infrared intrusion detector
US5187360A (en) * 1990-11-30 1993-02-16 Combined Optical Industries Limited Aspheric lens having a plurality of lenslets disposed substantially contiguously in an array
US5923250A (en) * 1997-01-27 1999-07-13 Digital Security Controls Ltd. Size discriminating dual element PIR detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755052B2 (en) * 2003-03-14 2010-07-13 Suren Systems, Ltd. PIR motion sensor

Also Published As

Publication number Publication date
IL138059A0 (en) 2001-10-31
ATE263403T1 (de) 2004-04-15
ATE263402T1 (de) 2004-04-15
IL138059A (en) 2004-07-25
US6559448B1 (en) 2003-05-06
DE59909044D1 (de) 2004-05-06
EP1089245B1 (de) 2004-03-31
PT1089245E (pt) 2004-08-31
ES2218927T3 (es) 2004-11-16
DE50005874D1 (de) 2004-05-06
DK1089245T3 (da) 2004-07-12

Similar Documents

Publication Publication Date Title
EP1089245B1 (de) Passiv-Infrarotmelder
EP0361224B1 (de) Infraroteindringdetektor
DE102004011780A1 (de) Zugangskontrolleinrichtung
DE2537380A1 (de) Einbruchmeldeanlage
DE2103909A1 (de) Überwachungseinrichtung zur Fest stellung der Anwesenheit eines Eindring lings in einem Raum
CH675316A5 (de)
EP0821330B1 (de) Rauchmelder
CH657928A5 (de) Anordnung fuer einen strahlungsdetektor mit mehreren sensorelementen und deren verwendung.
DE19517517B4 (de) Passiv Infrarot Eindringdetektor
CH667744A5 (de) Infrarot-eindringdetektor.
DE4036342C1 (en) Passive IR monitoring system - comprises stack of IR detectors distributed on column at various angles to cover complete field without gaps
EP0319876A2 (de) Bewegungsmelder mit einem Infrarotdetektor
EP1089244B1 (de) Spiegelanordnung für Passiv-Infrarotmelder
EP1612750B1 (de) Passiv Infrarotmelder
EP4118405B1 (de) Infrarotbewegungsmelder
DE3205394A1 (de) Optoelektronische flaechensicherung
EP1124209B1 (de) Präsenzmelder
EP1024465A1 (de) Passiv-Infrarotmelder
DE3112529A1 (de) Spiegelanordnung fuer eine meldeeinrichtung
EP0845765A1 (de) Einbruchmeldersystem
EP0821331B1 (de) Rauchmelder
EP0262241A1 (de) Infrarot-Eindringdetektor
EP1184824B1 (de) Passiv-Infrarotmelder
EP0050750A1 (de) Infrarot-Einbruchdetektor
DE4445197A1 (de) Passiv-Infrarot-Bewegungsmelder mit Sammellinsen zu einer Rundumerfassung von 360 DEG

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010927

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030425

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040331

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59909044

Country of ref document: DE

Date of ref document: 20040506

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040630

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20040402254

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2218927

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061006

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20061010

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20061017

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20061019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20061024

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061115

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8034 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070912

Year of fee payment: 9

BERE Be: lapsed

Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

Effective date: 20071031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20070926

Year of fee payment: 9

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, INTELLECTUAL PROPERTY

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071002

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071002

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090401

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20070928

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59909044

Country of ref document: DE

Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59909044

Country of ref document: DE

Owner name: VANDERBILT INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: VANDERBILT INTERNATIONAL GMBH, DE

Effective date: 20160224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: VANDERBILT INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181029

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181025

Year of fee payment: 20

Ref country code: FR

Payment date: 20181023

Year of fee payment: 20

Ref country code: GB

Payment date: 20181025

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59909044

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190930