EP1084368B1 - Brennstoffdüse - Google Patents

Brennstoffdüse Download PDF

Info

Publication number
EP1084368B1
EP1084368B1 EP99936291A EP99936291A EP1084368B1 EP 1084368 B1 EP1084368 B1 EP 1084368B1 EP 99936291 A EP99936291 A EP 99936291A EP 99936291 A EP99936291 A EP 99936291A EP 1084368 B1 EP1084368 B1 EP 1084368B1
Authority
EP
European Patent Office
Prior art keywords
fuel injector
fuel
orifice
injector
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99936291A
Other languages
English (en)
French (fr)
Other versions
EP1084368A1 (de
EP1084368B2 (de
Inventor
Carsten Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7869930&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1084368(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1084368A1 publication Critical patent/EP1084368A1/de
Publication of EP1084368B1 publication Critical patent/EP1084368B1/de
Application granted granted Critical
Publication of EP1084368B2 publication Critical patent/EP1084368B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2206/00Burners for specific applications
    • F23D2206/10Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a fuel nozzle for liquid Fuel with an outlet area in which along a Nozzle axis extends an outlet channel.
  • a return injection nozzle is described in DE 32 35 080 A1, with the two opposite liquid supply lines tangential in a circular cylindrical Swirl space.
  • the swirl chamber is on the one hand an injection channel and on the other hand, a return hole connected.
  • the return injector is special for the atomization of liquid fuel in gas turbine combustion chambers suitable. This will atomize achieved that fuel flows tangentially into the swirl chamber and combined into a main stream, whereby by a circular guide in the swirl chamber the main flow a swirl is given that get in the injection channel remains. This fuses the fuel jet as it exits of fuel from the injection channel in a conical shape. on the other hand fuel is returned via the return hole. While maintaining a constant fuel flow to the return injector, the amount of injected Fuel controlled by the amount of recycled Fuel is discontinued.
  • DE-OS 20 33 118 shows a gas burner for a gas-fired Melting furnace.
  • the gas burner has one in the area of the mouth converging nozzle in the form of a gap. This will ensures a high heat concentration.
  • DE 27 39 102 A1 shows a burner with two nozzles for gaseous substances, the nozzle openings being oval Cross section.
  • the mouth edge of a nozzle ends through one bevel does not converge and has a two-fold Symmetry.
  • the object of the invention is to provide a fuel nozzle for liquid fuel through which a combustion vibration is at least diminished.
  • this object is achieved by a fuel nozzle for liquid fuel with a mouth area, in which an orifice channel extends along a nozzle axis, which mouth channel at a mouth edge is not ends converging, the mouth edge not rotationally symmetrical around the nozzle axis.
  • Liquid fuel is in the fuel nozzle through the Mouth area led in the muzzle channel.
  • the mouth channel is non-converging in the mouth area, that means that it does not narrow, so that there is no pressure loss.
  • the liquid fuel emerges from the outlet channel Muzzle edge into the outside space. In doing so, the Beam, i.e. you get a divergent, fanned out Fuel jet. Because the rim of the mouth is not rotationally symmetrical around the nozzle axis is also the divergent Fuel jet not rotationally symmetrical. So you get a distorted fuel cone, which at least in two Spatial directions a different extent perpendicular to Has beam direction. This is distorted accordingly spatial area in which the combustion takes place.
  • This distortion of the combustion area has an influence taken on the occurrence of a combustion vibration.
  • the Area of combustion is shifted and pulled apart so that the acoustic system of burner and burner environment is out of tune.
  • the fuel nozzle and thus the emerging fuel cones are oriented so that a reduction in combustion vibrations down to one complete suppression of combustion vibrations results.
  • the mouth edge is preferably asymmetrical about the nozzle axis. This means that the rim of the mouth is complete Rotation around the nozzle axis must be experienced to with its to take cover again.
  • the edge of the mouth preferably has a two-fold symmetry on.
  • the mouth edge is further preferred Ellipse or a rectangle, especially with rounded corners.
  • the double symmetry means that the mouth edge half a turn, i.e. 180 °, must be experienced to with his to take cover in the original position.
  • the mouth edge preferably corresponds to a contour that is formed by a rectangle and a circle is formed, the circle with its center on the center of gravity of the rectangle lies and protrudes beyond the narrow side of the rectangle, and the outline being the outer edge of the rectangle and the circle encloses.
  • the muzzle edge preferably corresponds to a contour, that by two mutually perpendicular, a common Focus rectangles is formed, the Contour encloses the outer edge of both rectangles.
  • the outlet channel preferably has a channel wall, where each point of the duct wall has an axial distance from the nozzle axis and has an axial position along the nozzle axis, and wherein the center distance for at least two points on the channel wall, which have the same axial position, is different.
  • the changes more preferably Axial distance for points on the channel wall of the same axial Position continuously along a circumferential direction around the nozzle axis
  • the mouth channel is therefore not rotationally symmetrical the nozzle axis. With that, the liquid fuel is already there a bit in the mouth area in a non-rotationally symmetrical Electricity led. So the fuel flow imprinted a non-rotationally symmetrical shape, which at In particular, the fuel escapes from the fuel nozzle efficiently leads to a non-rotationally symmetrical, distorted fuel cone.
  • the mouth channel preferably extends to the mouth edge out.
  • the edge of the mouth preferably has a notch.
  • Such an indentation turns liquid fuel into Leaves from the fuel nozzle more towards the notch distracted than in the other directions of the mouth rim.
  • Such an indentation will in turn achieved that liquid fuel does not move in all directions is distracted equally. It also imagines distorted fuel cone.
  • a fuel nozzle for petroleum is preferred.
  • the fuel nozzle is in a burner for a gas turbine, especially for a stationary gas turbine, used.
  • Figure 1 shows the side view of a fuel nozzle 1.
  • Ein cylindrical nozzle body 3 tapers in a truncated cone Section to an also cylindrical Mouth area 5 with an end face 5A.
  • a nozzle axis 2 directed runs into the fuel nozzle 1 Mouth channel 7, which at the end of the mouth area 5 with a Mouth edge 9 opens.
  • Through the mouth area 5 is a right-angled cut, so that a bevel 10 of the Channel wall 8 of the mouth channel 7 is visible.
  • the mouth edge 9 is not rotationally symmetrical around the nozzle axis 2. This is clear in Figure 2.
  • FIG. 2 shows a top view of the fuel nozzle 1 Figure 1.
  • the mouth edge 9 receives a two-fold Symmetry.
  • the mouth edge 9 thus corresponds to a contour, through the outer edge of a rectangle 11 and one Circle 13 is formed, the circle 13 with its center 15 lies on the center of gravity 17 of the rectangle 11 and protrudes beyond the narrow side of the rectangle 11.
  • the fuel nozzle 1 also has a favorable influence a nitrogen oxide reduction. Because of the distorted fuel cone can be a better fine distribution of liquid Reach fuel. In particular, there is a small one Droplet size for the fuel. Because of the better distribution and the small droplet size of the fuel results there is an equalization of the flame temperatures of the combustion. As a result, maximum temperatures are not as high achieved, which largely determine nitrogen oxide production. Furthermore, there is a better mixing with if necessary water sprayed at the same time. Water becomes Lowering flame temperatures injected into the combustion, which reduces nitrogen oxide formation. Not with one rotationally symmetrical fuel cone 33 (see FIG. 4) there is a better penetration of liquid Fuel and water.
  • FIG. 3 shows a top view of a fuel nozzle 1.
  • the mouth edge 9 represents a contour, which by a rectangle 21 and a perpendicular to it standing rectangle 23 is formed.
  • the two rectangles 21, 23 have a common focus 25, 27.
  • FIG. 4 shows a longitudinal section through the mouth region 5 a fuel nozzle 1 shown.
  • the fuel channel 7 expanded towards the mouth edge 9.
  • Two opposite Points P1, P2 on the channel wall 8 point towards one arbitrarily chosen zero position along an axial position B. the nozzle axis 2.
  • the point P1 is at a distance A1 from Nozzle axis 2.
  • Point P2 is at a distance A2 from the nozzle axis 2.
  • the distance A1 is greater than the distance A2.
  • a circumferential direction U around the nozzle axis 2 that is for Points P on the channel wall 8, which are all the same axial Having position B along the nozzle axis 2 changes the respective distance A to the nozzle axis 2 steadily.
  • a fuel flow in the mouth channel 7 is a non-rotationally symmetrical Embossed shape. This manifests itself on leaving the fuel from the outlet channel 7 in a non-rotationally symmetrical, distorted fuel cone 33. This has the suppression advantages discussed above of combustion vibrations and the reduction of Nitrogen oxide emissions result.
  • Figure 5 shows a plan view of a fuel nozzle 1.
  • Figure 6 shows the fuel nozzle 1 of FIG. 5 in a side view.
  • a semi-cylindrical indentation 31 is milled or sawn, which intersects the mouth of the mouth channel 7.
  • the mouth edge 9 also has a notch 31 this notch 31 becomes liquid fuel particularly wide sprayed on the side.
  • FIG. 7 shows a burner arrangement 40 from a multiplicity of Burners 42 in an annular combustion chamber 44 one not closer shown gas turbine.
  • the annular combustion chamber 44 is rotationally symmetrical about a combustion chamber axis 46
  • the inside of the outer wall 50 and the outside the inner wall 48 are with a fireproof outer lining 52 provided.
  • the mouth edges 9 of the burner 42 are not rotationally symmetrical and oriented irregularly to each other. So that results there is a reduced tendency to form a combustion oscillation, since those emanating from the individual burners 42 Combustion vibrations overlap irregularly and largely wipe it out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Gas Burners (AREA)
  • Spray-Type Burners (AREA)

Abstract

Die Erfindung betrifft eine Brennstoffdüse (1) mit einem Mündungsbereich (5), in dem sich entlang einer Düsenachse (2) ein Mündungskanal (7) erstreckt, welcher Mündungskanal (7) an einem Mündungsrand (9) endet. Die Brennstoffdüse ist dadurch gekennzeichnet, daß der Mündungsrand (9) nicht rotationssymmetrisch um die Düsenachse (2) ist.

Description

Die Erfindung betrifft eine Brennstoffdüse für flüssigen Brennstoff mit einem Mündungsbereich, in dem sich entlang einer Düsenachse ein Mündungskanal erstreckt.
In der DE 32 35 080 A1 ist eine Rücklaufeinspritzdüse beschrieben, bei der zwei einander entgegengesetzte Flüssigkeitszuführungen tangential in einen kreiszylindrischen Drallraum münden. Mit dem Drallraum ist einerseits ein Einspritzkanal und entgegengesetzt dazu andererseits eine Rücklaufbohrung verbunden. Die Rücklaufeinspritzdüse ist insbesondere für die Zerstäubung von flüssigem Brennstoff in Gasturbinenbrennkammern geeignet. Eine Zerstäubung wird dadurch erreicht, daß tangential in die Drallkammer Brennstoff einströmt und zu einem Hauptstrom vereinigt wird, wobei durch eine kreisförmige Führung in der Drallkammer dem Hauptstrom ein Drall erteilt wird, der im Einspritzkanal erhalten bleibt. Dadurch fächert der Brennstoffstrahl beim Austritt des Brennstoffs aus dem Einspritzkanal kegelförmig auf. Andererseits wird Brennstoff über die Rücklaufbohrung zurückgeführt. Unter Beibehaltung eines konstanten Brennstoffzustroms zur Rücklaufeinspritzdüse wird die Menge von eingespritztem Brennstoff dadurch gesteuert, daß die Menge an zurückgeführtem Brennstoff eingestellt wird.
In dem Artikel "Aktive Dämpfung selbsterregter Brennkammerschwingungen (AIC) bei Druckzerstäuberbrennern durch Modulation der flüssigen Brennstoffzufuhr" von J. Hermann, D. Vortmeyer und S. Gleis, VDI-Berichte Nr. 1090, 1993, ist beschrieben, wie eine Verbrennungsschwingung in der Brennkammer einer Gasturbine oder eines Kessels entsteht und wie sie aktiv gedämpft werden kann. Bei der Verbrennung in der Brennkammer kann es nämlich zu der erwähnten selbsterregten Verbrennungsschwingung kommen, die auch als Verbrennungs-Instabilität bezeichnet wird. Eine solche Verbrennungsschwingung entsteht durch die Wechselwirkung zwischen einer schwankenden Wärmefreisetzung bei der Verbrennung und der Akustik der Brennkammer. Eine Verbrennungsschwingung geht häufig einher mit einer hohen Lärmemission und einer mechanischen Belastung der Brennkammer, die bis zu einer Zerstörung von Bauteilen gehen kann.
Die DE-OS 20 33 118 zeigt einen Gasbrenner für einen gasgefeuerten Schmelzofen. Um eine hohen Flammentemperatur zu schaffen, weist der Gasbrenner eine im Bereich der Mündung konvergierende Düse in Form eines Spaltes auf. Dadurch wird eine hohe Wärmekonzentration gewährleistet.
Die DE 27 39 102 A1 zeigt einen Brenner mit zwei Düsen für gasförmige Stoffe, wobei die Düsenöffnungen einen ovalen Querschnitt haben. Der Mündungsrand einer Düse endet durch eine Abschrägung nicht konvergierend und weist eine zweizählige Symmetrie auf.
Aufgabe der Erfindung ist die Angabe einer Brennstoffdüse für flüssigen Brennstoff, durch welche eine Verbrennungsschwingung zumindest vermindert wird.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine Brennstoffdüse für flüssigen Brennstoff mit einem Mündungsbereich, in dem sich entlang einer Düsenachse ein Mündungskanal erstreckt, welcher Mündungskanal an einem Mündungsrand nicht konvergierend endet, wobei der Mündungsrand nicht rotationssymmetrisch um die Düsenachse ist.
Flüssiger Brennstoff wird in der Brennstoffdüse durch den Mündungsbereich im Mündungskanal geführt. Der Mündungskanal ist im Mündungsbereich nicht-konvergierend ausgeführt, das heißt, er verengt sich nicht, so daß kein Druckverlust entsteht. Der flüssige Brennstoff tritt aus dem Mündungskanal am Mündungsrand in den Außenraum aus. Dabei erweitert sich der Strahl, d.h. man erhält einen divergenten, aufgefächerten Brennstoffstrahl. Dadurch daß der Mündungsrand nicht rotationssymmetrisch um die Düsenachse ist, ist auch der divergente Brennstoffstrahl nicht rotationssymmetrisch. Man erhält somit einen verzerrten Brennstoffkegel, welcher zumindest in zwei Raumrichtungen eine unterschiedliche Ausdehnung senkrecht zur Strahlrichtung aufweist. Entsprechend verzerrt sich das räumliche Gebiet, in welchem die Verbrennung stattfindet. Durch diese Verzerrung des Verbrennungsgebietes wird Einfluß auf das Entstehen einer Verbrennungsschwingung genommen. Das Gebiet der Verbrennung wird so verlagert und auseinandergezogen, daß das akustische System aus Brenner und Brennerumgebung verstimmt wird. Die Brennstoffdüse und damit der austretende Brennstoffkegel werden so orientiert, daß sich eine Verringerung der Verbrennungsschwingungen bis hin zu einer vollständigen Unterdrückung der Verbrennungsschwingungen ergibt.
Vorzugsweise ist der Mündungsrand unsymmetrisch um die Düsenachse. Dies bedeutet, daß der Mündungsrand eine vollständige Umdrehung um die Düsenachse erfahren muß, um mit seiner ursprünglichen Position wieder in Deckung zu kommen.
Bevorzugtermaßen weist der Mündungsrand eine zweizählige Symmetrie auf. Weiter bevorzugt ist dabei der Mündungsrand eine Ellipse oder ein Rechteck, insbesondere mit abgerundeten Ecken. Die zweizählige Symmetrie bedeutet, daß der Mündungsrand eine halbe Drehung, d.h. 180°, erfahren muß, um mit seiner ursprünglichen Position in Deckung zu kommen.
Bevorzugt entspricht der Mündungsrand einer Kontur, die durch ein Rechteck und einen Kreis gebildet ist, wobei der Kreis mit seinem Mittelpunkt auf dem Schwerpunkt des Rechtecks liegt und über die Schmalseite des Rechtecks hinausragt, und wobei die Kontur den äußeren Rand des Rechtecks und des Kreises umschließt.
Bevorzugtermaßen entspricht der Mündungsrand einer Kontur, die durch zwei zueinander senkrecht stehende, einen gemeinsamen Schwerpunkt aufweisende Rechtecke gebildet ist, wobei die Kontur den äußeren Rand beider Rechtecke umschließt.
Bevorzugtermaßen weist der Mündungskanal eine Kanalwand auf, wobei jeder Punkt der Kanalwand einen Achsenabstand zur Düsenachse und eine axiale Position entlang der Düsenachse aufweist, und wobei der Achsenabstand für mindestens zwei Punkte auf der Kanalwand, welche die gleiche axiale Position aufweisen, unterschiedlich ist. Weiter bevorzugt ändert sich der Achsenabstand für Punkte auf der Kanalwand gleicher axialer Position entlang einer Umfangsrichtung um die Düsenachse stetig.Der Mündungskanal ist also nicht rotationssymmetrisch um die Düsenachse. Damit wird der flüssige Brennstoff bereits ein Stück weit im Mündungsbereich in einem nicht rotationssymmetrischen Strom geführt. Dem Brennstoffstrom wird also eine nicht rotationssymmetrische Form aufgeprägt, welche beim Austritt des Brennstofffs aus der Brennstoffdüse besonders effizient dazu führt, daß sich ein nicht rotationssymmetrischer, verzerrter Brennstoffkegel ausbildet.
Bevorzugtermaßen erweitert sich der Mündungskanal zum Mündungsrand hin.
Vorzugsweise weist der Mündungsrand eine Einkerbung auf. Durch eine solche Einkerbung wird flüssiger Brennstoff beim Austritt aus der Brennstoffdüse stärker in Richtung der Einkerbung abgelenkt, als in die übrigen Richtungen des Mündungsrandes. Durch eine solche Einkerbung wird also wiederum erreicht, daß flüssiger Brennstoff nicht in alle Raumrichtungen gleich stark abgelenkt wird. Es bildet sich ebenfalls ein verzerrter Brennstoffkegel aus.
Bevorzugt ist eine Brennstoffdüse für Erdöl.
Vorzugsweise wird die Brennstoffdüse in einem Brenner für eine Gasturbine, insbesondere für eine stationäre Gasturbine, eingesetzt.
Die Erfindung wird anhand der Zeichnung beispielhaft und teilweise schematisch näher erläutert. Es zeigen:
Figur 1
die Seitenansicht einer Brennstoffdüse,
Figur 2
die Draufsicht auf die Brennstoffdüse der Figur 1,
Figur 3
eine Draufsicht auf eine weitere Brennstoffdüse,
Figur 4
einen Längsschnitt durch den Mündungsbereich einer Brennstoffdüse,
Figur 5
eine Draufsicht auf eine weitere Brennstoffdüse,
Figur 6
eine Seitenansicht der Brennstoffdüse aus Figur 5 und
Figur 7
eine Brenneranordnung in einer Ringbrennkammer.
Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.
Figur 1 zeigt die Seitenansicht einer Brennstoffdüse 1. Ein zylindrischer Düsenkörper 3 verjüngt sich in einem kegelstumpfförmigen Abschnitt zu einem ebenfalls zylindrischen Mündungsbereich 5 mit einer Stirnfläche 5A. Entlang einer Düsenachse 2 gerichtet verläuft in der Brennstoffdüse 1 ein Mündungskanal 7, der am Ende des Mündungsbereichs 5 mit einem Mündungsrand 9 mündet. Durch den Mündungsbereich 5 ist ein rechtwinkliger Schnitt gelegt, so daß eine Abschrägung 10 der Kanalwand 8 des Mündungskanals 7 sichtbar ist. Durch diese Abschrägung 10 ist der Mündungsrand 9 nicht rotationssymmetrisch um die Düsenachse 2. Dies wird in Figur 2 deutlich.
Figur 2 zeigt eine Draufsicht auf die Brennstoffdüse 1 aus Figur 1. Durch zwei einander gegenüberliegende Abschrägungen 10 der Kanalwand 8 erhält der Mündungsrand 9 eine zweizählige Symmetrie. Der Mündungsrand 9 entspricht somit einer Kontur, die durch den äußeren Rand eines Rechteckes 11 und eines Kreises 13 gebildet ist, wobei der Kreis 13 mit seinem Mittelpunkt 15 auf dem Schwerpunkt 17 des Rechtecks 11 liegt und über die Schmalseite des Rechtecks 11 hinausragt.
Dadurch, daß der Mündungsrand 9 nicht rotationssymmetrisch um die Düsenachse 2 ist, bildet sich bei Austritt von flüssigem Brennstoff aus der Brennstoffdüse 1 ein nicht rotationssymmetrischer, verzerrter Brennstoffkegel 33 aus (siehe auch Figur 4). Dieser verzerrte Brennstoffkegel 33 führt dazu, daß das Gebiet der Verbrennung ebenfalls verzerrt ist. Durch geeignete Orientierung der Brennstoffdüse 1 kann eine akustische Wechselwirkung zwischen der Brennstoffdüse 1 und ihrer Umgebung so verstimmt werden, daß sich allenfalls geringe Verbrennungsschwingungen ausbilden. Eine solche Unterdrückung von Verbrennungsschwingungen ist besonders effektiv möglich, wenn mehrere Brennstoffdüsen 1 in einer Brennkammer angeordnet sind. Vorzugsweise werden solche Brennstoffdüsen 1 in Brennern für Gasturbinen eingesetzt. Die großvolumigen, energiereichen Verbrennungen in Gasturbinen können Verbrennungsschwingungen hervorrufen, welche nicht nur erhebliche Lärmbelastungen, sondern auch Materialschäden hervorrufen.
Die Brennstoffdüse 1 hat zudem einen günstigen Einfluß auf eine Stickoxidverringerung. Durch den verzerrten Brennstoffkegel läßt sich eine bessere Feinverteilung von flüssigem Brennstoff erreichen. Insbesondere ergibt sich eine geringe Tröpfchengröße für den Brennstoff. Durch die bessere Verteilung und die geringe Tröpfchengröße des Brennstoffs ergibt sich eine Vergleichmäßigung der Flammentemperaturen der Verbrennung. Dadurch werden nicht so hohe Maximaltemperaturen erreicht, die maßgeblich die Stickoxidproduktion bestimmen. Weiterhin ergibt sich eine bessere Durchmischung mit bedarfsweise gleichzeitig eingesprühtem Wasser. Wasser wird zur Senkung von Flammentemperaturen in der Verbrennung eingedüst, wodurch die Stickoxidbildung verringert wird. Bei einem nicht rotationssymmetrischen Brennstoffkegel 33 (siehe Fig. 4) ergibt sich eine bessere Durchdringung von flüssigem Brennstoff und Wasser.
In Figur 3 ist eine Draufsicht auf eine Brennstoffdüse 1 gezeigt. Der Unterschied zur Brennstoffdüse 1 aus den Figuren 1 und 2 besteht darin, daß der Mündungsrand 9 eine Kontur darstellt, welche durch ein Rechteck 21 und ein dazu senkrecht stehendes Rechteck 23 gebildet ist. Die beiden Rechtecke 21, 23 weisen einen gemeinsamen Schwerpunkt 25, 27 auf.
In Figur 4 ist ein Längsschnitt durch den Mündungsbereich 5 einer Brennstoffdüse 1 gezeigt. Der Brennstoffkanal 7 erweitert sich zum Mündungsrand 9 hin. Zwei gegenüberliegende Punkte P1, P2 auf der Kanalwand 8 weisen gegenüber einer willkürlich gewählten Nullage eine axiale Position B entlang der Düsenachse 2 auf. Der Punkt P1 hat einen Abstand A1 zur Düsenachse 2. Der Punkt P2 hat einen Abstand A2 zur Düsenachse 2. Der Abstand A1 ist größer als der Abstand A2. Entlang einer Umfangsrichtung U um die Düsenachse 2, also für Punkte P auf der Kanalwand 8, welche alle die gleiche axiale Position B entlang der Düsenachse 2 aufweisen, ändert sich der jeweilige Abstand A zur Düsenachse 2 stetig. Einem Brennstoffstrom in dem Mündungskanal 7 wird eine nicht rotationssymmetrische Form aufgeprägt. Dies äußert sich bei Austritt des Brennstoffs aus dem Mündungskanal 7 in einem nicht rotationssymmetrischen, verzerrten Brennstoffkegel 33. Dies hat die oben erläuterten Vorteile hinsichtlich der Unterdrückung von Verbrennungsschwingungen und die Verminderung von Stickoxidemissionen zur Folge.
Figur 5 zeigt eine Draufsicht auf eine Brennstoffdüse 1. Figur 6 zeigt die Brennstoffdüse 1 der Figur 5 in einer Seitenansicht. In die Stirnfläche 5A des Mündungsbereichs 5 ist eine halbzylinderförmige Einkerbung 31 eingefräst oder gesägt, welche die Mündung des Mündungskanals 7 schneidet. Dadurch hat der Mündungsrand 9 ebenfalls eine Einkerbung 31. An dieser Einkerbung 31 wird flüssiger Brennstoff besonders weit seitlich abgesprüht. Dadurch ergibt sich ein nicht rotationssymmetrischer Brennstoffkegel 33 für den aus der Brennstoffdüse 1 austretenden Brennstoff. Damit ergeben sich wiederum die bereits erwähnten Vorteile für die Verringerung von Verbrennungsschwingungen und Stickoxidemission.
Figur 7 zeigt eine Brenneranordnung 40 aus einer Vielzahl von Brennern 42 in einer Ringbrennkammer 44 einer nicht näher dargestellten Gasturbine. Die Ringbrennkammer 44 ist rotationssymmetrisch um eine Brennkammerachse 46. Sie weist eine Innenwand 48 und eine Außenwand 50 auf, die einen Ringraum 51 umschließen. Die Innenseite der Außenwand 50 und die Außenseite der Innenwand 48 sind mit einer feuerfesten Außkleidung 52 versehen.
Die Mündungsränder 9 der Brenner 42 sind nicht rotationssymmetrisch und unregelmäßig zueinander orientiert. Damit ergibt sich eine verringerte Neigung zur Ausbildung einer Verbrennungsschwingung, da die von den einzelnen Brennern 42 ausgehenden Verbrennungsschwingungen sich unregelmäßig überlagern und dabei weitgehend auslöschen.

Claims (15)

  1. Brennstoffdüse (1) für flüssigen Brennstoff mit einem Mündungsbereich (5) in dem sich entlang einer Düsenachse (2) ein Mündungskanal (7) erstreckt, welcher Mündungskanal (7) an einem Mündungsrand (9) nicht-konvergierend endet,
    dadurch gekennzeichnet, daß der Mündungsrand (9) nicht rotationssymmetrisch um die Düsenachse (2) ist.
  2. Brennstoffdüse (1) nach Anspruch 1,
    dadurch gekennzeichnet, daß der Mündungsrand (9) unsymmetrisch um die Düsenachse (2) ist.
  3. Brennstoffdüse (1) nach Anspruch 1,
    dadurch gekennzeichnet, daß der Mündungsrand (9) eine zweizählige Symmetrie aufweist.
  4. Brennstoffdüse (1) nach Anspruch 3,
    dadurch gekennzeichnet, daß der Mündungsrand (9) eine Ellipse ist.
  5. Brennstoffdüse (1) nach Anspruch 3,
    dadurch gekennzeichnet, daß der Mündungsrand (9) ein Rechteck ist, insbesondere mit abgerundeten Ecken.
  6. Brennstoffdüse (1) nach Anspruch 1 oder 3,
    dadurch gekennzeichnet, daß der Mündungsrand (9) einer Kontur entspricht, die durch ein Rechteck (11) und einen Kreis (13) gebildet ist, wobei der Kreis (13) mit seinem Mittelpunkt (15) auf dem Schwerpunkt (17) des Rechteckes (11) liegt und über die Schmalseite des Rechteckes (11) hinausragt und wobei die Kontur den äußeren Rand des Rechteckes (11) und des Kreises (13) umschließt.
  7. Brennstoffdüse (1) nach Anspruch 1 oder 3,
    dadurch gekennzeichnet, daß der Mündungsrand (9) einer Kontur entspricht, die durch zwei zueinander senkrecht stehende, einen gemeinsamen Schwerpunkt (25, 27) aufweisende Rechtecke (21, 23) gebildet ist, wobei die Kontur den äußeren Rand beider Rechtecke (21, 23) umschließt.
  8. Brennstoffdüse (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Mündungskanal (7) eine Kanalwand (8) aufweist, wobei jeder Punkt (P) der Kanalwand (8) einen Achsenabstand (A) zur Düsenachse (2) und eine axiale Position (B) entlang der Düsenachse (2) aufweist und wobei der Achsenabstand (A) für mindestens zwei Punkte (P1, P2) auf der Kanalwand (8), welche die gleiche axiale Position (B) aufweisen, unterschiedlich ist.
  9. Brennstoffdüse (1) nach Anspruch 8,
    dadurch gekennzeichnet, daß sich der Achsenabstand (A) für Punkte (P) auf der Kanalwand (8) gleicher axialer Position (B) entlang einer Umfangsrichtung (U) um die Düsenachse (2) stetig ändert.
  10. Brennstoffdüse (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Mündungskanal (7) sich zum Mündungsrand (9) hin erweitert.
  11. Brennstoffdüse (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Mündungsrand (9) eine Einkerbung (31) aufweist.
  12. Brennstoffdüse (1) nach einem der vorhergehenden Ansprüche für Erdöl.
  13. Brennstoffdüse (1) nach einem der vorhergehenden Ansprüche in einem Brenner (42) für eine Gasturbine, insbesondere für eine stationäre Gasturbine.
  14. Brenneranordnung (40) mit mehreren Brennern (42), welche in einer gemeinsamen Brennkammer (44) angeordnet sind, wobei mindestens zwei der Brenner (42) eine Brennstoffdüse (1) nach einem der vorhergehenden Ansprüche aufweisen.
  15. Brenneranordnung (40) nach Anspruch 14,
    die in einer Ringbrennkammer (44) für eine Gasturbine angeordnet ist.
EP99936291A 1998-06-04 1999-05-20 Brennstoffdüse Expired - Lifetime EP1084368B2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19825028 1998-06-04
DE19825028 1998-06-04
PCT/DE1999/001514 WO1999063268A1 (de) 1998-06-04 1999-05-20 Brennstoffdüse

Publications (3)

Publication Number Publication Date
EP1084368A1 EP1084368A1 (de) 2001-03-21
EP1084368B1 true EP1084368B1 (de) 2002-08-14
EP1084368B2 EP1084368B2 (de) 2005-11-02

Family

ID=7869930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99936291A Expired - Lifetime EP1084368B2 (de) 1998-06-04 1999-05-20 Brennstoffdüse

Country Status (5)

Country Link
US (1) US6676048B1 (de)
EP (1) EP1084368B2 (de)
JP (1) JP2002517700A (de)
DE (1) DE59902355D1 (de)
WO (1) WO1999063268A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1412122A4 (de) * 2001-07-09 2008-03-19 Jonathan Mohler Thermitschneidbrennerdüse
GB0219461D0 (en) * 2002-08-21 2002-09-25 Rolls Royce Plc Fuel injection arrangement
WO2005095863A1 (de) * 2004-03-31 2005-10-13 Alstom Technology Ltd Brenner
US7572997B2 (en) * 2007-02-28 2009-08-11 Caterpillar Inc. EDM process for manufacturing reverse tapered holes
US8146365B2 (en) * 2007-06-14 2012-04-03 Pratt & Whitney Canada Corp. Fuel nozzle providing shaped fuel spray
EP2423589A1 (de) * 2010-08-27 2012-02-29 Siemens Aktiengesellschaft Brenneranordnung
DE102012002465A1 (de) * 2012-02-08 2013-08-08 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer mit unsymmetrischen Kraftstoffdüsen
GB201222304D0 (en) * 2012-12-12 2013-01-23 Rolls Royce Plc A fuel injector and a gas turbine engine combustion chamber
JP6563687B2 (ja) * 2014-06-18 2019-08-21 リンナイ株式会社 コンロバーナ用二重ノズル
CN106999889A (zh) * 2014-12-04 2017-08-01 埃克森美孚研究工程公司 用于流化床反应器的流体喷射喷嘴
WO2019177947A1 (en) * 2018-03-12 2019-09-19 Buckner Todd T Drying system for car wash facility
US20230204215A1 (en) * 2021-12-29 2023-06-29 General Electric Company Fuel nozzle and swirler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2845639A1 (de) * 1978-03-16 1979-09-20 Zschopau Motorrad Veb Einspritzduese fuer brennkraftmaschinen
US5235813A (en) * 1990-12-24 1993-08-17 United Technologies Corporation Mechanism for controlling the rate of mixing in combusting flows

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583726A (en) * 1948-01-26 1952-01-29 Chalom Joseph Aaron Nozzle
US3101906A (en) * 1962-01-11 1963-08-27 Carl R Webber Spray nozzle
US3521824A (en) * 1968-10-11 1970-07-28 Delavan Manufacturing Co Air-liquid flat spray nozzle
DE2033118A1 (de) 1970-07-03 1972-01-05 Pensenskij Kompressornyj Sawod Gasbrenner
US3638865A (en) * 1970-08-31 1972-02-01 Gen Electric Fuel spray nozzle
DE2739102A1 (de) 1977-08-30 1979-03-15 Patra Patent Treuhand Brenner
CH635171A5 (de) 1978-06-08 1983-03-15 Bbc Brown Boveri & Cie Einrichtung an einem diffusor zum unterdruecken von resonanzen.
US4218020A (en) * 1979-02-23 1980-08-19 General Motors Corporation Elliptical airblast nozzle
DE3235080A1 (de) 1982-09-22 1984-03-22 Kraftwerk Union AG, 4330 Mülheim Ruecklaufeinspritzduese fuer die zerstaeubung von fluessigkeiten
US4638636A (en) * 1984-06-28 1987-01-27 General Electric Company Fuel nozzle
KR930004967B1 (ko) * 1988-07-13 1993-06-11 가부시기가이샤 히다찌세이사꾸쇼 전자식 연료 분사밸브
US4970865A (en) * 1988-12-12 1990-11-20 Sundstrand Corporation Spray nozzle
US5095696A (en) * 1990-01-02 1992-03-17 General Electric Company Asymmetric flameholder for gas turbine engine afterburner
IT223984Z2 (it) * 1990-01-17 1995-10-05 Weber Srl Valvola di un dispositivo di alimentazione di un motore a combustione interna
DE4104019C1 (de) * 1991-02-09 1992-04-23 Robert Bosch Gmbh, 7000 Stuttgart, De
FR2685452B1 (fr) * 1991-12-24 1994-02-11 Snecma Dispositif d'injection de carburant pour une chambre de combustion de turbomachine.
JP3052525B2 (ja) * 1992-01-30 2000-06-12 株式会社日立製作所 電磁式燃料噴射弁の加工方法
US5373694A (en) * 1992-11-17 1994-12-20 United Technologies Corporation Combustor seal and support
DE29511384U1 (de) * 1995-07-14 1995-10-12 Fa. J. Eberspächer, 73730 Esslingen Verdampfungsbrennkammer für ein mit flüssigem Brennstoff betriebenes Heizgerät
US5515814A (en) * 1995-09-06 1996-05-14 Transglobal Technologies, Limited Apparatus and method for supplying fuel to internal combustion engines
DE19541303A1 (de) 1995-11-06 1997-05-28 Siemens Ag Gasturbine
FR2748088B1 (fr) * 1996-04-24 1998-05-29 Snecma Optimisation du melange de gaz brules dans une chambre de combustion annulaire
WO1999006767A1 (de) * 1997-07-31 1999-02-11 Siemens Aktiengesellschaft Brenner
US6119459A (en) * 1998-08-18 2000-09-19 Alliedsignal Inc. Elliptical axial combustor swirler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2845639A1 (de) * 1978-03-16 1979-09-20 Zschopau Motorrad Veb Einspritzduese fuer brennkraftmaschinen
US5235813A (en) * 1990-12-24 1993-08-17 United Technologies Corporation Mechanism for controlling the rate of mixing in combusting flows

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUTMARK E. ET AL: Journal of Fluid Mechanics 1987; Vol.179; S.383-405; *
GUTMARK E. ET AL: 'Near field pressure fluctuation of an elliptic jet'; A/AA Journal 1983; Vol.23; S.354-358; *
HUSSAIN ET AL: Journal of Fluid Mechanics 1989; Vol.208; S.257-320 *
ZAMAN K.: Journal of Fluid Mechanics, 1996; Vol.316; S.1-27 *

Also Published As

Publication number Publication date
EP1084368A1 (de) 2001-03-21
DE59902355D1 (de) 2002-09-19
WO1999063268A1 (de) 1999-12-09
US6676048B1 (en) 2004-01-13
JP2002517700A (ja) 2002-06-18
EP1084368B2 (de) 2005-11-02

Similar Documents

Publication Publication Date Title
DE69210715T2 (de) Brenner mit geringer NOx-Produktion
EP1802915B1 (de) Brenner für gasturbine
EP0892212B1 (de) Druckzerstäuberdüse
EP1182398B1 (de) Verfahren zur Erhöhung der strömungsmechanischen Stabilität eines Vormischbrenners sowie Vormischbrenner zur Durchführung des Verfahrens
DE2950535A1 (de) Brennkammer einer gasturbine mit vormisch/vorverdampf-elementen
EP0638769A2 (de) Brennstofflanze für flüssige und/oder gasförmige Brennstoffe sowie Verfahren zu deren Betrieb
EP1084368B1 (de) Brennstoffdüse
DE69529879T2 (de) Brennstoff-Luft Mischvorrichtung
DE19839085A1 (de) Brenneranordnung mit primärem und sekundärem Pilotbrenner
EP0902233A1 (de) Kombinierte Druckzerstäuberdüse
DE2953648C2 (de) Flüssigbrennstoffbrenner
WO1999006767A1 (de) Brenner
EP0394800A1 (de) Vormischbrenner für die Heissgaserzeugung
DE19618856B4 (de) Vorrichtung zum Betreiben einer mit kombinierten Brennern für flüssige und gasförmige Brennstoffe bestückten Ringbrennkammer
DE102005038662B4 (de) Brennkopf und Verfahren zur Verbrennung von Brennstoff
EP0924461B1 (de) Zweistufige Druckzerstäuberdüse
EP0742411B1 (de) Luftzuströmung zu einer Vormischbrennkammer
CH682009A5 (de)
EP1073864B1 (de) Brennkammeranordnung
DE3741021A1 (de) Verbrennungseinrichtung fuer ein gasturbinentriebwerk
WO1992020964A1 (de) Verfahren und brenner zur schadstoffarmen verbrennung
DE112020004150T5 (de) Gasturbinenbrennkammer, gasturbine und verbrennungsverfahren für ölbrennstoff
DE3020030A1 (de) Oelvergasungsbrenner, insbesondere fuer kessel von zentralheizungsanlagen
DE3132948A1 (de) "verfahren zur verdampfung und verbrennung fluessigerbrennstoffe sowie brenner hierzu"
DE3901232C2 (de) Brenner für die Brennkammer eines Gasturbinentriebwerks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20010629

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59902355

Country of ref document: DE

Date of ref document: 20020919

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021028

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ALSTOM (SCHWEIZ) AG INTELLECTUAL PROPERTY (CHSP)

Effective date: 20030514

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20051102

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB IT LI

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060505

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060531

Year of fee payment: 8

ET3 Fr: translation filed ** decision concerning opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060808

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070520