EP1073864B1 - Brennkammeranordnung - Google Patents

Brennkammeranordnung Download PDF

Info

Publication number
EP1073864B1
EP1073864B1 EP99927681A EP99927681A EP1073864B1 EP 1073864 B1 EP1073864 B1 EP 1073864B1 EP 99927681 A EP99927681 A EP 99927681A EP 99927681 A EP99927681 A EP 99927681A EP 1073864 B1 EP1073864 B1 EP 1073864B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
burner
combustion
component
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99927681A
Other languages
English (en)
French (fr)
Other versions
EP1073864A1 (de
Inventor
Carsten Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1073864A1 publication Critical patent/EP1073864A1/de
Application granted granted Critical
Publication of EP1073864B1 publication Critical patent/EP1073864B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing

Definitions

  • the invention relates to a combustion chamber arrangement with a Combustion chamber in which a burner is arranged.
  • the combustion chamber is in particular an annular combustion chamber of a gas turbine.
  • thermoacoustic Vibration is actively damped by the fact that Injecting a fluid is the location of the combustion associated with it Heat release fluctuation is controlled.
  • US-A 4,967,562 discloses a turbine engine in which a particularly good fuel distribution in the combustion air is achieved. This is achieved in that Fuel sprayed from a nozzle onto a baffle becomes. The fuel is atomized and distributed well in the combustion air that flows past the baffle.
  • DE 196 15 910 A1 describes a burner arrangement in particular disclosed for a gas turbine.
  • At least one burner group provides the Main burner.
  • the other burner group is a fault burner group trained, with each of the interference burners opposite a main burner is inclined so that one of the main burner formed flame disc in its homogeneity and symmetry is disturbed. This can avoid pressure pulsations become.
  • the object of the invention is to provide a burner chamber arrangement, which in particular with regard to avoiding thermoacoustic Vibrations have a favorable behavior.
  • the combustion chamber is preferably rotationally symmetrical about the Combustion chamber axis.
  • the orthogonal component preferably has one of zero different length on.
  • a non-zero orthogonal component the inflow direction means the direction of the inflowing fuel gas flow not in the connection plane lies, i.e. the inflow direction is opposite to that Combustion chamber axis twisted.
  • the axis component has one of the others Axis component of different lengths.
  • the different Have lengths of the axis components of the two burners as a result that the respective inflow directions of the two Burner inclined or tilted differently to the combustion chamber axis are. Due to such a different inclination of the Inflow direction are the locations of the respective combustion to each other so adjustable that combustion vibrations emanating from these locations interfere with each other or even extinguish each other.
  • such an arrangement for a Combustion chamber can be used with a variety of burners. Only two or more burners can be different be tilted relative to the combustion chamber axis. ever after the geometric design of the combustion chamber it is also advantageous, most or all of the burners different to tilt towards the combustion chamber axis.
  • the length of the axis components of the burner can be expressed can also be combined with a twist.
  • Such a twist corresponds to a non-zero orthogonal component, as mentioned above.
  • the possibility a simultaneous twisting and tilting results in one wide choice for relocating the location of the Combustion. This results in a large number of configurations, from which one can be selected, the an acoustic detuning of the acoustic system Combustion chamber and burner guaranteed, i.e. with the one special great suppression of thermoacoustic vibrations is achieved.
  • Such a selection can e.g. done by that tried different configurations and those with the best thermoacoustic behavior.
  • the further burner is preferably in the area of the mouth another deflecting means for deflecting one from the other Burner escaping fuel gas flow in the further inflow direction intended.
  • a combustion of the fuel gas stream from the is preferred Burner in an energy column and combustion of the fuel gas stream from the further burner in another energy column can be generated, which energy pillars each an extension represent the fuel gas flow, the orthogonal component and the other orthogonal component so big and are oriented so that the energy column is out of the burner and the energy column from the other burner overlap.
  • An energy pillar is created by the burning of a pillar representing fuel gas stream emerging from the burner educated.
  • Such an arrangement is mutually influencing Burns from two burners leads to one particularly efficient suppression of thermoacoustic vibrations. Overlay through the overlapping pillars of energy resulting from these pillars of pressure and Power fluctuations, the cause of a combustion vibration could be. Through this overlay, a Reduction or suppression of a combustion vibration reached.
  • the deflecting means is preferably a wall which projects into the combustion chamber and surrounds the mouth.
  • the deflection means further preferably has a tear-off edge for eddies which can be caused by the fuel gas flow.
  • a tear-off edge for vortices creates vortices in the fuel gas flow at the deflecting means.
  • These vortices cause a return flow region for the fuel gas flow to form on the deflection means, in which a location for combustion is stabilized.
  • stabilization makes it easier to control acoustic detuning of the system.
  • fuel and combustion air are mixed still further by the swirling, which advantageously has the additional advantage that NO x emission is reduced.
  • the deflecting means is preferably a hollow cylinder or a Hollow truncated cone with sloping top surfaces. These cover surfaces are imaginary surfaces, so they are not massive Surfaces made of one material. You will be through the edge of the shell of the hollow cylinder or hollow cone educated. A cover surface is therefore the imaginary connection surface of the rim facing the mouth and the other Cover area the imaginary connection area of the in the combustion chamber protruding edge. This is a particularly simple and effective execution of the deflecting means.
  • the combustion chamber is preferably an annular combustion chamber, in particular for a gas turbine.
  • the annular combustion chamber has a complex one Geometry on. In such a system is the occurrence thermoacoustic vibrations unpredictable and special difficult to control. By means of deflection such a system in a structurally simple manner and Acoustically so detuned that there is a suppression results in thermoacoustic vibrations.
  • the Annular combustion chamber on a variety of burners, being for the predominant part of these burners, especially for all Burner, each a deflecting means in the area of a respective one Mouth is arranged.
  • FIG. 1 shows a longitudinal section through a burner 3.
  • Der Burner 3 is designed as a hydride burner, i.e. he points as Premix stage a ring channel 5, which concentrically one Pilot burner 7 surrounds. The burner is on a combustion chamber wall 9 a combustion chamber 11 arranged.
  • a fuel-air mixture 14A is conducted in the ring channel 5 . This unites with a fuel-air mixture 14B from the pilot burner 7 to a fuel gas stream 14.
  • the fuel gas stream 14 emerges a mouth 13 along a mouth direction 15 from the Burner off.
  • the mouth 13 is of a hollow cylindrical shape Deflection means 17, 17A surrounded.
  • the deflecting means 17, 17A has imaginary top surfaces 16A inclined to one another, 16B.
  • the deflecting means is therefore not rotationally symmetrical around the mouth direction 15.
  • the deflecting means 17, 17A could also have a preferred direction in cross section, ie not a circular cross-section as in the example shown here but e.g. have an elliptical cross section. It could also be a wall that the mouth 13 does not completely but only partially surrounds.
  • the deflecting means 17 becomes the fuel gas stream 14 from the mouth direction 15 deflected in an inflow direction 19.
  • the deflecting agent 17, 17A has a tear-off edge 18. At this tear-off edge 18 14 vortices 20 are formed in the fuel gas stream this vortex 20 becomes a return flow area for the fuel gas flow 14 generated. This has the consequence that in these vertebrae 20 a combustion site is stabilized.
  • the deflecting means 17, 17A becomes the location of the combustion of the fuel gas stream 14 displaced relative to the combustion chamber wall 9, opposite an inflow along the direction of the mouth 15.
  • a such a shift means that the acoustic system, which is formed from the burner and combustion chamber, acoustically is out of tune.
  • Such an acoustic detuning results there is a suppression of thermoacoustic vibrations.
  • the creation of a stable combustion site with the help of Vortex 20 simplifies the controllability of such acoustic detuning.
  • FIG. 2 shows the burner from FIG. 1 with a different design Deflection means 17, 17B.
  • This deflection means 17, 17B is designed as a truncated cone. It also points to each other inclined, imaginary top surfaces 16A, 16B.
  • the Advantages of this arrangement correspond to the advantages of the arrangement from Figure 1.
  • Figure 3 shows in perspective a combustion chamber arrangement 1, consisting from a combustion chamber designed as an annular combustion chamber 11 of a gas turbine and therein along a circumferential direction arranged burners 3.
  • the combustion chamber 11 is rotationally symmetrical about a combustion chamber axis 25 and has an outer Wall 21 and an inner wall 23.
  • the outer wall 21 and the inner wall 23 enclose an annular burner chamber 24.
  • the inner surface of the outer wall 21 and the outer surface the inner wall 23 are with a refractory inner lining 27 provided.
  • This orthogonal component 37, 38 is a circle with a cross shown to illustrate that the orthogonal component 37, 38 points into the plane of the drawing.
  • Figure 5 shows the burner arrangement of Figure 4 from a Viewing direction along the combustion chamber axis 25.
  • the axis component 35, 36 points from the plane of the drawing out.
  • FIG 6 is a longitudinal section through an annular combustion chamber executed combustion chamber 11 of a not shown Gas turbine shown.
  • a burner 3 along a mouth direction 15 in the combustion chamber 11 is turned off by a deflecting means 17 the fuel gas stream exiting the burner 3 in an inflow direction 19 redirected.
  • the orthogonal component 37 the inflow direction 19 zero, so that the inflow direction 19 intersects the combustion chamber axis 25 and forms an angle 46 with the combustion chamber axis 25.
  • Another burner opens into the lower half of the longitudinal section 39 along a further opening 49 into the combustion chamber 11.
  • Another deflection means 45 turns one off the further burner 39 escaping fuel gas flow into a deflected further inflow direction 41.
  • This different tilting ensures that Burning vibrations from the respective places of the Combustion of fuel gas from burner 3 or of fuel gas originate from the further burner 39, overlap so that thermoacoustic vibrations are suppressed.
  • the orthogonal component and / or the further orthogonal components can also differ from zero be what an additional rotation of the inflow direction 19 or the further inflow direction 41 with respect to the combustion chamber axis 25 corresponds.
  • Figure 7 shows a cross section through an annular combustion chamber executed combustion chamber 11 of a gas turbine.
  • a plurality of burners 3, 39 are arranged in a circle.
  • Each of these burners 3, 39 points in the region of its mouth a deflecting means 17, 45.
  • the deflection means 17, 45 are aligned so that each is characterized by a columnar combustion forming fuel gas emerging from the burner 3, 39 Superimpose energy columns 47, 49 in pairs.
  • the pressure fluctuations that are in the energy columns also overlap 47, 49 arise and the one cause for the emergence can be a combustion vibration. By a such superimposition becomes the formation of combustion vibrations suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Die Erfindung betrifft eine Brennkammeranordnung (1), insbesondere eine Ringbrennkammeranordnung für eine Gasturbine. Ein oder mehrere Brenner (3) weist bzw. weisen an seiner bzw. ihrer Mündung (13) ein Umlenkmittel (17) auf, durch das ein in die Brennkammeranordnung (1) einströmender Brenngasstrom (14) umgelenkt wird. Dadurch wird eine akustische Verstimmung erreicht, wodurch die Ausbildung einer Verbrennungsschwingung unterdrückt wird.

Description

Die Erfindung betrifft eine Brennkammeranordnung mit einer Brennkammer, in der ein Brenner angeordnet ist. Die Brennkammer ist insbesondere eine Ringbrennkammer einer Gasturbine.
Aus der DE 195 41 303 A1 geht eine Brennkammeranordnung einer Gasturbine hervor, in die eine Anzahl von Brennern mündet. Die Gasturbine weist eine Turbinenwelle mit einer Hauptachse auf. Jeder Brenner ist entlang einer Hauptachse gerichtet. Zur Erzielung eines besonders hohen Wirkungsgrades ist die Hauptachse jedes Brenners zur Erzeugung eines Dralls eines Arbeitsmittels gegenüber der Hauptachse der Turbinenwelle verkippt. Durch eine solche Verkippung der Brenner kann von einem drallerzeugenden Strukturteil abgesehen werden.
In der DE 43 39 094 A1 ist ein Verfahren zur Dämpfung von thermoakustischen Schwingungen in der Brennkammer einer Gasturbine beschrieben. Bei der Verbrennung von Brennstoffen in der Brennkammer einer stationären Gasturbine, eines Flugzeugtriebwerks oder dergleichen kann es aufgrund der Verbrennungsvorgänge zu Instabilitäten oder Druckschwankungen kommen, die unter ungünstigen Verhältnissen thermoakustische Schwingungen anregen, die auch Verbrennungsschwingungen genannt werden. Diese stellen nicht nur eine unerwünschte Schallquelle dar, sondern können zu unlässig hohen mechanischen Belastungen der Brennkammer führen. Eine solche thermoakustische Schwingung wird aktiv dadurch gedämpft, daß durch Eindüsen eines Fluides der Ort der mit der Verbrennung verbundenen Wärmefreisetzungsschwankung gesteuert wird.
Die US-A 4,967,562 offenbart ein Turbinentriebwerk, bei dem eine besonders gute Brennstoffverteilung in der Verbrennungsluft erreicht wird. Dies ist dadurch verwirklicht, dass Brennstoff aus einer Düse auf eine Prallplatte gespritzt wird. Dabei wird der Brennstoff fein zerstäubt und verteilt sich gut in der Verbrennungsluft, die an der Prallplatte vorbeiströmt.
In der DE 196 15 910 A1 ist eine Brenneranordnung insbesondere für eine Gasturbine offenbart. Es sind mindestens zwei Brennergruppen, bestehend aus jeweils mindestens einem Brenner gleicher Größe und Geometrie zur Bestückung einer Brennkammer vorgesehen. Mindestens eine Brennergruppe stellt die Hauptbrenner dar. Die andere Brennergruppe ist als Störbrennergruppe ausgebildet, wobei jeder der Störbrenner gegenüber einem Hauptbrenner so geneigt ist, dass eine vom Hauptbrenner gebildete Flammenscheibe in ihrer Homogenität und Symmetrie gestört wird. Hierdurch können Druckpulsationen vermieden werden.
Aufgabe der Erfindung ist es, eine Brennerkammeranordnung anzugeben, die insbesondere hinsichtlich der Vermeidung thermoakustischer Schwingungen ein günstiges Verhalten aufweist.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine Brennkammeranordnung gemäß Anspruch 1.
In einer solchen Brennkammeranordnung wird der Ort der Verbrennung des aus dem Brenner ausströmenden Brenngases durch die Umlenkung des Brenngasstromes mit Hilfe des Umlenkmittels verlagert. Eine solche Verlagerung hat zur Folge, daß sich die Abstände des Ortes der Verbrennung zur Brennkammerwand verändern. Dadurch wird das akustische System, welches durch Brenner und Brennkammer gebildet ist, akustisch verstimmt. Durch eine geeignete Ausrichtung des Umlenkmittels, d.h. durch eine geeignete Auswahl der Umlenkrichtung, ist somit die Ausbildung einer thermoakustischen Schwingung unterdrückbar.
Bevorzugt ist die Brennkammer rotationssymmetrisch um die Brennkammerachse.
Vorzugsweise weist die Orthogonalkomponente eine von Null verschiedene Länge auf. Eine von Null verschiedene Orthogonalkomponente der Einstromrichtung bedeutet, daß die Richtung des einströmenden Brenngasstromes nicht in der Verbindungsebene liegt, d.h. die Einströmrichtung ist gegenüber der Brennkammerachse verdreht. Durch eine solche schräge Einströmung ist besonders effizient eine Verlagerung des Ortes der Verbrennung möglich, so daß eine Ausbildung einer thermoakustischen Schwingung unterdrückt wird.
Vorzugsweise ist ein weiterer Brenner vorgesehen, der eine Mündung für ein Einströmen eines Brenngasstromes entlang einer weiteren Einströmrichtung in die Brennkammer aufweist, welche weitere Einströmrichtung als ein Einheitsvektor mit einem weiteren Aufpunkt am Querschnittsmittelpunkt der Mündung des weiteren Brenners und mit der Einheitslänge durch drei weitere Komponentenvektoren definiert ist:
  • a) eine weitere Achsenkomponente , die zur Brennkammerachse parallel ist ,
  • b) eine weitere Ebenenkomponente, die senkrecht zur Brennkammerachse ist und in einer weiteren Verbindungsebene liegt, die durch den weiteren Aufpunkt und die Brennkammerachse aufgespannt ist,
  • c) eine weitere Orthogonalkomponente, die senkrecht zur Brennkammerachse und zur weiteren Ebenenkomponente ist.
  • Bevorzugt weist die Achsenkomponente eine von der weiteren Achsenkomponente verschiedene Länge auf. Die unterschiedlichen Längen der Achsenkomponenten der beiden Brenner haben zur Folge, daß die jeweiligen Einströmrichtungen der beiden Brenner unterschiedlich zur Brennkammerachse geneigt oder gekippt sind. Durch eine solche unterschiedliche Neigung der Einströmrichtung sind die Orte der jeweiligen Verbrennung zueinander so einstellbar, daß von diesen Orten ausgehende Verbrennungsschwingungen sich gegenseitig stören oder gar auslöschen. Insbesondere kann eine solche Anordnung für eine Brennkammer mit einer Vielzahl von Brennern Verwendung finden. Dabei können nur zwei oder auch mehrere Brenner unterschiedlich gegenüber der Brennkammerachse gekippt sein. Je nach geometrischer Ausbildung der Brennkammer ist es auch vorteilhaft, den größten Teil oder alle Brenner unterschiedlich zur Brennkammerachse zu kippen.
    Eine Verkippung eines Brenners oder mehrerer Brenner gegenüber der Brennkammerachse, welche sich in einer unterschiedlichen Länge der Achsenkomponenten der Brenner äußert, kann auch mit einer Verdrehung kombiniert werden. Eine solche Verdrehung entspricht einer von Null verschiedenen Orthogonalkomponente, wie bereits oben angesprochen. Die Möglichkeit eines gleichzeitigen Verdrehens und Verkippens ergibt eine breite Auswahlmöglichkeit für die Verlagerung der Ortes der Verbrennung. Es ergibt sich somit eine Vielzahl von Konfigurationen, aus denen eine solche ausgewählt werden kann, die eine akustische Verstimmung des akustischen Systems aus Brennkammer und Brenner gewährleistet, d.h. mit der eine besonders große Unterdrückung von thermoakustischen Schwingungen erreicht wird. Eine solche Auswahl kann z.B. dadurch erfolgen, daß verschiedene Konfigurationen ausprobiert und jene mit dem thermoakustisch besten Verhalten ausgewählt wird.
    Vorzugsweise ist im Bereich der Mündung des weiteren Brenners ein weiteres Umlenkmittel zur Umlenkung eines aus dem weiteren Brenner austretenden Brenngasstromes in die weitere Einströmrichtung vorgesehen.
    Bevorzugt ist eine Verbrennung des Brenngasstromes aus dem Brenner in einer Energiesäule und eine Verbrennung des Brenngasstromes aus dem weiteren Brenner in einer weiteren Energiesäule erzeugbar, welche Energiesäulen jeweils eine Verlängerung des Brenngasstromes darstellen, wobei die Orthogonalkomponente und die weitere Orthogonalkomponente so groß und so orientiert sind, daß sich die Energiesäule aus dem Brenner und die Energiesäule aus dem weiteren Brenner überlappen. Eine Energiesäule wird durch die Verbrennung des eine Säule darstellenden, aus dem Brenner austretenden Brenngasstromes gebildet. Eine solche Anordnung sich gegenseitig beeinflussender Verbrennungen aus zwei Brennern führt zu einer besonders effizienten Unterdrückung von thermoakustischen Schwingungen. Durch die sich überlagernden Energiesäulen überlagern sich auch aus diesen Energiesäulen hervorgehenden Druck- und Leistungsschwankungen, die Ursache für eine Verbrennungsschwingung sein können. Durch diese Überlagerung wird eine Verringerung oder Unterdrückung einer Verbrennungsschwingung erreicht.
    Vorzugsweise ist das Umlenkmittel eine in die Brennkammer ragende, die Mündung umgebende Wand. Weiter bevorzugt weist das Umlenkmittel eine Abrißkante für Wirbel auf, die durch den Brenngasstrom hervorrufbar sind. Durch eine solche Abrißkante für Wirbel werden Wirbel im Brenngasstrom am Umlenkmittel erzeugt. Diese Wirbel führen dazu, daß sich am Umlenkmittel ein Rückströmgebiet für den Brenngasstrom ausbildet, in welchem ein Ort für eine Verbrennung stabilisiert wird. Durch eine solche Stabilisierung wird eine akustische Verstimmung des Systems besser kontrollierbar. Zudem werden Brennstoff und Verbrennungsluft durch die Verwirbelung noch weiter vermischt, was günstigerweise noch den zusätzlichen Vorteil hat, daß eine NOx-Emission reduziert wird.
    Vorzugsweise ist das Umlenkmittel ein Hohlzylinder oder ein Hohlkegelstumpf mit zueinander schrägstehenden Deckflächen. Diese Deckflächen sind gedachte Flächen, also nicht etwa massiv aus einem Material ausgeführte Flächen. Sie werden durch den Rand des Mantels des Hohlzylinders oder Hohlkegelstumptes gebildet. Eine Deckfläche ist also die gedachte Verbindungsfläche des der Mündung zugewandten Randes und die andere Deckfläche die gedachte Verbindungsfläche des in die Brennkammer ragenden Randes. Dies ist eine besonders einfache und wirkungsvolle Ausführung des Umlenkmittels.
    Bevorzugt ist die Brennkammer eine Ringbrennkammer, insbesondere für eine Gasturbine. Die Ringbrennkammer weist eine komplexe Geometrie auf. In einem solchen System ist das Auftreten thermoakustischer Schwingungen nicht vorhersehbar und besonders schwer beherrschbar. Durch Umlenkmittel läßt sich auch ein solches System in konstruktiv einfacher Art und Weise akustisch so verstimmen, daß sich eine Unterdrückung thermoakustischer Schwingungen ergibt. Bevorzugt weist die Ringbrennkammer eine Vielzahl von Brennern auf, wobei für den überwiegenden Teil dieser Brenner, insbesondere für alle Brenner, jeweils ein Umlenkmittel im Bereich einer jeweiligen Mündung angeordnet ist.
    Die Erfindung wird anhand der Zeichnung beispielhaft und teilweise schematisch näher erläutert. Es zeigen:
    Figur 1
    einen Längsschnitt durch einen in einer Brennkammer angeordneten Brenner mit einem Umlenkmittel,
    Figur 2
    den Brenner aus Figur 1 mit einem anders ausgeführten Umlenkmittel,
    Figur 3
    eine Ringbrennkammer einer Gasturbine,
    Figur 4
    eine Darstellung einer Komponentenaufteilung für eine Einströmrichtung,
    Figur 5
    eine der Figur 4 entsprechende Darstellung aus einer anderen Blickrichtung,
    Figur 6
    einen Längsschnitt durch eine Ringbrennkammer einer Gasturbine und
    Figur 7
    einen Querschnitt durch eine Ringbrennkammer einer Gasturbine.
    Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.
    Figur 1 zeigt einen Längsschnitt durch einen Brenner 3. Der Brenner 3 ist als Hydridbrenner ausgeführt, d.h. er weist als Vormischstufe einen Ringkanal 5 auf, welcher konzentrisch einen Pilotbrenner 7 umgibt. Der Brenner ist an einer Brennkammerwand 9 einer Brennkammer 11 angeordnet. Im Ringkanal 5 wird ein Brennstoffluftgemisch 14A geführt. Dieses vereinigt sich mit einem Brennstoffluftgemisch 14B aus dem Pilotbrenner 7 zu einem Brenngasstrom 14. Der Brenngasstrom 14 tritt aus einer Mündung 13 entlang einer Mündungsrichtung 15 aus dem Brenner aus. Die Mündung 13 ist von einem hohlzylinderförmigen Umlenkmittel 17, 17A umgeben. Das Umlenkmittel 17, 17A weist zueinander schräg gestellte, gedachte Deckflächen 16A, 16B auf. Das Umlenkmittel ist also nicht rotationssymmetrisch um die Mündungsrichtung 15. Das Umlenkmittel 17, 17A könnte auch im Querschnitt eine Vorzugsrichtung haben, also nicht wie im hier gezeigten Beispiel einen kreisförmigen Querschnitt sondern z.B. einen elliptischen Querschnitt aufweisen. Es könnte auch eine Wand sein, die die Mündung 13 nicht vollständig sondern nur teilweise umgibt. Durch das Umlenkmittel 17 wird der Brenngasstrom 14 von der Mündungsrichtung 15 in eine Einströmrichtung 19 umgelenkt. Das Umlenkmittel 17, 17A weist eine Abrißkante 18 auf. An dieser Abrißkante 18 bilden sich im Brenngasstrom 14 Wirbel 20. Durch diese Wirbel 20 wird ein Rückströmgebiet für den Brenngasstrom 14 erzeugt. Dies hat zur Folge, daß in diesen Wirbeln 20 ein Verbrennungsort stabilisiert wird. Durch das Umlenkmittel 17, 17A wird der Ort der Verbrennung des Brenngasstroms 14 relativ zur Brennkammerwand 9 verlagert, gegenüber einer Einströmung entlang der Mündungsrichtung 15. Eine solche Verlagerung hat zur Folge, daß das akustische System, welches aus Brenner und Brennkammer gebildet ist, akustisch verstimmt wird. Durch eine solche akustische Verstimmung ergibt sich eine Unterdrückung thermoakustischer Schwingungen. Die Erzeugung eines stabilen Verbrennungsortes mit Hilfe der Wirbel 20 vereinfacht die Kontrollierbarkeit einer solchen akustischen Verstimmung.
    Figur 2 zeigt den Brenner aus Figur 1 mit einem anders ausgeführten Umlenkmittel 17, 17B. Dieses Umlenkmittel 17, 17B ist als Hohlkegelstumpf ausgeführt. Es weist gleichfalls zueinander schräg gestellte, gedachte Deckflächen 16A, 16B auf. Die Vorteile dieser Anordnung entsprechen den Vorteilen der Anordnung aus Figur 1.
    Figur 3 zeigt perspektivisch eine Brennkammeranordnung 1, bestehend aus einer als Ringbrennkammer ausgeführten Brennkammer 11 einer Gasturbine und darin entlang einer Umfangsrichtung angeordneten Brennern 3. Die Brennkammer 11 ist rotationssymmetrisch um eine Brennkammerachse 25 und weist eine äußere Wand 21 und eine innere Wand 23 auf. Die äußere Wand 21 und die innere Wand 23 umschließen einen ringförmigen Brennerraum 24. Die Innenfläche der Außenwand 21 und die Außenfläche der Innenwand 23 sind mit einer feuerfesten Innenauskleidung 27 versehen.
    In Figur 4 ist dargestellt, wie die Einströmrichtung 19, 41 als ein Einheitsvektor mit der Einheitslänge L durch drei Komponenten darstellbar ist. Ein Brenner 3, 39 weist eine Mündungsrichtung 15, 43 auf. Ein Umlenkmittel 17, 45 lenkt einen aus dem Brenner 3, 39 austretenden Brenngasstrom in eine Einströmrichtung 19, 41 ab. Diese Einströmrichtung 19, 41 ist definiert durch einen in einem Aufpunkt A aufsetzenden Einheitsvektor. Der Aufpunkt A liegt im Flächenschwerpunkt der in der Brennkammer liegenden, äußeren Deckfläche 16A. Der Einheitsvektor weist folgende drei Komponentenvektoren auf:
  • 1. Eine Achsenkomponente 35, 36, mit einer Länge AL, BL welche parallel zur Brennkammerachse 25 ist.
  • 2. Eine Ebenenkomponente 33, 34, welche senkrecht auf der Achsenkomponente 35, 36 steht und in einer Verbindungsebene 31 liegt, die durch den Aufpunkt A und die Brennkammerachse 25 aufgespannt ist.
  • 3. Eine Orthogonalkomponente 37, 38, welche senkrecht sowohl auf der Achsenkomponente 35, 36 als auch auf der Ebenenkomponente 33, 34 steht.
  • Diese Orthogonalkomponente 37, 38 ist als ein Kreis mit Kreuz dargestellt, um zu verdeutlichen, daß die Orthogonalkomponente 37, 38 in die Zeichenebene hinein weist.
    Figur 5 zeigt die Brenneranordnung der Figur 4 aus einer Blickrichtung entlang der Brennkammerachse 25. In dieser Darstellung ist die Orthogonalkomponente 37, 38 in ihrer Länge OL sichtbar. Die Achsenkomponente 35, 36 weist aus der Zeichenebene heraus.
    In Figur 6 ist ein Längsschnitt durch eine als Ringbrennkammer ausgeführte Brennkammer 11 einer nicht näher dargestellten Gasturbine gezeigt. In der oberen Hälfte des Längsschnittes mundet ein Brenner 3 entlang einer Mündungsrichtung 15 in die Brennkammer 11. Durch ein Umlenkmittel 17 wird ein aus dem Brenner 3 austretender Brenngasstrom in eine Einströmrichtung 19 umgelenkt. Im hier dargestellten Fall ist die Orthogonalkomponente 37 der Einströmrichtung 19 Null, so daß die Einströmrichtung 19 die Brennkammerachse 25 schneidet und einen Winkel 46 mit der Brennkammerachse 25 bildet. In der unteren Hälfte des Längsschnittes mündet ein weiterer Brenner 39 entlang einer weiteren Mündungsrichtung 49 in die Brennkammer 11. Durch ein weiteres Umlenkmittel 45 wird ein aus dem weiteren Brenner 39 austretender Brenngasstrom in eine weitere Einströmrichtung 41 umgelenkt. Im hier gezeigten Beispiel schneidet auch die weitere Einströmrichtung 41 die Brennkammerachse 25, und zwar unter einem Winkel 48. Der Winkel 46 der Einströmrichtung 19 mit der Brennkammerachse 25 ist verschieden von dem Winkel 48 der weiteren Einströmrichtung 41 mit der Brennkammerachse 25. Dies ist äquivalent dazu, daß die Achsenkomponente 35 der Einströmrichtung 19 eine andere Länge AL als die weitere Achsenkomponente 36 der weiteren Einströmrichtung 41 aufweist. Der Brenner 3 und der weitere Brenner 39 weisen also unterschiedlich gegen die Brennkammerachse 25 gekippte Einströmrichtungen 19, 41 auf. Durch diese unterschiedliche Verkippung wird erreicht, daß Verbrennungsschwingungen, die von den jeweiligen Orten der Verbrennung von Brenngas aus dem Brenner 3 bzw. von Brenngas aus dem weiteren Brenner 39 stammen, sich so überlagern, daß eine Unterdrückung thermoakustischer Schwingungen erfolgt. Der hier gezeigte Fall, daß die Orthogonalkomponente bzw. die weitere Orthogonalkomponente Null sind, dient nur einer vereinfachten Darstellung. Die Orthogonalkomponente und/oder die weitere Orthogonalkomponente können auch von Null verschieden sein, was einer zusätzlichen Verdrehung der Einströmrichtung 19 bzw. der weiteren Einströmrichtung 41 gegenüber der Brennkammerachse 25 entspricht.
    Figur 7 zeigt einen Querschnitt durch eine als Ringbrennkammer ausgeführte Brennkammer 11 einer Gasturbine. Entlang eines Kreises sind eine Vielzahl von Brennern 3, 39 angeordnet. Jeder dieser Brenner 3, 39 weist im Bereich seiner Mündung ein Umlenkmittel 17, 45 auf. Für jeweils zwei benachbarte Brenner 3, 39 sind die Umlenkmittel 17, 45 so ausgerichtet, daß sich die sich jeweils durch eine Verbrennung des säulenartig aus dem Brenner 3, 39 austretenden Brenngases ausbildenden Energiesäulen 47, 49 paarweise überlagern. Damit überlagern sich auch die Druckschwankungen, die in den Energiesäulen 47, 49 entstehen und die eine Ursache für die Entstehung einer Verbrennungsschwingung sein können. Durch eine solche Überlagerung wird die Ausbildung einer Verbrennungsschwingungen unterdrückt.

    Claims (11)

    1. Brennkammeranordnung (1)
      mit einer eine Brennkammerachse (25) aufweisenden Brennkammer (11), in der
      ein Brenner (3) angeordnet ist, der
      eine Mündung (13) für ein Einströmen eines Brenngasstromes (14) entlang einer Mündungsrichtung (15) in die Brennkammer aufweist, wobei
      im Bereich der Mündung (13) ein Umlenkmittel (17) zur Umlenkung des Brenngasstromes (14) in eine von der Mündungsrichtung (15) verschiedene Einströmrichtung (19) angeordnet ist und wobei das Umlenkmittel (17) eine in die Brennkammer ragende, die Mündung (13) umgebende Wand ist, wobei
      die Einströmrichtung (19) als ein Einheitsvektor mit einem Aufpunkt (A) am Querschnittsmittelpunkt der Mündung (13) und einer Einheitslänge (L) durch drei Komponentenvektoren (33, 35, 37) definiert ist:
      a) eine Achsenkomponente (35), die zur Brennkammerachse (25) parallel ist
      b) eine Ebenenkomponente (33), die senkrecht zur Symmetrieachse (25) ist und in einer Verbindungsebene (31) liegt, die durch den Aufpunkt (A) und die Brennkammerachse (25) aufgespannt ist,
      c) eine Orthogonalkomponente (37), die senkrecht zur Brennkammerachse (25) und zur Ebenenkomponente (33) ist.
    2. Brennkammeranordnung (1) nach Anspruch 1,
      bei der die Brennkammer (11) rotationssymmetrisch um die Brennerachae (25) ist.
    3. Brennkammeranordnung (1) nach Anspruch 1 oder 2,
      wobei die Orthogonalkomponente (37) eine von Null verschiedene Länge (0L) aufweist.
    4. Brennkammeranordnung (1) nach Anspruch 1, 2 oder 3,
      bei der ein weiterer Brenner (39) vorgesehen ist, der eine Mündung (40) für ein Einströmen eines Brenngasstromes entlang einer weiteren Einströmrichtung (41) in die Brennkammer (11) aufweist, welche weitere Einströmrichtung (41) als ein Einheitsvektor mit einem weiteren Aufpunkt (B) am Querschnittsmittelpunkt der Mündung des weiteren Brenners (39) und mit der Einheitslänge (L) durch drei weitere Komponentenvektoren definiert ist:
      a) eine weitere Achsenkomponente(36) , die zur Brennkammerachse (25) parallel ist,
      b) eine weitere Ebenenkomponente (34), die senkrecht zur Brennkammerachse (25) ist und in einer weiteren Verbindungsebene (31A) liegt, die durch den weiteren Aufpunkt (B) und die Brennkammerachse (25) aufgespannt ist,
      c) eine weitere Orthogonalkomponente (38), die senkrecht zur Brennkammerachse (25) und zur weiteren Ebenenkomponente (34) ist.
    5. Brennkammeranordnung (1) nach Anspruch 4,
      bei der die Achsenkomponente (35) eine Länge (AL) aufweist, die von einer Länge (BL) der weiteren Achsenkomponente (36) verschieden ist.
    6. Brennkammeranordnung (1) nach Anspruch 4 oder 5,
      bei der im Bereich der Mündung (40) des weiteren Brenners (39) ein weiteres Umlenkmittel (45) zur Umlenkung eines aus dem weiteren Brenner (39) austretenden Brenngasstromes in die weitere Einströmrichtung (41) vorgesehen ist.
    7. Brennkammeranordnung (1) nach Anspruch 4, 5 oder 6, bei der eine Verbrennung des Brenngasstromes (14) aus dem Brenner (3) in einer Energiesäule (47) und eine Verbrennung des Brenngasstromes (14) aus dem weiteren Brenner (39) in einer weiteren Energiesäule (49) erzeugbar ist, welche Energiesäulen (47, 49) jeweils eine Verlängerung des Brenngasstromes (14) darstellen, wobei die Orthogonalkomponente (37) und die weitere Orthogonalkomponente (38) so groß und so orientiert sind, daß sich die Energiesäule (47) aus dem Brenner (3) und die Energiesäule (49) aus dem weiteren Brenner (39) überlappen.
    8. Brennkammeranordnung (1) nach Anspruch 1,
      bei der das Umlenkmittel (17) ein Hohlzylinder (17A) oder ein Hohlkegelstumpf (17B) mit zueinander schrägstehenden Deckflächen (16A, 16B) ist.
    9. Brennkammeranordnung (1) nach einem der vorhergehenden Ansprüche,
      bei der das Umlenkmittel (17) eine Abrißkante für Wirbel (20) aufweist, die durch den Brenngasstrom (14) hervorrufbar sind.
    10. Brennkammeranordnung (1) nach einem der vorhergehenden Ansprüche,
      bei der die Brennkammer (11) eine Ringbrennkammer ist, insbesondere für eine Gasturbine.
    11. Brennkammeranordnung (1) nach Anspruch 10,
      mit einer Vielzahl von Brennern (3, 39), wobei für den überwiegenden Teil dieser Brenner (3, 39), insbesondere für alle Brenner (3,39), jeweils ein Umlenkmittel (17, 45) im Bereich einer jeweiligen Mündung (13,40) angeordnet ist.
    EP99927681A 1998-04-23 1999-04-19 Brennkammeranordnung Expired - Lifetime EP1073864B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19818082 1998-04-23
    DE19818082 1998-04-23
    PCT/DE1999/001169 WO1999056060A1 (de) 1998-04-23 1999-04-19 Brennkammeranordnung

    Publications (2)

    Publication Number Publication Date
    EP1073864A1 EP1073864A1 (de) 2001-02-07
    EP1073864B1 true EP1073864B1 (de) 2002-07-03

    Family

    ID=7865507

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99927681A Expired - Lifetime EP1073864B1 (de) 1998-04-23 1999-04-19 Brennkammeranordnung

    Country Status (5)

    Country Link
    US (1) US6568190B1 (de)
    EP (1) EP1073864B1 (de)
    JP (1) JP2002513130A (de)
    DE (1) DE59901946D1 (de)
    WO (1) WO1999056060A1 (de)

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7302802B2 (en) * 2003-10-14 2007-12-04 Pratt & Whitney Canada Corp. Aerodynamic trip for a combustion system
    US7827797B2 (en) * 2006-09-05 2010-11-09 General Electric Company Injection assembly for a combustor
    US7810333B2 (en) * 2006-10-02 2010-10-12 General Electric Company Method and apparatus for operating a turbine engine
    US8028512B2 (en) 2007-11-28 2011-10-04 Solar Turbines Inc. Active combustion control for a turbine engine
    EP2264370B1 (de) * 2009-06-16 2012-10-10 Siemens Aktiengesellschaft Brenneranordnung für eine Verfeuerungsanlage zum Verfeuern fluidischer Brennstoffe und Verfahren zum Betrieb einer solchen Brenneranordnung
    DE102012001777A1 (de) * 2012-01-31 2013-08-01 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenringbrennkammer
    DE102012002465A1 (de) 2012-02-08 2013-08-08 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer mit unsymmetrischen Kraftstoffdüsen
    US9709279B2 (en) 2014-02-27 2017-07-18 General Electric Company System and method for control of combustion dynamics in combustion system
    US9845956B2 (en) * 2014-04-09 2017-12-19 General Electric Company System and method for control of combustion dynamics in combustion system
    US20240068402A1 (en) * 2022-08-25 2024-02-29 Collins Engine Nozzles, Inc. Fuel injectors assemblies with tangential flow component

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1321926A (en) 1970-07-10 1973-07-04 Tokyo Gas Co Ltd High velocity gas burner and heating furnace provided with such a gas burner
    DE3860569D1 (de) * 1987-01-26 1990-10-18 Siemens Ag Hybridbrenner fuer vormischbetrieb mit gas und/oder oel, insbesondere fuer gasturbinenanlagen.
    US4967562A (en) * 1988-12-12 1990-11-06 Sundstrand Corporation Turbine engine with high efficiency fuel atomization
    US5156002A (en) * 1990-03-05 1992-10-20 Rolf J. Mowill Low emissions gas turbine combustor
    DE4339094A1 (de) 1993-11-16 1995-05-18 Abb Management Ag Verfahren zur Dämpfung von thermoakustischen Schwingungen sowie Vorrichtung zur Durchführung des Verfahrens
    US5596873A (en) * 1994-09-14 1997-01-28 General Electric Company Gas turbine combustor with a plurality of circumferentially spaced pre-mixers
    US5727378A (en) * 1995-08-25 1998-03-17 Great Lakes Helicopters Inc. Gas turbine engine
    DE19541303A1 (de) 1995-11-06 1997-05-28 Siemens Ag Gasturbine
    DE19615910B4 (de) * 1996-04-22 2006-09-14 Alstom Brenneranordnung
    GB2319078B (en) * 1996-11-08 1999-11-03 Europ Gas Turbines Ltd Combustor arrangement
    EP0931979A1 (de) * 1998-01-23 1999-07-28 DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- Vorrichtung zur Unterdrückung von Flammen-/Druckschwingungen bei einer Feuerung insbesondere einer Gasturbine
    WO2000012940A1 (de) * 1998-08-31 2000-03-09 Siemens Aktiengesellschaft Verfahren zum betrieb einer gasturbine und gasturbine

    Also Published As

    Publication number Publication date
    DE59901946D1 (de) 2002-08-08
    WO1999056060A1 (de) 1999-11-04
    JP2002513130A (ja) 2002-05-08
    EP1073864A1 (de) 2001-02-07
    US6568190B1 (en) 2003-05-27

    Similar Documents

    Publication Publication Date Title
    DE60007946T2 (de) Eine Brennkammer
    EP2156095B1 (de) Drallfreie stabilisierung der flamme eines vormischbrenners
    DE69210715T2 (de) Brenner mit geringer NOx-Produktion
    DE19615910B4 (de) Brenneranordnung
    EP0675322B1 (de) Vormischbrenner
    DE69715256T2 (de) Brennkammer
    EP0924470B1 (de) Vormischbrennkammer für eine Gasturbine
    WO1999037951A1 (de) Vorrichtung zur unterdrückung von flammen-/druckschwingungen bei einer feuerung, insbesondere einer gasturbine
    EP1754002B1 (de) Gestufter vormischbrenner mit einem injektor für flüssigbrennstoff
    DE112014004482T5 (de) Gasturbinenbrennkammer und mit selbiger versehenes Gasturbinentriebwerk
    EP0718558B1 (de) Brennkammer
    WO2006069861A1 (de) Vormischbrenner mit mischstrecke
    EP0623786A1 (de) Brennkammer
    EP0754908B1 (de) Verfahren und Vorrichtung zur Unterdrückung von Flammen-/Druckschwingungen bei einer Feuerung
    WO2015150114A1 (de) Brenner, gasturbine mit einem solchen brenner und brennstoffdüse
    EP1073864B1 (de) Brennkammeranordnung
    WO1999004196A1 (de) Brenneranordnung für eine feuerungsanlage, insbesondere eine gasturbinenbrennkammer
    EP0925470A3 (de) Vorrichtung und verfahren zur verbrennung eines brennstoffs in luft
    EP0394800A1 (de) Vormischbrenner für die Heissgaserzeugung
    EP1084368B1 (de) Brennstoffdüse
    EP3421885B1 (de) Brennkammer einer gasturbine, gasturbine und verfahren zum betreiben derselben
    DE3741021A1 (de) Verbrennungseinrichtung fuer ein gasturbinentriebwerk
    EP0730121A2 (de) Vormischbrenner
    CH709640A2 (de) Systeme und Verfahren zur Kohärenzreduktion in einem Verbrennungssystem mit erster und zweiter Brennkammer einer Gasturbine.
    EP2288852B1 (de) Verfahren zum betreiben eines vormischbrenners und ein vormischbrenner zur durchführung des verfahrens

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20001011

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE FR GB IT LI

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 20011210

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE FR GB IT LI

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59901946

    Country of ref document: DE

    Date of ref document: 20020808

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030430

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030404

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20150619

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160411

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20160428

    Year of fee payment: 18

    Ref country code: FR

    Payment date: 20160429

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59901946

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161101

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20170419

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20171229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170502

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170419

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170419