EP1073864B1 - Brennkammeranordnung - Google Patents
Brennkammeranordnung Download PDFInfo
- Publication number
- EP1073864B1 EP1073864B1 EP99927681A EP99927681A EP1073864B1 EP 1073864 B1 EP1073864 B1 EP 1073864B1 EP 99927681 A EP99927681 A EP 99927681A EP 99927681 A EP99927681 A EP 99927681A EP 1073864 B1 EP1073864 B1 EP 1073864B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- burner
- combustion
- component
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/48—Nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C3/00—Combustion apparatus characterised by the shape of the combustion chamber
- F23C3/002—Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
- F23M20/005—Noise absorbing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/50—Combustion chambers comprising an annular flame tube within an annular casing
Definitions
- the invention relates to a combustion chamber arrangement with a Combustion chamber in which a burner is arranged.
- the combustion chamber is in particular an annular combustion chamber of a gas turbine.
- thermoacoustic Vibration is actively damped by the fact that Injecting a fluid is the location of the combustion associated with it Heat release fluctuation is controlled.
- US-A 4,967,562 discloses a turbine engine in which a particularly good fuel distribution in the combustion air is achieved. This is achieved in that Fuel sprayed from a nozzle onto a baffle becomes. The fuel is atomized and distributed well in the combustion air that flows past the baffle.
- DE 196 15 910 A1 describes a burner arrangement in particular disclosed for a gas turbine.
- At least one burner group provides the Main burner.
- the other burner group is a fault burner group trained, with each of the interference burners opposite a main burner is inclined so that one of the main burner formed flame disc in its homogeneity and symmetry is disturbed. This can avoid pressure pulsations become.
- the object of the invention is to provide a burner chamber arrangement, which in particular with regard to avoiding thermoacoustic Vibrations have a favorable behavior.
- the combustion chamber is preferably rotationally symmetrical about the Combustion chamber axis.
- the orthogonal component preferably has one of zero different length on.
- a non-zero orthogonal component the inflow direction means the direction of the inflowing fuel gas flow not in the connection plane lies, i.e. the inflow direction is opposite to that Combustion chamber axis twisted.
- the axis component has one of the others Axis component of different lengths.
- the different Have lengths of the axis components of the two burners as a result that the respective inflow directions of the two Burner inclined or tilted differently to the combustion chamber axis are. Due to such a different inclination of the Inflow direction are the locations of the respective combustion to each other so adjustable that combustion vibrations emanating from these locations interfere with each other or even extinguish each other.
- such an arrangement for a Combustion chamber can be used with a variety of burners. Only two or more burners can be different be tilted relative to the combustion chamber axis. ever after the geometric design of the combustion chamber it is also advantageous, most or all of the burners different to tilt towards the combustion chamber axis.
- the length of the axis components of the burner can be expressed can also be combined with a twist.
- Such a twist corresponds to a non-zero orthogonal component, as mentioned above.
- the possibility a simultaneous twisting and tilting results in one wide choice for relocating the location of the Combustion. This results in a large number of configurations, from which one can be selected, the an acoustic detuning of the acoustic system Combustion chamber and burner guaranteed, i.e. with the one special great suppression of thermoacoustic vibrations is achieved.
- Such a selection can e.g. done by that tried different configurations and those with the best thermoacoustic behavior.
- the further burner is preferably in the area of the mouth another deflecting means for deflecting one from the other Burner escaping fuel gas flow in the further inflow direction intended.
- a combustion of the fuel gas stream from the is preferred Burner in an energy column and combustion of the fuel gas stream from the further burner in another energy column can be generated, which energy pillars each an extension represent the fuel gas flow, the orthogonal component and the other orthogonal component so big and are oriented so that the energy column is out of the burner and the energy column from the other burner overlap.
- An energy pillar is created by the burning of a pillar representing fuel gas stream emerging from the burner educated.
- Such an arrangement is mutually influencing Burns from two burners leads to one particularly efficient suppression of thermoacoustic vibrations. Overlay through the overlapping pillars of energy resulting from these pillars of pressure and Power fluctuations, the cause of a combustion vibration could be. Through this overlay, a Reduction or suppression of a combustion vibration reached.
- the deflecting means is preferably a wall which projects into the combustion chamber and surrounds the mouth.
- the deflection means further preferably has a tear-off edge for eddies which can be caused by the fuel gas flow.
- a tear-off edge for vortices creates vortices in the fuel gas flow at the deflecting means.
- These vortices cause a return flow region for the fuel gas flow to form on the deflection means, in which a location for combustion is stabilized.
- stabilization makes it easier to control acoustic detuning of the system.
- fuel and combustion air are mixed still further by the swirling, which advantageously has the additional advantage that NO x emission is reduced.
- the deflecting means is preferably a hollow cylinder or a Hollow truncated cone with sloping top surfaces. These cover surfaces are imaginary surfaces, so they are not massive Surfaces made of one material. You will be through the edge of the shell of the hollow cylinder or hollow cone educated. A cover surface is therefore the imaginary connection surface of the rim facing the mouth and the other Cover area the imaginary connection area of the in the combustion chamber protruding edge. This is a particularly simple and effective execution of the deflecting means.
- the combustion chamber is preferably an annular combustion chamber, in particular for a gas turbine.
- the annular combustion chamber has a complex one Geometry on. In such a system is the occurrence thermoacoustic vibrations unpredictable and special difficult to control. By means of deflection such a system in a structurally simple manner and Acoustically so detuned that there is a suppression results in thermoacoustic vibrations.
- the Annular combustion chamber on a variety of burners, being for the predominant part of these burners, especially for all Burner, each a deflecting means in the area of a respective one Mouth is arranged.
- FIG. 1 shows a longitudinal section through a burner 3.
- Der Burner 3 is designed as a hydride burner, i.e. he points as Premix stage a ring channel 5, which concentrically one Pilot burner 7 surrounds. The burner is on a combustion chamber wall 9 a combustion chamber 11 arranged.
- a fuel-air mixture 14A is conducted in the ring channel 5 . This unites with a fuel-air mixture 14B from the pilot burner 7 to a fuel gas stream 14.
- the fuel gas stream 14 emerges a mouth 13 along a mouth direction 15 from the Burner off.
- the mouth 13 is of a hollow cylindrical shape Deflection means 17, 17A surrounded.
- the deflecting means 17, 17A has imaginary top surfaces 16A inclined to one another, 16B.
- the deflecting means is therefore not rotationally symmetrical around the mouth direction 15.
- the deflecting means 17, 17A could also have a preferred direction in cross section, ie not a circular cross-section as in the example shown here but e.g. have an elliptical cross section. It could also be a wall that the mouth 13 does not completely but only partially surrounds.
- the deflecting means 17 becomes the fuel gas stream 14 from the mouth direction 15 deflected in an inflow direction 19.
- the deflecting agent 17, 17A has a tear-off edge 18. At this tear-off edge 18 14 vortices 20 are formed in the fuel gas stream this vortex 20 becomes a return flow area for the fuel gas flow 14 generated. This has the consequence that in these vertebrae 20 a combustion site is stabilized.
- the deflecting means 17, 17A becomes the location of the combustion of the fuel gas stream 14 displaced relative to the combustion chamber wall 9, opposite an inflow along the direction of the mouth 15.
- a such a shift means that the acoustic system, which is formed from the burner and combustion chamber, acoustically is out of tune.
- Such an acoustic detuning results there is a suppression of thermoacoustic vibrations.
- the creation of a stable combustion site with the help of Vortex 20 simplifies the controllability of such acoustic detuning.
- FIG. 2 shows the burner from FIG. 1 with a different design Deflection means 17, 17B.
- This deflection means 17, 17B is designed as a truncated cone. It also points to each other inclined, imaginary top surfaces 16A, 16B.
- the Advantages of this arrangement correspond to the advantages of the arrangement from Figure 1.
- Figure 3 shows in perspective a combustion chamber arrangement 1, consisting from a combustion chamber designed as an annular combustion chamber 11 of a gas turbine and therein along a circumferential direction arranged burners 3.
- the combustion chamber 11 is rotationally symmetrical about a combustion chamber axis 25 and has an outer Wall 21 and an inner wall 23.
- the outer wall 21 and the inner wall 23 enclose an annular burner chamber 24.
- the inner surface of the outer wall 21 and the outer surface the inner wall 23 are with a refractory inner lining 27 provided.
- This orthogonal component 37, 38 is a circle with a cross shown to illustrate that the orthogonal component 37, 38 points into the plane of the drawing.
- Figure 5 shows the burner arrangement of Figure 4 from a Viewing direction along the combustion chamber axis 25.
- the axis component 35, 36 points from the plane of the drawing out.
- FIG 6 is a longitudinal section through an annular combustion chamber executed combustion chamber 11 of a not shown Gas turbine shown.
- a burner 3 along a mouth direction 15 in the combustion chamber 11 is turned off by a deflecting means 17 the fuel gas stream exiting the burner 3 in an inflow direction 19 redirected.
- the orthogonal component 37 the inflow direction 19 zero, so that the inflow direction 19 intersects the combustion chamber axis 25 and forms an angle 46 with the combustion chamber axis 25.
- Another burner opens into the lower half of the longitudinal section 39 along a further opening 49 into the combustion chamber 11.
- Another deflection means 45 turns one off the further burner 39 escaping fuel gas flow into a deflected further inflow direction 41.
- This different tilting ensures that Burning vibrations from the respective places of the Combustion of fuel gas from burner 3 or of fuel gas originate from the further burner 39, overlap so that thermoacoustic vibrations are suppressed.
- the orthogonal component and / or the further orthogonal components can also differ from zero be what an additional rotation of the inflow direction 19 or the further inflow direction 41 with respect to the combustion chamber axis 25 corresponds.
- Figure 7 shows a cross section through an annular combustion chamber executed combustion chamber 11 of a gas turbine.
- a plurality of burners 3, 39 are arranged in a circle.
- Each of these burners 3, 39 points in the region of its mouth a deflecting means 17, 45.
- the deflection means 17, 45 are aligned so that each is characterized by a columnar combustion forming fuel gas emerging from the burner 3, 39 Superimpose energy columns 47, 49 in pairs.
- the pressure fluctuations that are in the energy columns also overlap 47, 49 arise and the one cause for the emergence can be a combustion vibration. By a such superimposition becomes the formation of combustion vibrations suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
- Combustion Of Fluid Fuel (AREA)
Abstract
Description
- Figur 1
- einen Längsschnitt durch einen in einer Brennkammer angeordneten Brenner mit einem Umlenkmittel,
- Figur 2
- den Brenner aus Figur 1 mit einem anders ausgeführten Umlenkmittel,
- Figur 3
- eine Ringbrennkammer einer Gasturbine,
- Figur 4
- eine Darstellung einer Komponentenaufteilung für eine Einströmrichtung,
- Figur 5
- eine der Figur 4 entsprechende Darstellung aus einer anderen Blickrichtung,
- Figur 6
- einen Längsschnitt durch eine Ringbrennkammer einer Gasturbine und
- Figur 7
- einen Querschnitt durch eine Ringbrennkammer einer Gasturbine.
Claims (11)
- Brennkammeranordnung (1)mit einer eine Brennkammerachse (25) aufweisenden Brennkammer (11), in derein Brenner (3) angeordnet ist, dereine Mündung (13) für ein Einströmen eines Brenngasstromes (14) entlang einer Mündungsrichtung (15) in die Brennkammer aufweist, wobeiim Bereich der Mündung (13) ein Umlenkmittel (17) zur Umlenkung des Brenngasstromes (14) in eine von der Mündungsrichtung (15) verschiedene Einströmrichtung (19) angeordnet ist und wobei das Umlenkmittel (17) eine in die Brennkammer ragende, die Mündung (13) umgebende Wand ist, wobeidie Einströmrichtung (19) als ein Einheitsvektor mit einem Aufpunkt (A) am Querschnittsmittelpunkt der Mündung (13) und einer Einheitslänge (L) durch drei Komponentenvektoren (33, 35, 37) definiert ist:a) eine Achsenkomponente (35), die zur Brennkammerachse (25) parallel istb) eine Ebenenkomponente (33), die senkrecht zur Symmetrieachse (25) ist und in einer Verbindungsebene (31) liegt, die durch den Aufpunkt (A) und die Brennkammerachse (25) aufgespannt ist,c) eine Orthogonalkomponente (37), die senkrecht zur Brennkammerachse (25) und zur Ebenenkomponente (33) ist.
- Brennkammeranordnung (1) nach Anspruch 1,bei der die Brennkammer (11) rotationssymmetrisch um die Brennerachae (25) ist.
- Brennkammeranordnung (1) nach Anspruch 1 oder 2,
wobei die Orthogonalkomponente (37) eine von Null verschiedene Länge (0L) aufweist. - Brennkammeranordnung (1) nach Anspruch 1, 2 oder 3,bei der ein weiterer Brenner (39) vorgesehen ist, der eine Mündung (40) für ein Einströmen eines Brenngasstromes entlang einer weiteren Einströmrichtung (41) in die Brennkammer (11) aufweist, welche weitere Einströmrichtung (41) als ein Einheitsvektor mit einem weiteren Aufpunkt (B) am Querschnittsmittelpunkt der Mündung des weiteren Brenners (39) und mit der Einheitslänge (L) durch drei weitere Komponentenvektoren definiert ist:a) eine weitere Achsenkomponente(36) , die zur Brennkammerachse (25) parallel ist,b) eine weitere Ebenenkomponente (34), die senkrecht zur Brennkammerachse (25) ist und in einer weiteren Verbindungsebene (31A) liegt, die durch den weiteren Aufpunkt (B) und die Brennkammerachse (25) aufgespannt ist,c) eine weitere Orthogonalkomponente (38), die senkrecht zur Brennkammerachse (25) und zur weiteren Ebenenkomponente (34) ist.
- Brennkammeranordnung (1) nach Anspruch 4,
bei der die Achsenkomponente (35) eine Länge (AL) aufweist, die von einer Länge (BL) der weiteren Achsenkomponente (36) verschieden ist. - Brennkammeranordnung (1) nach Anspruch 4 oder 5,
bei der im Bereich der Mündung (40) des weiteren Brenners (39) ein weiteres Umlenkmittel (45) zur Umlenkung eines aus dem weiteren Brenner (39) austretenden Brenngasstromes in die weitere Einströmrichtung (41) vorgesehen ist. - Brennkammeranordnung (1) nach Anspruch 4, 5 oder 6, bei der eine Verbrennung des Brenngasstromes (14) aus dem Brenner (3) in einer Energiesäule (47) und eine Verbrennung des Brenngasstromes (14) aus dem weiteren Brenner (39) in einer weiteren Energiesäule (49) erzeugbar ist, welche Energiesäulen (47, 49) jeweils eine Verlängerung des Brenngasstromes (14) darstellen, wobei die Orthogonalkomponente (37) und die weitere Orthogonalkomponente (38) so groß und so orientiert sind, daß sich die Energiesäule (47) aus dem Brenner (3) und die Energiesäule (49) aus dem weiteren Brenner (39) überlappen.
- Brennkammeranordnung (1) nach Anspruch 1,
bei der das Umlenkmittel (17) ein Hohlzylinder (17A) oder ein Hohlkegelstumpf (17B) mit zueinander schrägstehenden Deckflächen (16A, 16B) ist. - Brennkammeranordnung (1) nach einem der vorhergehenden Ansprüche,
bei der das Umlenkmittel (17) eine Abrißkante für Wirbel (20) aufweist, die durch den Brenngasstrom (14) hervorrufbar sind. - Brennkammeranordnung (1) nach einem der vorhergehenden Ansprüche,
bei der die Brennkammer (11) eine Ringbrennkammer ist, insbesondere für eine Gasturbine. - Brennkammeranordnung (1) nach Anspruch 10,
mit einer Vielzahl von Brennern (3, 39), wobei für den überwiegenden Teil dieser Brenner (3, 39), insbesondere für alle Brenner (3,39), jeweils ein Umlenkmittel (17, 45) im Bereich einer jeweiligen Mündung (13,40) angeordnet ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19818082 | 1998-04-23 | ||
DE19818082 | 1998-04-23 | ||
PCT/DE1999/001169 WO1999056060A1 (de) | 1998-04-23 | 1999-04-19 | Brennkammeranordnung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1073864A1 EP1073864A1 (de) | 2001-02-07 |
EP1073864B1 true EP1073864B1 (de) | 2002-07-03 |
Family
ID=7865507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99927681A Expired - Lifetime EP1073864B1 (de) | 1998-04-23 | 1999-04-19 | Brennkammeranordnung |
Country Status (5)
Country | Link |
---|---|
US (1) | US6568190B1 (de) |
EP (1) | EP1073864B1 (de) |
JP (1) | JP2002513130A (de) |
DE (1) | DE59901946D1 (de) |
WO (1) | WO1999056060A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7302802B2 (en) * | 2003-10-14 | 2007-12-04 | Pratt & Whitney Canada Corp. | Aerodynamic trip for a combustion system |
US7827797B2 (en) * | 2006-09-05 | 2010-11-09 | General Electric Company | Injection assembly for a combustor |
US7810333B2 (en) * | 2006-10-02 | 2010-10-12 | General Electric Company | Method and apparatus for operating a turbine engine |
US8028512B2 (en) | 2007-11-28 | 2011-10-04 | Solar Turbines Inc. | Active combustion control for a turbine engine |
EP2264370B1 (de) * | 2009-06-16 | 2012-10-10 | Siemens Aktiengesellschaft | Brenneranordnung für eine Verfeuerungsanlage zum Verfeuern fluidischer Brennstoffe und Verfahren zum Betrieb einer solchen Brenneranordnung |
DE102012001777A1 (de) * | 2012-01-31 | 2013-08-01 | Rolls-Royce Deutschland Ltd & Co Kg | Gasturbinenringbrennkammer |
DE102012002465A1 (de) | 2012-02-08 | 2013-08-08 | Rolls-Royce Deutschland Ltd & Co Kg | Gasturbinenbrennkammer mit unsymmetrischen Kraftstoffdüsen |
US9709279B2 (en) | 2014-02-27 | 2017-07-18 | General Electric Company | System and method for control of combustion dynamics in combustion system |
US9845956B2 (en) * | 2014-04-09 | 2017-12-19 | General Electric Company | System and method for control of combustion dynamics in combustion system |
US20240068402A1 (en) * | 2022-08-25 | 2024-02-29 | Collins Engine Nozzles, Inc. | Fuel injectors assemblies with tangential flow component |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1321926A (en) | 1970-07-10 | 1973-07-04 | Tokyo Gas Co Ltd | High velocity gas burner and heating furnace provided with such a gas burner |
DE3860569D1 (de) * | 1987-01-26 | 1990-10-18 | Siemens Ag | Hybridbrenner fuer vormischbetrieb mit gas und/oder oel, insbesondere fuer gasturbinenanlagen. |
US4967562A (en) * | 1988-12-12 | 1990-11-06 | Sundstrand Corporation | Turbine engine with high efficiency fuel atomization |
US5156002A (en) * | 1990-03-05 | 1992-10-20 | Rolf J. Mowill | Low emissions gas turbine combustor |
DE4339094A1 (de) | 1993-11-16 | 1995-05-18 | Abb Management Ag | Verfahren zur Dämpfung von thermoakustischen Schwingungen sowie Vorrichtung zur Durchführung des Verfahrens |
US5596873A (en) * | 1994-09-14 | 1997-01-28 | General Electric Company | Gas turbine combustor with a plurality of circumferentially spaced pre-mixers |
US5727378A (en) * | 1995-08-25 | 1998-03-17 | Great Lakes Helicopters Inc. | Gas turbine engine |
DE19541303A1 (de) | 1995-11-06 | 1997-05-28 | Siemens Ag | Gasturbine |
DE19615910B4 (de) * | 1996-04-22 | 2006-09-14 | Alstom | Brenneranordnung |
GB2319078B (en) * | 1996-11-08 | 1999-11-03 | Europ Gas Turbines Ltd | Combustor arrangement |
EP0931979A1 (de) * | 1998-01-23 | 1999-07-28 | DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- | Vorrichtung zur Unterdrückung von Flammen-/Druckschwingungen bei einer Feuerung insbesondere einer Gasturbine |
WO2000012940A1 (de) * | 1998-08-31 | 2000-03-09 | Siemens Aktiengesellschaft | Verfahren zum betrieb einer gasturbine und gasturbine |
-
1999
- 1999-04-19 EP EP99927681A patent/EP1073864B1/de not_active Expired - Lifetime
- 1999-04-19 WO PCT/DE1999/001169 patent/WO1999056060A1/de active IP Right Grant
- 1999-04-19 US US09/673,883 patent/US6568190B1/en not_active Expired - Lifetime
- 1999-04-19 JP JP2000546178A patent/JP2002513130A/ja active Pending
- 1999-04-19 DE DE59901946T patent/DE59901946D1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE59901946D1 (de) | 2002-08-08 |
WO1999056060A1 (de) | 1999-11-04 |
JP2002513130A (ja) | 2002-05-08 |
EP1073864A1 (de) | 2001-02-07 |
US6568190B1 (en) | 2003-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60007946T2 (de) | Eine Brennkammer | |
EP2156095B1 (de) | Drallfreie stabilisierung der flamme eines vormischbrenners | |
DE69210715T2 (de) | Brenner mit geringer NOx-Produktion | |
DE19615910B4 (de) | Brenneranordnung | |
EP0675322B1 (de) | Vormischbrenner | |
DE69715256T2 (de) | Brennkammer | |
EP0924470B1 (de) | Vormischbrennkammer für eine Gasturbine | |
WO1999037951A1 (de) | Vorrichtung zur unterdrückung von flammen-/druckschwingungen bei einer feuerung, insbesondere einer gasturbine | |
EP1754002B1 (de) | Gestufter vormischbrenner mit einem injektor für flüssigbrennstoff | |
DE112014004482T5 (de) | Gasturbinenbrennkammer und mit selbiger versehenes Gasturbinentriebwerk | |
EP0718558B1 (de) | Brennkammer | |
WO2006069861A1 (de) | Vormischbrenner mit mischstrecke | |
EP0623786A1 (de) | Brennkammer | |
EP0754908B1 (de) | Verfahren und Vorrichtung zur Unterdrückung von Flammen-/Druckschwingungen bei einer Feuerung | |
WO2015150114A1 (de) | Brenner, gasturbine mit einem solchen brenner und brennstoffdüse | |
EP1073864B1 (de) | Brennkammeranordnung | |
WO1999004196A1 (de) | Brenneranordnung für eine feuerungsanlage, insbesondere eine gasturbinenbrennkammer | |
EP0925470A3 (de) | Vorrichtung und verfahren zur verbrennung eines brennstoffs in luft | |
EP0394800A1 (de) | Vormischbrenner für die Heissgaserzeugung | |
EP1084368B1 (de) | Brennstoffdüse | |
EP3421885B1 (de) | Brennkammer einer gasturbine, gasturbine und verfahren zum betreiben derselben | |
DE3741021A1 (de) | Verbrennungseinrichtung fuer ein gasturbinentriebwerk | |
EP0730121A2 (de) | Vormischbrenner | |
CH709640A2 (de) | Systeme und Verfahren zur Kohärenzreduktion in einem Verbrennungssystem mit erster und zweiter Brennkammer einer Gasturbine. | |
EP2288852B1 (de) | Verfahren zum betreiben eines vormischbrenners und ein vormischbrenner zur durchführung des verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20001011 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20011210 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59901946 Country of ref document: DE Date of ref document: 20020808 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030404 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150619 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160411 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160428 Year of fee payment: 18 Ref country code: FR Payment date: 20160429 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59901946 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170419 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170419 |