EP1082733A1 - Method for preparing a magnetic material by forging and magnetic material in powder form - Google Patents

Method for preparing a magnetic material by forging and magnetic material in powder form

Info

Publication number
EP1082733A1
EP1082733A1 EP99922227A EP99922227A EP1082733A1 EP 1082733 A1 EP1082733 A1 EP 1082733A1 EP 99922227 A EP99922227 A EP 99922227A EP 99922227 A EP99922227 A EP 99922227A EP 1082733 A1 EP1082733 A1 EP 1082733A1
Authority
EP
European Patent Office
Prior art keywords
forging
alloy
rare earth
transition metal
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99922227A
Other languages
German (de)
French (fr)
Other versions
EP1082733B1 (en
Inventor
Daniel Fruchart
René Perrier De la Bathie
Sophie Rivoirard
Patricia De Rango
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1082733A1 publication Critical patent/EP1082733A1/en
Application granted granted Critical
Publication of EP1082733B1 publication Critical patent/EP1082733B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Definitions

  • the present invention relates to the preparation of a magnetic material by forging as well as a magnetic material in powder form.
  • Permanent magnets based on iron, boron and rare earths are well known Their importance in the electrical or electronic industry is increasing
  • Another process consists in melting an alloy then in making it undergo a quenching on a wheel, in annealing it and in hot pressing or in coating the powder thus obtained with a resin or a polymer
  • This process makes it possible to obtain bonded magnets
  • the powder and the magnet obtained by the implementation of this process are most often isotropic. To obtain an anisotropic powder or magnet, it is currently necessary to use expensive processes, with low yield or with insufficient results.
  • the method of the invention for the preparation of a magnetic material is characterized in that it comprises the following steps
  • an alloy based on at least one rare earth, at least one transition metal and at least one other element chosen from boron and carbon is placed in a sheath, - the assembly is brought to a temperature of at least 500 ° C,
  • the assembly is subjected to forging with a material deformation speed of at least 8s "' '
  • the method of the invention is characterized in that it comprises the following stages - an alloy based on at least one rare earth and at least one transition metal is placed in a sheath,
  • the assembly is brought to a temperature of at least 500 ° C, the assembly is subjected to forging with a material deformation speed of at least 8 s "1 ,
  • the invention also relates to a magnetic material in powder form, characterized in that it has a coercivity of at least 9kOe and a persistence of at least 9kG
  • the present invention applies, according to its first variant, to the preparation of magnetic materials based on at least one rare earth, at least one transition metal and at least one other element chosen from boron and carbon
  • the process of the invention therefore starts from this case of alloys having the composition required to obtain the desired material
  • This composition can be variable both by the nature of its constituents and by the respective proportions thereof
  • alloys comprising at least one rare earth and at least one transition metal and which additionally contain at least one other element chosen from boron and carbon. Such alloys are well known
  • rare earth is meant, for the whole of the description, the elements of the group constituted by the ytt ⁇ um and the elements of the periodic classification with atomic number included inclusively between 57 and 71
  • the periodic classification of the elements to which reference is made for the whole description is that published in the Supplement to the Bulletin of the French Chemical Society n ° 1 (January 1966)
  • the rare earth of the alloy can be neodymium or even praseodymium Alloys based on of several rare earths Mention may more particularly be made of alloys based on neodymium and praseodymium In the case of an alloy of several rare earths, the neodymium and / or praseodymium may be major (s)
  • transition elements is meant the elements of columns II a to VI a, VIII, Ib and Mb
  • transition elements can be more particularly here those chosen from the group comprising iron, cobalt, copper, niobium, vanadium, molybdenum and nickel, these elements can be taken alone or in combination
  • the transition element is iron or even iron in combination with at least one element from the aforementioned group, iron being predominant
  • the alloy may include additives such as gallium, aluminum, silicon, tin, bismuth, germanium, zirconium or titanium taken alone or in combination
  • the respective proportions of rare earth, of transition metal and of the other aforementioned element can vary within wide proportions.
  • the content of rare earth can be at least 1% (the percentages given HERE are atomic percentages) and it can vary between 1% and 30% approximately, more particularly between 1% and 20% approximately
  • the content of third element, in particular boron can be at least 0.5% and it can vary between 0.5 and 30 % approximately, more particularly between 2 and 10% approximately
  • their content can be at least 0.05% and it can vary from 0.05 to 5% approximately
  • alloys By way of example of alloys, mention may very particularly be made of neodymium / iron / boron alloys, in particular those comprising also copper. Mention may also be made, as alloys which can be used more particularly in the context of the present invention, of those which have a phase corresponding with the formula TR2Fe-
  • the invention also applies, according to its second variant, to the preparation of magnetic materials based on at least one rare earth, at least one transition metal and nitrogen.
  • the process used in this case starts from alloys with the required composition of rare earth and transition metal to obtain the desired material All that has been said above concerning the rare earth, the transition element as well as any additives also applies HERE We can mention however more particularly the alloys based on samanum and iron from which magnetic materials based on samanum, iron and nitrogen will be obtained
  • the alloys used as starting materials have no or very few magnet properties. They have in particular no or very little coercivity and anisotropy.
  • the alloys which are generally used consist of mainly monocrystalline grains, of large size, at least about 10 ⁇ m Here and for the whole of the description the sizes are measured by SEM
  • the alloys can be in a massive form or in the form of a powder
  • the alloys are generally heterogeneous from the point of view the size of the grains, the nature of the phases and the size of the particles in the case of a powder.
  • the alloy can undergo, prior to the treatment of the invention, annealing at a temperature of at least 500 ° C. under inert atmosphere
  • the alloy as described above is placed in a sheath
  • a cylindrical sheath is advantageously used
  • the height of this sheath is preferably at least equal to the height of the alloy to be treated Its wall thickness is chosen so that '' it does not burst during forging but this thickness must remain relatively small
  • the material of the sheath must be as plastic as possible at the temperature at which forging is carried out
  • a metal sheath is generally used
  • the sheath is in steel
  • the introduction of the alloy into the sheath can be done by pouring the molten alloy into it or by any mechanical means starting from an ingot or powder
  • the alloy-sheath assembly is then brought to a temperature of at least 500 ° C.
  • the maximum temperature not to be exceeded is that beyond which there is a risk of significant melting of the grains of the alloy This temperature is more precisely between 600 ° C and 1100 ° C, more particularly between 800 ° C and 1000 ° C
  • the alloy is brought to the indicated temperature under an inert atmosphere, for example under argon
  • the alloy / sheath assembly is disposed in a sealed chamber surrounding the anvil of the forge.
  • This chamber is connected to a source of inert gas and it comprises an opening through which the hammer of the forge can pass through a gasket
  • the number of hammer blows is between 1 and 10
  • the mechanical power of the hammer blow must be such that the constituent grains of the alloy are broken. It can also be such that part of this power is used to heat the material, allowing several successive forges, without external heating of the material. 'alloy Thus, this power can be for example at least about 1 kilowatt per gram of material (kW / g), more particularly at least 5kW / g Such a power corresponds to a material deformation rate of at least minus 8s " 1 , in particular at least 10 s -1 , more particularly at least 50s' 1 and even more particularly at least 100s * 1
  • the rate of deformation of the material is defined by the expression (dh / h) / dt, dh / h designating the ratio (initial height-final height) / initial height, the height being that of the alloy / sheath assembly dt designating the duration of the crushing which is equal to dh / (v / 2), v being the speed of the hammer at the
  • Such a power corresponds to devices in which the speed of the hammer is at least 0.3 ms " ⁇ , in particular at least 0.5 m. S" ' ', more particularly at least Im.s "' ', and more particularly at least 4m s - '.
  • Forging can be carried out with a reduction rate of at least 2.
  • the reduction rate is defined by the initial height ratio (before forging) / final height (after forging) of the alloy / sheath assembly. This rate may more particularly be at least 5.
  • forging is carried out in a direction perpendicular to an axis of easy growth of the crystallites of the alloy.
  • this axis of easy growth is the axis a or b of the quadratic mesh.
  • Forging in this case allows the axes c to pass from an equatorial distribution to a substantially unidirectional distribution.
  • the product obtained at the end of the forging is in a cylindrical planar form, or possibly in the form of a capsule when a sealed envelope has been used as described above, the internal part of which comprises the metal alloy of flow and the peripheral or external part the flow duct.
  • the alloy now consists of monocrystalline grains whose average size is at most 30 ⁇ m, more particularly at most 10 ⁇ m.
  • the alloy has coercivity and is anisotropic.
  • the magnetization axes are aligned parallel to the direction of forging.
  • the product obtained is subjected to a nitriding treatment. forging.
  • the nitriding treatment is carried out in a known manner.
  • the nitrogen content of the material obtained can be of the same order as that given above for boron, more particularly, it can be between 2 and 15%.
  • the method of the invention may also comprise, after the forging step, other complementary steps implementing treatments which will be described below.
  • the complementary treatments are preferably carried out before this nitriding step.
  • a complementary treatment it is thus possible to subject the product resulting from the forging at least one annealing treatment to improve its magnetic properties.
  • Different types of annealing treatment can be considered.
  • a first type is made at a temperature which can be between 700 ° C. and 1100 ° C.
  • the treatment is preferably carried out under an inert atmosphere, for example under argon.
  • the duration of the treatment can be between a few minutes and a few hours.
  • Another type of annealing treatment can be carried out at a temperature of between 400 ° C. and 700 ° C., preferably also under an inert atmosphere of the argon type.
  • the duration of the treatment can be between a few minutes and a few hours.
  • Hydriding and dehydrating treatments are known.
  • the hydriding of the material can be carried out under a hydrogen atmosphere (for example at least equal to 0.1 MPa) at ambient temperature or else by thermally activating the material in an atmosphere containing hydrogen.
  • the material can be thermally activated up to a temperature below 500 ° C, preferably below 300 ° C.
  • Dehydriding can be achieved by heating the hydrated material to a temperature of at least 500 ° C under vacuum. The temperature and the heating time are chosen so as to obtain complete dehydriding.
  • the dehydriding treatment may optionally be followed by annealing of the first and / or of the second type mentioned above.
  • this material has a coercivity of at least 9kOe, more particularly of at least 9.5kOe and even more particularly of at least 10kOe in combination with a remanence of at least 9kG, more particularly of at least 9, 5kG and even more particularly at least 10kG.
  • the material may have each of the coercivity values given above in combination with each of the remanence values also given above, for example a coercivity of 9kOe in combination with a remanence of 9.5kG.
  • the material has a crystalline texture which makes it magnetically anisotropic.
  • the particles which constitute the powder themselves are made up not of a single monocrystalline grain but of several monocrystalline grains with an average size of at least minus 0.1 ⁇ m.
  • the particles may have a size of a few tens of microns, in particular between approximately 10 and approximately 200 ⁇ m, more particularly between approximately 10 ⁇ m and approximately 100 ⁇ m, and be made up of ten grains of a few microns each.
  • the material consists of the constituent elements which have been given above for the alloy and what has been described on this subject also applies here, the material being in particular based on at least one rare earth, at least one transition metal and at least one other element chosen from boron, carbon and nitrogen.
  • the alloy used corresponds to the formula for examples 1 and 2, to the formula 5 for Example 3 and the formula
  • the tests are carried out in a cylindrical steel sheath. In certain cases the alloy undergoes two hammer blows (first forging and second forging).
  • T2 temperature during the second forging
  • Tr 2 total reduction rate after the second forging
  • hammer speed during the first forging 2 '• hammer speed during the second forging
  • P- j mechanical power of the first hammer blow
  • P mechanical power of the second hammer blow

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention concerns a method for preparing a magnetic material by forging, characterised in that, in a first embodiment, it comprises the following steps; placing in a sheath an alloy based on at least one rare earth, at least one transition metal and at least one other element selected among boron and carbon; bringing the whole alloy to a temperature not less than 500° C.; forging the whole at a deformation speed of the material not less than 8 s-1. After forging, it is possible to subject the resulting product to at least one annealing and hydridation then dehydridation, in another embodiment, it consists in starting with an alloy based on at least one rare earth and one transition metal and proceeding as in the first embodiment. After forging and, optionally, annealing, hydridation and dehydridation treatments, the resulting material is subjected to nitriding. The invention also concerns a magnetic material in power form, characterised in that has a coercivity not less than 9 kOe and retentivity not less than 9 kG.

Description

PROCEDE DE PREPARATION D'UN MATERIAU MAGNETIQUE PAR FORGEAGE ET MATERIAU MAGNETIQUE SOUS FORME DE POUDRE PROCESS FOR PREPARING MAGNETIC MATERIAL BY FORGING AND MAGNETIC MATERIAL IN POWDER FORM
RHODIA CHIMIERHODIA CHEMISTRY
La présente invention concerne la préparation d'un matériau magnétique par forgeage ainsi qu'un matériau magnétique sous forme de poudreThe present invention relates to the preparation of a magnetic material by forging as well as a magnetic material in powder form.
Les aimants permanents à base de fer, de bore et de terres rares sont bien connus Leur importance dans l'industrie électrique ou électronique est croissantePermanent magnets based on iron, boron and rare earths are well known Their importance in the electrical or electronic industry is increasing
Il existe deux types principaux de procédé de préparation de ces aimants Le premier fait appel à la métallurgie des poudres pour la préparation d'aimants denses ou frittesThere are two main types of process for the preparation of these magnets The first uses powder metallurgy for the preparation of dense or sintered magnets
Un autre procédé consiste à fondre un alliage puis à lui faire subir une trempe sur roue, a le recuire et à presser à chaud ou a enrober la poudre ainsi obtenue avec une résine ou un polymère Ce procédé permet d'obtenir des aimants liés La poudre et l'aimant obtenus par la mise en oeuvre de ce procédé sont le plus souvent isotropes Pour obtenir une poudre ou un aimant anisotrope, il est actuellement nécessaire d'utiliser des procédés coûteux, à faible rendement ou dont les résultats sont insuffisantsAnother process consists in melting an alloy then in making it undergo a quenching on a wheel, in annealing it and in hot pressing or in coating the powder thus obtained with a resin or a polymer This process makes it possible to obtain bonded magnets The powder and the magnet obtained by the implementation of this process are most often isotropic. To obtain an anisotropic powder or magnet, it is currently necessary to use expensive processes, with low yield or with insufficient results.
Il existe donc un besoin d'un procédé pour la production de produits anisotropes qui soit plus simple à mettre en oeuvre, éventuellement plus économique ou à rendement amélioré, et qui conduit à des produits à propriétés satisfaisantes voire améliorées L'objet de l'invention est la mise au point d'un tel procédéThere is therefore a need for a process for the production of anisotropic products which is simpler to implement, possibly more economical or with improved yield, and which leads to products with satisfactory or even improved properties. The object of the invention is the development of such a process
Dans ce but, le procède de l'invention pour la préparation d'un matériau magnétique est caractérisé en ce qu'il comprend les étapes suivantesFor this purpose, the method of the invention for the preparation of a magnetic material is characterized in that it comprises the following steps
- on place dans une gaine un alliage à base d'au moins une terre rare, d'au moins un métal de transition et d'au moins un autre élément choisi parmi le bore et le carbone, - on porte l'ensemble a une température d'au moins 500°C,- an alloy based on at least one rare earth, at least one transition metal and at least one other element chosen from boron and carbon is placed in a sheath, - the assembly is brought to a temperature of at least 500 ° C,
- on soumet l'ensemble à un forgeage avec une vitesse de déformation du matériau d'au moins 8s"''- the assembly is subjected to forging with a material deformation speed of at least 8s "' '
Selon une seconde variante, le procède de l'invention est caractérise en ce qu'il comprend les étapes suivantes - on place dans une gaine un alliage à base d'au moins une terre rare et d'au moins un métal de transition,According to a second variant, the method of the invention is characterized in that it comprises the following stages - an alloy based on at least one rare earth and at least one transition metal is placed in a sheath,
- on porte l'ensemble a une température d'au moins 500°C, - on soumet l'ensemble à un forgeage avec une vitesse de déformation du matériau d'au moins 8s"1 ,- the assembly is brought to a temperature of at least 500 ° C, the assembly is subjected to forging with a material deformation speed of at least 8 s "1 ,
- on soumet a un traitement de nitruration le produit issu du forgeage- the product from the forging is subjected to a nitriding treatment
L'invention concerne aussi un matériau magnétique sous forme de poudre, caractérisé en ce qu'il présente une coercivité d'au moins 9kOe et une rémanence d'au moins 9kGThe invention also relates to a magnetic material in powder form, characterized in that it has a coercivity of at least 9kOe and a persistence of at least 9kG
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer La présente invention s'applique, selon sa première variante, à la préparation de matériaux magnétiques à base d'au moins une terre rare, d'au moins un métal de transition et d'au moins un autre élément choisi parmi le bore et le carbone Le procédé de l'invention part donc dans ce cas d'alliages présentant la composition requise pour obtenir le matériau souhaité Cette composition peut être variable tant par la nature de ses constituants que par les proportions respectives de ceux-ciOther characteristics, details and advantages of the invention will appear even more completely on reading the description which follows, as well as various concrete but nonlimiting examples intended to illustrate it. The present invention applies, according to its first variant, to the preparation of magnetic materials based on at least one rare earth, at least one transition metal and at least one other element chosen from boron and carbon The process of the invention therefore starts from this case of alloys having the composition required to obtain the desired material This composition can be variable both by the nature of its constituents and by the respective proportions thereof
Il s'agit d'alliages comprenant au moins une terre rare et au moins un métal de transition et qui contiennent en outre au moins un autre élément choisi parmi le bore et le carbone. De tels alliages sont bien connusThese are alloys comprising at least one rare earth and at least one transition metal and which additionally contain at least one other element chosen from boron and carbon. Such alloys are well known
Par terres rares on entend, pour l'ensemble de la description, les éléments du groupe constitué par l'yttπum et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71 La classification périodique des éléments à laquelle il est fait référence pour l'ensemble de la description est celle publiée dans le Supplément au Bulletin de la Société Chimique de France n° 1 (janvier 1966) La terre rare de l'alliage peut être le néodyme ou encore le praséodyme On peut utiliser des alliages à base de plusieurs terres rares On peut citer plus particulièrement les alliages à base de néodyme et de praséodyme Dans le cas d'un alliage de plusieurs terres rares, le néodyme et/ou le praséodyme peuvent être majoπtaιre(s)By rare earth is meant, for the whole of the description, the elements of the group constituted by the yttπum and the elements of the periodic classification with atomic number included inclusively between 57 and 71 The periodic classification of the elements to which reference is made for the whole description is that published in the Supplement to the Bulletin of the French Chemical Society n ° 1 (January 1966) The rare earth of the alloy can be neodymium or even praseodymium Alloys based on of several rare earths Mention may more particularly be made of alloys based on neodymium and praseodymium In the case of an alloy of several rare earths, the neodymium and / or praseodymium may be major (s)
Par éléments de transition, on entend les éléments des colonnes II la a VI la, VIII, Ib et Mb Ces éléments de transition peuvent être plus particulièrement ici ceux choisis dans le groupe comprenant le fer, le cobalt, le cuivre, le niobium, le vanadium, le molybdène et le nickel, ces éléments pouvant être pris seuls ou en combinaison Selon une variante préférée, l'élément de transition est le fer ou encore le fer en combinaison avec au moins un élément du groupe précité, le fer étant majoritaire Outre les éléments précités, l'alliage peut comprendre des additifs comme le gallium, l'aluminium, le silicium, l'etain, le bismuth, le germanium, le zirconium ou le titane pris seuls ou en combinaison Les proportions respectives de terre rare, de métal de transition et de l'autre élément précité peuvent varier dans de larges proportions Ainsi, la teneur en terre rare peut être d'au moins 1 % (les pourcentages donnes ICI sont des pourcentages atomiques) et elle peut varier entre 1% et 30% environ, plus particulièrement entre 1 % et 20% environ La teneur en troisième élément, notamment en bore, peut être d'au moins 0,5% et elle peut varier entre 0,5 et 30% environ, plus particulièrement entre 2 et 10% environ Pour les additifs, leur teneur peut être d'au moins 0,05% et elle peut varier de 0,05 a 5% environBy transition elements is meant the elements of columns II a to VI a, VIII, Ib and Mb These transition elements can be more particularly here those chosen from the group comprising iron, cobalt, copper, niobium, vanadium, molybdenum and nickel, these elements can be taken alone or in combination According to a preferred variant, the transition element is iron or even iron in combination with at least one element from the aforementioned group, iron being predominant Besides the aforementioned elements, the alloy may include additives such as gallium, aluminum, silicon, tin, bismuth, germanium, zirconium or titanium taken alone or in combination The respective proportions of rare earth, of transition metal and of the other aforementioned element can vary within wide proportions. Thus, the content of rare earth can be at least 1% (the percentages given HERE are atomic percentages) and it can vary between 1% and 30% approximately, more particularly between 1% and 20% approximately The content of third element, in particular boron, can be at least 0.5% and it can vary between 0.5 and 30 % approximately, more particularly between 2 and 10% approximately For the additives, their content can be at least 0.05% and it can vary from 0.05 to 5% approximately
A titre d'exemple d'alliages on peut mentionner tout particulièrement les alliages néodyme/fer/bore, notamment ceux comprenant en outre du cuivre On peut citer aussi comme alliages utilisables plus particulièrement dans le cadre de la présente invention ceux qui présentent une phase répondant à la formule TR2Fe-|4B, TR désignant au moins une terre rare, tout particulièrement le néodymeBy way of example of alloys, mention may very particularly be made of neodymium / iron / boron alloys, in particular those comprising also copper. Mention may also be made, as alloys which can be used more particularly in the context of the present invention, of those which have a phase corresponding with the formula TR2Fe- | 4B, TR designating at least one rare earth, especially neodymium
L'invention s'applique aussi, selon sa deuxième variante, à la préparation de matériaux magnétiques a base d'au moins une terre rare, d'au moins un métal de transition et d'azote Le procédé utilisé dans ce cas part d'alliages présentant la composition requise en terre rare et en métal de transition pour obtenir le matériau souhaité Tout ce qui a été dit plus haut concernant la terre rare, l'élément de transition ainsi que les éventuels additifs s'applique aussi ICI On pourra citer cependant plus particulièrement les alliages à base de samanum et de fer à partir desquels on obtiendra des matériaux magnétiques à base de samanum, de fer et d'azoteThe invention also applies, according to its second variant, to the preparation of magnetic materials based on at least one rare earth, at least one transition metal and nitrogen. The process used in this case starts from alloys with the required composition of rare earth and transition metal to obtain the desired material All that has been said above concerning the rare earth, the transition element as well as any additives also applies HERE We can mention however more particularly the alloys based on samanum and iron from which magnetic materials based on samanum, iron and nitrogen will be obtained
On notera que les alliages utilisés comme produits de départ ne présentent pas ou très peu de propriétés d'aimants Ils ne présentent notamment pas ou très peu de coercivité et d'anisotropie Les alliages que l'on utilise généralement sont constitués de grains majoritairement monocristallins, de taille élevée, d'au moins 10μm environ Ici et pour l'ensemble de la description les tailles sont mesurées par MEB Les alliages peuvent se présenter sous une forme massive ou sous forme d'une poudre Les alliages sont généralement hétérogènes du point de vue de la taille des grains, de la nature des phases et de la taille des particules dans le cas d'une poudre L'alliage peut subir, préalablement au traitement de l'invention, un recuit a une température d'au moins 500°C sous atmosphère inerteIt will be noted that the alloys used as starting materials have no or very few magnet properties. They have in particular no or very little coercivity and anisotropy. The alloys which are generally used consist of mainly monocrystalline grains, of large size, at least about 10 μm Here and for the whole of the description the sizes are measured by SEM The alloys can be in a massive form or in the form of a powder The alloys are generally heterogeneous from the point of view the size of the grains, the nature of the phases and the size of the particles in the case of a powder. The alloy can undergo, prior to the treatment of the invention, annealing at a temperature of at least 500 ° C. under inert atmosphere
L'alliage tel que décrit ci-dessus est place dans une gaine On utilise avantageusement une gaine cylindrique La hauteur de cette gaine est de préférence au moins égale à la hauteur de l'alliage a traiter Son épaisseur de paroi est choisie de telle manière qu'elle n'éclate pas lors du forgeage mais cette épaisseur doit rester relativement faible Le matériau constitutif de la gaine doit être le plus plastique possible a la température a laquelle se fait le forgeage On utilise généralement une gaine en métal De préférence, la gaine est en acier L'introduction de l'alliage dans la gaine peut se faire par coulage de l'alliage fondu dans celle-ci ou par tout moyen mécanique partant d'un lingot ou de poudreThe alloy as described above is placed in a sheath A cylindrical sheath is advantageously used The height of this sheath is preferably at least equal to the height of the alloy to be treated Its wall thickness is chosen so that '' it does not burst during forging but this thickness must remain relatively small The material of the sheath must be as plastic as possible at the temperature at which forging is carried out A metal sheath is generally used Preferably, the sheath is in steel The introduction of the alloy into the sheath can be done by pouring the molten alloy into it or by any mechanical means starting from an ingot or powder
L'ensembie alliage-gaine est ensuite porte a une température d'au moins 500°C La température maximale à ne pas dépasser est celle au delà de laquelle risque de se produire une fusion importante des grains de l'alliage Cette température est plus précisément comprise entre 600°C et 1100°C, plus particulièrement entre 800°C et 1000°C L'alliage est porté à la température indiquée sous atmosphère inerte, par exemple sous argonThe alloy-sheath assembly is then brought to a temperature of at least 500 ° C. The maximum temperature not to be exceeded is that beyond which there is a risk of significant melting of the grains of the alloy This temperature is more precisely between 600 ° C and 1100 ° C, more particularly between 800 ° C and 1000 ° C The alloy is brought to the indicated temperature under an inert atmosphere, for example under argon
Il est cependant possible de procéder sous enveloppe scellée On entend par là qu'une fois l'alliage placé dans la gaine, la partie inférieure et la partie supérieure de l'ensemble formé par la gaine et l'alliage sont scellées par un couvercle en un matériau qui peut être de même nature que celui de la gaine et le couvercle est soudé à la gaine L'alliage est ainsi isolé de l'extérieur et on peut le porter à la température requise sans qu'il soit nécessaire de travailler sous atmosphère inerte L'étape suivante du procédé de l'invention consiste à faire subir un forgeage à l'alliage dans la gaine. Le forgeage consiste en une percussion, on donne en effet un ou plusieurs coups de marteau de forge à l'ensemble alliage/gaine. Le forgeage a lieu sur l'ensemble alliage/gaine à la température indiquée plus haut. Lorsque la gaine n'est pas scellée, l'ensemble alliage/gaine est disposé dans une chambre étanche entourant l'enclume de la forge Cette chambre est reliée à une source de gaz inerte et elle comprend une ouverture a travers laquelle le marteau de la forge peut passer par l'intermédiaire d'un joint d'étanchéitéIt is however possible to proceed in a sealed envelope. It is meant by this that once the alloy is placed in the sheath, the lower part and the upper part of the assembly formed by the sheath and the alloy are sealed by a cover in a material which can be of the same nature as that of the sheath and the cover is welded to the sheath The alloy is thus isolated from the outside and it can be brought to the required temperature without it being necessary to work in an atmosphere inert The next step in the process of the invention consists in forging the alloy in the sheath. Forging consists of a percussion, one in fact gives one or more hammer blows to the alloy / sheath assembly. Forging takes place on the alloy / sheath assembly at the temperature indicated above. When the sheath is not sealed, the alloy / sheath assembly is disposed in a sealed chamber surrounding the anvil of the forge. This chamber is connected to a source of inert gas and it comprises an opening through which the hammer of the forge can pass through a gasket
Généralement, le nombre de coups de marteau est compris entre 1 et 10Generally, the number of hammer blows is between 1 and 10
La puissance mécanique du coup de marteau doit être telle que l'on brise les grains constitutifs de l'alliage Elle peut aussi être telle qu'une partie de cette puissance serve à réchauffement du matériau, permettant plusieurs forgeages successifs, sans réchauffement extérieur de l'alliage Ainsi, cette puissance peut être par exemple d'au moins environ 1 kilowatt par gramme de matériau (kW/g), plus particulièrement d'au moins 5kW/g Une telle puissance correspond à une vitesse de déformation du matériau d'au moins 8s"1 , notamment d'au moins 10 s-1 , plus particulièrement d'au moins 50s'1 et encore plus particulièrement d'au moins 100s*1 La vitesse de déformation du matériau est définie par l'expression (dh/h)/dt, dh/h désignant le rapport (hauteur initiale-hauteur fιnale)/hauteur initiale, la hauteur étant celle de l'ensemble alliage/gaine dt désignant la durée de l'écrasement qui est égale à dh/(v/2), v étant la vitesse du marteau au moment du choc et v/2 étant considère, en première approximation comme la vitesse moyenne lors de l'écrasement, cette vitesse moyenne pouvant en effet être définie comme le rapport (vitesse initiale-vitesse finale)/2 c'est à dire (v-0)/2 Une telle puissance correspond à des dispositifs dans lesquels la vitesse du marteau est d'au moins 0,3 m.s"^ , notamment d'au moins 0,5m. s"'' , plus particulièrement d'au moins Im.s"'' , et encore plus particulièrement d'au moins 4m. s--' . Le forgeage peut s'effectuer avec un taux de réduction d'au moins 2. Le taux de réduction est défini par le rapport hauteur initiale (avant forgeage)/hauteur finale (après forgeage) de l'ensemble alliage/gaine. Ce taux peut être plus particulièrement d'au moins 5.The mechanical power of the hammer blow must be such that the constituent grains of the alloy are broken. It can also be such that part of this power is used to heat the material, allowing several successive forges, without external heating of the material. 'alloy Thus, this power can be for example at least about 1 kilowatt per gram of material (kW / g), more particularly at least 5kW / g Such a power corresponds to a material deformation rate of at least minus 8s " 1 , in particular at least 10 s -1 , more particularly at least 50s' 1 and even more particularly at least 100s * 1 The rate of deformation of the material is defined by the expression (dh / h) / dt, dh / h designating the ratio (initial height-final height) / initial height, the height being that of the alloy / sheath assembly dt designating the duration of the crushing which is equal to dh / (v / 2), v being the speed of the hammer at the moment of impact and v / 2 being considered, as a first approximation as the average speed during the crushing, this average speed can indeed be defined as the ratio (initial speed-final speed) / 2 i.e. (v-0) / 2 Such a power corresponds to devices in which the speed of the hammer is at least 0.3 ms " ^, in particular at least 0.5 m. S"'', more particularly at least Im.s "' ', and more particularly at least 4m s - '. Forging can be carried out with a reduction rate of at least 2. The reduction rate is defined by the initial height ratio (before forging) / final height (after forging) of the alloy / sheath assembly. This rate may more particularly be at least 5.
Selon un mode de réalisation préféré de l'invention, on effectue le forgeage dans une direction perpendiculaire à un axe de facile croissance des cristallites de l'alliage. Dans le cas de la phase Nd2Fe-j4B, cet axe de facile croissance est l'axe a ou b de la maille quadratique. Le forgeage dans ce cas permet de faire passer les axes c d'une distribution équatoriale à une distribution sensiblement unidirectionnelle.According to a preferred embodiment of the invention, forging is carried out in a direction perpendicular to an axis of easy growth of the crystallites of the alloy. In the case of the Nd2Fe-j4B phase, this axis of easy growth is the axis a or b of the quadratic mesh. Forging in this case allows the axes c to pass from an equatorial distribution to a substantially unidirectional distribution.
Le produit obtenu à l'issue du forgeage se présente sous une forme plane cylindrique, ou éventuellement sous la forme d'une capsule lorsque l'on a utilisé une enveloppe scellée comme décrit plus haut, dont la partie interne comporte l'alliage métallique de départ et la partie périphérique ou externe la gaine de départ. L'alliage est maintenant constitué de grains monocristallins dont la taille moyenne est d'au plus 30μm, plus particulièrement d'au plus 10μm. L'alliage présente une coercivité et il est anisotrope. Les axes d'aimantation sont alignés parallèlement à la direction du forgeage.The product obtained at the end of the forging is in a cylindrical planar form, or possibly in the form of a capsule when a sealed envelope has been used as described above, the internal part of which comprises the metal alloy of flow and the peripheral or external part the flow duct. The alloy now consists of monocrystalline grains whose average size is at most 30 μm, more particularly at most 10 μm. The alloy has coercivity and is anisotropic. The magnetization axes are aligned parallel to the direction of forging.
Selon la seconde variante de l'invention et en vue d'obtenir un matériau magnétique à base d'au moins une terre rare, d'au moins un métal de transition et d'azote, on soumet à un traitement de nitruration le produit issu du forgeage. Le traitement de nitruration se fait d'une manière connue. La teneur en azote du matériau obtenu peut être du même ordre que celle donnée plus haut pour le bore, plus particulièrement, elle peut être comprise entre 2 et 15%.According to the second variant of the invention and in order to obtain a magnetic material based on at least one rare earth, at least one transition metal and nitrogen, the product obtained is subjected to a nitriding treatment. forging. The nitriding treatment is carried out in a known manner. The nitrogen content of the material obtained can be of the same order as that given above for boron, more particularly, it can be between 2 and 15%.
Le procédé de l'invention peut comprendre en outre, après l'étape de forgeage, d'autres étapes complémentaires mettant en oeuvre des traitements qui vont être décrits ci-après. Dans le cas de la préparation d'un matériau magnétique à base d'au moins une terre rare, d'au moins un métal de transition et d'azote, préparation comportant une étape de nitruration, les traitements complémentaires sont mis en oeuvre de préférence avant cette étape de nitruration.The method of the invention may also comprise, after the forging step, other complementary steps implementing treatments which will be described below. In the case of the preparation of a magnetic material based on at least one rare earth, at least one transition metal and nitrogen, preparation comprising a nitriding step, the complementary treatments are preferably carried out before this nitriding step.
Les différents traitements complémentaires qui vont être décrits maintenant peuvent être mis en oeuvre dans un ordre quelconque. A titre de traitement complémentaire, il est ainsi possible de faire subir au produit issu du forgeage au moins un traitement de recuit pour améliorer ses propriétés magnétiques. Différents types de traitement de recuit peuvent être envisagés. Un premier type se fait à une température qui peut être comprise entre 700°C et 1100°C. Le traitement se fait de préférence sous atmosphère inerte, par exemple sous argon. La durée du traitement peut être comprise entre quelques minutes et quelques heures. Un autre type de traitement de recuit peut être conduit à une température comprise entre 400°C et 700°C, de préférence aussi sous atmosphère inerte du type argon. La durée du traitement peut être comprise entre quelques minutes et quelques heures.The various complementary treatments which will now be described can be implemented in any order. As a complementary treatment, it is thus possible to subject the product resulting from the forging at least one annealing treatment to improve its magnetic properties. Different types of annealing treatment can be considered. A first type is made at a temperature which can be between 700 ° C. and 1100 ° C. The treatment is preferably carried out under an inert atmosphere, for example under argon. The duration of the treatment can be between a few minutes and a few hours. Another type of annealing treatment can be carried out at a temperature of between 400 ° C. and 700 ° C., preferably also under an inert atmosphere of the argon type. The duration of the treatment can be between a few minutes and a few hours.
Il est bien entendu tout à fait possible d'effectuer un ou plusieurs traitements de recuit de même type ou de type différent; par exemple on peut mettre en oeuvre un traitement selon le premier type précité puis ensuite un second traitement selon le deuxième type.It is of course quite possible to carry out one or more annealing treatments of the same type or of a different type; for example, a treatment according to the aforementioned first type can be implemented, followed by a second treatment according to the second type.
Comme autre traitement complémentaire, il est aussi possible de prévoir un procédé de ..décrépitation à l'hydrogène en vue d'obtenir une poudre aux propriétés magnétiques proches de celles du produit massif. Ainsi, on peut soumettre le matériau obtenu après le forgeage et, éventuellement après au moins un traitement de recuit, à une hydruration de manière à obtenir un hydrure de l'alliage puis à une déshydruration.As another complementary treatment, it is also possible to provide a process of .. decrepititation with hydrogen in order to obtain a powder with magnetic properties close to those of the solid product. Thus, one can subject the material obtained after forging and, optionally after at least one annealing treatment, to a hydriding so as to obtain a hydride of the alloy then to a dehydriding.
Les traitements d'hydruration et de déshydruration sont connus. L'hydruration du matériau peut se faire sous atmosphère d'hydrogène (par exemple au moins égale à 0,1 MPa) à température ambiante ou bien en activant thermiquement le matériau dans une atmosphère contenant de l'hydrogène. Par exemple, on peut activer thermiquement le matériau jusqu'à une température inférieure à 500°C, de préférence inférieure à 300°C. La déshydruration peut être obtenue en chauffant le matériau hydruré à une température d'au moins 500°C sous vide. La température et le temps de chauffage sont choisis de façon à obtenir une déshydruration complète. Le traitement de déshydruration peut être suivi éventuellement d'un recuit du premier et/ou du second type précité.Hydriding and dehydrating treatments are known. The hydriding of the material can be carried out under a hydrogen atmosphere (for example at least equal to 0.1 MPa) at ambient temperature or else by thermally activating the material in an atmosphere containing hydrogen. For example, the material can be thermally activated up to a temperature below 500 ° C, preferably below 300 ° C. Dehydriding can be achieved by heating the hydrated material to a temperature of at least 500 ° C under vacuum. The temperature and the heating time are chosen so as to obtain complete dehydriding. The dehydriding treatment may optionally be followed by annealing of the first and / or of the second type mentioned above.
On obtient à l'issue de ce traitement un matériau sous forme d'une poudre présentant des propriétés magnétiques intéressantes. Ainsi, ce matériau présente une coercivité d'au moins 9kOe, plus particulièrement d'au moins 9,5kOe et encore plus particulièrement d'au moins 10kOe en combinaison avec une rémanence d'au moins 9kG, plus particulièrement d'au moins 9,5kG et encore plus particulièrement d'au moins 10kG. Le matériau peut présenter chacune des valeurs de coercivité données ci-dessus en combinaison avec chacune des valeurs de rémanence données aussi ci-dessus, par exemple une coercivité de 9kOe en combinaison avec une rémanence de 9,5kG. Le matériau présente une texture cristalline qui le rend magnétiquement anisotrope. Les particules qui constituent la poudre sont elles mêmes constituées non pas d'un seul grain monocristallin mais de plusieurs grains monocristallins d'une taille moyenne d'au moins 0,1 μm. Ainsi, à titre d'exemple, les particules peuvent avoir une taille de quelques dizaines de microns, notamment comprise entre environ 10 et environ 200μm, plus particulièrement entre environ 10μm et environ 100μm, et être constituées d'une dizaine de grains de quelques microns chacun.At the end of this treatment, a material is obtained in the form of a powder having advantageous magnetic properties. Thus, this material has a coercivity of at least 9kOe, more particularly of at least 9.5kOe and even more particularly of at least 10kOe in combination with a remanence of at least 9kG, more particularly of at least 9, 5kG and even more particularly at least 10kG. The material may have each of the coercivity values given above in combination with each of the remanence values also given above, for example a coercivity of 9kOe in combination with a remanence of 9.5kG. The material has a crystalline texture which makes it magnetically anisotropic. The particles which constitute the powder themselves are made up not of a single monocrystalline grain but of several monocrystalline grains with an average size of at least minus 0.1 μm. Thus, by way of example, the particles may have a size of a few tens of microns, in particular between approximately 10 and approximately 200 μm, more particularly between approximately 10 μm and approximately 100 μm, and be made up of ten grains of a few microns each.
En ce qui concerne sa composition, le matériau est constitué des éléments constitutifs qui ont été donnés plus haut pour l'alliage et ce qui a été décrit à ce sujet s'applique aussi ici, le matériau étant notamment à base d'au moins une terre rare, d'au moins un métal de transition et d'au moins un autre élément choisi parmi le bore, le carbone et l'azote.As regards its composition, the material consists of the constituent elements which have been given above for the alloy and what has been described on this subject also applies here, the material being in particular based on at least one rare earth, at least one transition metal and at least one other element chosen from boron, carbon and nitrogen.
Des exemples vont maintenant être donnés.Examples will now be given.
L'alliage utilisé répond à la formule pour les exemples 1 et 2, à la formule 5 pour l'exemple 3 et à la formuleThe alloy used corresponds to the formula for examples 1 and 2, to the formula 5 for Example 3 and the formula
Ndl5,3Fe76,9B4,9Cu1 ,5N 0,5AI0,9 Pour l'exemple 4. N dl5,3 Fe 76.9 B 4.9 Cu 1 5 No 0.5 0.9 AI F or example 4.
Les essais sont faits dans une gaine cylindrique en acier. Dans certains cas l'alliage subit deux coups de marteau (premier forgeage et deuxième forgeage).The tests are carried out in a cylindrical steel sheath. In certain cases the alloy undergoes two hammer blows (first forging and second forging).
On donne dans le tableau 1 les caractéristiques du matériau de départ, dans les tableaux 2 et 3 les conditions de forgeage et dans le tableau 4 les propriétés magnétiques des matériaux massifs obtenus.The characteristics of the starting material are given in table 1, the forging conditions in tables 2 and 3 and the magnetic properties of the solid materials obtained in table 4.
Tableau 1Table 1
Tableau 2Table 2
T-| : température lors du premier forgeageT- | : temperature during the first forging
T2 : température lors du second forgeageT2: temperature during the second forging
E : vitesse de déformation lors du premier forgeageE: speed of deformation during the first forging
Tr-| : taux de réduction à l'issue du premier forgeageTr- | : reduction rate after the first forging
Tr2 : taux de réduction total à l'issue du second forgeageTr 2 : total reduction rate after the second forging
Tableau 3Table 3
V-| : vitesse du marteau lors du premier forgeage 2 '• vitesse du marteau lors du second forgeage P-j : puissance mécanique du premier coup de marteau P : puissance mécanique du second coup de marteauV- | : hammer speed during the first forging 2 '• hammer speed during the second forging P- j : mechanical power of the first hammer blow P: mechanical power of the second hammer blow
Tableau 4Table 4
Les valeurs de rémanence données dans le tableau 4 montrent que les produits sont anisotropes. The remanence values given in Table 4 show that the products are anisotropic.

Claims

REVENDICATIONS
1- Procédé de préparation d'un matériau magnétique, caractérisé en ce qu'il comprend les étapes suivantes :1- Method for preparing a magnetic material, characterized in that it comprises the following steps:
- on place dans une gaine un alliage à base d'au moins une terre rare, d'au moins un métal de transition et d'au moins un autre élément choisi parmi le bore et le carbone;- An alloy based on at least one rare earth, at least one transition metal and at least one other element chosen from boron and carbon is placed in a sheath;
- on porte l'ensemble à une température d'au moins 500°C; - on soumet l'ensemble à un forgeage avec une vitesse de déformation du matériau d'au moins 8s"-' .- the assembly is brought to a temperature of at least 500 ° C; - The assembly is subjected to forging with a material deformation speed of at least 8s "- '.
2- Procédé de préparation d'un matériau magnétique à base d'au moins une terre rare, d'au moins uα métal de transition et d'azote, caractérisé en ce qu'il comprend les étapes suivantes :2- Process for the preparation of a magnetic material based on at least one rare earth, at least uα transition metal and nitrogen, characterized in that it comprises the following stages:
- on place dans une gaine un alliage à base d'au moins une terre rare et d'au moins un métal de transition;- An alloy based on at least one rare earth and at least one transition metal is placed in a sheath;
- on porte l'ensemble à une température d'au moins 500°C;- the assembly is brought to a temperature of at least 500 ° C;
- on soumet l'ensemble à un forgeage avec une vitesse de déformation du matériau d'au moins 8s"1 ;- The assembly is subjected to forging with a material deformation speed of at least 8s " 1;
- on soumet à un traitement de nitruration le produit issu du forgeage.- The product from the forging is subjected to a nitriding treatment.
3- Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on effectue le forgeage avec une vitesse de déformation du matériau d'au moins 10s"'' , plus particulièrement d'au moins 50s"1 et encore plus particulièrement d'au moins 100s"'' .3- A method according to claim 1 or 2, characterized in that forging is carried out with a material deformation speed of at least 10s " ", more particularly at least 50s "1 and even more particularly of at least 100s "' '.
4- Procédé selon la revendication 1 , 2 ou 3, caractérisé en ce qu'on effectue le forgeage avec un taux de réduction d'au moins 2.4- A method according to claim 1, 2 or 3, characterized in that forging is carried out with a reduction rate of at least 2.
5- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on effectue le forgeage dans une direction perpendiculaire à un axe de facile croissance des cristallites de l'alliage.5- Method according to one of the preceding claims, characterized in that forging is carried out in a direction perpendicular to an axis of easy growth of the crystallites of the alloy.
6- Procédé selon l'une des revendications précédentes, caractérisé en ce que l'alliage est à base d'au moins une terre rare qui est le néodyme ou le samarium.6- Method according to one of the preceding claims, characterized in that the alloy is based on at least one rare earth which is neodymium or samarium.
7- Procédé selon l'une des revendications précédentes, caractérisé en ce que l'alliage est à base d'au moins un métal de transition qui est le fer. 8- Procédé selon l'une des revendications 1 ou 3 à 7, caractérisé en ce que l'alliage est à base d'au moins une terre rare, d'au moins un métal de transition et de bore.7- Method according to one of the preceding claims, characterized in that the alloy is based on at least one transition metal which is iron. 8- Method according to one of claims 1 or 3 to 7, characterized in that the alloy is based on at least one rare earth, at least one transition metal and boron.
9- Procédé selon l'une des revendications 1 ou 3 à 8, caractérisé en ce que l'alliage comprend en outre du cuivre.9- Method according to one of claims 1 or 3 to 8, characterized in that the alloy further comprises copper.
10- Procédé selon l'une des revendications précédentes, caractérisé en ce que la gaine est en métal.10- Method according to one of the preceding claims, characterized in that the sheath is made of metal.
11- Procédé selon la revendication 9, caractérisé en ce que la gaine est en acier.11- A method according to claim 9, characterized in that the sheath is made of steel.
12- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on soumet le matériau obtenu après le forgeage et, le cas échéant, avant le traitement de nitruration, à au moins un traitement de recuit.12- Method according to one of the preceding claims, characterized in that the material obtained after the forging and, if necessary, before the nitriding treatment, is subjected to at least one annealing treatment.
13- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on soumet le matériau obtenu après le forgeage et, éventuellement après au moins un traitement de recuit, à une hydruration puis à une déshydruration, la déshydruration pouvant être suivie éventuellement d'au moins un traitement de recuit et, le cas échéant, d'un traitement de nitruration.13- Method according to one of the preceding claims, characterized in that the material obtained after the forging and, optionally after at least one annealing treatment, is subjected to a hydriding then to a dehydrating, the dehydriding possibly being followed by '' at least one annealing treatment and, if necessary, a nitriding treatment.
14- Matériau magnétique sous forme de poudre, caractérisé en ce qu'il présente une coercivité d'au moins 9kOe et une rémanence d'au moins 9kG.14- Magnetic material in powder form, characterized in that it has a coercivity of at least 9kOe and a persistence of at least 9kG.
15- Matériau selon la revendication 14, caractérisé en ce qu'il est à base d'au moins une terre rare, d'au moins un métal de transition et d'au moins un autre élément choisi parmi le bore, le carbone et l'azote.15- Material according to claim 14, characterized in that it is based on at least one rare earth, at least one transition metal and at least one other element chosen from boron, carbon and l 'nitrogen.
16- Matériau selon l'une des revendications 14 à 15, caractérisé en ce qu'il se présente sous forme d'une poudre constituée de particules de 10 à 200μm.16. Material according to one of claims 14 to 15, characterized in that it is in the form of a powder consisting of particles from 10 to 200 μm.
17- Matériau selon l'une des revendications 14 à 16, caractérisé en ce qu'il se présente sous forme d'une poudre dont les particules sont constituées de grains monocristallins d'une taille moyenne d'au moins 0,1 μm.17- Material according to one of claims 14 to 16, characterized in that it is in the form of a powder whose particles consist of monocrystalline grains with an average size of at least 0.1 microns.
18- Matériau selon l'une des revendications 14 à 17, caractérisé en ce qu'il est magnétiquement anisotrope. 18- Material according to one of claims 14 to 17, characterized in that it is magnetically anisotropic.
EP99922227A 1998-05-28 1999-05-26 Method for preparing a magnetic material by forging and magnetic material in powder form Expired - Lifetime EP1082733B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9806745 1998-05-28
FR9806745A FR2779267B1 (en) 1998-05-28 1998-05-28 PROCESS FOR PREPARING A MAGNETIC MATERIAL BY FORGING AND MAGNETIC MATERIAL IN POWDER FORM
PCT/FR1999/001234 WO1999062080A1 (en) 1998-05-28 1999-05-26 Method for preparing a magnetic material by forging and magnetic material in powder form

Publications (2)

Publication Number Publication Date
EP1082733A1 true EP1082733A1 (en) 2001-03-14
EP1082733B1 EP1082733B1 (en) 2003-04-02

Family

ID=9526820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99922227A Expired - Lifetime EP1082733B1 (en) 1998-05-28 1999-05-26 Method for preparing a magnetic material by forging and magnetic material in powder form

Country Status (10)

Country Link
US (1) US6592682B1 (en)
EP (1) EP1082733B1 (en)
JP (1) JP3668134B2 (en)
CN (1) CN1142562C (en)
AT (1) ATE236450T1 (en)
AU (1) AU3935399A (en)
DE (1) DE69906513T2 (en)
FR (1) FR2779267B1 (en)
TW (1) TW558469B (en)
WO (1) WO1999062080A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948688B1 (en) 2009-07-31 2012-02-03 Centre Nat Rech Scient METHOD AND DEVICE FOR TREATING A MATERIAL UNDER THE EFFECT OF A MAGNETIC FIELD
TWI558066B (en) * 2011-06-10 2016-11-11 艾克西弗洛克斯控股私營有限公司 Electric machine
CN103031414B (en) * 2012-12-28 2014-03-05 哈尔滨工业大学 Fabrication method of directional solidification neodymium ferrum boron magnetic alloy
DE102016217138A1 (en) 2016-09-08 2018-03-08 Robert Bosch Gmbh Method and associated forged hollow mold for making a hot formed magnet
JP6865857B2 (en) * 2017-05-19 2021-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh A hot-worked magnet and a method for manufacturing the hot-worked magnet.
DE102018105250A1 (en) * 2018-03-07 2019-09-12 Technische Universität Darmstadt Process for producing a permanent magnet or a hard magnetic material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation
JPH01175207A (en) * 1987-12-28 1989-07-11 Seiko Epson Corp Manufacture of permanent magnet
FR2648948B1 (en) * 1989-06-23 1993-12-31 Baikowski Pierre Synthetique IMPROVED PROCESS FOR THE PREPARATION OF HIGH PERFORMANCE PERMANENT MAGNETS BASED ON NEODYME-FER-BORE
US5580396A (en) * 1990-07-02 1996-12-03 Centre National De La Recherche Scientifique (Cnrs) Treatment of pulverant magnetic materials and products thus obtained
JP2580066B2 (en) * 1990-08-02 1997-02-12 富士電気化学株式会社 Anisotropic permanent magnet
JPH0491403A (en) * 1990-08-02 1992-03-24 Fuji Elelctrochem Co Ltd Anisotropic permanent magnet
JPH04134806A (en) * 1990-09-27 1992-05-08 Seiko Epson Corp Manufacture of permanent magnet
WO1992020081A1 (en) * 1991-04-25 1992-11-12 Seiko Epson Corporation Method of producing a rare earth permanent magnet
JPH05135924A (en) * 1991-11-14 1993-06-01 Seiko Epson Corp Manufacture of rare earth permanent magnet
JPH05175027A (en) * 1991-12-25 1993-07-13 Aichi Steel Works Ltd Permanent magnet material
US5516371A (en) * 1994-09-22 1996-05-14 Korea Research Institute Of Standard And Science Method of manufacturing magnets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9962080A1 *

Also Published As

Publication number Publication date
DE69906513T2 (en) 2004-02-19
WO1999062080A1 (en) 1999-12-02
DE69906513D1 (en) 2003-05-08
FR2779267A1 (en) 1999-12-03
EP1082733B1 (en) 2003-04-02
CN1142562C (en) 2004-03-17
ATE236450T1 (en) 2003-04-15
US6592682B1 (en) 2003-07-15
TW558469B (en) 2003-10-21
FR2779267B1 (en) 2000-08-11
AU3935399A (en) 1999-12-13
JP3668134B2 (en) 2005-07-06
CN1310849A (en) 2001-08-29
JP2002516925A (en) 2002-06-11

Similar Documents

Publication Publication Date Title
KR102096958B1 (en) Highly thermostable rare-earth permanent magnetic material, preparation method thereof and magnet containing the same
EP2024274B1 (en) Nanocrystalline composite for storage of hydrogen and process for its preparation
FR2632766A1 (en) PERMANENT MAGNET AND METHOD FOR MANUFACTURING THE SAME
CH626406A5 (en)
WO2015019513A1 (en) Process for manufacturing neodymium-iron-boron-based rare earth powder or sputtering target, neodymium-iron-boron-based rare earth powder or sputtering target, and neodymium-iron-boron-based thin film for rare earth magnet or manufacturing process therefor
WO2017089488A1 (en) Sintered permanent magnet
EP1082733B1 (en) Method for preparing a magnetic material by forging and magnetic material in powder form
CN108220739A (en) A kind of Y-Fe bases rare earth hydrogen storage material and preparation method thereof
EP0601943A1 (en) R-Fe-B type magnet powder, sintered magnets therefrom and preparation process
EP0538320B1 (en) Method for processing powdered magnetic materials and products thereby obtained
EP0432060A1 (en) Permanent magnet alloy of the type iron-neodymium-boron, sintered permanent magnet and manufacturing process
EP0478674B1 (en) Method for preparing permanent magnets based on neodymium-iron-boron
WO2016097366A1 (en) Sintered permanent magnet
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
FR2485039A1 (en) ALLOYS CONTAINING LANTHANIDES FOR THE PRODUCTION OF PERMANENT MAGNETS
WO1998008232A1 (en) Product with magnetic properties, method of its preparation and magnet obtained from this product
JP2560566B2 (en) Method for producing hydrogen storage alloy
JP2006176802A (en) Method for manufacturing high-strength magnesium alloy using solid-state reaction by hydrogenation and dehydrogenation
BE485512A (en)
Nd-Fe-B IR Harris
FR2491499A1 (en) ANISOTROPIC MAGNETIC ALLOY AND PROCESS FOR PRODUCING THE SAME
FR2707421A1 (en) Additive powder for the manufacture of Fe-Nd-B-type sintered magnets, method of manufacture and corresponding magnets
JPH0892705A (en) Raw material alloy for producing rare earth magnet powder and its production
JPH05202437A (en) Production of inter-high-melting-metallic compound-base alloy
JPH0817613A (en) Material alloy for manufacturing rare earth magnet powder and its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FI FR GB

17Q First examination report despatched

Effective date: 20020322

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SANTOKU AMERICA, INC.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE FI FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030402

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SANTOKU CORPORATION

REF Corresponds to:

Ref document number: 69906513

Country of ref document: DE

Date of ref document: 20030508

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060515

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060522

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69906513

Country of ref document: DE