EP0478674B1 - Method for preparing permanent magnets based on neodymium-iron-boron - Google Patents

Method for preparing permanent magnets based on neodymium-iron-boron Download PDF

Info

Publication number
EP0478674B1
EP0478674B1 EP90910143A EP90910143A EP0478674B1 EP 0478674 B1 EP0478674 B1 EP 0478674B1 EP 90910143 A EP90910143 A EP 90910143A EP 90910143 A EP90910143 A EP 90910143A EP 0478674 B1 EP0478674 B1 EP 0478674B1
Authority
EP
European Patent Office
Prior art keywords
alloy
neodymium
iron
atoms
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90910143A
Other languages
German (de)
French (fr)
Other versions
EP0478674A1 (en
Inventor
Jean-Pierre Nozieres
René Perrier De la Bathie
Marc Lelievre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSB INDUSTRIES
Centre National de la Recherche Scientifique CNRS
Original Assignee
PSB INDUSTRIES
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSB INDUSTRIES, Centre National de la Recherche Scientifique CNRS filed Critical PSB INDUSTRIES
Priority to AT90910143T priority Critical patent/ATE91564T1/en
Publication of EP0478674A1 publication Critical patent/EP0478674A1/en
Application granted granted Critical
Publication of EP0478674B1 publication Critical patent/EP0478674B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Definitions

  • the present invention relates to a new improved process for the preparation of high-performance permanent magnets based on Neodymium-Iron-Boron. It relates more particularly to a process for manufacturing permanent magnets by the technical process known as wrought.
  • wrought means a mechanical treatment applied to a metal alloy and intended to cause refinement of the constituent grains of this alloy.
  • the wrought is then defined by its wrought rate.
  • the mechanical treatments likely to induce a wrought are essentially forging, hammering, rolling, spinning, vibro-tamping (tamping by vibration), etc.
  • Praseodymium is much rarer on the earth's surface than Neodymium, hence the cost price of magnets based on Praseodymium much higher (typically in a ratio of 5 to 1 compared to Neodymium).
  • EP-A-0 269 667 A hot-working process has also been described in European patent EP-A-0 269 667 which makes it possible to obtain permanent magnets in industrial quantities under high safety conditions having good magnetic performance. These magnets, based on Fer-Bore and Rare Earths, have a relatively low production cost given the process used. Again, we wanted to improve their magnetic properties. And this is the object of the present invention.
  • the document EP-A-302 947 describes an alignment of the grains of the alloy by "hot working".
  • the "hot working" according to this document has the sole purpose of aligning the grains of magnetic materials.
  • the present invention relates to an improved process for the preparation of high-performance permanent magnets from a solid alloy containing a mixture based on Fer-Boron and Neodymium which, for a temperature range, has a domain inside of which said alloy is in two phases, one solid and fragile and the other liquid, the iron and / or neodymium atoms of said alloy being partially substituted by copper atoms, characterized in that it consists in wrenching the new alloy thus produced at a temperature included in said temperature range, in order to obtain a wrought rate of at least ten, so as to refine the grains constituting said alloy into particles a few micrometers; - Then, to subject the alloy thus wrought to an annealing and / or tempering treatment.
  • the present invention consists in replacing, in a solid alloy based on Neodymium-Iron-Boron, some of the Iron and / or Neodymium atoms with Copper atoms, and then subjecting this alloy to a treatment hot working. While the use of copper was known per se with a view to improving certain magnetic properties, on the other hand, it was clearly shown that the use of copper in an iron-boron alloy of rare earth, in which rare earth was Neodymium did not make it possible to obtain permanent magnets with high magnetic properties.
  • the installation according to the invention comprises an anvil (1), on which rests a retaining ring (2), surrounded by a glass enclosure (3), defining a sealed chamber (4), connected to the inlet (5) of a source of argon not shown.
  • the top of the chamber has an opening (6) through which the hammer (7) of the external impact assembly (8) can pass, by means of a seal sealing (9).
  • the sample (10) rests on the anvil (1) inside the ring (2) in which the hammer (7) slides.
  • the glass enclosure (3) is surrounded by induction coils (11).
  • An annealing is then carried out under neutral gas, or possibly under vacuum, at a temperature of 650 ° C.
  • the magnetic element thus obtained has an intrinsic coercive field of 756 kilo-amperes per meter (756 kA / m) and a residual induction of 0.8 Tesla.
  • the internal energy obtained in this case is of the order of 103.5 kilo-joules per cubic meter (103.5 kJ / m3).
  • the element obtained has in known manner a quadratic crystal structure.
  • Example 1 is repeated but in which the two aluminum atoms are replaced by two cobalt atoms.
  • the sample is subjected to the same treatment.
  • the role of Cobalt is essentially to increase the Curie temperature, therefore the temperature of use of the permanent magnets thus produced.
  • the intrinsic coercive field obtained is then 600 kA / m and the residual induction of 0.9 Tesla.
  • the internal energy obtained is in this case close to 95.5 kJ / m3.
  • Permanent magnets are then produced by the process known as "hot pressing".
  • the production process and the composition of the base alloy are described in the publication (SHIMODA et al) mentioned above J.Appl. Phy. 64 (10). This example and the following two are given for comparison.
  • the intrinsic coercive field obtained is 800kA / m and the residual induction of 1.25 Tesla.
  • the internal energy obtained is 288 kJ / m3.
  • the intrinsic coercive field obtained is 230kA / m and the residual induction of 0.19 Tesla.
  • the internal energy obtained is 72.8 kJ / m3.
  • the intrinsic coercive field obtained is 950 kA / m and the residual induction of 1.01 Tesla. In this way, an internal energy close to 200 kJ / m3 is obtained. This produces excellent permanent anistrop magnets with very high performance.
  • the intrinsic coercive field obtained is 835kA / m for a residual induction of 1.15 Tesla.
  • the internal magnetic energy obtained is then 238 kJ / m3.
  • the magnetic properties obtained are slightly lower than the two previous examples, in fact there is an intrinsic coercive field of 800 kA / m for a residual induction of 1 Tesla, the internal magnetic energy obtained being 159 kJ / m3.
  • the intrinsic coercive field obtained is then 835 kA / m for a residual induction of 0.95 Tesla.
  • the maximum internal energy obtained is 243 kJ / m3. It is therefore observed in the context of the strict use of the four elements Neodymium-Iron-Boron-Copper, that the maximum of the magnetic properties is located for a centesimal atomic concentration of Copper close to 2.
  • the temperature of the wrinkling is at least equal to 500 ° C. in order to be situated at least at the level of the melting of the Neodymium-Copper eutectic. However, it has been found that around 800 ° C., the results are appreciably the best.
  • the process according to the invention has many advantages over the process mentioned in the preamble.
  • the cost price of such magnets can be reduced by a factor of 5.
  • this process using a Neodymium-Iron-Boron-Copper base mixture makes it possible to obtain permanent magnets of reduced cost, with high magnetic performance, and capable of being produced in industrial quantities in an easy manner. .

Abstract

Method for preparing permanent magnets from a massive alloy containing a mixture based on neodymium-iron-boron which, for a range of temperatures, has a range within which said alloy undergoes two phases, one solid and fragile and the other liquid, characterized in that it involves: partially substituting copper atoms for iron and/or neodymium atoms from said alloy, then, forging the newly produced alloy at a temperature within said range of temperatures, to obtain a forging grade of at least ten, in order to refine the constituent grains of the alloy to particles of a few micrometers; and, finally, subjecting the forged alloy to an annealing and/or tempering treatment.

Description

La présente invention concerne un nouveau procédé perfectionné, en vue de la préparation d'aimants permanents à hautes performances à base Néodyme-Fer-Bore. Elle a plus particulièrement trait à un procédé de fabrication d'aimants permanents par le procédé technique dit de corroyage.The present invention relates to a new improved process for the preparation of high-performance permanent magnets based on Neodymium-Iron-Boron. It relates more particularly to a process for manufacturing permanent magnets by the technical process known as wrought.

Par "corroyage" on désigne un traitement mécanique appliqué à un alliage métallique et destiné à provoquer l'affinement des grains constitutifs de cet alliage. Le corroyage est alors défini par son taux de corroyage. Les traitements mécaniques susceptibles d'induire un corroyage sont essentiellement le forgeage, le martelage, le laminage, le filage, le vibro-tassage (tassage par vibration), etc...By "wrought" means a mechanical treatment applied to a metal alloy and intended to cause refinement of the constituent grains of this alloy. The wrought is then defined by its wrought rate. The mechanical treatments likely to induce a wrought are essentially forging, hammering, rolling, spinning, vibro-tamping (tamping by vibration), etc.

Dans le brevet européen EP-A-0 106 948, on a décrit un procédé d'obtention d'aimants à base d'alliage Fer-Cobalt-Bore-Terres Rares par la technique dite de métallurgie des poudres. Si certes les aimants obtenus présentent des propriétés magnétiques intéressantes, en revanche ce procédé s'avère particulièrement compliqué et dangereux, en effet il nécessite la prise de nombreuses précautions, et notamment de travailler sous atmosphère contrôlée. De plus le prix de revient des aimants ainsi obtenus est relativement élevé. Enfin, si certes l'emploi de Cobalt dans le mélange de base permet d'augmenter de manière assez significative la température de Curie, donc la température d'utilisation de ces aimants, en revanche, on observe une diminution de la coercivité et des propriétés magnétiques en général.In European patent EP-A-0 106 948, a process has been described for obtaining magnets based on an iron-cobalt-boron-rare earth alloy by the technique known as powder metallurgy. While the magnets obtained have interesting magnetic properties, on the other hand, this process proves to be particularly complicated and dangerous, in fact it requires numerous precautions to be taken, and in particular to work in a controlled atmosphere. In addition, the cost price of the magnets thus obtained is relatively high. Finally, although the use of Cobalt in the base mixture makes it possible to increase the Curie temperature significantly, therefore the temperature of use of these magnets, on the other hand, there is a decrease in the coercivity and properties magnetic in general.

Dans la publication SHIMODA et al (J.Appl. Phys. 64 (10) 1988), on a proposé de réaliser des aimants permanents à base d'un mélange Praséodyme-Fer-Bore-Cuivre, et ce avec un faible taux de déformation, notamment inférieur à dix. Ce procédé de réalisation s'effectue par pressage à chaud sous atmosphère inerte à environ 1000°C. Toutefois, ce procédé ne permet l'obtention de propriétés magnétiques élevées que pour des petits aimants. Qui plus est, compte tenu de leur procédé de réalisation notamment par laminage sous gaine, ayant pour résultat certes un affinement des grains (toutefois insuffisant avec un taux de déformation inférieur à dix), avec une microstructure inhomogène et une orientation magnétique, seul le Praséodyme permet d'obtenir de bons résultats. Il a été montré en effet qu'en remplaçant le Praséodyme par du Néodyme, les propriétés magnétiques chutaient drastiquement, rendant l'adjonction de Cuivre totalement inutile. Or le Praseodyme est beaucoup plus rare à la surface terrestre que le Néodyme, d'où un prix de revient des aimants à base de Praséodyme nettement plus élevé (typiquement dans un rapport de 5 à 1 par rapport au Néodyme).In the publication SHIMODA et al (J.Appl. Phys. 64 (10) 1988), it has been proposed to produce permanent magnets based on a Praseodymium-Iron-Boron-Copper mixture, and this with a low rate of deformation , especially less than ten. This production process is carried out by hot pressing under an inert atmosphere at around 1000 ° C. However, this method only makes it possible to obtain high magnetic properties for small magnets. What is more, taking into account their production process, in particular by sheath rolling, which certainly results in a refinement of the grains (however insufficient with a deformation rate of less than ten), with an inhomogeneous microstructure and a magnetic orientation, only the Praseodymium provides good results. In fact, it has been shown that by replacing Praseodymium with Neodymium, the magnetic properties dropped drastically, making the addition of Copper completely unnecessary. However, Praseodymium is much rarer on the earth's surface than Neodymium, hence the cost price of magnets based on Praseodymium much higher (typically in a ratio of 5 to 1 compared to Neodymium).

On a également décrit un procédé de corroyage à chaud dans le brevet européen EP-A-0 269 667 permettant d'obtenir dans des conditions de sécurité poussées des aimants permanents en quantité industrielle présentant de bonnes performances magnétiques. Ces aimants, à base de Fer-Bore et de Terres Rares sont d'un coût de production relativement faible compte tenu du procédé utilisé. Quoiqu'il en soit, on a souhaité améliorer leurs propriétés magnétiques. Et c'est là l'objet de la présente invention. Le document EP-A- 302 947 décrit un alignement des grains de l'alliage par "hot working". Le "hot working" selon ce document n'a pour seul but que d'aligner les grains des matériaux magnétiques.A hot-working process has also been described in European patent EP-A-0 269 667 which makes it possible to obtain permanent magnets in industrial quantities under high safety conditions having good magnetic performance. These magnets, based on Fer-Bore and Rare Earths, have a relatively low production cost given the process used. Anyway, we wanted to improve their magnetic properties. And this is the object of the present invention. The document EP-A-302 947 describes an alignment of the grains of the alloy by "hot working". The "hot working" according to this document has the sole purpose of aligning the grains of magnetic materials.

La présente invention concerne un procédé perfectionné pour la préparation d'aimants permanents à hautes performances à partir d'un alliage massif contenant un mélange à base de Fer-Bore et Néodyme qui, pour une gamme de température, présente un domaine à l'intérieur duquel ledit alliage se trouve sous deux phases, l'une solide et fragile et l'autre liquide,
   les atomes de fer et/ou de néodyme dudit alliage étant substitués partiellement par des atomes de cuivre ,
   caractérisé en ce qu'il consiste à corroyer le nouvel alliage ainsi réalisé à une température comprise dans ladite gamme de température, afin d'obtenir un taux de corroyage d'au moins dix, de manière à affiner les grains constitutifs dudit alliage en particules de quelques micromètres ;
   - puis, à soumettre l'alliage ainsi corroyé à un traitement de recuit et/ou de revenu .
The present invention relates to an improved process for the preparation of high-performance permanent magnets from a solid alloy containing a mixture based on Fer-Boron and Neodymium which, for a temperature range, has a domain inside of which said alloy is in two phases, one solid and fragile and the other liquid,
the iron and / or neodymium atoms of said alloy being partially substituted by copper atoms,
characterized in that it consists in wrenching the new alloy thus produced at a temperature included in said temperature range, in order to obtain a wrought rate of at least ten, so as to refine the grains constituting said alloy into particles a few micrometers;
- Then, to subject the alloy thus wrought to an annealing and / or tempering treatment.

En d'autres termes, la présente invention consiste à remplacer dans un alliage massif à base de Néodyme-Fer-Bore, certains des atomes de Fer et/ou de Néodyme par des atomes de Cuivre, et à soumettre alors cet alliage à un traitement de corroyage à chaud. Si certes l'utilisation du Cuivre était connu en soi en vue de l'amélioration de certaines propriétés magnétiques, en revanche, il était clairement montré que l'utilisation de Cuivre dans un alliage Fer-Bore Terre Rare, dans lequel la Terre Rare était du Néodyme ne permettait pas d'obtenir des aimants permanents à propriétés magnétiques élevées.In other words, the present invention consists in replacing, in a solid alloy based on Neodymium-Iron-Boron, some of the Iron and / or Neodymium atoms with Copper atoms, and then subjecting this alloy to a treatment hot working. While the use of copper was known per se with a view to improving certain magnetic properties, on the other hand, it was clearly shown that the use of copper in an iron-boron alloy of rare earth, in which rare earth was Neodymium did not make it possible to obtain permanent magnets with high magnetic properties.

Avantageusement en pratique :

  • l'alliage comporte de 0,5 à 4 % atomique de Cuivre; on a en effet constaté que si la quantité atomique de Cuivre est inférieure à 0,5 %, on observait une chute des propriétés magnétiques de l'aimant ainsi réalisé. En d'autres termes on n'observait pas d'amélioration notable par rapport aux aimants obtenus selon le procédé décrit dans le brevet européen EP-A-0 269 667. En revanche, si la quantité de Cuivre dépasse 4 % atomique, on affecte la rémanence du fait de la diminution de la quantité de matériau magnétique ;
  • l'alliage comporte de 1 à 2,5 % atomique de Cuivre de préférence 2 % ;
  • l'alliage à base de Néodyme-Fer-Bore-Cuivre comporte également du Dysprosium (Dy) ;
  • le Dysprosium est présent à raison de 0,5 % à 2 % atomique.
Advantageously in practice:
  • the alloy comprises from 0.5 to 4 atomic% of copper; it has in fact been observed that if the atomic amount of copper is less than 0.5%, a fall in the magnetic properties of the magnet thus produced is observed. In other words, there was no noticeable improvement compared to the magnets obtained according to the method described in European patent EP-A-0 269 667. On the other hand, if the amount of Copper exceeds 4 atomic%, the remanence is affected due to the decrease in the amount of magnetic material;
  • the alloy comprises from 1 to 2.5 atomic% of copper, preferably 2%;
  • the alloy based on Neodymium-Iron-Boron-Copper also comprises Dysprosium (Dy);
  • Dysprosium is present at a rate of 0.5% to 2 atomic%.

La manière dont l'invention peut être réalisée et les avantages qui en découlent ressortiront mieux des exemples de réalisation qui suivent, données à titre indicatif et non limitatif à l'appui de la figure annexée.The manner in which the invention can be implemented and the advantages which ensue therefrom will emerge more clearly from the following exemplary embodiments, given by way of indication and not limiting in support of the appended figure.

Les différents exemples qui suivent montrent la réalisation d'aimants permanents d'une part conformément à l'invention au moyen d'une installation relativement simple telle que notamment décrite dans le brevet européen EP-A-0 269 667, et d'autre part, et à titre comparatif conformément au procédé décrit dans la publication J. Appl. Phys. 64 (10).The various examples which follow show the production of permanent magnets on the one hand in accordance with the invention by means of a relatively simple installation as described in particular in European patent EP-A-0 269 667, and on the other hand , and for comparison in accordance with the method described in the publication J. Appl. Phys. 64 (10).

De manière sommaire, et comme on peut le voir au sein de la figure 1, l'installation conforme à l'invention comprend une enclume (1), sur laquelle vient reposer une bague de maintien (2), entourée par une enceinte en verre (3), définissant une chambre étanche (4), reliée à l'arrivée (5) d'une source d'argon non représentée. Le haut de la chambre comprend une ouverture (6) à travers laquelle le marteau (7) de l'ensemble de frappe extérieure (8) peut passer, par l'intermédiaire d'un joint d'étanchéité (9). L'échantillon (10) repose sur l'enclume (1) à l'intérieur de la bague (2) dans laquelle coulisse le marteau (7). L'enceinte de verre (3) est entourée par des spires de chauffage (11) par induction.Briefly, and as can be seen in Figure 1, the installation according to the invention comprises an anvil (1), on which rests a retaining ring (2), surrounded by a glass enclosure (3), defining a sealed chamber (4), connected to the inlet (5) of a source of argon not shown. The top of the chamber has an opening (6) through which the hammer (7) of the external impact assembly (8) can pass, by means of a seal sealing (9). The sample (10) rests on the anvil (1) inside the ring (2) in which the hammer (7) slides. The glass enclosure (3) is surrounded by induction coils (11).

Exemple 1Example 1

On prépare un échantillon massif (rondelle, cylindre, moulé..., grenaille) dans un alliage constitué par un mélange de Fer, de Néodyme, de Bore et d'Aluminium. La concentration atomique pour 100 atomes d'alliage des différents éléments est :

  • 76 atomes de Fer,
  • 16 atomes de Néodyme,
  • 6 atomes de Bore,
  • 2 atomes d'Aluminium.
A massive sample is prepared (washer, cylinder, molded ..., shot) in an alloy constituted by a mixture of Iron, Neodymium, Boron and Aluminum. The atomic concentration for 100 alloy atoms of the different elements is:
  • 76 Iron atoms,
  • 16 Neodymium atoms,
  • 6 Boron atoms,
  • 2 Aluminum atoms.

On place cet échantillon massif ainsi constitué sur l'enclume (1) de l'installation, à l'intérieur de la bague (2). On injecte alors en (5) de l'argon et par induction (11) on chauffe la chambre étanche (4) à 800°C pendant cinq minutes. Lorsque cette température est atteinte, on martèle l'échantillon (10) de trois coups de marteau. Ce forgeage ainsi effectué induit un taux de corroyage voisin de dix, suffisant pour briser les cristaux magnétiques.This massive sample thus placed is placed on the anvil (1) of the installation, inside the ring (2). Argon is then injected at (5) and by induction (11) the sealed chamber (4) is heated to 800 ° C for five minutes. When this temperature is reached, the sample (10) is hammered with three hammer blows. This forging thus carried out induces a rate of wrought close to ten, sufficient to break the magnetic crystals.

On procède alors à un recuit sous gaz neutre, ou éventuellement sous vide, à une température de 650°C.An annealing is then carried out under neutral gas, or possibly under vacuum, at a temperature of 650 ° C.

L'élément magnétique ainsi obtenu présente un champ coercitif intrinsèque de 756 kilo-ampères par mètre (756 kA/m) et une induction rémanente de 0,8 Tesla. L'énergie interne obtenue dans ce cas est de l'ordre de 103,5 kilo-joules par mètre cube (103,5 kJ/m³).The magnetic element thus obtained has an intrinsic coercive field of 756 kilo-amperes per meter (756 kA / m) and a residual induction of 0.8 Tesla. The internal energy obtained in this case is of the order of 103.5 kilo-joules per cubic meter (103.5 kJ / m³).

L'élément obtenu présente de manière connue une structure cristalline quadratique.The element obtained has in known manner a quadratic crystal structure.

Exemple 2Example 2

On répète l'exemple 1 mais dans lequel on susbtitue les deux atomes d'Aluminium par deux atomes de Cobalt. L'échantillon est soumis au même traitement. On obtient alors un champ coercitif intrisèque de 597 kA/m pour une induction émanente de 0,88 Tesla. On constate donc une chute importante du champ coercitif et une légère augmentation de l'induction rémanente. Le rôle du Cobalt est essentiellement d'augmenter la température de Curie, donc la température d'utilisation des aimants permanents ainsi réalisés.Example 1 is repeated but in which the two aluminum atoms are replaced by two cobalt atoms. The sample is subjected to the same treatment. We then obtain an intrinsic coercive field of 597 kA / m for an emanation induction of 0.88 Tesla. There is therefore a significant drop in the coercive field and a slight increase in the residual induction. The role of Cobalt is essentially to increase the Curie temperature, therefore the temperature of use of the permanent magnets thus produced.

Exemple 3Example 3

On répète l'exemple 1 mais dans lequel l'alliage de base n'est plus qu'un mélange ternaire de Néodyme, de Fer et de Bore. La composition atomique pour 100 atomes du mélange est :

  • 16 atomes de Néodyme,
  • 78 atomes de Fer,
  • 6 atomes de Bore.
Example 1 is repeated but in which the base alloy is no more than a ternary mixture of Neodymium, Iron and Boron. The atomic composition for 100 atoms of the mixture is:
  • 16 Neodymium atoms,
  • 78 iron atoms,
  • 6 Boron atoms.

Le champ coercitif intrinsèque obtenu est alors de 600 kA/m et l'induction rémanente de 0,9 Tesla. L'énergie interne obtenue est dans ce cas voisine de 95,5 kJ/m³.The intrinsic coercive field obtained is then 600 kA / m and the residual induction of 0.9 Tesla. The internal energy obtained is in this case close to 95.5 kJ / m³.

Exemple 4Example 4

On réalise alors des aimants permanents par le procédé dit par "pressage à chaud". Le procédé de réalisation et la composition de l'alliage de base sont décrits dans la publication (SHIMODA et al) mentionnée ci-dessus J.Appl. Phy. 64(10). Cet exemple et les deux qui suivent sont donnés à titre comparatif.Permanent magnets are then produced by the process known as "hot pressing". The production process and the composition of the base alloy are described in the publication (SHIMODA et al) mentioned above J.Appl. Phy. 64 (10). This example and the following two are given for comparison.

Dans le cas présent, la composition centésimale atomique du mélange de base est :

  • 17 atomes de Praséodyme,
  • 7,5 atomes de Fer,
  • 5 atomes de Bore,
  • 1,5 atomes de Cuivre.
In the present case, the atomic centesimal composition of the basic mixture is:
  • 17 Praseodymium atoms,
  • 7.5 iron atoms,
  • 5 Boron atoms,
  • 1.5 Copper atoms.

Le champ coercitif intrinsèque obtenu est de 800kA/m et l'induction rémanente de 1,25 Tesla. L'énergie interne obtenue est de 288 kJ/m³.The intrinsic coercive field obtained is 800kA / m and the residual induction of 1.25 Tesla. The internal energy obtained is 288 kJ / m³.

On observe donc que selon ce procédé et avec cette composition on obtient d'excellents aimants anisotropes.It is therefore observed that according to this process and with this composition, excellent anisotropic magnets are obtained.

Exemple 5Example 5

On utilise le même procédé mais la composition centésimale du mélange initial est :

  • 17 atomes de Néodyme,
  • 76,5 atomes de Fer,
  • 5 atomes de Bore,
  • 1,5 atomes de Cuivre.
The same process is used, but the percentage composition of the initial mixture is:
  • 17 Neodymium atoms,
  • 76.5 iron atoms,
  • 5 Boron atoms,
  • 1.5 Copper atoms.

Le champ coercitif intrinsèque obtenu est de 230kA/m et l'induction rémanente de 0,19 Tesla. L'énergie interne obtenue est de 72,8 kJ/m³. On observe de la sorte une chute drastique des propriétés magnétiques lorsque l'on remplace le Praséodyme par le Néodyme.The intrinsic coercive field obtained is 230kA / m and the residual induction of 0.19 Tesla. The internal energy obtained is 72.8 kJ / m³. We thus observe a drastic fall in magnetic properties when we replace Praseodymium with Neodymium.

Exemple 6Example 6

Dans la même publication, il est fait appel à un autre procédé dit par coulage. Ce procédé appliqué à la composition de l'exemple précédent, permet d'obtenir des aimants permanents de champ coercitif intrinsèque de 48 kA/m pour une induction rémanente de 0,29 Tesla. L'énergie interne obtenue maximum est de 3,2 kJ/m³. On observe donc que selon l'un ou l'autre des procédés utilisés dans le cadre de cette publication, le fait d'introduire du Cuivre dans le mélange Néodyme-Fer-Bore, bien loin d'augmenter les propriétés magnétiques des aimants ainsi réalisés provoque au contraire une chute de celle-ci.In the same publication, another method known as pouring is used. This process, applied to the composition of the previous example, makes it possible to obtain permanent magnets with an intrinsic coercive field of 48 kA / m for a residual induction of 0.29 Tesla. The maximum internal energy obtained is 3.2 kJ / m³. It is therefore observed that according to one or other of the methods used in the context of this publication, the fact to introduce Copper into the Neodymium-Iron-Boron mixture, far from increasing the magnetic properties of the magnets thus produced, on the contrary, causes it to fall.

Exemple 7Example 7

On reprend le procédé conforme à l'invention en utilisant comme composition centésimale du mélange de base :

  • 17 atomes de Néodyme,
  • 76 atomes de Fer,
  • 5 atomes de Bore,
  • 2 atomes de Cuivre.
The process according to the invention is repeated, using as base composition of the base mixture:
  • 17 Neodymium atoms,
  • 76 Iron atoms,
  • 5 Boron atoms,
  • 2 copper atoms.

Le champ coercitif intrinsèque obtenu est de 950 kA/m et l'induction rémanente de 1,01 Tesla. De la sorte on obtient une énergie interne voisine de 200 kJ/m³. On obtient alors d'excellents aimants permanents anistropes à très hautes performances.The intrinsic coercive field obtained is 950 kA / m and the residual induction of 1.01 Tesla. In this way, an internal energy close to 200 kJ / m³ is obtained. This produces excellent permanent anistrop magnets with very high performance.

Exemple 8Example 8

On répète l'exemple précédent avec la composition centésimale atomique du mélange de base suivante :

  • 15 atomes de Néodyme,
  • 76 atomes de Fer,
  • 5 atomes de Bore,
  • 2 atomes de Cuivre.
The previous example is repeated with the atomic centesimal composition of the following basic mixture:
  • 15 Neodymium atoms,
  • 76 Iron atoms,
  • 5 Boron atoms,
  • 2 Copper atoms.

Le champ coercitif intrinsèque obtenu est de 835kA/m pour une induction rémanente de 1,15 Tesla. L'énergie interne magnétique obtenue est alors de 238 kJ/m³.The intrinsic coercive field obtained is 835kA / m for a residual induction of 1.15 Tesla. The internal magnetic energy obtained is then 238 kJ / m³.

On observe donc qu'en dépit des réserves formulées dans la publication ci-dessus mentionnée, l'utilisation de Néodyme dans le cadre du procédé conforme à l'invention permet d'obtenir des aimants permanents à très haute performance magnétique.It is therefore observed that, despite the reservations formulated in the publication mentioned above, the use of Neodymium in the context of the process according to the invention makes it possible to obtain permanent magnets with very high magnetic performance.

Exemple 9Example 9

On répète l'exemple précédent avec la composition centésimale atomique du mélange de base suivant :

  • 17 atomes de Néodyme,
  • 77 atomes de Fer,
  • 5 atomes de Bore,
  • 1 atome de Cuivre.
The previous example is repeated with the atomic centesimal composition of the following basic mixture:
  • 17 Neodymium atoms,
  • 77 iron atoms,
  • 5 Boron atoms,
  • 1 atom of Copper.

Les propriétés magnétiques obtenues sont légèrement inférieures aux deux exemples précédents, en effet on observe un champ coercitif intrinsèque de 800 kA/m pour une induction rémanente de 1 Tesla, l'énergie interne magnétique obtenue étant de 159 kJ/m³.The magnetic properties obtained are slightly lower than the two previous examples, in fact there is an intrinsic coercive field of 800 kA / m for a residual induction of 1 Tesla, the internal magnetic energy obtained being 159 kJ / m³.

Exemple 10Example 10

On répète l'exemple précédent en modifiant respectivement les compositions de Fer et de Cuivre, à savoir :

  • 74 atomes de Fer,
  • 4 atomes de Cuivre.
The previous example is repeated, respectively modifying the compositions of Iron and Copper, namely:
  • 74 Iron atoms,
  • 4 copper atoms.

Le champ coercitif intrinsèque obtenu est alors de 835 kA/m pour une induction rémanente de 0,95 Tesla. L'énergie interne maximum obtenue est de 243 kJ/m³. On observe donc dans le cadre du strict emploi des quatre éléments Néodyme-Fer-Bore-Cuivre, que le maximum des propriétés magnétiques se situe pour une concentration centésimale atomique de Cuivre voisine de 2.The intrinsic coercive field obtained is then 835 kA / m for a residual induction of 0.95 Tesla. The maximum internal energy obtained is 243 kJ / m³. It is therefore observed in the context of the strict use of the four elements Neodymium-Iron-Boron-Copper, that the maximum of the magnetic properties is located for a centesimal atomic concentration of Copper close to 2.

Il est à noter que la température du corroyage est au moins égale à 500°C afin de se situer au moins au niveau de la fusion de l'eutectique Néodyme-Cuivre. On a toutefois constaté qu'autour de 800°C, les résultats étaient sensiblement les meilleurs.It should be noted that the temperature of the wrinkling is at least equal to 500 ° C. in order to be situated at least at the level of the melting of the Neodymium-Copper eutectic. However, it has been found that around 800 ° C., the results are appreciably the best.

Ces différents résultats sont regroupés dans le tableau suivant.

Figure imgb0001
These different results are grouped in the following table.
Figure imgb0001

On observe donc que l'introduction de Cuivre dans le mélange de base, à raison d'environ 2 % atomique, permet une augmentation significative de la coercitivité et de là rémanence des aimants ainsi obtenus, conséquence de l'augmentation de l'anisotropie des aimants obtenus. On note en particulier une grande augmentation de l'énergie interne des aimants.It is therefore observed that the introduction of copper into the base mixture, at a rate of approximately 2 atomic%, allows a significant increase in the coercivity and hence the persistence of the magnets thus obtained, consequence of the increase in the anisotropy of the magnets obtained. In particular, there is a large increase in the internal energy of the magnets.

Dans tous les exemples précédents il est également possible d'introduire du Dysprosium à raison de 0,5 à 2 % atomique, notamment dans le cadre d'utilisation de ces aimants à des températures plus élevées. En effet ce dernier permet d'augmenter la coercivité donc la température de fonctionnement des aimants obtenus.In all the previous examples it is also possible to introduce Dysprosium at a rate of 0.5 to 2 atomic%, in particular in the context of the use of these magnets at higher temperatures. Indeed the latter increases the coercivity therefore the operating temperature of the magnets obtained.

De plus, il est possible de substituer le Cuivre par d'autres métaux tels que l'Argent, l'Or ou le Paladium.In addition, it is possible to replace the Copper with other metals such as Silver, Gold or Paladium.

Le procédé conforme à l'invention présente de nombreux avantages par rapport au procédé mentionné dans le préambule. On peut noter la possibilité d'utiliser un procédé simple et peu coûteux mettant en oeuvre du Néodyme, Terre Rare beaucoup plus abondante que le Praséodyme et de fait permettant l'obtention d'aimants permanents de propriétés :magnétiques égales, voire supérieures, à celles décrites dans les autres procédés, mais d'un coût de production nettement moins élevé. En effet compte tenu de la relative abondance du Néodyme dans la nature, on peut diminuer le prix de revient de tels aimants d'un facteur 5.The process according to the invention has many advantages over the process mentioned in the preamble. We can note the possibility of using a simple and inexpensive process using Neodymium, Rare Earth much more abundant than Praseodymium and in fact allowing the obtaining of permanent magnets with properties: magnetic equal, or even superior, to those described in the other methods, but of a much lower production cost. In fact, taking into account the relative abundance of Neodymium in nature, the cost price of such magnets can be reduced by a factor of 5.

On peut également citer les autres avantages inhérents au procédé proprement dit de l'invention, notamment l'absence de danger pour l'environnement tels que les risques d'explosion ou d'incendie, puisque l'on ne fait pas appel à la métallurgie des poudres.One can also cite the other advantages inherent in the process proper of the invention, in particular the absence of danger to the environment such as the risks of explosion or fire, since no metallurgy is used. powders.

En d'autres termes, ce procédé utilisant un mélange de base Néodyme-Fer-Bore-Cuivre, permet l'obtention d'aimants permanents de coût réduit, à hautes performances magnétiques, et susceptibles d'être produits en quantité industrielle de manière aisée.In other words, this process using a Neodymium-Iron-Boron-Copper base mixture, makes it possible to obtain permanent magnets of reduced cost, with high magnetic performance, and capable of being produced in industrial quantities in an easy manner. .

Claims (5)

  1. Improved process for the preparation of permanent magnets from a bulk alloy containing a mixture based on neodymium-iron-boron which, for a temperature range, has a region in which the said alloy occurs as two phases, the one a solid and brittle phase and the other a liquid phase, the iron and/or neodymium atoms of said alloy being partially substituted by copper atoms, characterized in that it consists :
    - in welding the novel alloy thus produced at a temperature within the said temperature range, until a welding rate of at least ten is obtained, in such a manner as to refine the constituent grains of the alloy into particles of a few micrometers;
    - and then, in subjecting the alloy thus welded to an annealing and/or tempering treatment.
  2. Improved process according to Claim 1, characterized in that the alloy comprises 0.5 to 4 atomic % of copper.
  3. Improved process according to Claim 1, characterized in that the alloy comprises 1 to 2.5 atomic % of copper and preferably 2 atomic %.
  4. Improved process according to one of Claims 1 to 3, characterized in that the alloy based on neodymium-iron-boron-copper also comprises dysprosium.
  5. Improved process according to Claim 4, characterized in that the alloy comprises dysprosium at a level of 0.5 to 2 atomic %.
EP90910143A 1989-06-23 1990-06-21 Method for preparing permanent magnets based on neodymium-iron-boron Expired - Lifetime EP0478674B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90910143T ATE91564T1 (en) 1989-06-23 1990-06-21 PROCESS FOR THE MANUFACTURE OF PERMANENT MAGNETS BASED ON NEODYMIUM-IRON-BORON.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908657 1989-06-23
FR8908657A FR2648948B1 (en) 1989-06-23 1989-06-23 IMPROVED PROCESS FOR THE PREPARATION OF HIGH PERFORMANCE PERMANENT MAGNETS BASED ON NEODYME-FER-BORE

Publications (2)

Publication Number Publication Date
EP0478674A1 EP0478674A1 (en) 1992-04-08
EP0478674B1 true EP0478674B1 (en) 1993-07-14

Family

ID=9383235

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90910143A Expired - Lifetime EP0478674B1 (en) 1989-06-23 1990-06-21 Method for preparing permanent magnets based on neodymium-iron-boron

Country Status (6)

Country Link
US (1) US5356489A (en)
EP (1) EP0478674B1 (en)
JP (1) JPH05503810A (en)
DE (1) DE69002236T2 (en)
FR (1) FR2648948B1 (en)
WO (1) WO1991000602A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2779267B1 (en) * 1998-05-28 2000-08-11 Rhodia Chimie Sa PROCESS FOR PREPARING A MAGNETIC MATERIAL BY FORGING AND MAGNETIC MATERIAL IN POWDER FORM
US6277211B1 (en) * 1999-09-30 2001-08-21 Magnequench Inc. Cu additions to Nd-Fe-B alloys to reduce oxygen content in the ingot and rapidly solidified ribbon
CN104766717B (en) * 2014-01-07 2018-12-07 中国科学院宁波材料技术与工程研究所 A method of improving sintered Nd-Fe-B permanent magnet magnetic property
CN105097261B (en) * 2015-08-20 2018-06-26 京磁新材料有限公司 A kind of sintering method of neodymium iron boron magnetic body
CN106392077B (en) * 2016-10-09 2019-03-19 中国核动力研究设计院 A kind of preparation method of high-boron stainless steel plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1269029A (en) * 1986-01-29 1990-05-15 Peter Vernia Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
FR2598949B1 (en) * 1986-05-23 1989-08-04 Centre Nat Rech Scient PROCESS FOR THE PREPARATION OF FINELY DIVIDED CRYSTALS FROM A METAL ALLOY, IN PARTICULAR FOR THE PREPARATION OF PERMANENT MAGNETS
EP0302947B1 (en) * 1987-03-02 1994-06-08 Seiko Epson Corporation Rare earth element-iron base permanent magnet and process for its production

Also Published As

Publication number Publication date
FR2648948B1 (en) 1993-12-31
US5356489A (en) 1994-10-18
DE69002236T2 (en) 1993-10-28
FR2648948A1 (en) 1990-12-28
WO1991000602A1 (en) 1991-01-10
DE69002236D1 (en) 1993-08-19
EP0478674A1 (en) 1992-04-08
JPH05503810A (en) 1993-06-17

Similar Documents

Publication Publication Date Title
CA2583140C (en) Nickel-based alloy
EP2229683B1 (en) Fe-si-la alloy with excellent magnetocaloric properties
JP6215329B2 (en) Production method of rare earth powder or sputtering target mainly composed of neodymium, iron and boron, thin film for rare earth magnet mainly composed of neodymium, iron and boron, or production method thereof
FR2988206A1 (en) METHOD OF MANUFACTURING A MAGNETOCALORIC ELEMENT, AND MAGNETOCALORIC MEMBER THUS OBTAINED
JP2004100000A (en) Iron silicate sputtering target and production method therefor
EP0478674B1 (en) Method for preparing permanent magnets based on neodymium-iron-boron
WO2013002170A1 (en) Rh diffusion source, and method for producing r-t-b-based sintered magnet using same
EP0601943B1 (en) R-Fe-B type magnet powder, sintered magnets therefrom and preparation process
EP0269667B1 (en) Method for the preparation of permanent magnets by division of crystals
WO2003027340A1 (en) High-power tungsten-based sintered alloy
FR2853562A1 (en) Production of semiconductor granules for supplying a molten bath for semiconductor manufacture comprises fritting and/or fusing semiconductor powder
EP1082733B1 (en) Method for preparing a magnetic material by forging and magnetic material in powder form
EP0538320B1 (en) Method for processing powdered magnetic materials and products thereby obtained
WO2016097366A1 (en) Sintered permanent magnet
RU2642508C1 (en) METHOD FOR PRODUCING HIGH-COERCIVITY MAGNETS FROM ALLOYS ON BASIS OF Nd-Fe-B
FR2665462A1 (en) CRYSTALLIZATION PROCESS IN THE PRESENCE OF MAGNETIC FIELD.
EP0553040B1 (en) Remanent induction trimming method for a sintered magnet and product thus obtained
Wang et al. Phase transformation of Ni2MnGa made by the spark plasma sintering method
WO2023161576A1 (en) Alloy powder, method for manufacturing a part based on this alloy, and part thus obtained
FR2698999A1 (en) Two-part magnetic material
FR2491499A1 (en) ANISOTROPIC MAGNETIC ALLOY AND PROCESS FOR PRODUCING THE SAME
EP4068317A1 (en) Non-conventional powders, method for obtaining same and uses thereof for preparing rare-earth magnets
JPH02250964A (en) Sendust alloy target and production thereof
FR3132913A1 (en) Alloy powder, process for manufacturing a part based on this alloy and part thus obtained.
EP0468903A1 (en) Method for obtaining powdered magnetic material of the rare earth-transition metal-boron type for corrosion resistant magnets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920929

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PSB INDUSTRIES

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930714

Ref country code: NL

Effective date: 19930714

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930714

Ref country code: DK

Effective date: 19930714

Ref country code: AT

Effective date: 19930714

REF Corresponds to:

Ref document number: 91564

Country of ref document: AT

Date of ref document: 19930715

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930713

REF Corresponds to:

Ref document number: 69002236

Country of ref document: DE

Date of ref document: 19930819

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940630

Ref country code: BE

Effective date: 19940630

26N No opposition filed
BERE Be: lapsed

Owner name: PSB INDUSTRIES

Effective date: 19940630

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Effective date: 19940630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960614

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960621

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000617

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050621