EP0269667B1 - Method for the preparation of permanent magnets by division of crystals - Google Patents

Method for the preparation of permanent magnets by division of crystals Download PDF

Info

Publication number
EP0269667B1
EP0269667B1 EP87903341A EP87903341A EP0269667B1 EP 0269667 B1 EP0269667 B1 EP 0269667B1 EP 87903341 A EP87903341 A EP 87903341A EP 87903341 A EP87903341 A EP 87903341A EP 0269667 B1 EP0269667 B1 EP 0269667B1
Authority
EP
European Patent Office
Prior art keywords
alloy
temperature
massive
process according
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87903341A
Other languages
German (de)
French (fr)
Other versions
EP0269667A1 (en
Inventor
René Perrier De la Bathie
Joel Chavanne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Priority to AT87903341T priority Critical patent/ATE65342T1/en
Publication of EP0269667A1 publication Critical patent/EP0269667A1/en
Application granted granted Critical
Publication of EP0269667B1 publication Critical patent/EP0269667B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to a new process for producing high-performance permanent magnets by dividing the crystals of a magnetic phase in an alloy.
  • the second process uses the micro-crystallization technique.
  • This technique described in European patents EP-A-0 125 752 or EP-A-0 133 758, essentially consists in melting an alloy of the type in question, then in subjecting it to a rapid hardening treatment on a roller, to crush and hot pressing, or coating the material obtained in a resin.
  • This very fine jet technique of high temperature liquid soaked on a cold roller unfortunately leads to isotropic magnets, except to subject them to a creep and recrystallization operation which is always difficult to implement within a continuous process.
  • an appropriate apparatus must be used and work in a controlled atmosphere in large enclosures with all the drawbacks that this entails.
  • the invention overcomes these drawbacks. It aims at a process of the type in question which is easy to implement, calls for more economical processing of raw materials, and leads to materials having improved properties.
  • the treatment also consists in that the wrought is carried out with a wrought rate of at least ten, in order to refine the grains of the alloy into particles of a few microns and in that the wrought alloy is then subjected to a treatment. annealing and / or tempering at a temperature between 600 and 1000 ° C.
  • the invention consists first of all in no longer using an alloy in powder form but in a solid alloy comprising two phases, then in heating this solid alloy, and finally in subjecting it to strong mechanical stresses to induce a wrought with a high wrought rate and at a temperature enabling the magnetic crystals to break into particles of a few microns and finally, to subject this alloy to a heat treatment before cooling it.
  • the fundamental characteristic of the invention consists in not using an alloy in powder form but in a solid alloy which is much more economical and less dangerous, then in treating this solid alloy by working this which no longer requires the use of complex and expensive equipment.
  • This installation basically includes an anvil (1), on which rests a retaining ring (2), surrounded by a glass enclosure (3), defining a sealed chamber (4), connected by the inlet (5) to a Argon source not shown.
  • the top of the sealed chamber has an opening (6) through which the hammer (7) of the exterior impact assembly (8) can pass through a seal (9).
  • the sample (10) rests on the anvil (1) around the ring (2) in which the hammer (7) slides.
  • the glass enclosure (3) is surrounded by induction coils (11).
  • the fusible phase is a poorly identified mixture of metallic phases and even possibly of salts (rare earth fluorides and chlorides) and oxides.
  • the main magnetic phase Nd2Fe14B remains present until at least 1050 ° C and during all mechanical or annealing treatments.
  • the wafer thus obtained has an intrinsic coercive field of 300 kiloAmpers per meter (300kA / m), a density equal to 7.6, and a residual induction of 0.55 Tesla.
  • the material obtained has a quadratic crystal structure Nd2Fe14B.
  • This material is then subjected to an additional annealing operation for about thirty minutes at 800 ° C. carried out in the enclosure (4) for working.
  • a magnet is thus obtained having an intrinsic coercive field of 1000 kA / m, a residual induction of 0.85 Tesla, an internal energy of 1000 kiloJoules per cubic meter and a density of 7.6.
  • Example 1 is repeated by applying a unidirectional and constant pressure during the annealing treatment to the sample (10). Strongly anisotropic magnets are thus obtained.
  • NdFeB alloy of atomic composition: Nd15, 5Fe78B6Al 0.5 .
  • This massive alloy is poured into a soft iron container of diameter: sixty millimeters, of length: two hundred millimeters and six millimeters thick.
  • the assembly After heating the solid alloy in its container to 750 ° C., the assembly is spun into a die of suitable shape, for example in the form of a flat. A flat area of twenty-five by seven millimeters and several meters in length is then obtained with a wrought rate of 25 and an applied pressure of 13 kBar.
  • the magnet obtained is then cut to the desired length.
  • This magnet has the following characteristics: these measurements being carried out in directions perpendicular to the spinning direction.
  • An annealing operation is then carried out under a controlled atmosphere of rare gas.
  • the direction of growth of the crystals is perpendicular to the direction of easy magnetization.
  • a unidirectional crystal growth makes it possible to distribute the directions of easy magnetization in a plane perpendicular to the direction of growth, but not in a defined direction.
  • the process according to the invention has numerous advantages over the process referred to in the preamble.
  • this process is characterized by a consequent reduction in costs and the elimination of the dangers of manufacturing magnets of the Iron / Boron / Rare Earth type, which are more and more sought after.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

Method for the preparation of permanent magnets at room temperature from an alloy containing at least a mixture of iron (Fe), boron (B) and rare earths (TR) including Yttrium, and for which there is a temperature range wherein said alloy is in two phases; one solid and brittle and the other one liquid. The method comprises heating said alloy under controlled atmosphere at a temperature sufficient to reach said temperature range, treating said alloy, and finally, optionally, allowing the treated alloy to cool. The method being characterized on the one hand in that said Fe/B-TR alloy is in a massive form, and on the other hand, in that the treatment of said massive alloy is carried out by bonding of the magnetic solid phase Fe-B-TR.

Description

L'invention concerne un nouveau procédé d'élaboration d'aimants permanents à hautes performances par division des cristaux d'une phase magnétique dans un alliage.The invention relates to a new process for producing high-performance permanent magnets by dividing the crystals of a magnetic phase in an alloy.

Dans la fabrication des aimants permanents, il était bien connu de faire appel à des alliages métalliques Fer (Fe)  ―  Bore (B) comprenant également des Terres Rares (TR). Il existe actuellement essentiellement deux types de procédé pour la fabrication de tels aimants.In the manufacture of permanent magnets, it was well known to use metal alloys Iron (Fe) - Boron (B) also comprising Rare Earths (TR). There are currently essentially two types of process for the manufacture of such magnets.

Dans le premier procédé faisant appel à la métallurgie des poudres, décrit dans les demandes de brevets européennes EP-A-0 101 552, 0 106 948 et 0 126 802, on élabore un alliage Fer-Bore-Terres Rares que l'on broie sous forme de poudre, puis que l'on oriente dans un champ magnétique que l'on compresse à froid, que l'on fritte et enfin auquel on fait subir un traitement thermique. Si les aimants obtenus de la sorte présentent d'excellentes propriétés, en revanche, ce procédé comporte des inconvénients notables. En effet, la moindre pollution altère fortement les propriétés finales. Or, la pollution de la poudre par l'atmosphère est extrêmement rapide; celà nécessite donc de travailler sous atmosphère contrôlée à la température ambiante, ce qui augmente les coûts de fabrication. En outre, il est nécessaire de faire appel à une phase de broyage. Or, les poudres mises en oeuvre présentent une forte réactivité, notamment par rapport à l'air, ce qui malheureusement entraîne des risques notables d'explosion et d'incendie.In the first process using powder metallurgy, described in European patent applications EP-A-0 101 552, 0 106 948 and 0 126 802, an alloy Fer-Bore-Rare Earth is produced which is ground in powder form, then oriented in a magnetic field that is cold pressed, sintered and finally subjected to heat treatment. If the magnets obtained in this way have excellent properties, however, this process has significant drawbacks. Indeed, the slightest pollution strongly alters the final properties. However, the pollution of the powder by the atmosphere is extremely rapid; this therefore requires working in a controlled atmosphere at room temperature, which increases manufacturing costs. In addition, it is necessary to use a grinding phase. However, the powders used have a high reactivity, in particular with respect to air, which unfortunately involves significant risks of explosion and fire.

Le second procédé fait appel à la technique de micro-cristallisation. Cette technique, décrite dans les brevets européens EP-A-0 125 752 ou EP-A-0 133 758, consiste essentiellement à fondre un alliage du type en question, puis à lui faire subir un traitement de trempe rapide sur rouleau, à concasser et à presser à chaud, ou à enrober le matériau obtenu dans une résine. Cette technique de jet très fin de liquide à haute température trempé sur rouleau froid conduit malheureusement à des aimants isotropes, sauf à leur faire subir une opération de fluage et de recristallisation qui est toujours difficile à mettre en oeuvre au sein d'un procédé continu. En outre, comme on fait appel à une fusion haute température avec éjection de liquide très fin, on doit mettre en oeuvre un appareillage approprié et travailler sous atmosphère contrôlée dans des enceintes de grandes dimensions avec tous les inconvénients que cela comporte.The second process uses the micro-crystallization technique. This technique, described in European patents EP-A-0 125 752 or EP-A-0 133 758, essentially consists in melting an alloy of the type in question, then in subjecting it to a rapid hardening treatment on a roller, to crush and hot pressing, or coating the material obtained in a resin. This very fine jet technique of high temperature liquid soaked on a cold roller unfortunately leads to isotropic magnets, except to subject them to a creep and recrystallization operation which is always difficult to implement within a continuous process. In addition, as a high temperature melting process is used with very fine liquid ejection, an appropriate apparatus must be used and work in a controlled atmosphere in large enclosures with all the drawbacks that this entails.

Enfin, dans ces deux techniques, on passe nécessairement par une phase au cours de laquelle l'alliage est fortement divisé.Finally, in these two techniques, one necessarily goes through a phase during which the alloy is strongly divided.

L'invention pallie ces inconvénients. Elle vise un procédé du type en question qui soit facile à mettre en oeuvre, fasse appel à des transformations de matières premières plus économiques, et conduise à des matériaux ayant des propriétés améliorées.The invention overcomes these drawbacks. It aims at a process of the type in question which is easy to implement, calls for more economical processing of raw materials, and leads to materials having improved properties.

Ce procédé pour la préparation d'aimants permanents à température ambiante à partir d'un alliage massif contenant au moins un mélange de Fer, de Bore et de Terres Rares y compris Yttrium, pour lequel il existe un domaine de température à l'intérieur duquel ledit alliage se trouve sous deux phases: l'une solide et fragile, et l'autre liquide, procédé dans lequel:

  • · on chauffe ledit alliage sous atmosphère contrôlée à une température suffisante pour atteindre ledit domaine de température;
  • · puis, on traite cet alliage par corroyage à chaud;
  • · et enfin, on laisse refroidir l'alliage traité.
This process for the preparation of permanent magnets at room temperature from a solid alloy containing at least a mixture of Iron, Boron and Rare Earths including Yttrium, for which there is a temperature range inside which said alloy is in two phases: one solid and fragile, and the other liquid, a process in which:
  • · Said alloy is heated under a controlled atmosphere to a temperature sufficient to reach said temperature range;
  • · Then, this alloy is treated by hot working;
  • · And finally, the treated alloy is allowed to cool.

Le traitement consiste en outre en ce que l'on effectue le corroyage avec un taux de corroyage d'au moins dix, pour affiner les grains de l'alliage en particules de quelques microns et en ce que l'alliage corroyé subit ensuite un traitement de recuit et/ou de revenu à une température comprise entre 600 et 1000°C.The treatment also consists in that the wrought is carried out with a wrought rate of at least ten, in order to refine the grains of the alloy into particles of a few microns and in that the wrought alloy is then subjected to a treatment. annealing and / or tempering at a temperature between 600 and 1000 ° C.

En d'autres termes, l'invention consiste tout d'abord à ne plus faire appel à un alliage sous forme de poudre mais à un alliage massif comportant deux phases, puis à chauffer cet alliage massif, et enfin à le soumettre à de fortes contraintes mécaniques pour induire un corroyage avec un taux de corroyage élevé et à une température permettant la fracture des cristaux magnétiques en particules de quelques microns et enfin, à faire subir un traitement thermique à cet alliage avant de le refroidir.In other words, the invention consists first of all in no longer using an alloy in powder form but in a solid alloy comprising two phases, then in heating this solid alloy, and finally in subjecting it to strong mechanical stresses to induce a wrought with a high wrought rate and at a temperature enabling the magnetic crystals to break into particles of a few microns and finally, to subject this alloy to a heat treatment before cooling it.

Dans la description et les revendications, par:

  • "atmosphère contrôlée", on désigne une atmosphère dont on contrôle la composition; il s'agit en pratique d'une atmosphère de gaz rares ou de vide, et ce afin d'éviter des réactions avec les Terres Rares;
  • "corroyage", on désigne un traitement mécanique appliqué à un alliage métallique, destiné à provoquer l'affinement des grains de cet alliage; on peut citer des traitements de forgeage, de martelage, de laminage, de filage, de vibro-tassage (tassement par vibrations).
In the description and the claims, by:
  • "controlled atmosphere" means an atmosphere whose composition is controlled; in practice it is an atmosphere of rare gases or vacuum, in order to avoid reactions with Rare Earths;
  • "wrought" means a mechanical treatment applied to a metal alloy, intended to cause the refining of the grains of this alloy; mention may be made of forging, hammering, rolling, spinning, vibro-compaction (compaction by vibration) treatments.

Avantageusement, en pratique:

  • l'alliage massif est un alliage ternaire à base de Fer, de Bore et de Terres Rares, y compris l'Yttrium;
  • en pratique, notamment pour des raisons substantielles d'économie et de propriétés mécaniques, la Terre Rare est choisie dans le groupe constitué par le Neodyme et le Praseodyme, qui dans ce cas est en plus grande proportion;
  • les proportions respectives des différents constituants de cet alliage, pouvant contenir également d'autres agents de formation d'eutectiques, tels que l'Aluminium ou le Gallium, correspondent aux proportions habituelles, notamment celles décrites dans les demandes de brevets européennes citées dans le préambule;
  • l'alliage se présente sous forme de lingots massifs, éventuellement sous forme de morceaux massifs; ainsi, en d'autres termes, lors de l'application des contraintes mécaniques du corroyage, on casse les cristaux magnétiques à chaud dans le liquide qui les entoure en phase finale;
  • le chauffage de l'alliage massif est effectué par tout moyen connu, tel que effet Joule, induction, l'alliage pouvant être soit sous enveloppe étanche, soit sous vide, soit sous gaz rare;
  • l'alliage massif ainsi chauffé est corroyé soit sous vide, soit sous gaz rare, ou dans un liquide non réactif, voire dans une enveloppe étanche pouvant subir les traitements mécaniques et thermiques, tels que par exemple une enveloppe en Fer doux ou en alliage à base de Fer;
  • le chauffage est effectué à une température comprise entre 400 et 1050°C, de préférence au voisinage de 700°C, en tout cas à une température suffisante pour atteindre la plasticité de la phase eutectique non magnétique; on a constaté que si la température est inférieure à 400°C, on réduit l'alliage en poudre, ce qui ramène à la première technique exposée dans le préambule alors que si cette température excède 1050°C, on n'obtient plus le phénomène de corroyage, car les grains magnétiques deviennent trop malléables et grossissent au fur et à mesure du traitement;
  • on développe les contraintes mécaniques de corroyage comme déjà dit par forgeage, martelage, filage, laminage ou tout autre traitement thermo-mécanique; on a constaté que la taille des cristaux magnétiques obtenus résulte du taux de corroyage appliqué dans les produits; ainsi, on a observé que l'on obtient de bons résultats avec un taux de corroyage supérieur à dix, avantageusement de l'ordre de vingt-cinq;
  • après refroidissement éventuel, l'alliage traité subit un traitement de recuit et/ou de revenu à des températures comprises entre 600 et 1000°C voire plus, préférentiellement entre 700 et 900°C, ce qui améliore et stabilise les propriétés magnétiques, notamment la coercitivité.
Advantageously, in practice:
  • the solid alloy is a ternary alloy based on Iron, Boron and Rare Earths, including Yttrium;
  • in practice, in particular for substantial reasons of economy and mechanical properties, Rare Earth is chosen from the group consisting of Neodyme and Praseodyme, which in this case is in greater proportion;
  • the respective proportions of the various constituents of this alloy, which may also contain other eutectic forming agents, such as Aluminum or Gallium, correspond to the usual proportions, in particular those described in the European patent applications cited in the preamble ;
  • the alloy is in the form of solid ingots, possibly in the form of solid pieces; thus, in other words, during the application of the mechanical stresses of the working, the magnetic crystals are broken hot in the liquid which surrounds them in the final phase;
  • the heating of the solid alloy is carried out by any known means, such as the Joule effect, induction, the alloy possibly being either in a sealed envelope, or under vacuum, or under rare gas;
  • the solid alloy thus heated is wrought either under vacuum or under rare gas, or in a non-reactive liquid, or even in a sealed envelope which can undergo mechanical and thermal treatments, such as for example an envelope made of soft iron or of alloy with iron base;
  • the heating is carried out at a temperature between 400 and 1050 ° C, preferably in the vicinity of 700 ° C, in any case at a temperature sufficient to reach the plasticity of the non-magnetic eutectic phase; we found that if the temperature is lower at 400 ° C, the alloy is reduced to powder, which brings back to the first technique exposed in the preamble whereas if this temperature exceeds 1050 ° C, we no longer obtain the phenomenon of wrought, because the magnetic grains become too malleable and increase in size as the treatment progresses;
  • mechanical stresses are developed as already mentioned by forging, hammering, spinning, rolling or any other thermo-mechanical treatment; it has been found that the size of the magnetic crystals obtained results from the rate of wrinkling applied in the products; thus, it has been observed that good results are obtained with a degree of currying greater than ten, advantageously of the order of twenty-five;
  • after possible cooling, the treated alloy undergoes an annealing and / or tempering treatment at temperatures between 600 and 1000 ° C. or even more, preferably between 700 and 900 ° C., which improves and stabilizes the magnetic properties, in particular the coercivity.

En d'autres termes, la caractéristique fondamentale de l'invention consiste à ne pas faire appel à un alliage sous forme de poudre mais à un alliage massif ce qui est beaucoup plus économique et moins dangereux, puis à traiter cet alliage massif par corroyage ce qui ne nécessite plus de faire appel à un appareillage complexe et coûteux.In other words, the fundamental characteristic of the invention consists in not using an alloy in powder form but in a solid alloy which is much more economical and less dangerous, then in treating this solid alloy by working this which no longer requires the use of complex and expensive equipment.

La manière dont l'invention peut être réalisée et les avantages qui en découlent, ressortiront mieux des exemples de réalisation qui suivent, donnés à titre indicatif et non limitatif à l'appui de la figure unique annexée, qui représente schématiquement une installation pour la mise en oeuvre du procédé selon l'invention.The manner in which the invention can be implemented and the advantages which ensue therefrom will emerge more clearly from the following exemplary embodiments, given by way of non-limiting illustration, in support of the single appended figure, which schematically represents an installation for placing implementing the method according to the invention.

Cette installation comprend sommairement une enclume (1), sur laquelle vient reposer une bague de maintien (2), entourée par une enceinte en verre (3), définissant une chambre étanche (4), reliée par l'arrivée (5) à une source d'Argon non représentée. Le haut de la chambre étanche comporte une ouverture (6) à travers laquelle, le marteau (7) de l'ensemble de frappe extérieur (8) peut passer au travers d'un joint d'étanchéité (9). L'échantillon (10) repose sur l'enclume (1) autour de la bague (2) dans laquelle coulisse le marteau (7). L'enceinte de verre (3) est entourée par des spires de chauffage (11) par induction.This installation basically includes an anvil (1), on which rests a retaining ring (2), surrounded by a glass enclosure (3), defining a sealed chamber (4), connected by the inlet (5) to a Argon source not shown. The top of the sealed chamber has an opening (6) through which the hammer (7) of the exterior impact assembly (8) can pass through a seal (9). The sample (10) rests on the anvil (1) around the ring (2) in which the hammer (7) slides. The glass enclosure (3) is surrounded by induction coils (11).

Exemple 1: Example 1 :

De manière connue, on prépare un échantillon massif (rondelle, cylindre moulé, lingotin, grenaille,...) dans un alliage Fer/Bore/Terres Rares, comprenant essentiellement pour cent atomes:

  • 78 atomes de Fer;
  • 6 atomes de Bore;
  • 15,5 atomes de Néodyme;
  • 0,5 atome d'Aluminium.
In a known manner, a massive sample is prepared (washer, molded cylinder, ingot, shot, ...) in an Iron / Boron / Rare Earth alloy, essentially comprising per hundred atoms:
  • 78 iron atoms;
  • 6 Boron atoms;
  • 15.5 Neodymium atoms;
  • 0.5 aluminum atom.

On place sur l'enclume (1), à l'intérieur de la bague (2), des morceaux d'alliages de forme quelconque. On injecte en (5) de l'Argon et par induction (11), on chauffe la plaquette (10) à 650°C pendant cinq minutes. Lorsque l'on atteint cette température, on martelle la plaquette (10) pendant deux minutes avec l'ensemble (7, 8) développant une puissance de six Joules par coup à une cadence de mille huit cents coup par minute. On obtient une plaquette massive de vingt millimètres de diamètre et de cinq millimètres d'épaisseur.Is placed on the anvil (1), inside the ring (2), pieces of alloys of any shape. Argon is injected at (5) and by induction (11), the plate (10) is heated to 650 ° C for five minutes. When we reach this temperature, we hammer the wafer (10) for two minutes with the assembly (7, 8) developing a power of six Joules per stroke at a rate of one thousand eight hundred strokes per minute. We obtain a massive plate of twenty millimeters in diameter and five millimeters thick.

Il est à noter, qu'à cette température, la phase fusible est un mélange mal identifié de phases métalliques et même éventuellement de sels (fluorures et chlorures de Terres Rares) et d'oxydes. La phase magnétique principale Nd₂Fe₁₄B reste présente jusqu'à au moins 1050°C et pendant tous les traitements mécaniques ou de recuit.It should be noted that at this temperature, the fusible phase is a poorly identified mixture of metallic phases and even possibly of salts (rare earth fluorides and chlorides) and oxides. The main magnetic phase Nd₂Fe₁₄B remains present until at least 1050 ° C and during all mechanical or annealing treatments.

On laisse refroidir ensuite pendant trois minutes jusque vers 70°C.Then allowed to cool for three minutes until about 70 ° C.

La plaquette ainsi obtenue présente un champ coercitif intrinsèque de 300 kiloAmpères par mètre (300kA/m), une densité égale à 7,6, et une induction rémanente de 0,55 Tesla.The wafer thus obtained has an intrinsic coercive field of 300 kiloAmpers per meter (300kA / m), a density equal to 7.6, and a residual induction of 0.55 Tesla.

Le matériau obtenu présente une structure cristalline quadratique Nd₂Fe₁₄B.The material obtained has a quadratic crystal structure Nd₂Fe₁₄B.

On soumet alors ce matériau à une opération supplémentaire de recuit pendant trente minutes environ à 800°C effectuée dans l'enceinte (4) de corroyage.This material is then subjected to an additional annealing operation for about thirty minutes at 800 ° C. carried out in the enclosure (4) for working.

On obtient ainsi un aimant ayant un champ coercitif intrinsèque de 1000 kA/m, une induction rémanente de 0,85 Tesla, une énergie interne de 1000 kiloJoules par mètre cube et une densité de 7,6.A magnet is thus obtained having an intrinsic coercive field of 1000 kA / m, a residual induction of 0.85 Tesla, an internal energy of 1000 kiloJoules per cubic meter and a density of 7.6.

Exemple 2: Example 2 :

On répète l'exemple 1 en appliquant lors du traitement de recuit une pression unidirectionnelle et constante à l'échantillon (10). On obtient ainsi des aimants fortement anisotropes.Example 1 is repeated by applying a unidirectional and constant pressure during the annealing treatment to the sample (10). Strongly anisotropic magnets are thus obtained.

Dans ces deux exemples 1 et 2, l'opération de martelage n'est entreprise que lorsque les phases annexes sont suffisamment plastiques pour n'induire que l'affinement des cristaux responsables des propriétés magnétiques.In these two examples 1 and 2, the hammering operation is undertaken only when the additional phases are sufficiently plastic to induce only the refinement of the crystals responsible for the magnetic properties.

Exemple 3: Example 3 :

On élabore trois kilos d'un alliage massif NdFeB, de composition atomique: Nd₁₅,₅Fe₇₈B₆Al0,5. On coule cet alliage massif dans un récipient en fer doux de diamètre : soixante millimètres, de longueur: deux cent millimètres et de six millimètres d'épaisseur.Three kilos of a solid NdFeB alloy, of atomic composition: Nd₁₅, ₅Fe₇₈B₆Al 0.5 , are produced. This massive alloy is poured into a soft iron container of diameter: sixty millimeters, of length: two hundred millimeters and six millimeters thick.

Après refroidissement, on bouche le récipient hermétiquement.After cooling, the container is sealed tightly.

Après chauffage de l'alliage massif dans son conteneur à 750°C, on file l'ensemble dans une filière de forme appropriée, par exemple en forme de méplat. On obtient alors un méplat de vingt cinq par sept millimètres et de plusieurs mètres de longueur avec un taux de corroyage de 25 et une pression appliquée de 13 kBar.After heating the solid alloy in its container to 750 ° C., the assembly is spun into a die of suitable shape, for example in the form of a flat. A flat area of twenty-five by seven millimeters and several meters in length is then obtained with a wrought rate of 25 and an applied pressure of 13 kBar.

L'aimant obtenu est ensuite tronçonné à la longueur désirée.The magnet obtained is then cut to the desired length.

Cet aimant présente les caractéristiques suivantes:

Figure imgb0001

ces mesures étant effectuées suivant des directions perpendiculaires à la direction de filage.This magnet has the following characteristics:
Figure imgb0001

these measurements being carried out in directions perpendicular to the spinning direction.

On effectue ensuite une opération de recuit sous atmosphère contrôlée de gaz rare.An annealing operation is then carried out under a controlled atmosphere of rare gas.

On obtient alors les caractéristiques suivantes:

― HCi:
1000 kA/m
― HCB:
480 kA/m
― Br:
0,85 Tesla,
― BH:
120 KJ/m³.

We then obtain the following characteristics:
- H Ci :
1000 kA / m
- H CB :
480 kA / m
- Br:
0.85 Tesla,
- BH:
120 KJ / m³.

Bref, on a constaté que l'affinement des cristaux de l'alliage augmente de façon notable la coercitivité de l'ensemble. De plus, comme l'industrie réclame le plus souvent des aimants permanents anisotropes, l'anisotropie est obtenue comme déjà dit par l'application d'une forte pression unidirectionnelle sur le matériau traité, la phase eutectique étant sous phase plastique.In short, it has been found that the refinement of the crystals of the alloy significantly increases the coercivity of the assembly. In addition, as the industry most often requires anisotropic permanent magnets, anisotropy is obtained as already said by the application of strong unidirectional pressure on the treated material, the eutectic phase being in plastic phase.

On a observé que la contrainte appliquée au matériau massif augmente l'anisotropie magnétique dans la direction d'application. Toutefois, l'amplitude de ce phénomène dépend étroitement de l'orientation cristallographique des cristaux magnétiques avant traitement: forgeage, filage, etc..It has been observed that the stress applied to the solid material increases the magnetic anisotropy in the direction of application. However, the amplitude of this phenomenon depends closely on the crystallographic orientation of the magnetic crystals before treatment: forging, spinning, etc.

Dans le cas d'une orientation quelconque des cristaux magnétiques avant traitement, on obtient des aimants légèrement anisotropes, de direction d'aimantation difficile parallèle à l'axe de filage, et isotropes dans les deux autres directions.In the case of any orientation of the magnetic crystals before treatment, slightly anisotropic magnets are obtained, with a difficult magnetization direction parallel to the spinning axis, and isotropic in the other two directions.

Par ailleurs, la direction de croissance des cristaux est perpendiculaire à la direction de facile aimantation.Furthermore, the direction of growth of the crystals is perpendicular to the direction of easy magnetization.

Il est donc nécessaire de maîtriser la direction de croissance des cristaux magnétiques lors de la phase de solidification de l'alliage massif. En effet, une croissance de cristaux unidirectionnelle permet de répartir les directions de facile aimantation dans un plan perpendiculaire à la direction de croissance, mais non pas dans une direction définie.It is therefore necessary to control the growth direction of the magnetic crystals during the solidification phase of the solid alloy. Indeed, a unidirectional crystal growth makes it possible to distribute the directions of easy magnetization in a plane perpendicular to the direction of growth, but not in a defined direction.

Ainsi, en choisissant judicieusement la direction de la contrainte lors du corroyage par rapport à l'orientation des cristaux, il est alors possible d'obtenir des aimants complètement isotropes.Thus, by judiciously choosing the direction of the stress during the working in relation to the orientation of the crystals, it is then possible to obtain completely isotropic magnets.

Le procédé selon l'invention présente de nombreux avantages par rapport au procédé visé dans le préambule.The process according to the invention has numerous advantages over the process referred to in the preamble.

On peut citer:

  • la possibilité d'obtenir des aimants permanents à partir de la transformation de matières premières meilleur marché;
  • une facilité et une rapidité de mise en oeuvre qui ne fait pas appel à du matériel sophistiqué;
  • l'absence ou la quasi-absence de dangers pour l'environnement, notamment de risques d'explosion ou d'incendie, puisque l'on ne fait pas appel à des poudres.
We can cite:
  • the possibility of obtaining permanent magnets from the processing of cheaper raw materials;
  • ease and speed of implementation which does not require sophisticated equipment;
  • the absence or near-absence of environmental hazards, in particular the risk of explosion or fire, since no powders are used.

En résumé, ce procédé se caractérise par un abaissement conséquent des coûts et l'élimination des dangers de fabrication des aimants du type Fer/Bore/Terres Rares, qui sont de plus en plus recherchés.In summary, this process is characterized by a consequent reduction in costs and the elimination of the dangers of manufacturing magnets of the Iron / Boron / Rare Earth type, which are more and more sought after.

De la sorte, ce procédé peut trouver de nombreuses applications dans la fabrication des aimants permanents, plus particulièrement pour la fabrication de moteurs électriques, de moteurs grand-public, d'appareillages électroniques, de haut-parleurs.In this way, this process can find numerous applications in the manufacture of permanent magnets, more particularly for the manufacture of electric motors, consumer motors, electronic equipment, loudspeakers.

Claims (6)

1. Process for preparing permanent magnets from a massive alloy containing at least one mixture of Iron (Fe), Boron (B) and Rare Earths (RE), including Yttrium, and for which there is a temperature range inside which said alloy is in two phases: one solid and fragile, and the other liquid, process in which:
· said massive alloy is heated in a controlled atmosphere at a sufficient temperature to attain the said temperature range;
· then this alloy is treated by hot welding with a rate of welding of at least ten, in order to refine the grains of the alloy into particles of some microns;
· then, the welded alloy undergoes a treatment of annealing and/or of tempering at a temperature of between 600 and 1000°C;
· and finally, the treated alloy is left to cool.
2. Process according to claim 1, characterized in that the massive alloy is a ternary Fe/B/RE alloy of which the quadratic magnetic phase RE₂Fe₁₄B is present during the whole of the treatments.
3. Process according to claim 2, characterized in that heating of the massive alloy to be welded is effected at a temperature of between 400 and 1050°C.
4. Process according to one of claims 1 to 3, characterized in that welding is effected by hammering, rolling, forging, extrusion, in a tight envelope made of an iron-based alloy.
5. Process according to claim 1, characterized in that the treatment of annealing and/or of tempering is effected after cooling.
6. Process according to one of claims 1 to 5, characterized in that during the annealing and/or tempering treatment, the alloy is subjected to an undirectional pressure.
EP87903341A 1986-05-23 1987-05-21 Method for the preparation of permanent magnets by division of crystals Expired - Lifetime EP0269667B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87903341T ATE65342T1 (en) 1986-05-23 1987-05-21 PROCESS FOR MAKING A PERMANENT MAGNET BY DISTRIBUTION OF CRYSTALS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8607597 1986-05-23
FR8607597A FR2598949B1 (en) 1986-05-23 1986-05-23 PROCESS FOR THE PREPARATION OF FINELY DIVIDED CRYSTALS FROM A METAL ALLOY, IN PARTICULAR FOR THE PREPARATION OF PERMANENT MAGNETS

Publications (2)

Publication Number Publication Date
EP0269667A1 EP0269667A1 (en) 1988-06-08
EP0269667B1 true EP0269667B1 (en) 1991-07-17

Family

ID=9335705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87903341A Expired - Lifetime EP0269667B1 (en) 1986-05-23 1987-05-21 Method for the preparation of permanent magnets by division of crystals

Country Status (4)

Country Link
US (1) US5055142A (en)
EP (1) EP0269667B1 (en)
FR (1) FR2598949B1 (en)
WO (1) WO1987007425A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US4778542A (en) * 1986-07-15 1988-10-18 General Motors Corporation High energy ball milling method for making rare earth-transition metal-boron permanent magnets
DE3832472A1 (en) * 1988-09-23 1990-03-29 Siemens Ag METHOD FOR PRODUCING A MATERIAL WITH A HARD MAGNETIC PHASE FROM POWDER-BASED STARTING COMPONENTS
FR2648948B1 (en) * 1989-06-23 1993-12-31 Baikowski Pierre Synthetique IMPROVED PROCESS FOR THE PREPARATION OF HIGH PERFORMANCE PERMANENT MAGNETS BASED ON NEODYME-FER-BORE
EP2444985B1 (en) * 2010-10-25 2018-07-11 Toyota Jidosha Kabushiki Kaisha Production method of rare earth magnet
US8572830B2 (en) * 2011-03-14 2013-11-05 Apple Inc. Method and apparatus for producing magnetic attachment system
JP6451529B2 (en) * 2015-07-07 2019-01-16 トヨタ自動車株式会社 High frequency induction heating method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2258239A1 (en) * 1974-01-17 1975-08-18 Uddeholms Ab Iron, nickel or cobalt alloy semi-finished prods. - obtd. by power compaction in presence of oxygen getter
CA1236381A (en) * 1983-08-04 1988-05-10 Robert W. Lee Iron-rare earth-boron permanent magnets by hot working
US4609526A (en) * 1984-05-14 1986-09-02 Crucible Materials Corporation Method for compacting alloy powder
CA1269029A (en) * 1986-01-29 1990-05-15 Peter Vernia Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent abstracts of Japan, volume 7, n° 103 (E-173)(1248), 6 mai 1983, and JP-A-5823405 *

Also Published As

Publication number Publication date
FR2598949A1 (en) 1987-11-27
EP0269667A1 (en) 1988-06-08
US5055142A (en) 1991-10-08
FR2598949B1 (en) 1989-08-04
WO1987007425A1 (en) 1987-12-03

Similar Documents

Publication Publication Date Title
WO2011007758A1 (en) Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets
EP0269667B1 (en) Method for the preparation of permanent magnets by division of crystals
JPS6274045A (en) Production of rare earth metal permanent magnet
CN109175391B (en) Method for in-situ synthesis of nano-oxide particle dispersion strengthened alloy
FR2632766A1 (en) PERMANENT MAGNET AND METHOD FOR MANUFACTURING THE SAME
WO2017089488A1 (en) Sintered permanent magnet
US4925501A (en) Expolosive compaction of rare earth-transition metal alloys in a fluid medium
JP5850052B2 (en) RH diffusion source and method for producing RTB-based sintered magnet using the same
CN1212908C (en) Method and apparatus for manufacturing uranium foils containing fine crystals
CN108691007B (en) Method for producing metal single crystal particle
KR101813427B1 (en) Method of manufacturing rare earth magnet
WO2021175174A1 (en) Method for preparing rare earth alloy spherical single crystal magnetic powder, and rare earth giant magnetostrictive material having <111> orientation
CN103320730A (en) Magnesium alloy heat treatment method combined with high-energy ultrasonic processing
EP0478674B1 (en) Method for preparing permanent magnets based on neodymium-iron-boron
Mizutani et al. Grain refinement of tough pitch copper by electromagnetic vibrations during solidification
EP1082733B1 (en) Method for preparing a magnetic material by forging and magnetic material in powder form
JP2004098111A (en) Manufacturing method for semi-molten metal and metal workpiece with fine spheroidized grain structure
EP1591551A1 (en) ALUMINUM MATERIAL HAVING AlN REGION ON THE SURFACE THEREOF AND METHOD FOR PRODUCTION THEREOF
EP0538320B1 (en) Method for processing powdered magnetic materials and products thereby obtained
JPWO2020017529A1 (en) Method for producing rare earth magnet powder
CA2253894A1 (en) Method for preparing a rare earth- and transition metal-based magnetically anisotropic material by solidifying a liquid alloy in a guiding field
CN116174727A (en) Method for preparing CoMnSi-based alloy spherical single crystal particles by utilizing rapid quenching process
JP4034991B2 (en) Method for producing magnet powder
JP2021515992A (en) How to make permanent magnets or hard magnetic materials
FR2491499A1 (en) ANISOTROPIC MAGNETIC ALLOY AND PROCESS FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19880520

17Q First examination report despatched

Effective date: 19900626

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 65342

Country of ref document: AT

Date of ref document: 19910815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3771456

Country of ref document: DE

Date of ref document: 19910822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990421

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990422

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990423

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990427

Year of fee payment: 13

Ref country code: DE

Payment date: 19990427

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990527

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000521

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000521

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST