JPH05175027A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPH05175027A
JPH05175027A JP3357822A JP35782291A JPH05175027A JP H05175027 A JPH05175027 A JP H05175027A JP 3357822 A JP3357822 A JP 3357822A JP 35782291 A JP35782291 A JP 35782291A JP H05175027 A JPH05175027 A JP H05175027A
Authority
JP
Japan
Prior art keywords
permanent magnet
powder
magnet material
coercive force
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3357822A
Other languages
Japanese (ja)
Inventor
Chisato Mishima
千里 三嶋
Koji Fukui
康二 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP3357822A priority Critical patent/JPH05175027A/en
Publication of JPH05175027A publication Critical patent/JPH05175027A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet material having a high coersive force by obtaining powder of Sm-Fe-B alloy having a particular composition with the liquid quenching method, then nitriding such powder and obtain a bond magnet using this magnetic-powder. CONSTITUTION:A permanent magnet material has the structure expressed by SmxFe(100-X-Y-Z)NrBZ (X, Y, Z are respectively indicated by atom percentages in the ranges of 8.0<=X<=20.0, 9.0<=Y<=15.0, 0.1<=Z<=0.5). In view of obtaining this permanent magnet material, the Sm-Fe-B alloy is melted in a button arc furnace and is then forged to have the predetermined composition. The forged material is again melted and is then cooled quickly in a liquid quenching apparatus to obtain a ribbon. The powder obtained by milling this ribbon is put into a tube furnace for nitriding. A bond magnet is produced by using this magnetic powder. According to this particular alloy elements, a permanent magnet material having excellent coersive force can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0010】[0010]

【産業上の利用分野】本発明は、Sm−Fe−N−B系
組成を有する永久磁石材料に関し、特に保磁力の優れた
永久磁石材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet material having an Sm-Fe-NB composition, and more particularly to a permanent magnet material having excellent coercive force.

【0020】[0020]

【従来の技術】永久磁石材料は近年、自動車のカーエレ
クトロニクス化にともなって各種の小形モーター、アク
チュエーター材料として広く利用されている。そして、
これらの機器の小形化、軽量化のために一層の高性能化
が求められている。永久磁石材料として、Sm−Co系
およびNd−Fe−B系が開発され実用化されている。
しかし、、Sm−Co系はキュリー点は高く温度特性は
優れているものの飽和磁化が低く、他方Nd−Fe−B
系はキュリー点は低く温度特性は劣るものの飽和磁化は
高い。
2. Description of the Related Art In recent years, permanent magnet materials have been widely used as materials for various small motors and actuators with the progress of car electronics in automobiles. And
Further miniaturization and weight reduction of these devices are required for higher performance. As permanent magnet materials, Sm-Co-based and Nd-Fe-B-based materials have been developed and put into practical use.
However, although the Sm-Co system has a high Curie point and excellent temperature characteristics, it has a low saturation magnetization, while Nd-Fe-B.
The system has a low Curie point and poor temperature characteristics, but high saturation magnetization.

【0030】この点を改善するために種々の研究がなさ
れているが、本質的な解決には到っていない。そこで新
規な材料の出現が望まれていた。近年、飽和磁化は高い
もののキュリー点はさらに低く温度特性が劣悪という大
きな短所をもっているSm−Fe系磁石材料が注目さ
れ、報告されはじめている。この劣悪な温度特性を改善
する方法として、窒素(N)をSm2 Fe7 金属間化合
物に侵入させることにより一軸異方性化を達成し、キュ
リー温度の上昇を図っている。R−Fe−N−H系材料
(例えば、特開平2−57663号又は特開平3−15
3852号公報)について飽和磁束密度、キュリー温度
の改善が報告されており、さらにR−Fe−N系材料に
おいて磁性粉末の製造方法(例えば、特開平3−141
609号)により保磁力の改善が報告されている。ま
た、日本金属学会春季大会講演概要(1991.4)に
おいても保磁力の改善について報告がされている。しか
しながら、実用的な永久磁石材料としてはSm−Fe−
N系材料の保磁力(iHc)は数KOe程度しか得られ
ていない。
Various studies have been made to improve this point, but the essential solution has not been reached. Therefore, the advent of new materials has been desired. In recent years, Sm-Fe based magnet materials, which have high saturation magnetization but lower Curie point and poor temperature characteristics, have been attracting attention and reported. As a method for improving this poor temperature characteristic, nitrogen (N) is introduced into the Sm 2 Fe 7 intermetallic compound to achieve uniaxial anisotropy and increase the Curie temperature. R—Fe—N—H-based material (for example, JP-A-2-57663 or JP-A-3-15)
3852), improvements in saturation magnetic flux density and Curie temperature have been reported, and a method for producing magnetic powder in an R—Fe—N-based material (for example, Japanese Patent Laid-Open No. 3-141).
No. 609) reported improvement in coercive force. Further, improvement of coercive force is also reported in the summary of the spring meeting of the Japan Institute of Metals (1991.4). However, as a practical permanent magnet material, Sm-Fe-
The coercive force (iHc) of the N-based material is only about several KOe.

【0040】[0040]

【発明が解決しようとする課題】本発明はキュリー温度
の改善されたSm−Fe−N系の材料について、さらに
高い保磁力を有し、永久磁石材料として優れた高性能磁
性材料を提供するものである。
The present invention provides an Sm-Fe-N-based material having an improved Curie temperature, which has a higher coercive force and is excellent as a permanent magnet material. Is.

【0050】[0050]

【課題を解決するための手段】本発明者らは、前記問題
点を解決するために鋭意研究を重ねた結果、Sm−Fe
−N−B系の材料がキュリー温度も高く温度特性に優
れ、かつ保磁力が大幅に優れていることを見いだし、本
発明を完成するに至った。すなわち、本発明はSmX
(100-X-Y-Z) Y Z で表される永久磁石材料であ
り、X、Y、Zはそれぞれ原子百分率で、 8.0≦X≦20.0 9.0≦Y≦15.0 0.1≦Z≦ 0.5 であることを特徴としている。本発明においては、Sm
は原子百分率で8〜20%であることが必要である。8
%未満では保磁力が小さくなってしまい、20%を越え
ると飽和磁束密度が小さくなる。Nは、原子百分率で9
〜15%であることが必要である。9%未満では保磁力
が小さくなってしまい、また15%を越えても保磁力が
小さくなつてしまう。Bは、原子百分率で0.1〜0.
5%であることが必要である。0.1未満ではB添加に
よる効果が表れず、保磁力は低く、0.5%を越えると
保磁力は小さくなってしまう。本発明において、最も重
要な点はBを含有していることである。この含有によ
り、Sm−Fe−N系では達成できない程の保磁力を著
しく改善したことである。また、キュリー温度はSm−
Fe−N系にBを含有しても低下せず、高い温度を維持
して温度特性が優れていることである。
The present inventors have conducted extensive studies to solve the above problems, and as a result, Sm-Fe
It was found that the -NB system material has a high Curie temperature, excellent temperature characteristics, and significantly excellent coercive force, and completed the present invention. That is, the present invention is Sm X F
e (100-XYZ) N Y B Z is a permanent magnet material, where X, Y, and Z are atomic percentages, respectively, 8.0 ≦ X ≦ 20.0 9.0 ≦ Y ≦ 15.00 It is characterized in that 1 ≦ Z ≦ 0.5. In the present invention, Sm
Must be 8 to 20% in atomic percentage. 8
If it is less than%, the coercive force becomes small, and if it exceeds 20%, the saturation magnetic flux density becomes small. N is 9 in atomic percentage
It should be ~ 15%. If it is less than 9%, the coercive force will be small, and if it exceeds 15%, the coercive force will be small. B is 0.1 to 0.
It needs to be 5%. If it is less than 0.1, the effect due to the addition of B is not exhibited and the coercive force is low, and if it exceeds 0.5%, the coercive force becomes small. In the present invention, the most important point is that B is contained. This content significantly improves the coercive force that cannot be achieved with the Sm-Fe-N system. The Curie temperature is Sm-
Even if B is contained in the Fe-N-based material, it does not decrease, and it maintains a high temperature and has excellent temperature characteristics.

【0060】[0060]

【実施例】以下、実施例により本発明を詳細に説明す
る。出発原料として純度99.9%のSmと純度99.
9%の電解鉄および純度99.7%のBを使用し、これ
らをボタンアーク炉で溶解し、水冷銅型に鋳造した。そ
の後、液体急冷装置を使用してこの鋳造品を再溶解し急
冷してリボンを作製した。次に、このリボンをミル粉砕
して粒径10μ程度の粉末を得た。得られた粉末を管状
炉の中にいれ、500℃において純度99.999%の
窒素ガスを1時間流して窒化を行った後、室温まで冷却
した。こうして得られた磁性粉末を使用してボンド磁石
を作製し、磁気測定を行った。測定方法は、50KOe
のパルス磁界を印加した後、VSM(振動型試料磁力
計)で保磁力を測定した。磁性粉末の組成および保磁力
を表1に示す。
The present invention will be described in detail below with reference to examples. As a starting material, Sm having a purity of 99.9% and a purity of 99.
Using 9% electrolytic iron and 99.7% pure B, these were melted in a button arc furnace and cast into a water cooled copper mold. After that, this casting was remelted and rapidly cooled using a liquid quenching device to produce a ribbon. Next, the ribbon was milled to obtain a powder having a particle size of about 10 μm. The obtained powder was put into a tubular furnace, and nitrogen gas having a purity of 99.999% was passed at 500 ° C. for 1 hour for nitriding, and then cooled to room temperature. Using the magnetic powder thus obtained, a bonded magnet was produced and magnetic measurements were performed. The measuring method is 50KOe
After applying the pulsed magnetic field of, the coercive force was measured with VSM (vibrating sample magnetometer). Table 1 shows the composition and coercive force of the magnetic powder.

【0070】[0070]

【表1】 [Table 1]

【0080】表1の結果から、本発明例A〜Eにおいて
は保磁力は改善され高い値が得られている。しかし、比
較例FはSmが少ないために保磁力が改善されていな
い。比較例GはBが添加されていないため、そして比較
例HはBが多く添加されているためにそれぞれ保磁力が
低くなつている。
From the results shown in Table 1, in Examples A to E of the present invention, the coercive force was improved and a high value was obtained. However, in Comparative Example F, the coercive force is not improved because Sm is small. In Comparative Example G, B is not added, and in Comparative Example H, the coercive force is low because B is added in a large amount.

【0090】[0090]

【発明の効果】本発明の特定合金成分によれば、保磁力
の優れた永久磁石材料が得られる。
According to the specific alloy component of the present invention, a permanent magnet material having an excellent coercive force can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 SmX Fe(100-X-Y-Z) Y Z で表さ
れる永久磁石材料であり、X、Y、Zはそれぞれ原子百
分率で、 8.0≦X≦20.0 9.0≦Y≦15.0 0.1≦Z≦ 0.5 であることを特徴とする永久磁石材料
1. A permanent magnet material represented by Sm X Fe (100-XYZ) N Y B Z , where X, Y, and Z are atomic percentages, respectively, 8.0 ≦ X ≦ 20.0 9.0. ≦ Y ≦ 15.0 0.1 ≦ Z ≦ 0.5 Permanent magnet material characterized by the following:
JP3357822A 1991-12-25 1991-12-25 Permanent magnet material Pending JPH05175027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3357822A JPH05175027A (en) 1991-12-25 1991-12-25 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3357822A JPH05175027A (en) 1991-12-25 1991-12-25 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPH05175027A true JPH05175027A (en) 1993-07-13

Family

ID=18456103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3357822A Pending JPH05175027A (en) 1991-12-25 1991-12-25 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPH05175027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062080A1 (en) * 1998-05-28 1999-12-02 Rhodia Chimie Method for preparing a magnetic material by forging and magnetic material in powder form

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062080A1 (en) * 1998-05-28 1999-12-02 Rhodia Chimie Method for preparing a magnetic material by forging and magnetic material in powder form
FR2779267A1 (en) * 1998-05-28 1999-12-03 Rhodia Chimie Sa PROCESS FOR PREPARING A MAGNETIC MATERIAL BY FORGING AND MAGNETIC MATERIAL IN POWDER FORM
US6592682B1 (en) 1998-05-28 2003-07-15 Santoku Corporation Method for preparing a magnetic material by forging and magnetic material in powder form

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JP3057448B2 (en) Rare earth permanent magnet
EP1014393B1 (en) Rare earth/iron/boron-based permanent magnet and method for the preparation thereof
JPH0510806B2 (en)
JPH0374012B2 (en)
JP2001189206A (en) Permanent magnet
JP2002285301A (en) Iron and rare earth based permanent magnet alloy and production method therefor
JPH02101146A (en) Nd-fe-b-type sintered magnet excellent in heat treatment characteristic
JPS61195954A (en) Permanent magnet alloy
JPH05175027A (en) Permanent magnet material
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JPH0851007A (en) Permanent magnet and production thereof
JPS60159152A (en) Permanent magnet alloy
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3209380B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPS60197843A (en) Permanent magnet alloy
JP3199506B2 (en) Rare earth permanent magnet
JPS61195946A (en) Magnetic material and permanent magnet
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP2720027B2 (en) Ultra low temperature permanent magnet material
JPS62170455A (en) Permanent magnet alloy
JP2787447B2 (en) Quenched ribbon magnet with high remanence
JPH1088295A (en) Alloy for rare earth-iron-boron type bond magnet
JPS6250437A (en) Permanent magnet material superior in corrosion resistance