JP2560566B2 - Method for producing hydrogen storage alloy - Google Patents

Method for producing hydrogen storage alloy

Info

Publication number
JP2560566B2
JP2560566B2 JP3122055A JP12205591A JP2560566B2 JP 2560566 B2 JP2560566 B2 JP 2560566B2 JP 3122055 A JP3122055 A JP 3122055A JP 12205591 A JP12205591 A JP 12205591A JP 2560566 B2 JP2560566 B2 JP 2560566B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
mill
mill pot
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3122055A
Other languages
Japanese (ja)
Other versions
JPH04323334A (en
Inventor
輝也 岡田
貫太郎 金子
隆士 山川
勝 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP3122055A priority Critical patent/JP2560566B2/en
Publication of JPH04323334A publication Critical patent/JPH04323334A/en
Application granted granted Critical
Publication of JP2560566B2 publication Critical patent/JP2560566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金の製造方法
に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素をある種の金属又は合金に吸蔵させ
て金属水素化物の形で貯蔵し又は移送し、さらにその応
用として水素精製,ヒートポンプ,冷暖房システムの部
材として利用する技術が開発されている。この場合、金
属水素化物が水素の吸蔵,放出を行なう時には必ず発
熱,吸熱を伴うのでこの性質に着目して熱交換装置やヒ
ートポンプに利用できるのである。現在まで水素吸蔵合
金として発表され一部実用化されている合金の組合せと
しては、Mg−Ni,Mg−Cu,Ca−Ni,Fe−
Ti,Ti−Mn,La−Ni,ミッシュメタル−Ni
などを主な基本成分として、この一部を別の金属で置き
替えた合金も多数報告されている。たとえば、 Mg2
Ni0.75Cr0.25 ,Ca0.7Mn0.3Ni5 ,LaNi
4.7Al0.3 ,TiFe0.8Mn0.2 などが知られてい
る。一般的に言えば、Mg,Ca,La,ミッシュメタ
ル,Tiなどで形成する一群から選んだ1又は2以上の
金属とNi,Al,V,Cr,Fe,Co,Zn,C
u,Mnで形成する一群から選んだ1又は2以上の金属
とを合金化することによって製造される。水素吸蔵合金
を製造するためには原料である異種金属を高周波誘導炉
や弧光式高温溶解炉で溶解する。高周波誘導炉は量産化
に適当であるが、原料金属のうちとくにMg,Ca,A
lなどは蒸気圧が大きく酸素との親和力の強いものが多
いので炉内をArガスなどで不活性な雰囲気に調整して
金属の酸化を防止しなければならない。材料金属が溶解
して相互に混合し高温下において合金反応が十分進んで
すべての材料が所望の合金組成となったところで、非酸
化性雰囲気下で金型内へ鋳造して造塊する。得られたイ
ンゴットは熱処理を施し、合金を完結させたのち、非酸
化性雰囲気下においてクラッシャ内で粉砕し所望の粒度
の水素吸蔵合金の粉末を得る。
2. Description of the Related Art A technique has been developed in which hydrogen is occluded in a certain metal or alloy to be stored or transferred in the form of a metal hydride, and as its application, hydrogen refining, a heat pump, or a member of a heating and cooling system. There is. In this case, when the metal hydride absorbs and releases hydrogen, it always generates heat and absorbs heat. Therefore, it can be used for a heat exchange device or a heat pump by paying attention to this property. As a combination of alloys that have been announced as hydrogen storage alloys and have been partially put into practical use, Mg-Ni, Mg-Cu, Ca-Ni, Fe-
Ti, Ti-Mn, La-Ni, misch metal-Ni
A large number of alloys in which a part of this is replaced with another metal have been reported with the above as the main basic component. For example, Mg 2
Ni 0.75 Cr 0.25 , Ca 0.7 Mn 0.3 Ni 5 , LaNi
4.7 Al 0.3 , TiFe 0.8 Mn 0.2 and the like are known. Generally speaking, one or more metals selected from a group formed of Mg, Ca, La, misch metal, Ti, etc. and Ni, Al, V, Cr, Fe, Co, Zn, C.
It is produced by alloying one or more metals selected from the group consisting of u and Mn. In order to produce a hydrogen storage alloy, different kinds of raw materials are melted in a high frequency induction furnace or an arc light type high temperature melting furnace. The high-frequency induction furnace is suitable for mass production, but among the raw material metals, Mg, Ca, A
Since many such as 1 have a large vapor pressure and a strong affinity with oxygen, the inside of the furnace must be adjusted to an inert atmosphere with Ar gas or the like to prevent metal oxidation. When the material metals are melted and mixed with each other, and the alloy reaction sufficiently proceeds at a high temperature so that all materials have a desired alloy composition, the material is cast into a mold in a non-oxidizing atmosphere to be ingot. The obtained ingot is heat-treated to complete the alloy and then crushed in a crusher in a non-oxidizing atmosphere to obtain a hydrogen storage alloy powder having a desired particle size.

【0003】一方溶解せず固体のままで所望の合金組成
を得ようとする技術も最近脚光を浴びている。これは一
般にメカニカルアロイング法と呼ばれ、1970年代に
アメリカのインコ社(INCO)のベンジャミンによっ
てはじめて開発され、高エネルギーボールミル(アトラ
イタ)などによって金属粉末へ機械的エネルギーを与え
て冷間圧着と破壊とを繰り返して超微粒子を分散する方
法である。メカニカルアロイングの原理については、衝
撃力の大きいミリングによって粉末はまず鍛造され偏
平,片状化し、次に加工硬化した粒子は破壊または剥離
し冷間鍛接が繰り返され(混練)、続いて合金成分間に
ラメラ組織が発達し結晶粒は急激に微細化し一方の粒子
が他方の粒子内で微細に分散し、最後に粒子形状が等軸
形状となってランダム化すると説いている。エム ワイ
ソングとイー アイ イワノフは遊星ボールミルを使って
MgとNiの粉末をメカニカルアロイング法によって合
金化する実験結果をハイドロゼンエナージィー誌(Hydro
gen Energy vol10 No.3 P169-178,1985)に発表してい
る。この報告の中で遊星ボールミルの加速度は6.1G
とし、Niはカルボニールタイプを使用してArガス雰
囲気中で30分混合して得られた試料に対し種々の水素
化処理を加えたものをX線回析によって比較検討してい
る。結果的には水素化を1回から58回まで繰り返した
試料のうち、水素化数の少ないものは Mg2 Ni, 微
量のMgO ,Mg,Ni相が混在していることが検知
されたが、熱処理(アンニーリング)を施し、かつ水素
化数の多いものについてはMgとNiは殆ど Mg2Ni
になったと認められ、特に水素化の繰り返しよりも熱処
理の効果がより強く認められ、不完全ながら溶解によら
ないで水素吸蔵合金を製造する方法を初めて報告した。
On the other hand, the desired alloy composition remains as a solid without melting.
Recently, the technology to obtain the information has been in the spotlight. This is one
Generally called the mechanical alloying method, in the 1970s
By Benjamin of American Inco Company (INCO)
High energy ball mill (atlas
Give mechanical energy to metal powder by
Dispersing ultrafine particles by repeating cold pressing and fracture
Is the law. For the principles of mechanical alloying,
The powder is first forged by a high-impacting milling and biased.
Particles that are flattened and flaky and then work-hardened are destroyed or peeled.
Cold forging is repeated (kneading), then between alloy components
The lamella structure develops and the crystal grains suddenly become finer.
Are finely dispersed in the other particle, and finally the particle shape is equiaxed
It is said that the shape will be randomized. M Wai
Song and Ia Ivanov using a planetary ball mill
The Mg and Ni powders are combined by the mechanical alloying method.
The experimental results of monetization are shown in Hydrogen Energy magazine (Hydro
gen Energy vol10 No.3 P169-178, 1985).
You. In this report, the acceleration of the planetary ball mill is 6.1G.
And Ni is a carbon type and Ar gas atmosphere is used.
Various hydrogen was added to the sample obtained by mixing for 30 minutes in the atmosphere.
We have been comparing and comparing the products with oxidization treatment by X-ray diffraction.
You. As a result, the hydrogenation was repeated from 1 to 58 times.
Of the samples, the one with the least hydrogenation number is Mg2 Ni, fine
Detects that a certain amount of MgO, Mg, Ni phases are mixed
Was subjected to heat treatment (annealing) and hydrogen
For those with a large number of chemicals, Mg and Ni are mostly Mg2Ni
It was recognized that the heat treatment was more than the repeated hydrogenation.
The effect of the rationale is more strongly recognized, and it may be
For the first time, we have reported a method for producing hydrogen storage alloys.

【0004】[0004]

【発明が解決しようとする課題】従来技術のうち溶解に
よって水素吸蔵合金を製造することは相当高度の技術と
よく管理された設備を必要とする。例えば Mg2Niを
製造する場合、Niの蒸気圧は10℃で2057mmHg,
760℃で2732mmHgと高いレベルで変動し、一方M
gは同じくそれぞれ743mmHgから1107mmHgと変動
する。Caも同983mmHgから1487mmHgと変動し、
これらの蒸気圧のバランスを保ちながら炉内を昇温して
いくことは非常に難しい。一方溶解一般の原則から見て
両成分の固溶度の多少も合金の難易度に影響を与える
が、一番問題となるのは両成分の密度と溶融点の差であ
る。Niのそれは8.90g/cm3 ,1455℃であり、
Mgは1.74g/cm3,650℃、Caは1.55g/c
m3,850℃である。従ってMg又はCaとNiとの合
金化が如何に困難であるかはこのことだけでも明らかで
ある。これに反しLaは密度6.15g/cm3 ,溶融点8
26℃であり、Niと密度が近いだけでも困難さは軽減
されるが、一般に稀土類元素は資源的に貴重な存在でし
かも高価である。MgとNiを合金化するとき大きな課
題となるのはMgの蒸気圧がNiの溶融点近くにおいて
はほぼ25気圧に達し、この蒸気圧のため溶湯中からの
Mgの蒸発を避けることが難しいのでNiが過剰となっ
て製品の一部が水素化物をつくらないMgNi2となる
ことである。 またこれを防止するためにMgをはじめ
から過剰に配合しておくと、たとえば化学式をMg2.35
Niで表わしているが実態はMg2Ni+Mg0.35の よ
うに遊離したMg単体を含む原因となっている。
Among the conventional techniques, the production of hydrogen storage alloys by melting requires a considerably high level of technique and well-controlled equipment. For example, when producing Mg 2 Ni, the vapor pressure of Ni is 2057 mmHg at 10 ° C,
It fluctuates at a high level of 2732 mmHg at 760 ° C, while M
Similarly, g also varies from 743 mmHg to 1107 mmHg. Ca also fluctuates from 983 mmHg to 1487 mmHg,
It is very difficult to raise the temperature in the furnace while maintaining the balance of these vapor pressures. On the other hand, in view of the general principle of melting, the degree of solid solubility of both components affects the difficulty of the alloy, but the most important problem is the difference between the density and the melting point of both components. That of Ni is 8.90 g / cm 3 , 1455 ° C.,
Mg is 1.74 g / cm 3 , 650 ℃, Ca is 1.55 g / c
m 3 , 850 ° C. Therefore, it is clear from this alone how difficult the alloying of Mg or Ca and Ni is. On the contrary, La has a density of 6.15 g / cm 3 and a melting point of 8
The temperature is 26 ° C., and the difficulty is reduced even if the density is close to that of Ni, but rare earth elements are generally valuable resources and expensive. A major problem when alloying Mg and Ni is that the vapor pressure of Mg reaches almost 25 atm near the melting point of Ni, and it is difficult to avoid evaporation of Mg from the molten metal due to this vapor pressure. Ni is excessive, and a part of the product becomes MgNi 2 which does not form hydride. To prevent this, if Mg is excessively blended from the beginning, for example, the chemical formula is Mg 2.35.
Although expressed by Ni, the actual condition is a cause of including free Mg simple substance such as Mg 2 Ni + Mg 0.35 .

【0005】水素吸蔵合金の特性の上にこのことがどう
関わるかを図12,図13について説明する。図12は
溶解法によって製造した水素吸蔵合金Mg2.35Niの圧
力−組成等温線図(以下、「PCT線図」という)であ
り、縦軸に水素圧P(単位はMPa)をとり、横軸に水
素ガスと金属の原子比H/Mをとって一定温度(350
℃)における水素ガスの吸蔵,放出に伴う原子比の挙動
を図表化したものである。図において曲線は水素圧が
0.5近くに達すと吸蔵,放出ともに緩やかな傾斜を辿
って右方へ移る範囲Aとほぼ水平に右方へ移る範囲Bと
に明確に分れ、範囲AがMg単体による水素の吸蔵,放
出を示し、範囲Bが Mg2Niによる水素の吸蔵,放出
を示している。換言すれば範囲Aが認められるというこ
とは水素ガスと結合するMgが存在することを示し、水
素との親和力において Mg2Niよりはるかに劣るMg
が合金内に含まれ水素吸蔵合金として求められる機能を
低下させていることを示す。
How this is related to the characteristics of the hydrogen storage alloy will be described with reference to FIGS. 12 and 13. FIG. 12 is a pressure-composition isotherm diagram (hereinafter referred to as “PCT diagram”) of the hydrogen storage alloy Mg 2.35 Ni produced by the melting method, in which the hydrogen pressure P (unit is MPa) is taken on the vertical axis and the horizontal axis is taken. The atomic ratio H / M of hydrogen gas and metal is taken as a constant temperature (350
This is a diagram showing the behavior of the atomic ratio associated with the occlusion and release of hydrogen gas at (° C). In the figure, when the hydrogen pressure reaches near 0.5, the curve clearly divides into a range A that moves to the right following a gentle slope for both storage and release, and a range B that moves to the right almost horizontally. The storage and release of hydrogen by Mg alone is shown, and the range B shows the storage and release of hydrogen by Mg 2 Ni. In other words, the fact that the range A is recognized indicates that there is Mg that binds to hydrogen gas, and the affinity for hydrogen is far inferior to Mg 2 Ni.
Indicates that it is contained in the alloy and deteriorates the function required as a hydrogen storage alloy.

【0006】図13は同じ試料の高圧熱示差分析図(以
下、「DTA線図」という)であって、縦軸に温度、横
軸に時間を目盛り、一定圧(1.1MPa)の水素を密
閉容器内へ封入し、容器を外部から最高500℃まで加
熱し、又は500℃から冷却した時、容器内に封入した
Mg2.35Niの温度を測定して示した曲線C、およびこ
の試料と比較のため容器内へ封入した標準試料(アルミ
ナ)との間に生じる温度差を示した曲線Dとを表わして
いる。水素吸蔵合金は水素ガスを吸蔵する時には発熱
し、放出する時には吸熱するので、曲線Dにおいても加
熱時には放出に伴う下向きのピークが、また冷却時には
吸蔵に伴う上向きのピークがそれぞれ認められる。とこ
ろが点P,Q,Rに明らかに認められるようにこのピー
クが尖った1点だけではなくダブルピーク及至はピーク
に近い異常な屈折点があるということはMg2NiとM
2NiH4の相変化の他に、MgとMgH2との相変化
もあることを示している。これは同一水素圧の下ではM
gの方が Mg2Niより高温側で解離することによって
生じる。何れにしても溶解法で製造する水素吸蔵合金に
は製造上の困難さの他に機能低下をもたらす成分がなお
混在することが避け難いという課題がある。
FIG. 13 is a high-pressure thermal differential analysis diagram (hereinafter referred to as “DTA diagram”) of the same sample, in which the vertical axis represents temperature, the horizontal axis represents time, and hydrogen at a constant pressure (1.1 MPa) is shown. Curve C shown by measuring the temperature of Mg 2.35 Ni enclosed in the container when the container was enclosed in a closed container and heated from the outside to a maximum temperature of 500 ° C or cooled from 500 ° C, and this sample was compared. Therefore, the curve D showing the temperature difference between the standard sample (alumina) sealed in the container and the temperature difference is shown. Since the hydrogen storage alloy generates heat when storing hydrogen gas and absorbs it when releasing hydrogen gas, curve D also has a downward peak associated with release during heating and an upward peak associated with storage during cooling. However the point P, Q, that this peak as clearly seen in R double peak及至not only sharp point is abnormal refraction point near the peak Mg 2 Ni and M
In addition to the phase change of g 2 NiH 4 , there is also a phase change of Mg and MgH 2 . This is M under the same hydrogen pressure
It occurs when g is dissociated on the higher temperature side than Mg 2 Ni. In any case, there is a problem in that it is unavoidable that the hydrogen storage alloy produced by the melting method is not only difficult to produce, but also contains a component that causes a decline in function.

【0007】一方溶解によることなくいわゆるメカニカ
ルアロイング法によって Mg2Niを得ようとする試み
は一応技術的に可能という示唆を与えた。しかし水素圧
0.7MPaの条件で温度300℃に保って、試料の合
金へ水素化,脱水素化を繰り返して判ったことは、数回
程度の水素化の繰り返しでは単相のMgやNiの存在は
消滅できず、水素圧0.25〜0.85MPaにおいて
270〜300℃の温度を2ヶ月保つ熱処理を行ない、
かつ水素化処理を58回繰り返してはじめてほぼ全量が
Mg2Ni になったと認められるに過ぎない。思うにい
まメカニカルアロイング法を機械的合金法と邦訳してい
るが、現段階の技術レベルでは単体の異種金属同士の完
全合金化に到達しているとまでは認められず、金属粒子
中に同系の酸化物を超微粒的に分散したり、金属間化合
物を出発原料として異なる相に変化する(例えばアモル
ファス相)程度にとどまっていると評価するのが妥当で
ある。本発明は以上の課題を解決するために選ばれた二
種類以上の金属を溶解することなく合金化率の高い水素
吸蔵合金を製造する方法とその装置の提供を目的とす
る。
On the other hand, it has been suggested that an attempt to obtain Mg 2 Ni by a so-called mechanical alloying method without using melting is technically possible. However, it was found by repeating the hydrogenation and dehydrogenation of the alloy of the sample while maintaining the temperature at 300 ° C. under the condition of hydrogen pressure of 0.7 MPa. The existence cannot be extinguished, and a heat treatment is carried out at a hydrogen pressure of 0.25 to 0.85 MPa for a temperature of 270 to 300 ° C. for 2 months,
Only after the hydrogenation treatment was repeated 58 times, it was confirmed that almost all the amount became Mg 2 Ni. I think that the mechanical alloying method is now translated into Japanese as a mechanical alloying method, but at the current technological level, it has not been confirmed that the alloying of single dissimilar metals has been reached, and it has It is appropriate to evaluate that the oxides of the same system are dispersed ultrafinely or the intermetallic compound is changed to a different phase from the starting material (for example, an amorphous phase). An object of the present invention is to provide a method and an apparatus for producing a hydrogen storage alloy having a high alloying ratio without melting two or more kinds of metals selected to solve the above problems.

【0008】[0008]

【課題を解決するための手段】本発明に係る水素吸蔵合
金の製造方法は、高速ボールミルのミルポット内へ直径
3〜5mmの粉砕ボールを充填し、合金化して水素吸蔵
合金を形成し得る2以上の異種金属の粉末を加えて密封
し、ミルポット内を非酸化性雰囲気に調整したのち、重
力加速度の30倍以上の加速度をミルポット内に加え
て、混合,粉砕,分散を経て合金化率の高い水素吸蔵合
金を形成することによって前記の課題を解決した。なお
具体的には非酸化性雰囲気が、Arガス,Heガス,N
ガスの何れかによってミルポット内を充満させたこと
や、2以上の異種金属はMg,Ca,Al,La,ミッ
シュメタル,Tiの一群から選んだ一種以上の金属と、
Ni,Al,V,Cr,Fe,Co,Zr,Cu,Mn
の一群から選んだ一種以上の金属とよりなることを明示
した。さらに本発明を実施するうえで最も望ましい高速
ボールミルとしては、非酸化性雰囲気の調整手段と着脱
自在に連結するミルポットを有し、主軸の回転によって
公転するとともに自己の回転軸を中心に自転する回分式
遊星ボールミルが最適であり、この場合
According to the method for producing a hydrogen storage alloy of the present invention, a crushing ball having a diameter of 3 to 5 mm is filled in a mill pot of a high speed ball mill and alloyed to form a hydrogen storage alloy. After adding powder of different metal of the above and sealing it and adjusting the inside of the mill pot to a non-oxidizing atmosphere, an acceleration of more than 30 times the acceleration of gravity is added to the inside of the mill pot, and after mixing, pulverizing and dispersing, the alloying rate is high. The above problems were solved by forming a hydrogen storage alloy. Specifically, the non-oxidizing atmosphere is Ar gas, He gas, N
Filling the mill pot with either of the two gases, and the two or more different metals are one or more metals selected from the group of Mg, Ca, Al, La, Misch metal, and Ti.
Ni, Al, V, Cr, Fe, Co, Zr, Cu, Mn
Clarified that it consists of one or more metals selected from the group. The most preferred high-speed ball mill in order to further implement the present invention, it has a mill pot for removably connected with the adjusting means of a non-oxidizing atmosphere, batch which rotates about its own axis of rotation while revolving by rotation of the spindle formula
Planetary ball mills are the best choice, in this case

【数2】 で表わされるミルポット内部へ加わる合成粉砕加速度比
Gが少なくとも30以上であり、かつ自公転角速度比率
Rが1.9以下の運転条件に限定して作動させることが
最良の実施方法となる。
[Equation 2] The composite crushing acceleration ratio G applied to the inside of the mill pot represented by the above formula is at least 30 or more, and the rotation / revolution angular velocity ratio R can be operated only under the operating conditions of 1.9 or less.
This is the best practice.

【0009】[0009]

【作用】本発明に係る製造方法は水素吸蔵合金を形成し
得る二種以上の金属を炉内で溶解することなく合金化す
るものであるから、メカニカルアロイング法適用の一種
と言えるが、従来の周知慣用的な高速ボールミルとは桁
外れな加速度をミルポット内に加え従来に比べるとはる
かに合金化率の高い合金を得た。この加速度は重力加速
度の30倍以上を要件としているのでこの加速度の得ら
れる装置が製造方法実施上の最大の前提となることは言
うまでもない。メカニカルアロイングのプロセスについ
てはまだ研究途上にあって正確なことは判っていない
が、条件として原子の相互拡散が十分に起こることと混
合のエンタルピーΔHmが負で大きいことが大切である
と説かれている。低温での原子の相互拡散は与える有効
なエネルギーが大きいほど進行が加速することは当然で
ある。従来のメカニカルアロイングが粒子の偏平,片状
化,冷間鍛接(混練),ラメラ組織化,分散,ランダム
化の経過を辿って微細化,均質化されていたのに対し、
本発明の場合はより強力な原子結合の段階にまで合金化
が完結したと見るべきであると考察する。
The manufacturing method according to the present invention is an application of the mechanical alloying method because it is an alloy of two or more metals capable of forming a hydrogen storage alloy without melting in a furnace. An alloy having a much higher alloying ratio than that of the conventional one was obtained by applying an acceleration in the mill pot that was extremely different from the well-known conventional high-speed ball mill. It is needless to say that this acceleration is required to be 30 times or more of the gravitational acceleration, so that a device that can obtain this acceleration is the largest premise for implementing the manufacturing method. Although the process of mechanical alloying is still in the process of study and it is not known to be accurate, it is said that it is important that the mutual diffusion of atoms occurs sufficiently and that the enthalpy ΔHm of mixing is negative and large. ing. It is natural that the progress of the mutual diffusion of atoms at low temperature accelerates as the effective energy provided increases. Whereas conventional mechanical alloying was made finer and homogenized in the course of particle flattening, flaking, cold forging (kneading), lamellar organization, dispersion and randomization,
In the case of the present invention, it is considered that the alloying should be considered to be completed up to the stage of stronger atomic bond.

【0010】合成粉砕加速度比Gを大きくする程メカニ
カルアロイングの完結するのに必要な時間が短縮するこ
とは容易に推察できるが、同じ加速度を加えた場合でも
ミルポット内へ装入する粉砕ボールの直径が異なると完
結するのに必要な時間に差の生じることが確認できた。
粉砕ボールの直径を変えその他の条件を全く同一にして
高速ボールミルを運転し、比較的短時間で運転停止後合
金化の進行状態を調べると、粉砕ボールの直径と明らか
な因果関係が成立する。その理論的解明は今後の研究に
譲るが、ボールの直径が3〜5mmの範囲を選んだとき合
金化の進行が最も活発であることを確認した。
It can be easily inferred that the larger the synthetic crushing acceleration ratio G, the shorter the time required to complete the mechanical alloying, but even if the same acceleration is applied, the crushing balls of the crushing balls charged into the mill pot will be shortened. It was confirmed that the time required for completion was different for different diameters.
When the high-speed ball mill is operated under the same conditions except that the diameter of the crushed ball is changed, and the progress of alloying is checked after the operation is stopped in a relatively short time, a clear causal relationship with the diameter of the crushed ball is established. The theoretical elucidation is left for future research, but it was confirmed that the alloying progressed most actively when the ball diameter was selected in the range of 3 to 5 mm.

【0011】[0011]

【実施例】本発明の製造方法を実施するときに使用する
回分式の遊星ボールミル1を図1と図2に示す。図にお
いて一般的な構造を説明するとモータ6によって駆動さ
れる主軸22の回転を受けて、公転する複数のミルポッ
ト21を主軸22の周囲に均等に(2ヶならば対称的
に、3ヶ以上ならば主軸22から等距離放射状に)配設
し、該ミルポット21自体も自己の回転軸を中心に自転
するものである。具体的には主軸22と共に回転するミ
ルポット21の外周に遊星歯車8を周設し、この遊星歯
車8と噛合する太陽歯車7を別に回転または停止させて
(図では停止)、ミルポット21を公転しつつ、自転さ
せる。太陽歯車7は主軸22に外嵌されている。ミルポ
ット21の内部には粉砕媒体である粉砕ボールBと金属
の粉末Mが収納され、処理中の金属粉末Mの酸化を防止
するため、内部雰囲気はArガスなどの不活性ガスに置
換されている。雰囲気調整手段2の実施例としてArガ
スに置換するには、図1に示すようにミルポット21の
蓋に管31を、その先端に一対のワンタッチカプラ32
を取付け、さらに管33とバルブ11を介して真空ポン
プ41に、バルブ13と管34を介して圧力計61に、
管35とバルブ12を介してArガス充填ボンベ51に
接続する。バルブ12を全閉にし、バルブ11,13を
全開にした状態で真空ポンプ41で真空引きを行ない、
ミルポット21内の空気を排除する。圧力計61で所定
の真空度に到達したことを確認後、バルブ11を全閉に
しバルブ12を開け、Arガス充填ボンベ51からAr
ガスをミルポット21に充填する。圧力計61により充
填Arガス圧力が大気圧と同じまたはそれ以上の所定圧
力に達したことを確認後、バルブ12も全閉し、ワンタ
ッチカプラ32部で管31と管33を切り離す。ミルポ
ット21内のArガスはワンタッチカプラ32の片方で
保持される。このArガス充填作業は1回以上行なう。
以上のようにミルポット21に粉砕ボールB金属の粉末
Mを入れArガスを充填した後、遊星ボールミルを運転
することにより、公転,自転運動による遠心力とコリオ
リス力とが相乗的に粉砕ボールBと処理物Mに作用し、
金属粉末Mが加工される。
EXAMPLE A batch type planetary ball mill 1 used for carrying out the manufacturing method of the present invention is shown in FIGS. 1 and 2. A general structure will be described with reference to the drawing. In response to rotation of a main shaft 22 driven by a motor 6, a plurality of mill pots 21 that revolve are evenly distributed around the main shaft 22 (if two, symmetrically, if three or more are present). For example, the mill pots 21 are arranged equidistantly from the main shaft 22, and the mill pot 21 itself rotates about its own rotation axis. Specifically, a planetary gear 8 is provided around the outer periphery of a mill pot 21 that rotates together with the main shaft 22, and the sun gear 7 that meshes with the planetary gear 8 is separately rotated or stopped (stopped in the figure) to revolve the mill pot 21. While rotating. The sun gear 7 is fitted onto the main shaft 22. A grinding ball B as a grinding medium and a metal powder M are housed inside the mill pot 21, and the internal atmosphere is replaced with an inert gas such as Ar gas in order to prevent the metal powder M from being oxidized during processing. . As shown in FIG. 1, a pipe 31 is provided on the lid of the mill pot 21 and a pair of one-touch couplers 32 are attached to the tip of the mill pot 21 as shown in FIG.
Attached to the vacuum pump 41 via the pipe 33 and the valve 11, to the pressure gauge 61 via the valve 13 and the pipe 34,
It is connected to an Ar gas filled cylinder 51 via a pipe 35 and a valve 12. With the valve 12 fully closed and the valves 11 and 13 fully opened, the vacuum pump 41 performs vacuuming.
The air in the mill pot 21 is removed. After confirming that a predetermined degree of vacuum has been reached with the pressure gauge 61, the valve 11 is fully closed and the valve 12 is opened.
The mill pot 21 is filled with gas. After confirming that the pressure of the filled Ar gas reaches a predetermined pressure equal to or higher than the atmospheric pressure by the pressure gauge 61, the valve 12 is also fully closed and the pipe 31 and the pipe 33 are separated by the one-touch coupler 32 part. The Ar gas in the mill pot 21 is held by one of the one-touch couplers 32. This Ar gas filling operation is performed once or more.
As described above, the powder M of the crushed ball B and the metal M are charged into the mill pot 21 and filled with Ar gas, and then the planetary ball mill is operated, whereby the centrifugal force and the Coriolis force due to the revolution and rotation are synergistically combined with the crushed ball B. Acts on the processed material M,
The metal powder M is processed.

【0012】図2は遊星ボールミルのミルポットの運動
模式図であり、 公転角速度ω1,公転直径Kを0.52
m, ミルポット内径Nを0.075m, R=ω2
ω1,ω2 は公転に対する自転の相対角速度とし、合成
粉砕角速度比Gを前に挙げた数式で計算して90となる
ようにω1を43.4(1/s)、ω2を59.0(1/s)に設定
した。なお、ω2/ω1(=R)はこの場合、1.36であ
るがこの点については次の考察が前提となっている。図
3(イ),(ロ),(ハ)はミルポット内におけるボールBの
運動状態とミルの公転,自転の角速度の相対的比率の関
係を示したものである。公転角速度をω1 、自転の相対
角速度をω2 、両者の比率R=ω2/ω1 として図(イ)
はRが0.5のミルポット内の状態を示している。ここ
ではボールは一体的,集団的にミルポットの内周面に沿
ってサージングし内周面とボール、ボール同士の間で装
入された金属へ有効な圧縮力,剪断力を与えてすべてメ
カニカルアロイングに有効な作用を及ぼしている。図
(ロ)はR=1.0、図(ハ)はR=1.22の場合のボー
ルの挙動を示したもので自転角速度が相対的に大きな割
合になるほどボールの一部が内周面から離れてミルポッ
ト内の空間を飛翔しはじめ、ボール同士の衝突でエネル
ギーの一部が無駄に消費されメカニカルアロイングの目
的からは後退した現象を見せはじめる。この傾向はRが
大きくなるほど大きくなりRが1.9を超えると、いか
に合成粉砕加速度比Gが30以上であっても合金化率の
高い水素吸蔵合金は得られなくなる。今回はこの点を考
慮に入れてRを1.36に選んだが望ましくはRは1.
5〜0.5の範囲が良いと考えられる。この実施例では
水素吸蔵合金のうち Mg2Niを選びその原料として平
均粒径9μのNi粉末と平均粒径85μのMg粉末を合
金組成の割合に秤量してミルポット内へ装入し、高炭素
Cr軸受鋼を材料とする粉砕ボールの直径を1mm及至
6.35mmの範囲に亘って種々変えてミルポットの空間
容積30%に相当する量だけ装入した。なお金属粉末M
の0.25〜1.0%に相当するステアリン酸を助剤と
して添加し運転時間は30分に決めて処理を行なった。
各試料について金属粉末が全て合金化しているか、それ
とも未反応のMgが単相の形で残っているかをDTA分
析によって検査した。試料番号と粉砕ボールの直径(m
m)との関係を表1に示す。
FIG. 2 is a schematic diagram of the motion of the mill pot of the planetary ball mill, in which the revolution angular velocity ω 1 and the revolution diameter K are 0.52.
m, the inner diameter N of the mill pot is 0.075 m, R = ω 2 /
ω 1 and ω 2 are relative angular velocities of rotation with respect to the revolution, and ω 1 is 43.4 (1 / s) and ω 2 is 59 so that the composite crushing angular velocity ratio G is calculated to be 90. It was set to 0.0 (1 / s). In this case, ω 2 / ω 1 (= R) is 1.36, but this point is based on the following consideration. 3 (a), (b) and (c) show the relationship between the motion state of the ball B in the mill pot and the relative ratio of the angular velocity of the revolution and rotation of the mill. Figure (a) where the revolution angular velocity is ω 1 , the relative angular velocity of rotation is ω 2 , and the ratio of the two is R = ω 2 / ω 1 .
Indicates the state in the mill pot where R is 0.5. Here, the balls are integrally and collectively surging along the inner peripheral surface of the mill pot, and effective compressive force and shearing force are applied to the inner peripheral surface, the balls, and the metal charged between the balls, so that mechanical It has an effective effect on Ing. Figure
(B) shows the behavior of the ball when R = 1.0 and (C) shows R = 1.22. As the rotation angular velocity becomes relatively large, a part of the ball moves from the inner peripheral surface. They start to fly away in the space inside the mill pot, and some of the energy is wasted by the collision of the balls, and they start to recede for the purpose of mechanical alloying. This tendency becomes larger as R becomes larger, and when R exceeds 1.9, a hydrogen storage alloy having a high alloying ratio cannot be obtained no matter how the synthetic crushing acceleration ratio G is 30 or more. This time, taking this point into consideration, R was set to 1.36, but R is preferably 1.
A range of 5 to 0.5 is considered good. In this embodiment, Mg 2 Ni is selected from the hydrogen storage alloys, and as its raw material, Ni powder having an average particle size of 9 μ and Mg powder having an average particle size of 85 μ are weighed in proportions of alloy composition and charged into a mill pot to obtain a high carbon content. The diameter of the crushed balls made of Cr bearing steel was variously changed over the range of 1 mm to 6.35 mm, and the crushed balls were charged in an amount corresponding to 30% of the space volume of the mill pot. Metal powder M
0.25 to 1.0% of stearic acid was added as an auxiliary agent, and the operation time was set to 30 minutes for the treatment.
Each sample was examined by DTA analysis to see if the metal powder was all alloyed or if the unreacted Mg remained in single phase form. Sample number and grinding ball diameter (m
Table 1 shows the relationship with m).

【0013】[0013]

【表1】 [Table 1]

【0014】ここで自由粉とは粉砕処理が終ってミルポ
ットの蓋を開き内部の処理物を取り出したとき,ボール
やミルポットの内面に付着せず直ちに回収された処理物
の割合をいう。すなわち割合が100%というのはほぼ
全量の処理物が何ら手を加えなくても回収したことを示
している。
Here, the free powder refers to a proportion of the processed product which is immediately collected without adhering to the balls or the inner surface of the mill pot when the mill pot lid is opened and the processed product is taken out after the crushing process. That is, the ratio of 100% means that almost all the treated products were recovered without any modification.

【0015】DTA分析で一番明瞭に現われるのは成分
ごとに異なる金属水素化物の解離圧の温度依存性であ
る。図4において、いま水素の解離圧が1MPaとなる
温度を求めるとMgが1MPaと交叉する温度T1は M
2Niが1MPaと交叉する温度T2より常に高温側に
あることが示されている。従って水素化物を作る金属が
単相であるか、または二種以上が共存している複合相で
あるかは水素の解離又は結合を示す温度が単一であるか
複数であるかによって識別することができる。
What appears most clearly in the DTA analysis is the temperature dependence of the dissociation pressure of the metal hydride, which differs from component to component. In FIG. 4, when the temperature at which the hydrogen dissociation pressure becomes 1 MPa is obtained, the temperature T 1 at which Mg intersects with 1 MPa is M
It is shown that the temperature is always higher than the temperature T 2 at which g 2 Ni intersects with 1 MPa. Therefore, whether the metal forming the hydride is a single phase or a composite phase in which two or more kinds coexist is determined by whether the temperature at which hydrogen dissociation or bonding is present is single or plural. You can

【0016】各試料をミルポットから回収してDTA線
図を作成した結果が図5〜図9である。 (1) 試料1(図5) 示差熱を表わす曲線DにおいてMg2NiH4がMg2
iとH2に解離するピーク点Eの他にMgH2がMgとH
2に解離するピーク点Fがあり、Mg2NiがH2 と結合
するピーク点Iの他に MgH2が生じるピーク点Jがあ
り、単相のMgがかなり存在することを示している。 (2) 試料2(図6) Mg2NiとH2とが結合又は解離する単一のピーク点の
他にMgH2 が生じるピーク点(屈折点)Lがあり、痕跡
のMgが残っていることを示している。 (3) 試料3および試料4(図7および図8) 何れも
Each sample was collected from the mill pot and the DTA line
The results of creating the diagrams are shown in FIGS. (1) Sample 1 (FIG. 5) In the curve D representing the differential heat, Mg2NiHFourIs Mg2N
i and H2In addition to the peak point E which dissociates into2Is Mg and H
2There is a peak point F at which2Ni is H2 And join
In addition to the peak point I2There is a peak point J
Indicates that a large amount of single-phase Mg is present. (2) Sample 2 (Fig. 6) Mg2Ni and H2Of a single peak point where and bind or dissociate
Other MgH2 There is a peak point (refraction point) L where
Of Mg remains. (3) Sample 3 and Sample 4 (Figs. 7 and 8)

【数3】 で示される相変化だけが認められ、単相のMgの存在を
示す。ダブルピーク及至屈折点は全く見られない。 (4) 試料5(図9) ここにおいて再びMgH2からH2の解離を示すピーク点
S、同じく結合を示すピーク点Tが現れ、試料1に近い
状態となって単相のMgが少し残っていることを明らか
にした。
(Equation 3) Only the phase change indicated by is observed, indicating the presence of single-phase Mg. There are no double peaks and refraction points. (4) Sample 5 (FIG. 9) the peak point S again the dissociation from MgH 2 of H 2 wherein peak appears point T similarly showing the binding, little remains Mg single phase in a state close to the sample 1 Revealed that.

【0017】試料1から試料5まで全く同一の出発原料
であり粉砕ボールの直径が異なる他は全く同一条件のメ
カニカルアロイングであったが自由粉の割合に大きな差
があり、この差と合金化の進行との間にある相関関係が
あるように解釈されることも興味深いが、その理論的解
明は他日に譲る。合成粉砕加速度比Gを90としたと
き、別の実験データによれば少なくとも4時間の運転後
には完全に合金化が終り単相のMgが存在しないことが
確認できている。しかし粉砕ボールの直径を3〜5mmと
すればほぼ30分の運転で合金化が終る。図10は合成
粉砕加速度比Gを30とし12時間ミルポットを運転し
て得られた水素吸蔵合金のPCT線図であり、図11は
同じくDTA線図である。この場合でも粉砕ボールの直
径を3.9mmに統一してGを90、Rを1.9以下とし
て運転すれば12時間という所望時間が大幅に短縮され
ることは容易に類推できる。
Samples 1 to 5 were mechanically alloyed under exactly the same conditions except that the starting materials were the same and the diameters of the crushed balls were different, but there was a large difference in the proportion of free powder, and this difference and alloying It is interesting to interpret that there is a correlation with the progression of, but its theoretical elucidation will be given elsewhere. When the synthetic crushing acceleration ratio G is set to 90, it has been confirmed from another experimental data that alloying is completely completed and single-phase Mg does not exist after operation for at least 4 hours. However, if the diameter of the crushed balls is 3 to 5 mm, alloying will be completed in about 30 minutes of operation. FIG. 10 is a PCT diagram of a hydrogen storage alloy obtained by operating a mill pot for 12 hours with a synthetic crushing acceleration ratio G of 30, and FIG. 11 is a DTA diagram of the same. Even in this case, it can be easily analogized that the desired time of 12 hours can be greatly shortened if the diameter of the crushed balls is unified to 3.9 mm and the operation is performed with G of 90 and R of 1.9 or less.

【0018】[0018]

【発明の効果】本発明は以上に述べたとおり溶解による
ことなく水素吸蔵合金を製造し、かつ従来に比べて水素
化物へ有効迅速に相変化する合金だけを含み、その他の
単相金属を含まないきわめて合金化率の高い合金体を得
ることができる。従って水素との反応速度が速くその吸
蔵,放出能力は理論値の近くまで強化されている。その
ため従来から適用されてきた種々の用途に取付けた時に
は従来よりはるかに優れた結果をもたらすことが期待さ
れる。しかも非溶解法による製造方法の中でも、その合
金化の速度に着目して最良の条件の一つを見出し最も効
率の良い製造方法の一つをつきとめたので量産性,経済
性において従来のレベルを大幅に向上することができ
た。なお従来技術である溶解法によるよりも格段に製造
コストが低いうえ、高価なLaを使わない合金でも自由
に製造できるから、その点についても品質の向上ととも
に大きな経済的効果を得ることは言うまでもない。
As described above, the present invention produces a hydrogen storage alloy without melting, and contains only an alloy capable of effectively and rapidly changing its phase to a hydride as compared with the conventional one, and does not contain other single-phase metals. It is possible to obtain an alloy body having an extremely high alloying rate. Therefore, the reaction rate with hydrogen is fast, and its occluding and desorbing capacity is strengthened to near the theoretical value. Therefore, when it is attached to various applications which have been conventionally applied, it is expected that the result will be far superior to the conventional one. Moreover, among the manufacturing methods by non-melting method, focusing on the alloying speed, we found one of the best conditions and identified one of the most efficient manufacturing methods. I was able to improve significantly. It should be noted that the manufacturing cost is much lower than that of the melting method which is a conventional technique, and an alloy without using expensive La can be freely manufactured. In that respect, needless to say, a great economic effect can be obtained together with the improvement of quality. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法の実施に用いる遊星ボールミ
の縦断正面図である。
FIG. 1 is a planetary ball bearing used for carrying out the manufacturing method of the present invention.
It is a vertical sectional front view of Le.

【図2】同遊星ボールミルの運動の模式図である。FIG. 2 is a schematic diagram of movement of the planetary ball mill .

【図3】(イ),(ロ),(ハ)によってボールの運転
状態とミルの自転,公転の角速度相対的比率の関係を示
す。
3 (a), (b), and (c) show the relationship between the operating state of the ball and the relative angular velocity ratio of the rotation and revolution of the mill.

【図4】MgおよびMg2Niなどの水素解離圧と温度
との関係図である。
FIG. 4 is a relationship diagram between hydrogen dissociation pressure of Mg and Mg 2 Ni and temperature.

【図5】本発明の比較例のDTA線図である。FIG. 5 is a DTA diagram of a comparative example of the present invention.

【図6】本発明の比較例のDTA線図である。FIG. 6 is a DTA diagram of a comparative example of the present invention.

【図7】本発明の実施例のDTA線図である。FIG. 7 is a DTA diagram of an example of the present invention.

【図8】本発明の実施例のDTA線図である。FIG. 8 is a DTA diagram of the embodiment of the present invention.

【図9】本発明の比較例のDTA線図である。FIG. 9 is a DTA diagram of a comparative example of the present invention.

【図10】本発明の参考例のPCT線図である。FIG. 10 is a PCT diagram of a reference example of the present invention.

【図11】本発明の参考例のDTA線図である。FIG. 11 is a DTA diagram of a reference example of the present invention.

【図12】従来技術のPCT線図である。FIG. 12 is a prior art PCT diagram.

【図13】従来技術のDTA線図である。FIG. 13 is a prior art DTA diagram.

【符号の説明】[Explanation of symbols]

1 遊星ボールミル 2 雰囲気調整手段 7 太陽歯車 8 遊星歯車 21 ミルポット 22 主軸 41 真空ポンプ 51 Arガス充填ボンベ B 粉砕ボール 1 Planetary ball mill 2 Atmosphere adjusting means 7 Sun gear 8 Planetary gear 21 Mill pot 22 Spindle 41 Vacuum pump 51 Ar gas filled cylinder B Grinding ball

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高速ボールミルのミルポット内へ直径3
〜5mmの粉砕ボールを充填し、合金化して水素吸蔵合金
を形成し得る2以上の異種金属の粉末を加えて密封し、
ミルポット内を非酸化性雰囲気に調整したのち、重力加
速度の30倍以上の加速度をミルポット内に加えて、混
合,粉砕,分散を経て合金化率の高い水素吸蔵合金を形
成することを特徴とする水素吸蔵合金の製造方法。
1. A diameter of 3 mm into a mill pot of a high-speed ball mill.
Filling a crushed ball of ~ 5mm, adding two or more different metal powders that can alloy to form a hydrogen storage alloy, and seal,
After adjusting the inside of the mill pot to a non-oxidizing atmosphere, an acceleration of 30 times or more of the acceleration of gravity is applied to the inside of the mill pot to form a hydrogen storage alloy having a high alloying rate through mixing, pulverization and dispersion. Manufacturing method of hydrogen storage alloy.
【請求項2】 請求項1において非酸化性雰囲気が、A
rガス,Heガス,N2ガス の何れかをミルポット内へ
充填したことを特徴とする水素吸蔵合金の製造方法。
2. The non-oxidizing atmosphere according to claim 1, wherein A
A method for producing a hydrogen storage alloy, characterized in that a mill pot is filled with any one of r gas, He gas, and N 2 gas.
【請求項3】 請求項1又は2において、2以上の異種
金属はMg,Ca,La,ミッシュメタル,Tiの一群
から選んだ一種以上の金属と、Ni,Al,V,Cr,
Fe,Co,Zr,Cu,Mnの一群から選んだ一種以
上の金属とよりなることを特徴とする水素吸蔵合金の製
造方法。
3. The method according to claim 1, wherein the two or more different metals are one or more metals selected from the group consisting of Mg, Ca, La, Misch metal, and Ti, Ni, Al, V, Cr,
A method for producing a hydrogen storage alloy, comprising at least one metal selected from the group consisting of Fe, Co, Zr, Cu and Mn.
【請求項4】 請求項1における高速ボールミルとし
、非酸化性の雰囲気調整手段と着脱自在に連結するミ
ルポットを有し、主軸の回転によって公転するとともに
自己の回転軸を中心に自転する回分式遊星ボールミルを
使用し、かつ 【数1】 で表わされるミルポット内部へ加わる合成粉砕加速度比
Gが少なくとも30以上であり、かつ自公転角速度比率
Rが1.9以下の条件に限定して作動することを特徴と
する水素吸蔵合金製造方法。
4. A high speed ball mill according to claim 1.
In addition , a batch type planetary ball mill that has a mill pot that is detachably connected to a non-oxidizing atmosphere adjusting means and that revolves around the rotation of the main spindle and that rotates about its own rotation axis.
Used, and The method for producing a hydrogen storage alloy , characterized in that the synthetic crushing acceleration ratio G applied to the inside of the mill pot is at least 30 or more and the rotation and revolution angular velocity ratio R is limited to the condition of 1.9 or less .
JP3122055A 1991-04-23 1991-04-23 Method for producing hydrogen storage alloy Expired - Fee Related JP2560566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3122055A JP2560566B2 (en) 1991-04-23 1991-04-23 Method for producing hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3122055A JP2560566B2 (en) 1991-04-23 1991-04-23 Method for producing hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH04323334A JPH04323334A (en) 1992-11-12
JP2560566B2 true JP2560566B2 (en) 1996-12-04

Family

ID=14826503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3122055A Expired - Fee Related JP2560566B2 (en) 1991-04-23 1991-04-23 Method for producing hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2560566B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489571B1 (en) * 2013-02-26 2015-02-03 전북대학교산학협력단 Method for preparing metal-nitride composite powder using gas-solid reaction and metal-nitride composite powder prepared by the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560567B2 (en) * 1991-04-23 1996-12-04 株式会社栗本鐵工所 Method for producing hydrogen storage alloy
JP2560565B2 (en) * 1991-04-23 1996-12-04 株式会社栗本鐵工所 Method for producing hydrogen storage alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323333A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JPH04323335A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323333A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JPH04323335A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489571B1 (en) * 2013-02-26 2015-02-03 전북대학교산학협력단 Method for preparing metal-nitride composite powder using gas-solid reaction and metal-nitride composite powder prepared by the same

Also Published As

Publication number Publication date
JPH04323334A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
JP3824052B2 (en) Method for producing nanocrystalline metal hydride
CN101671788A (en) Method for nanocrystallization of magnesium-based hydrogen storage material
JP2560565B2 (en) Method for producing hydrogen storage alloy
JP4080055B2 (en) Method for producing amorphous magnesium nickel-based hydrogen storage alloy
JP4602926B2 (en) Method for producing alloy powder
JP2560566B2 (en) Method for producing hydrogen storage alloy
JP2560567B2 (en) Method for producing hydrogen storage alloy
US5837030A (en) Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures
JP2015145512A (en) Method for producing intermetallic compound particle and intermetallic compound particle
JPH05303966A (en) Hydrogen storage alloy electrode
US5338333A (en) Production of powdery intermetallic compound having very fine particle size
JP2005226114A (en) Method of producing hydrogen storage alloy powder, and hydrogen storage alloy powder obtained by the production method
JP4189447B2 (en) Mg-Ti hydrogen storage alloy and method for producing the same
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
EP1117500B8 (en) Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures
JP4086241B2 (en) Hydrogen storage alloy powder
JPS63143209A (en) Production of iva metal powder
JP2004292838A (en) Hydrogen storage alloy and manufacturing method
JPH11246923A (en) Hydrogen storage alloy and its production
JP3394088B2 (en) ZrNi-based hydrogen storage alloy and method for producing the same
JPH11106847A (en) Production of hydrogen storage alloy, alloy thereof and electrode using the alloy
JP2000096179A (en) Hydrogen storage alloy, hydrogen storage alloy electrode and production of hydrogen storage alloy
JPH04131308A (en) Manufacture of rare earth metal powder
JP2006144082A (en) Nitrogen storage alloy production method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees