JP4086241B2 - Hydrogen storage alloy powder - Google Patents

Hydrogen storage alloy powder Download PDF

Info

Publication number
JP4086241B2
JP4086241B2 JP2004035337A JP2004035337A JP4086241B2 JP 4086241 B2 JP4086241 B2 JP 4086241B2 JP 2004035337 A JP2004035337 A JP 2004035337A JP 2004035337 A JP2004035337 A JP 2004035337A JP 4086241 B2 JP4086241 B2 JP 4086241B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
alloy powder
storage alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004035337A
Other languages
Japanese (ja)
Other versions
JP2005226115A (en
Inventor
真丈 阿部
崇之 古梶
聡 内田
裕久 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP2004035337A priority Critical patent/JP4086241B2/en
Publication of JP2005226115A publication Critical patent/JP2005226115A/en
Application granted granted Critical
Publication of JP4086241B2 publication Critical patent/JP4086241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、表面がナノ構造化され、初期活性化性能及び水素吸蔵性能に優れる水素吸蔵合金粉末に関する。   The present invention relates to a hydrogen storage alloy powder having a nanostructured surface and excellent initial activation performance and hydrogen storage performance.

常温付近で水素ガスを可逆的に吸蔵ないし放出することができる水素吸蔵合金は、代替エネルギーである水素ガスを軽量で安全にかつ多量に貯蔵ないし輸送することを可能とする。また、この水素吸蔵合金は、この可逆反応を用いて、エネルギー媒体である水素ガスを、必要なときに熱、化学、機械および電気エネルギーに変換できるという幅広い機能をも有している。   A hydrogen storage alloy capable of reversibly occluding or releasing hydrogen gas at around room temperature makes it possible to store or transport a large amount of hydrogen gas, which is an alternative energy, in a lightweight and safe manner. The hydrogen storage alloy also has a wide function of being able to convert hydrogen gas, which is an energy medium, into heat, chemical, mechanical and electrical energy when necessary using this reversible reaction.

この水素吸蔵合金を製造する方法については、従来から種々の方法が検討されており、代表的な製造方法としては、溶解炉に原料の金属を投入して溶解させ、鋳型に鋳込んで凝固させて合金インゴットとし、かかる合金インゴットをクラッシャー等で機械的に粉砕して水素吸蔵合金の粉体を製造する鋳造法や、2種類以上の金属粉体をボールミル等の高エネルギーの混合攪拌装置等を用いて、金属粉体の混合粉砕を繰り返すことにより固相反応させ、固体状態のまま均一な合金粒子を製造する、メカニカルアロイング法が広く知られている。特に、製造法としてのメカニカルアロイング法は、機械的エネルギーを利用することにより2種類以上の金属粉体をその融点より低い温度で合金・粉末化することができるため、前記した鋳造法のように粉体を製造するための粉砕工程を設けたりする必要もないものである。   Various methods have been studied for producing this hydrogen storage alloy. As a typical production method, a raw material metal is introduced into a melting furnace to be melted, cast into a mold and solidified. A casting method in which the alloy ingot is mechanically pulverized with a crusher or the like to produce a hydrogen storage alloy powder, or a high energy mixing and stirring device such as a ball mill for two or more types of metal powder. A mechanical alloying method is widely known that uses a solid-phase reaction by repeating mixing and grinding of metal powder to produce uniform alloy particles in a solid state. In particular, the mechanical alloying method as a manufacturing method can alloy and powder two or more kinds of metal powders at a temperature lower than the melting point by utilizing mechanical energy. It is not necessary to provide a pulverization step for producing powder.

ところで、水素吸蔵合金の水素吸蔵反応は、水素分子を水素吸蔵合金の表面で物理的に吸着させた後、合金の表面で水素分子を水素原子に解離して化学的に吸着させ、当該水素原子を合金内部に溶解・拡散させる過程を経て、水素が合金内に吸蔵される。従って、水素吸蔵合金としては、合金の表面において水素分子の水素原子への解離及び化学的に吸着させるとともに、結晶構造の合金内部に効率的に溶解・拡散させることが必要とされている。   By the way, the hydrogen occlusion reaction of the hydrogen occlusion alloy is such that after hydrogen molecules are physically adsorbed on the surface of the hydrogen occlusion alloy, the hydrogen molecules are dissociated into hydrogen atoms and chemically adsorbed on the surface of the alloy. Through the process of dissolving and diffusing in the alloy, hydrogen is occluded in the alloy. Therefore, as a hydrogen storage alloy, it is necessary to dissociate hydrogen molecules into hydrogen atoms and chemically adsorb them on the surface of the alloy and to efficiently dissolve and diffuse them inside the crystal structure alloy.

このように、水素吸蔵合金は、内部構造を結晶構造として、当該結晶構造の隙間に水素を吸蔵するようにしているものであるが、このような結晶構造においては、合金の表面において、水素分子の水素原子への解離、及び当該水素原子の吸着を行うのが困難であった。また、このような水素分子の解離や、水素の吸蔵・放出を促進するために、水素吸蔵合金は、前処理である初期活性化処理が必須とされているものであった。   As described above, the hydrogen storage alloy has an internal structure as a crystal structure and stores hydrogen in the gaps of the crystal structure. In such a crystal structure, hydrogen molecules are formed on the surface of the alloy. It was difficult to dissociate hydrogen into hydrogen atoms and to adsorb the hydrogen atoms. Further, in order to promote such dissociation of hydrogen molecules and occlusion / release of hydrogen, the hydrogen storage alloy has been required to have an initial activation process as a pretreatment.

かかる初期活性化処理は、一般に、水素を高圧下において導入・排気する操作を数回繰り返し行うものであるが、これらの操作は複雑な工程及び操作や多大な時間を必要とするため、初期活性化処理による負荷をできるだけ軽減できる、初期活性化性能が向上された水素吸蔵合金が求められていた。そして、ボールミル等でメカニカルアロイング法を用いて得られた水素吸蔵合金は、水素との初期の反応性はよくなる傾向にあるが、その一方で、水素吸蔵合金の最大水素吸蔵量は、鋳造法を用いて製造されたものと比較すると若干劣るものとなってしまっていた。   Such initial activation treatment is generally performed by repeating the operation of introducing and exhausting hydrogen under high pressure several times. However, these operations require complicated steps and operations and require a lot of time. There has been a demand for a hydrogen storage alloy with improved initial activation performance that can reduce the load caused by the activation treatment as much as possible. And the hydrogen storage alloy obtained by using mechanical alloying method with a ball mill etc. tends to improve the initial reactivity with hydrogen, while the maximum hydrogen storage amount of the hydrogen storage alloy is Compared with the one manufactured using, it was slightly inferior.

一方、初期活性化性能と最大水素吸蔵量を向上させるためには、水素吸蔵合金の表面に対して第3成分の層を形成したり、水素吸蔵合金を処理液や緩衝液で表面処理する等により、水素吸蔵合金の表面を改質する手段が用いられている。   On the other hand, in order to improve the initial activation performance and the maximum hydrogen storage amount, a third component layer is formed on the surface of the hydrogen storage alloy, or the surface of the hydrogen storage alloy is treated with a treatment solution or a buffer solution. Thus, means for modifying the surface of the hydrogen storage alloy is used.

前者としては、例えば、母合金粒子の表面の少なくとも一部分に、水素吸蔵性能を有する合金の水素化物の層を形成した水素吸蔵合金や(例えば、特許文献1)。また、Mg(マグネシウム)、Ti(チタン)またはV(バナジウム)を含有した水素吸蔵合金を活性化するに際し、これらの金属と六方晶系窒化ホウ素とを機械的に混合して当該六方晶系窒化ホウ素を微細化して、表面状態を改質した水素吸蔵材料が提案されていた(例えば、特許文献2)。また、後者としては、例えば、水素吸蔵合金アルカリ溶液に浸漬攪拌した後、酸性水溶液または酸性緩衝液中に浸漬攪拌し、次いで水洗して得られる水素吸蔵合金が提供されていた(例えば、特許文献3)。   Examples of the former include a hydrogen storage alloy in which a layer of a hydride of an alloy having hydrogen storage performance is formed on at least a part of the surface of the mother alloy particles (for example, Patent Document 1). Further, when activating a hydrogen storage alloy containing Mg (magnesium), Ti (titanium) or V (vanadium), these metals and hexagonal boron nitride are mechanically mixed to produce the hexagonal nitriding. A hydrogen storage material in which the surface state is modified by refining boron has been proposed (for example, Patent Document 2). Moreover, as the latter, for example, a hydrogen storage alloy obtained by immersing and stirring in an alkali solution of a hydrogen storage alloy, then immersing and stirring in an acidic aqueous solution or acidic buffer, and then washing with water has been provided (for example, Patent Documents). 3).

特開平9−143503号公報(請求項1)JP-A-9-143503 (Claim 1) 特開2003−321703号公報(請求項1,図1)JP 2003-321703 A (Claim 1, FIG. 1) 特開10−158767号公報(請求項2,図1)Japanese Patent Laid-Open No. 10-158767 (Claim 2, FIG. 1)

しかしながら、水素吸蔵合金における初期活性化性能と最大水素吸蔵量の向上の両立は困難であり、水素吸蔵合金の表面に対して第3成分の層を形成する場合にあっては、表面の反応性は向上し、初期活性化性能に対して効果は見られたものの、水素吸蔵量の改善を図ることはできなかった。また、水素吸蔵合金を酸やアルカリの処理液や緩衝液で表面処理を施そうとする場合にあっては、前記の問題のほか、合金の構成成分が溶出してしまうといった問題も発生していた。   However, it is difficult to achieve both the initial activation performance and the maximum hydrogen storage capacity improvement in the hydrogen storage alloy. When the third component layer is formed on the surface of the hydrogen storage alloy, the surface reactivity is reduced. Although the effect on the initial activation performance was observed, the amount of hydrogen occlusion could not be improved. In addition, in the case where the hydrogen storage alloy is to be surface-treated with an acid or alkali treatment solution or a buffer solution, in addition to the above-described problems, there is a problem that the constituent components of the alloy are eluted. It was.

従って、本発明は、前記の課題に鑑みてなされたものであり、初期活性化性能が良好で、速やかに水素と反応するとともに、水素吸蔵性能に優れる水素吸蔵合金粉末を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a hydrogen storage alloy powder that has good initial activation performance, reacts quickly with hydrogen, and is excellent in hydrogen storage performance.

前記の課題を解決するために、本発明の水素吸蔵合金粉末は、配合比が1:1のTi(チタン)及びFe(鉄)から構成され、表面からの厚さ0.005〜0.01μmがナノ構造化されていることを特徴とするものである。
In order to solve the above problems, the hydrogen storage alloy powder of the present invention is composed of Ti (titanium) and Fe (iron) with a blending ratio of 1: 1, and has a thickness from the surface of 0.005 to 0.01 μm. Is characterized by being nanostructured.

ここで、「ナノ構造」とは、結晶領域と非結晶領域(非晶質相、短距離秩序を持つ準安定相)とからなり、これらが、数〜数10ナノメートル(ナノメートル(nm):10の−9乗メートル)スケールの超微細な領域で構成されている構造をいう。   Here, the “nanostructure” is composed of a crystalline region and an amorphous region (amorphous phase, metastable phase having short-range order), and these are several to several tens of nanometers (nanometer (nm)) : 10 −9 to the power of a meter) A structure composed of ultrafine regions on the scale.

この本発明の水素吸蔵合金粉末は、合金表面がナノ構造化されているため、合金表面が反応活性な状態となり、合金粉末と水素との反応性が飛躍的に促進される。すなわち、水素分子が水素吸蔵合金の表面で物理的に吸着させるとともに、合金表面で当該水素分子を水素原子に解離され、化学的に吸着させることを容易に行うことができ、初期活性化における負荷が軽減され、初期活性化性能に優れた水素吸蔵合金粉末となる。   In the hydrogen storage alloy powder of the present invention, since the alloy surface is nanostructured, the alloy surface becomes reactive and the reactivity between the alloy powder and hydrogen is dramatically promoted. That is, hydrogen molecules can be physically adsorbed on the surface of the hydrogen storage alloy, and the hydrogen molecules can be easily dissociated into hydrogen atoms and chemically adsorbed on the alloy surface. Is reduced, and the hydrogen storage alloy powder has excellent initial activation performance.

また、本発明の水素吸蔵合金粉末は、合金粉末内部は結晶構造を維持しているので、水素原子を水素吸蔵合金粉末内部に好適に溶解・拡散させ、多くの水素原子を合金内に吸蔵させることができるので、水素吸蔵量も大きい水素吸蔵合金粉末となる。   In addition, since the hydrogen storage alloy powder of the present invention maintains the crystal structure inside the alloy powder, hydrogen atoms are suitably dissolved and diffused inside the hydrogen storage alloy powder, and many hydrogen atoms are stored in the alloy. Therefore, the hydrogen storage alloy powder having a large hydrogen storage amount is obtained.

本発明の水素吸蔵合金粉末は、表面から厚さ0.005〜0.01μm(5〜10nm)までがナノ構造化されているため初期活性化性能と水素吸蔵性能をバランスよく兼ね備えた水素吸蔵合金粉末となる。
Hydrogen hydrogen absorbing alloy powder of the present invention, the thickness from the surface for up 0.005~0.01μm (5~10nm) is nanostructured, which combines good balance initial activation performance and hydrogen-absorbing performance It becomes a storage alloy powder.

本発明の水素吸蔵合金粉末は水素吸蔵量が1.2質量%以上であるため、水素吸蔵量が優れたものとなり、大量に水素を貯蔵する定置式水素貯蔵利用設備等の、Ti−Fe系(チタン−鉄系)の水素吸蔵合金粉末について大きな水素吸蔵量を必要とする用途に対して適用することができる。
Since the hydrogen storage alloy powder of the present invention has a hydrogen storage amount of 1.2% by mass or more, the hydrogen storage amount is excellent, and Ti-Fe such as a stationary hydrogen storage and utilization facility for storing a large amount of hydrogen. The hydrogen storage alloy powder of the system (titanium-iron system) can be applied to applications that require a large amount of hydrogen storage.

本発明の水素吸蔵合金粉末は、チタン(Ti)と鉄(Fe)から構成され、その表面がナノ構造化されているものであるが、水素吸蔵合金粉末の原料として用いられるTi(チタン)及びFe(鉄)からなる金属原料粉末平均粒径は、1〜500μm程度であればよく、10〜100μm程度が好ましい。
The hydrogen storage alloy powder of the present invention is composed of titanium (Ti) and iron (Fe) and the surface thereof is nanostructured. Ti (titanium) used as a raw material for the hydrogen storage alloy powder and the average particle diameter of the metal raw material powder composed of Fe (iron) may be about 1 to 500 [mu] m, about 10~100μm are preferred.

また、金属原料粉末としては、チタン(Ti)と鉄(Fe)とを合金化したTi−Fe系(チタン−鉄系)合金を使用する。金属原料粉末をかかる合金とすることにより、メカニカルアロイングにおいて金属原料粉末の合金化の負担を低減ないしは省略することができるため、後工程のボールミリング工程を簡略化し、製造コストを低減することができる。
Further, as the metal raw material powder, a Ti—Fe-based (titanium-iron-based) alloy obtained by alloying titanium (Ti) and iron (Fe) is used . By making the metal raw material powder into such an alloy, the burden of alloying the metal raw material powder can be reduced or omitted in mechanical alloying, which can simplify the subsequent ball milling process and reduce the manufacturing cost. it can.

ここで、Ti−Fe系合金としては、真空溶解炉により溶解されたチタン(Ti)及び鉄(Fe)原料を、鋳型に鋳込んで凝固させてTi−Fe系合金インゴットを機械的に粉砕したものや、チタン(Ti)と鉄(Fe)をアトマイズ処理して合金化したTiとFeのアトマイズ粉末を使用することができる。
アトマイズ処理としては、例えば、溶融金属に高圧ガスを吹き付けることにより合金・微粉化する高圧ガスアトマイズ処理や、数千〜数万回転/分の高速回転の円盤に、溶融金属等を落下させ、 吹き飛ばす方式で合金・微粉化するする回転ディスク式アトマイズ処理等、公知の手段を用いることができる。金属原料粉末としてかかるアトマイズ粉末を使用した場合の平均粒径は、1〜500μm程度であればよく、10〜250μm程度が好ましい。
Here, as the Ti-Fe alloy, titanium (Ti) and iron (Fe) raw materials melted in a vacuum melting furnace were cast into a mold and solidified to mechanically pulverize the Ti-Fe alloy ingot. An atomized powder of Ti and Fe obtained by alloying titanium (Ti) and iron (Fe) by atomization can be used.
Atomizing treatment includes, for example, a high pressure gas atomizing treatment in which high pressure gas is blown onto molten metal to form an alloy or fine powder, or a method in which molten metal or the like is dropped onto a disk rotating at a high speed of several thousand to several tens of thousands of revolutions / minute and blown off. Well-known means such as a rotating disk atomizing process for alloying and pulverizing can be used. The average particle diameter when such atomized powder is used as the metal raw material powder may be about 1 to 500 μm, and preferably about 10 to 250 μm.

また、金属原料粉末における両者の配合比は、Ti:Fe=40:60〜60:40とすればよく、45:55〜55:45とすることが好ましい。上記の配合比よりTiの比率が高くなると、水素を吸収しても、放出しにくくなる場合があり、逆にTiの比率が低くなると、水素を吸収しにくくなる場合があるため、ともに好ましくない。   Moreover, what is necessary is just to set the compounding ratio of both in metal raw material powder to Ti: Fe = 40: 60-60: 40, and it is preferable to set it as 45: 55-55: 45. If the ratio of Ti is higher than the above blend ratio, it may be difficult to release even if hydrogen is absorbed. Conversely, if the ratio of Ti is low, it may be difficult to absorb hydrogen. .

なお、本発明の製造方法で得られる水素吸蔵合金の金属原料粉末には、上記したTi及びFeのほか、本発明の目的や効果に影響を与えない範囲において、Pd、Mn、Al、Co、V、Cr、Mo、Ni、Zr、Nb及びBeよりなる群の中から選ばれる1種または2種以上の金属粉末を添加することができる。   In addition to Ti and Fe described above, the metal raw material powder of the hydrogen storage alloy obtained by the production method of the present invention includes Pd, Mn, Al, Co, as long as the objects and effects of the present invention are not affected. One or more metal powders selected from the group consisting of V, Cr, Mo, Ni, Zr, Nb, and Be can be added.

また、本発明の製造方法では、本発明の目的や効果に影響を与えない範囲において、前記の金属原料粉末に対して、熱処理、表面処理、酸洗処理等の前処理を施してもよい。   In the production method of the present invention, pretreatment such as heat treatment, surface treatment, and pickling treatment may be performed on the metal raw material powder as long as the object and effect of the present invention are not affected.

そして、本発明の水素吸蔵合金粉末は、前記したTiとFeを含む金属原料粉末を、ボールミリングを行って処理して、表面がナノ構造化されたものとする。
ここで、本発明の水素吸蔵合金粉末におけるナノ構造化された部分は、合金粉末の表面から0.005μm(5nm)以上がナノ構造化されることが好ましく、例えば、0.005〜0.01μm(5〜10nm)がナノ構造化されることが特に好ましい。ナノ構造化された部分がこのような範囲にあることにより、初期活性化性能と水素吸蔵性能をバランスよく兼ね備えた水素吸蔵合金粉末となるため好ましい。
なお、本発明の水素吸蔵合金粉末にあっては、合金粉末の表面全体がナノ構造化されていることが好ましいが、表面の一部がナノ構造化されたものであってもよい。
Then, the hydrogen storage alloy powder of the present invention is such that the metal raw material powder containing Ti and Fe is processed by ball milling to have a nanostructured surface.
Here, the nanostructured portion of the hydrogen storage alloy powder of the present invention is preferably nanostructured 0.005 μm (5 nm) or more from the surface of the alloy powder, for example, 0.005 to 0.01 μm. It is particularly preferred that (5-10 nm) is nanostructured. It is preferable that the nanostructured portion be in such a range because a hydrogen storage alloy powder having a good balance between initial activation performance and hydrogen storage performance is obtained.
In the hydrogen storage alloy powder of the present invention, the entire surface of the alloy powder is preferably nanostructured, but a part of the surface may be nanostructured.

ボールミリングとは、一般に、ボールミル機等によりにより金属原料粉末の混合粉砕を行う手法のことをいい、2種類以上の金属元素を含む金属原料粉末をボールミリングすることを、特に、メカニカルアロイング(MA)やメカニカルグライディング(MG)と呼ぶこともある。   Ball milling generally refers to a technique in which metal raw material powder is mixed and pulverized by a ball mill or the like, and ball milling of metal raw material powder containing two or more kinds of metal elements, particularly mechanical alloying ( MA) or mechanical gliding (MG).

このメカニカルアロイング法(以下、「MA法」と略することもある)とは、2種類以上の金属元素を含む金属原料粉末を、高エネルギーの混合攪拌装置等を用いて、当該金属原料粉末の混合粉砕を繰り返してボールミリングすることにより固相反応させ、固体状態のまま均一な合金粒子を粉末状で製造する方法である。
なお、本発明において、「メカニカルアロイング法」とは、もっぱら成分の混合粉砕と微粉化を目的とする「メカニカルグライディング(MG)法」の意味も含む。
This mechanical alloying method (hereinafter sometimes abbreviated as “MA method”) is a method of using a high-energy mixing stirrer or the like for a metal raw material powder containing two or more kinds of metal elements. Is a method of producing a uniform alloy particle in a solid state by solid-phase reaction by ball milling by repeated mixing and grinding.
In the present invention, the “mechanical alloying method” includes the meaning of “mechanical gliding (MG) method” exclusively for the purpose of mixing and pulverizing the components and pulverization.

なお、本発明の水素吸蔵合金を製造するに際し、金属原料粉末としてTi粉末とFe粉末の混合粉末を使用する場合にあっては、ボールミリングとしてのMA法による処理は、主として水素吸蔵合金粉末の表面のナノ構造化、合金化処理及び粉砕・微粉化処理の役割を果たす。一方、金属原料粉末として、Ti−Fe系合金粉末を使用する場合にあっては、MA法による処理は主として、水素吸蔵合金粉末の表面のナノ構造化、及び粉砕・微粉化処理の役割を果たす。   In the case of producing the hydrogen storage alloy of the present invention, when a mixed powder of Ti powder and Fe powder is used as the metal raw material powder, the treatment by the MA method as ball milling is mainly performed by the hydrogen storage alloy powder. It plays the role of surface nanostructuring, alloying treatment, and grinding / pulverization treatment. On the other hand, when Ti—Fe-based alloy powder is used as the metal raw material powder, the treatment by the MA method mainly plays the role of nano-structuring the surface of the hydrogen storage alloy powder and grinding / pulverization treatment. .

ボールミリングの手法(ボールミル法)の種類としては、回転ボールミル法、振動ボールミル法、遊星ボールミル法及び攪拌ボールミル法(アトライターとも呼ばれる)等があるが、本発明の製造方法では、回転ボールミル法、振動ボールミル法、遊星ボールミル法を用いることが好ましく、特に、回転ボールミル法、振動ボールミル法を用いることが好ましい。   Examples of the ball milling method (ball mill method) include a rotating ball mill method, a vibration ball mill method, a planetary ball mill method, and a stirring ball mill method (also referred to as an attritor). In the production method of the present invention, It is preferable to use the vibration ball mill method and the planetary ball mill method, and it is particularly preferable to use the rotating ball mill method and the vibration ball mill method.

回転ボールミル法は、金属原料粉末と混合粉砕用ボール(以下、単に「ボール」とすることもある)が入った容器を回転させて、当該原料粉末と容器およびボールとの衝突により、容器内の金属原料粉末を機械的に高エネルギーな状態で混合粉砕して合金化、または微粉化させる方法である。   In the rotating ball mill method, a container containing metal raw material powder and a ball for mixing and grinding (hereinafter sometimes simply referred to as “ball”) is rotated, and the collision between the raw material powder and the container and the ball causes In this method, the metal raw material powder is mechanically mixed and ground in a high energy state to be alloyed or pulverized.

また、振動ボールミル法とは、金属原料粉末と混合粉砕用ボールが入った筒状の容器を高速円振動により、当該原料粉末と容器内壁、及び当該原料粉末同士の激しい衝撃、摩擦の同時作用により短時間で微粉砕し、容器内の金属原料粉末を機械的に高エネルギーな状態で混合粉砕して合金化、または微粉化させる方法である。本発明の製造方法において、振動ボールミル法は、乾式、湿式のいずれにも使用可能である。   In addition, the vibration ball mill method means that a cylindrical container containing a metal raw material powder and a ball for mixing and grinding is subjected to high-speed circular vibration, and the simultaneous action of intense shock and friction between the raw material powder and the inner wall of the container and the raw material powder. This is a method of pulverizing in a short time, mixing and pulverizing the metal raw material powder in the container in a mechanically high energy state, and alloying or pulverizing. In the production method of the present invention, the vibration ball mill method can be used for both dry and wet processes.

そして、遊星ボールミル法は、金属原料粉末と混合粉砕用ボールが入った容器を架台の上に載せて、当該容器を回転させる(自転させる)とともに、当該容器を載せた架台を回転させる(公転させる)という2つの回転運動を行い、当該原料粉末と容器および混合粉砕用ボールとの衝突により、容器内の金属原料粉末を機械的に高エネルギーな状態で混合粉砕して合金化、または微粉化させる方法である。   In the planetary ball mill method, a container containing metal raw material powder and a ball for mixing and grinding is placed on a gantry and the container is rotated (rotated), and the gantry on which the container is placed is rotated (revolved). ), And the metal raw material powder in the container is mechanically mixed and pulverized in a high energy state to be alloyed or pulverized by collision of the raw material powder with the container and the ball for mixing and pulverizing. Is the method.

ボールミル法を用いる場合には、使用原料である金属原料粉末を混合粉砕用ボールとともに、容器(ポット)の中に入れて、容器を回転運動させる等の手段を用いて、金属原料粉末を混合粉砕する手段により水素吸蔵合金粉末を調製する。
本発明の水素吸蔵合金粉末を製造する場合にあって、使用される容器の形状は、円筒型、角筒型など種々の形状のものを使用できるが、円筒型のものを使用することが好ましい。
When using the ball mill method, the metal raw material powder, which is the raw material used, is mixed and ground in a container (pot) together with the ball for mixing and grinding, and the metal raw material powder is mixed and ground using means such as rotating the container. A hydrogen storage alloy powder is prepared by the following means.
In the case of producing the hydrogen storage alloy powder of the present invention, the shape of the container used can be various shapes such as a cylindrical shape and a rectangular tube shape, but it is preferable to use a cylindrical shape. .

また、容器の容量は、使用される金属原料粉末の量、混合粉砕用ボールのサイズや個数等によって適宜決定されるが、一般に、80〜500ml容程度であればよい。
更に、容器の材質は、ステンレス、クロム、タングステン、アルミナ、ジルコニア等とすることができ、特にステンレスとすることが好ましい。
The capacity of the container is appropriately determined depending on the amount of the metal raw material powder used, the size and number of balls for mixing and grinding, etc., but generally may be about 80 to 500 ml.
Further, the material of the container can be stainless steel, chromium, tungsten, alumina, zirconia, etc., and stainless steel is particularly preferable.

同様に、ボールミル法を実施するために使用される混合粉砕用ボールの材質は、ステンレス、クロム、タングステン、アルミナ、ジルコニア等とすることができ、特にステンレス等とすることが好ましい。   Similarly, the material of the balls for mixing and grinding used for carrying out the ball mill method can be stainless steel, chromium, tungsten, alumina, zirconia, etc., and particularly preferably stainless steel.

混合粉砕用ボールの大きさとしては、前記した使用される容器の容量等によって適宜決定されるが、表面がナノ構造化された水素吸蔵合金粉末を製造するにあっては、一般に、直径がφ10mm〜φ30mm程度のものを使用することが好ましい。
なお、MA法では複数個の混合粉砕用ボールが使用されることが通常であるが、本発明の水素吸蔵合金粉末を製造する場合にあっては、当該ボールの大きさはすべて同じものを使用してもよく、また、異なる大きさのものを使用してもよい。
The size of the ball for mixing and pulverizing is appropriately determined depending on the capacity of the container to be used as described above. Generally, when producing hydrogen storage alloy powder having a nanostructured surface, the diameter is generally φ10 mm. It is preferable to use one having a diameter of about ~ 30 mm.
In the MA method, a plurality of mixed and pulverized balls are usually used. However, when producing the hydrogen storage alloy powder of the present invention, all the balls have the same size. Alternatively, different sizes may be used.

また、混合粉砕用ボールの数量も、表面がナノ構造化された水素吸蔵合金粉末を製造するにあっては、1〜5個とすることが好ましい。容器の容量と、混合粉砕用ボールの大きさ及び数量の関係をかかる関係とすることにより、表面がナノ構造化された水素吸蔵合金粉末を好適に製造することができる。   Also, the number of balls for mixing and grinding is preferably 1 to 5 in order to produce hydrogen storage alloy powder having a nanostructured surface. By setting the relationship between the capacity of the container and the size and quantity of the balls for mixing and grinding as described above, a hydrogen storage alloy powder having a nanostructured surface can be preferably produced.

なお、本発明の水素吸蔵合金粉末を製造するにあたり、容器の容積と混合粉砕用ボールの大きさとの関係や、使用する金属原料粉末と、混合粉砕用ボールの合計重量との重量比については、製造する水素吸蔵合金粉末の量や、必要とされる合金粉末表面のナノ構造化された部分の程度等に応じて適宜決定すればよい。   In producing the hydrogen storage alloy powder of the present invention, the relationship between the volume of the container and the size of the ball for mixing and grinding, and the weight ratio between the metal raw material powder to be used and the total weight of the ball for mixing and grinding, What is necessary is just to determine suitably according to the quantity of the hydrogen storage alloy powder to manufacture, the grade of the nanostructured part of the alloy powder surface required, etc.

本発明の水素吸蔵合金粉末を製造するに際して、ボールミリングを行う場合における、容器の(遊星ボールミル法にあっては、加えて当該容器を載せる架台の)回転数は、ボールミル法として遊星ボールミル法を用いる場合には、容器の回転数(自転回転数)を200〜1050rpmとすることが好ましい。また、架台の回転数(公転回転数)を200〜700rpmとすることが好ましい(そして、容器の回転数:架台の回転数=1.5:1〜1:1となる)。回転数がこれらの範囲内である場合には、水素吸蔵合金粉末における合金化ないしは粉砕・微粉化及び表面のナノ構造化が効率よく進行し、初期活性化性能及び水素吸蔵性能を兼ね備えた水素吸蔵合金粉末を好適に得ることができるため好ましい。   When producing the hydrogen storage alloy powder of the present invention, when performing ball milling, the rotational speed of the container (in addition to the planetary ball mill method, in addition to the mount on which the container is placed) is determined by the planetary ball mill method as the ball mill method. When using, it is preferable that the rotation speed (autorotation rotation speed) of a container shall be 200-1050 rpm. Moreover, it is preferable that the rotation speed (revolution rotation speed) of the gantry is 200 to 700 rpm (and the rotation speed of the container: the rotation speed of the gantry = 1.5: 1 to 1: 1). When the rotational speed is within these ranges, the hydrogen storage alloy powder can be alloyed or pulverized / pulverized and the nanostructure of the surface can proceed efficiently, and the hydrogen storage performance combines initial activation performance and hydrogen storage performance. Since alloy powder can be obtained suitably, it is preferable.

更には、遊星ボールミル法を用いる場合における公転半径は、30〜300cm程度と
すればよく、50〜100cm程度とすることが好ましい。
Furthermore, the revolution radius in the case of using the planetary ball mill method may be about 30 to 300 cm, and preferably about 50 to 100 cm.

一方、本発明の水素吸蔵合金粉末を製造するにあたり、ボールミル法として回転ボール
ミル法を用いる場合にあっては、容器の回転数を200〜1050rpmとすることが好
ましい。回転数がこれらの範囲内である場合には、前記した遊星ボールミル法と同様に、
水素吸蔵合金粉末における合金化ないしは粉砕・微粉化及び表面のナノ構造化が効率よく
進行し、初期活性化性能及び水素吸蔵性能を兼ね備えた水素吸蔵合金粉末を好適に得るこ
とができるため好ましい。
On the other hand, when the rotating ball mill method is used as the ball mill method in producing the hydrogen storage alloy powder of the present invention, the rotational speed of the container is preferably 200 to 1050 rpm. When the rotational speed is within these ranges, as in the planetary ball mill method described above,
Alloying or crushing / pulverization and surface nano-structuring of the hydrogen storage alloy powder proceed efficiently, and a hydrogen storage alloy powder having both initial activation performance and hydrogen storage performance can be suitably obtained.

本発明の水素吸蔵合金粉末を製造する場合におけるミリング時間は、使用されるボールミル法の種類、金属原料粉末の量、混合粉砕用ボールのサイズや個数、容器の容量等によって適宜決定されるが、金属原料粉末として、Ti−Fe系合金粉末を使用する場合にあっては、1.5〜時間程度とすればよい。ミリング時間をこの範囲にしてボールミリングを行えば、水素吸蔵合金粉末における合金化ないしは粉砕・微粉化及び表面のナノ構造化が効率よく進行し、初期活性化性能及び水素吸蔵性能を兼ね備えた水素吸蔵合金粉末を好適に得ることができるため好ましい。 Milling time in the case of producing a hydrogen-absorbing alloy powder of the present invention, the type of ball mill method to be used, the amount of metal raw material powder, the size and number of mixing and grinding balls is suitably determined by the capacity of the container or the like, as metallic material powder, in the case of using a Ti-Fe-based alloy powder may be set to about two hours 1.5. If ball milling is performed within this range, alloying or pulverization / pulverization of the hydrogen storage alloy powder and nano-structure of the surface proceed efficiently, and hydrogen storage that combines initial activation performance and hydrogen storage performance. Since alloy powder can be obtained suitably, it is preferable.

これに対して、ミリング時間が前記した範囲より短いと、合金粉末の表面のナノ構造化が進まず、初期活性化性能が良好でない水素吸蔵合金粉末となってしまう場合があり、一方、ミリング時間が前記した範囲を越えると、ナノ構造化が表面から内部にわたって過度に進行してしまい、合金粉末の水素吸蔵性能に悪影響を与える場合がある。   On the other hand, when the milling time is shorter than the above-mentioned range, the nanostructure of the surface of the alloy powder does not progress, and the initial activation performance may not be good, resulting in a hydrogen storage alloy powder. However, when the above range is exceeded, nanostructuring may proceed excessively from the surface to the inside, which may adversely affect the hydrogen storage performance of the alloy powder.

本発明の水素吸蔵合金粉末を製造するにあたっては、前記した容器内の雰囲気を、アルゴン、窒素、ヘリウム等の不活性ガス雰囲気または水素ガス雰囲気とすることが好ましく、特にアルゴンガス雰囲気の状態とすることが好ましい。容器内の雰囲気をかかる状態にすることにより、金属原料粉末の酸化を防止することができる。   In producing the hydrogen storage alloy powder of the present invention, the atmosphere in the container described above is preferably an inert gas atmosphere such as argon, nitrogen, helium or the like, or a hydrogen gas atmosphere, and particularly an argon gas atmosphere. It is preferable. By setting the atmosphere in the container to such a state, oxidation of the metal raw material powder can be prevented.

本発明の水素吸蔵合金粉末の平均粒径は、1〜500μm程度となる。ここで、水素吸蔵合金粉末の平均粒径は、当該合金の水素吸蔵性能及び製造コストに大きく関係する。すなわち、水素ガスの吸蔵ないし放出反応は水素吸蔵合金粉末の表面で起こることから、水素吸蔵合金の平均粒径を小さくすることにより、単位重量当たりの表面積を大きくさせて当該反応を起こり易くすることができ、反応速度を速くすることを可能とする。しかも、平均粒径が小さいため微粉化しづらくなるため、繰り返し使用にも効果的となるという利点もある。その一方、平均粒径を小さくするためには、製造時に非常に大きな機械的エネルギーを必要とするので製造コストが大きくなり、しかも平均粒径が小さいと粒径分布が大きくなってしまうため、分級工程を必要としてしまう場合もあり、これも製造コストを大きくする原因となってしまう。
一方、本発明の水素吸蔵合金粉末は、平均粒径が前記したような1〜500μm程度であるため、水素吸蔵性能及び製造コストをバランスよく兼ね備えた水素吸蔵合金粉末となる。
The average particle diameter of the hydrogen storage alloy powder of the present invention is about 1 to 500 μm. Here, the average particle size of the hydrogen storage alloy powder is greatly related to the hydrogen storage performance and production cost of the alloy. That is, since the hydrogen gas storage or release reaction occurs on the surface of the hydrogen storage alloy powder, by reducing the average particle size of the hydrogen storage alloy, the surface area per unit weight is increased to facilitate the reaction. It is possible to increase the reaction rate. In addition, since the average particle size is small, it is difficult to pulverize, so there is an advantage that it is effective for repeated use. On the other hand, in order to reduce the average particle size, a very large mechanical energy is required at the time of manufacture, which increases the manufacturing cost, and if the average particle size is small, the particle size distribution becomes large. In some cases, a process is required, which also increases the manufacturing cost.
On the other hand, since the hydrogen storage alloy powder of the present invention has an average particle diameter of about 1 to 500 μm as described above, it becomes a hydrogen storage alloy powder having a good balance between hydrogen storage performance and manufacturing cost.

前記のようにして得られた本発明の水素吸蔵合金粉末は、合金表面がナノ構造化されているため、合金表面が反応活性な状態となり、合金粉末と水素との反応性が飛躍的に促進される。すなわち、水素分子が水素吸蔵合金粉末の表面で物理的に吸着させるとともに、合金表面で当該水素分子を水素原子に解離され、化学的に吸着させることを容易に行うことができる。従って、初期活性化における負荷が軽減され、初期活性化性能に優れた水素吸蔵合金粉末となる。   The hydrogen storage alloy powder of the present invention obtained as described above has a nanostructured alloy surface, so that the alloy surface becomes reactive and the reactivity between the alloy powder and hydrogen is greatly accelerated. Is done. That is, hydrogen molecules can be physically adsorbed on the surface of the hydrogen storage alloy powder, and the hydrogen molecules can be easily dissociated into hydrogen atoms and chemically adsorbed on the alloy surface. Therefore, the load in initial activation is reduced, and the hydrogen storage alloy powder is excellent in initial activation performance.

また、この水素吸蔵合金粉末は、合金粉末内部は結晶構造を維持しているので、水素原子を水素吸蔵合金粉末内部に好適に溶解・拡散させ、多くの水素原子を合金内に吸蔵させることができるので、水素吸蔵量も大きい水素吸蔵合金粉末となる。   In addition, since this hydrogen storage alloy powder maintains the crystal structure inside the alloy powder, it is possible to suitably dissolve and diffuse hydrogen atoms in the hydrogen storage alloy powder, and to store many hydrogen atoms in the alloy. Therefore, a hydrogen storage alloy powder having a large hydrogen storage capacity is obtained.

ここで、水素吸蔵合金粉末に対する初期活性化処理とは、一般に、高温度や高真空に一定時間保持したり、水素を吸収しやすい温度で長時間高圧力の水素雰囲気下で保持するような処理が施されるが、本発明の水素吸蔵合金粉末にあっては、例えば、300℃程度の熱処理を2時間程度の処理を施せばよい。   Here, the initial activation treatment for the hydrogen storage alloy powder is generally a treatment such as holding at a high temperature or high vacuum for a certain period of time, or holding in a high pressure hydrogen atmosphere for a long time at a temperature at which hydrogen is easily absorbed. However, in the hydrogen storage alloy powder of the present invention, for example, a heat treatment at about 300 ° C. may be performed for about 2 hours.

また、本発明の水素吸蔵合金粉末に対して水素を吸着させるには、例えば、水素雰囲気に満たした密閉容器内で水素吸蔵合金粉末を保持するようにすればよい。   In order to adsorb hydrogen to the hydrogen storage alloy powder of the present invention, for example, the hydrogen storage alloy powder may be held in a sealed container filled with a hydrogen atmosphere.

また、前記のようにして得られた本発明の水素吸蔵合金粉末を、図1及び図2を用いて更に説明する。
図1は、本発明の水素吸蔵合金粉末の構造を示した模式図であり、また、図2は、図1の水素吸蔵合金粉末表面における水素分子の解離状態を示した模式図である。
ここで、図1及び図2中、1は水素吸蔵合金粉末、2は表面部、3は内部、4は水素原子、5は水素分子である。
本発明の水素吸蔵合金粉末は、その表面部2がナノ構造、内部3が結晶構造となって形成されている。また、ナノ構造となる表面部2は、例えば、厚さが0.005〜0.01μm(5〜10nm)程度である。
Further, the hydrogen storage alloy powder of the present invention obtained as described above will be further described with reference to FIGS.
FIG. 1 is a schematic view showing the structure of the hydrogen storage alloy powder of the present invention, and FIG. 2 is a schematic view showing the dissociation state of hydrogen molecules on the surface of the hydrogen storage alloy powder of FIG.
Here, in FIG.1 and FIG.2, 1 is hydrogen storage alloy powder, 2 is a surface part, 3 is an inside, 4 is a hydrogen atom, 5 is a hydrogen molecule.
The hydrogen storage alloy powder of the present invention is formed such that the surface portion 2 has a nanostructure and the interior 3 has a crystal structure. Moreover, the surface part 2 used as nanostructure is about 0.005-0.01 micrometer (5-10 nm) thickness, for example.

このように、表面部2をナノ構造、内部3を結晶構造とした本発明の水素吸蔵合金粉末1は、図2に示すように、水素分子5が物理的に吸着した場合にあっては、当該水素分子5が水素原子4に解離しやすく、また、解離した水素原子4による化学的吸着も容易に起こることになる。   Thus, the hydrogen storage alloy powder 1 of the present invention having the surface portion 2 having a nanostructure and the inside 3 having a crystal structure, as shown in FIG. 2, when hydrogen molecules 5 are physically adsorbed, The hydrogen molecules 5 are easily dissociated into hydrogen atoms 4, and chemical adsorption by the dissociated hydrogen atoms 4 easily occurs.

これは、表面部2がナノ構造、つまり、結晶領域と非結晶領域とからなり、これらが、数〜数10ナノメートルスケールの超微細な領域で構成されている構造であるため、反応活性に富んだ状態となっているためであり、詳しくは、合金粉末1の表面部2の結晶をナノ構造化することで、合金粉末1の表面部2および結晶粒界の比表面積を増やすことができ、また、それらの界面は化学的に非常に活性な状態となっているため、水素分子5が水素原子4に解離して、金属内部に侵入しやすくなるためである。   This is because the surface portion 2 is composed of a nanostructure, that is, a crystalline region and an amorphous region, and these are composed of ultrafine regions on the order of several to several tens of nanometers. Specifically, the specific surface area of the surface portion 2 of the alloy powder 1 and the grain boundary can be increased by nano-structuring the crystal of the surface portion 2 of the alloy powder 1. In addition, these interfaces are in a chemically very active state, so that the hydrogen molecules 5 dissociate into hydrogen atoms 4 and easily enter the metal.

一方、合金粉末1の表面で化学的に吸着された水素原子4は、合金粉末1の内部3に導入されていくことになるが、内部3は結晶構造であるため、水素原子4の溶解ないし拡散が好適に行われることになる。本発明の水素吸蔵合金粉末1はこのような特定の構造をとるため、水素分子5の解離や、水素原子4の吸蔵・放出が簡便に行われ、初期活性化性能及び水素吸蔵性能が向上された水素吸蔵合金粉末1を提供することができる。   On the other hand, the hydrogen atoms 4 chemically adsorbed on the surface of the alloy powder 1 are introduced into the interior 3 of the alloy powder 1, but since the interior 3 has a crystal structure, Diffusion is preferably performed. Since the hydrogen storage alloy powder 1 of the present invention has such a specific structure, dissociation of the hydrogen molecules 5 and storage / release of the hydrogen atoms 4 can be easily performed, and the initial activation performance and the hydrogen storage performance are improved. The hydrogen storage alloy powder 1 can be provided.

そして、本発明の水素吸蔵合金粉末は、前記のような構成であるため、1.2〜1.6量%、あるいはそれ以上の水素吸蔵量とすることができる。従って、このような水素吸蔵量の大きい水素吸蔵合金粉末は、大量に水素を貯蔵する定置式水素貯蔵利用設備等の、Ti−Fe系の水素吸蔵合金粉末について大きな水素吸蔵量を必要とする用途に対しても、好適に使用することができる。   And since the hydrogen storage alloy powder of this invention is the above structures, it can be set as 1.2-1.6 mass% or more hydrogen storage amount. Accordingly, such a hydrogen storage alloy powder having a large hydrogen storage amount is used for a stationary hydrogen storage and utilization facility for storing a large amount of hydrogen, etc., which requires a large hydrogen storage amount for the Ti-Fe-based hydrogen storage alloy powder. Also, it can be suitably used.

次に、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら制約されるものではない。   EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

[実施例1:水素吸蔵合金粉末の製造]
(1)金属原料粉末の調製
真空溶解炉に原料の金属を投入して溶解させて、鋳型に鋳込んで凝固させてTi−Fe合金インゴット(TiとFeの配合比/1:1)とした後、当該合金インゴットを市販のハンマーで粉砕して、粒径が5mm以下の金属原料粉末(総量70g)を得た。
[Example 1: Production of hydrogen storage alloy powder]
(1) Preparation of metal raw material powder The raw material metal was charged into a vacuum melting furnace, melted, cast into a mold and solidified to obtain a Ti-Fe alloy ingot (mixing ratio of Ti and Fe / 1: 1). Thereafter, the alloy ingot was pulverized with a commercially available hammer to obtain a metal raw material powder (total amount 70 g) having a particle size of 5 mm or less.

(2)ボールミリング工程:
この金属原料粉末を、試験装置として独フリッチェ製遊星型ボールミル(品番:P−5)を用い、容量が250mlの容器(内径:φ75mm、外部高さ102mm(内部高さ70mm))に、φ25mmの混合粉砕用ステンレス製ボールを4個入れて、容器内を不活性ガスとしてアルゴンガスを充填して、容器内をアルゴンガス雰囲気とした後、蓋をして密閉状態とした。
(2) Ball milling process:
This metal raw material powder was used as a test apparatus using a planetary ball mill (product number: P-5) manufactured by Fritzche, Germany, in a 250 ml container (inner diameter: φ75 mm, external height 102 mm (internal height 70 mm)), φ25 mm. Four stainless steel balls for mixing and pulverization were placed, and the inside of the container was filled with an argon gas as an inert gas. The inside of the container was filled with an argon gas atmosphere, and then the container was covered and sealed.

そして、この容器を遊星ボールミル試験装置の架台に載せ、容器の回転数(自転回転数)を430rpm(回転方向:右方向)、架台の回転数(公転回転数)を200rpm(回転方向:左方向)、公転半径を30cmとして、ミリング時間を2時間としてボールミリングを行い、平均粒径が10μmのTi−Fe系水素吸蔵合金粉末を製造した。   Then, this container is placed on the gantry of the planetary ball mill test device, the rotation speed (rotational speed) of the container is 430 rpm (rotation direction: right direction), and the rotation speed (revolution speed) of the gantry is 200 rpm (rotation direction: left direction) ), Ball milling was performed with a revolution radius of 30 cm and a milling time of 2 hours to produce a Ti—Fe-based hydrogen storage alloy powder having an average particle size of 10 μm.

[試験例1:合金粉末表面におけるナノ構造形成の確認]
前記した実施例1で得られた水素吸蔵合金粉末を観察して、表面のナノ構造の形成状態を確認した。水素吸蔵合金粉末の表面からのナノ構造の厚さを確認したところ、0.005〜0.01μmの厚さであった。
[Test Example 1: Confirmation of nanostructure formation on alloy powder surface]
The hydrogen storage alloy powder obtained in Example 1 was observed to confirm the formation state of the surface nanostructures. When the thickness of the nanostructure from the surface of the hydrogen storage alloy powder was confirmed, it was 0.005-0.01 micrometer.

[試験例2:水素吸蔵性能の評価]
実施例1で得られた水素吸蔵合金粉末を、下記の条件で活性化処理した後、温度を20℃、圧力を3.2MPaとして水素加圧を行って、水素と反応させることにより合金粉末に対して水素を吸蔵させ、加圧時間と水素吸蔵量との関係、及び最大水素吸蔵量を比較・評価した。また、前記した実施例1で使用した金属原料粉末をそのまま使用したもの((2)ボールミリングを行わないもの)に対して水素加圧を行ったものを参考例、及び参考例の金属原料粉末を下記の条件で活性化処理を行った後水素加圧を行ったものを比較例1として、同様に評価した。水素加圧時間と水素吸蔵量との関係を示したグラフを図1に、また、それぞれの最大水素吸蔵量を表1に示す。
[Test Example 2: Evaluation of hydrogen storage performance]
After activating the hydrogen storage alloy powder obtained in Example 1 under the following conditions, hydrogen pressure was applied at a temperature of 20 ° C. and a pressure of 3.2 MPa to react with hydrogen to obtain an alloy powder. On the other hand, hydrogen was occluded, and the relationship between the pressurization time and the hydrogen occlusion amount, and the maximum hydrogen occlusion amount were compared and evaluated. Moreover, what carried out hydrogen pressurization with respect to what used the metal raw material powder used in above-mentioned Example 1 as it is ((2) thing which does not perform ball milling) Reference example, and the metal raw material powder of a reference example In the same manner, Comparative Example 1 was subjected to the activation treatment under the following conditions and then pressurized with hydrogen. A graph showing the relationship between the hydrogen pressurization time and the hydrogen storage amount is shown in FIG. 1, and the maximum hydrogen storage amount of each is shown in Table 1.

( 活性化処理条件 )
対象となる水素吸蔵合金粉末を常温で真空引きした後、温度を300℃、圧力を0.5MPaとして水素ガスを導入して2時間加圧した。2時間後、加圧を止め、常温になるまで空冷した後、開放状態とした。
(Activation processing conditions)
The target hydrogen storage alloy powder was evacuated at room temperature, and then hydrogen gas was introduced at a temperature of 300 ° C. and a pressure of 0.5 MPa, followed by pressurization for 2 hours. After 2 hours, the pressurization was stopped, the air was cooled to room temperature, and then opened.

( 最大水素吸蔵量 )

Figure 0004086241
(Maximum hydrogen storage capacity)
Figure 0004086241

図3に示すように、実施例1の水素吸蔵合金粉末は、水素による加圧直後から大きな水素吸蔵量を示し、また、水素吸蔵量も大きかった。
なお、金属原料粉末に対してボールミリングを行わなかった合金粉末は、活性化処理を実施して水素加圧を行ってもほとんど水素を吸蔵せず(比較例1)、また、金属原料粉末に対してボールミリングを行なわず、また、活性化処理もしない鋳塊のままの合金粉末も、水素加圧を行っても同様に水素を吸蔵しなかった(参考例)。
As shown in FIG. 3, the hydrogen storage alloy powder of Example 1 showed a large hydrogen storage amount immediately after being pressurized with hydrogen, and the hydrogen storage amount was also large.
In addition, the alloy powder that was not ball milled on the metal raw material powder hardly absorbs hydrogen even after the activation treatment and hydrogen pressurization (Comparative Example 1). On the other hand, as-cast alloy powders that were not ball milled and not activated did not occlude hydrogen even when hydrogen pressure was applied (reference example).

そして、水素吸蔵量を比べると、表1に示すように、実施例1の水素吸蔵合金粉末は、1.2質量%を超える優れたものであり、大量に水素を貯蔵する定置式水素貯蔵利用設備等の、Ti−Fe系の水素吸蔵合金粉末について大きな水素吸蔵量を必要とする用途に対して適用が期待できる。   And when comparing the hydrogen storage amount, as shown in Table 1, the hydrogen storage alloy powder of Example 1 is superior to 1.2 mass%, and is used for stationary hydrogen storage for storing a large amount of hydrogen. The application of the Ti-Fe-based hydrogen storage alloy powder, such as equipment, can be expected for applications that require a large amount of hydrogen storage.

本発明の水素吸蔵合金粉末は、例えば、大量に水素を貯蔵する定置式水素貯蔵利用設備
等に用いられる水素吸蔵合金粉末として有効である。
The hydrogen storage alloy powder of the present invention is effective, for example, as a hydrogen storage alloy powder used in stationary hydrogen storage and utilization facilities that store hydrogen in large quantities.

本発明の水素吸蔵合金粉末の構造を示した模式図である。It is the schematic diagram which showed the structure of the hydrogen storage alloy powder of this invention. 本発明の水素吸蔵合金粉末の表面における水素分子の解離状態を示した模式図である。It is the schematic diagram which showed the dissociation state of the hydrogen molecule in the surface of the hydrogen storage alloy powder of this invention. 水素加圧時間と水素吸蔵量との関係を示したグラフである。It is the graph which showed the relationship between hydrogen pressurization time and hydrogen storage amount.

符号の説明Explanation of symbols

1 … 水素吸蔵合金粉末
2 … 表面部
3 … 内部
4 … 水素原子
5 … 水素分子
DESCRIPTION OF SYMBOLS 1 ... Hydrogen storage alloy powder 2 ... Surface part 3 ... Inside 4 ... Hydrogen atom 5 ... Hydrogen molecule

Claims (1)

配合比が1:1のTi(チタン)及びFe(鉄)から構成され、表面からの厚さ0.005〜0.01μmがナノ構造化されていることを特徴とする水素吸蔵合金粉末。
A hydrogen storage alloy powder characterized in that it is composed of Ti (titanium) and Fe (iron) with a blending ratio of 1: 1, and has a thickness of 0.005 to 0.01 μm from the surface and is nanostructured.
JP2004035337A 2004-02-12 2004-02-12 Hydrogen storage alloy powder Expired - Lifetime JP4086241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035337A JP4086241B2 (en) 2004-02-12 2004-02-12 Hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035337A JP4086241B2 (en) 2004-02-12 2004-02-12 Hydrogen storage alloy powder

Publications (2)

Publication Number Publication Date
JP2005226115A JP2005226115A (en) 2005-08-25
JP4086241B2 true JP4086241B2 (en) 2008-05-14

Family

ID=35001063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035337A Expired - Lifetime JP4086241B2 (en) 2004-02-12 2004-02-12 Hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP4086241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627604A (en) * 2014-12-01 2016-06-01 北京有色金属研究总院 Composite hydrogen absorption material for high-temperature solar evacuated collector tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682184B2 (en) * 2010-09-06 2015-03-11 コニカミノルタ株式会社 Fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107055A (en) * 2001-09-28 2003-04-09 Kansai Research Institute Method for monitoring amount of hydrogen storage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627604A (en) * 2014-12-01 2016-06-01 北京有色金属研究总院 Composite hydrogen absorption material for high-temperature solar evacuated collector tube
CN105627604B (en) * 2014-12-01 2018-03-27 北京有色金属研究总院 A kind of effective compound hydrogen-absorbing material of high temperature solar vacuum heat-collecting

Also Published As

Publication number Publication date
JP2005226115A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
El-Eskandarany Mechanical alloying: nanotechnology, materials science and powder metallurgy
US6387152B1 (en) Process for manufacturing nanocrystalline metal hydrides
JP2008266781A (en) METHOD FOR MANUFACTURING Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER AND Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER OBTAINED BY THE MANUFACTURING METHOD
El-Eskandarany et al. Superior catalytic effect of nanocrystalline big-cube Zr2Ni metastable phase for improving the hydrogen sorption/desorption kinetics and cyclability of MgH2 powders
JP4602926B2 (en) Method for producing alloy powder
JP4986101B2 (en) Hydrogen storage material and method for producing the same
Patel et al. Just shake or stir. About the simplest solution for the activation and hydrogenation of an FeTi hydrogen storage alloy
JP2006152376A (en) Nano transition metal particle, its production method, and hydrogen absorption composite material composited with nano transition metal particle
EP0510918B1 (en) A method and apparatus for producing a hydrogen absorption alloy
JPH11269572A (en) Production of amorphous magnesium-nickel base hydrogen storage alloy
JP2005535785A (en) Reactive grinding method for producing hydrogen storage alloys
JP5394273B2 (en) Hydrogen storage material and method for producing the same
JP4086241B2 (en) Hydrogen storage alloy powder
JP2011137207A (en) Hydrogen storage material and method for producing the same
JP2005226114A (en) Method of producing hydrogen storage alloy powder, and hydrogen storage alloy powder obtained by the production method
JP2004283694A (en) Hydrogen storing material powder and manufacturing method therefor
JP2004232073A (en) Method of producing hydrogen storage alloy, and hydrogen storage alloy obtained by the production method
JP2005095869A (en) Hydrogen storing material and its production method
JP4189447B2 (en) Mg-Ti hydrogen storage alloy and method for producing the same
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
JP2004059961A (en) Hydrogen occluding alloy and its producing method
JP2560567B2 (en) Method for producing hydrogen storage alloy
JP2560566B2 (en) Method for producing hydrogen storage alloy
Hadef et al. Mechanical alloying/milling
JP2005186058A (en) Magnesium-based hydrogen occluding material and lithium-based hydrogen occluding material

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4086241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term