JP2005095869A - Hydrogen storing material and its production method - Google Patents

Hydrogen storing material and its production method Download PDF

Info

Publication number
JP2005095869A
JP2005095869A JP2004232091A JP2004232091A JP2005095869A JP 2005095869 A JP2005095869 A JP 2005095869A JP 2004232091 A JP2004232091 A JP 2004232091A JP 2004232091 A JP2004232091 A JP 2004232091A JP 2005095869 A JP2005095869 A JP 2005095869A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage material
fine powder
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232091A
Other languages
Japanese (ja)
Inventor
Hironobu Fujii
博信 藤井
Takayuki Ichikawa
貴之 市川
Nobuko Hanada
信子 花田
Shigeto Isobe
繁人 礒部
Toyoyuki Kubokawa
豊之 窪川
Kazuhiko Tokiyoda
和彦 常世田
Keisuke Okamoto
恵介 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Taiheiyo Cement Corp
Original Assignee
Hiroshima University NUC
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Taiheiyo Cement Corp filed Critical Hiroshima University NUC
Priority to JP2004232091A priority Critical patent/JP2005095869A/en
Publication of JP2005095869A publication Critical patent/JP2005095869A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storing material which uses a lightweight non-metallic compound, has high performance and can act at low temperature and to provide its production method. <P>SOLUTION: The hydrogen storing material contains at least a nano- structured / organized lithium imide compound precursor complex. The nano- structured / organized lithium imide compound precursor complex is produced by treating a mixture obtained by adding fine powdery lithium hydride to fine powdery lithium amide at a prescribed rate as a starting raw material by a prescribed composite treating method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は燃料電池等の原料となる水素を効率よく貯蔵する水素貯蔵材料およびその製造方法に関する。   The present invention relates to a hydrogen storage material that efficiently stores hydrogen as a raw material for fuel cells and the like, and a method for producing the same.

クリーンなエネルギー源として燃料電池の開発が盛んであり、既に幾つかの実用化がなされている。燃料電池技術を支える重要な技術として、燃料電池の原料となる水素を貯蔵する技術がある。水素の貯蔵形態としては高圧ボンベによる圧縮貯蔵や液体水素としての冷却貯蔵も提案されているが、分散貯蔵・輸送に有利な水素貯蔵物質による貯蔵が注目されている。   Fuel cells have been actively developed as a clean energy source, and have already been put into practical use. As an important technology that supports fuel cell technology, there is a technology for storing hydrogen as a raw material for fuel cells. As storage forms of hydrogen, compression storage by high-pressure cylinders and cooling storage as liquid hydrogen have been proposed, but storage by a hydrogen storage material that is advantageous for distributed storage and transport has attracted attention.

水素貯蔵物質としては、希土類系、チタン系、バナジウム系、マグネシウム系等を中心とする金属材料、可逆的な不均化反応を利用したアラネート(例えば、NaAlH等)等の軽量元素無機化合物系材料、カーボンナノチューブ、活性炭等の炭素系材料が知られている。このうち、軽量元素無機化合物系材料と炭素系材料が軽量材料として有望であり、このような軽量材料による効率のよい貯蔵技術の開発、具体的には、単位重量当たりの水素貯蔵率の高い水素貯蔵材料の開発、単位体積当たりの水素貯蔵率の高い水素貯蔵材料の開発、低い温度領域で水素の吸収・放出性能を示す水素貯蔵材料の開発、良好な耐久性を有する水素貯蔵材料の開発、が望まれている。 Examples of hydrogen storage materials include rare earth-based, titanium-based, vanadium-based, and magnesium-based metal materials, and light element inorganic compound-based materials such as alanate (eg, NaAlH 4 ) using a reversible disproportionation reaction. Carbon materials such as materials, carbon nanotubes, and activated carbon are known. Of these, lightweight elemental inorganic compounds and carbon-based materials are promising as lightweight materials, and development of efficient storage technologies using such lightweight materials, specifically hydrogen with a high hydrogen storage rate per unit weight. Development of storage materials, development of hydrogen storage materials with a high hydrogen storage rate per unit volume, development of hydrogen storage materials that exhibit hydrogen absorption / release performance in a low temperature range, development of hydrogen storage materials with good durability, Is desired.

軽量な水素貯蔵材料として、NaAlHやLiAlH等アラネート系材料がよく知られ、研究されている。また、下記(1)式で示されるリチウム窒化物を用いた水素貯蔵方法が非特許文献1に報告されている。最近になってこの下記(1)式に示すリチウム窒化物を用いた水素貯蔵方式が再確認され、非特許文献2に報告されている。
LiN+2H⇔LiNH+LiH+H⇔LiNH+2LiH…(1)
Alanate materials such as NaAlH 4 and LiAlH 4 are well known and studied as lightweight hydrogen storage materials. Also, Non-Patent Document 1 reports a hydrogen storage method using lithium nitride represented by the following formula (1). Recently, a hydrogen storage system using lithium nitride represented by the following formula (1) has been reconfirmed and reported in Non-Patent Document 2.
Li 3 N + 2H 2 ⇔Li 2 NH + LiH + H 2 ⇔LiNH 2 + 2LiH (1)

これらの文献によれば、窒化リチウム(LiN)による水素の吸収は100℃程度から開始し、255℃、30分で9.3質量%の水素吸収が確認されている。また、吸収した水素の放出特性としては、昇温速度を落としてゆっくり加熱することにより200℃弱で6.3質量%、320℃以上で3質量%と2段階のステップを経ることが報告されている。 According to these documents, absorption of hydrogen by lithium nitride (Li 3 N) starts from about 100 ° C., and 9.3 mass% hydrogen absorption is confirmed at 255 ° C. for 30 minutes. In addition, the release characteristics of absorbed hydrogen are reported to pass through two steps: 6.3% by mass at a little less than 200 ° C. and 3% by mass at 320 ° C. or higher by slowly heating at a lower temperature rise rate. ing.

すなわち、上式(1)の右側部分に相当する下記(2)式に示されるリチウムアミド(LiNH)と水素化リチウム(LiH)の反応は200℃弱で進行し始め、上式(1)の左側部分に相当する下記(3)式に示されるリチウムイミド(LiNH)とLiHの反応は320℃以上で進行し始めることが示されている。
LiNH+2LiH→LiNH+LiH+H↑…(2)
LiNH+LiH→LiN+H↑…(3)
That is, the reaction of lithium amide (LiNH 2 ) and lithium hydride (LiH) represented by the following formula (2) corresponding to the right part of the above formula (1) starts to proceed at a temperature of less than 200 ° C., and the above formula (1) It has been shown that the reaction of lithium imide (Li 2 NH) and LiH represented by the following formula (3) corresponding to the left side portion of γ begins to proceed at 320 ° C. or higher.
LiNH 2 + 2LiH → Li 2 NH + LiH + H 2 ↑ (2)
Li 2 NH + LiH → Li 3 N + H 2 ↑ (3)

本発明者らは上記(1)式の反応系に注目し、上記文献と同様の方法によって、LiNを水素圧3MPa、200℃で水素吸蔵した後、この試料を加熱して脱離ガスを得た。その放出スペクトル特性線図を図11に示す。ここで、試料の昇温速度は5℃/分とした。図11中の特性線Aは水素の放出スペクトル線を、図11中の特性線Bはアンモニアガス(NH(g))の放出スペクトル線をそれぞれ示している。この図11から明らかなように、従来法での水素放出特性は、その温度域が200℃〜400℃の広範囲にわたっており、高温側(320℃付近)に大きなピークを有している。 The present inventors pay attention to the reaction system of the above formula (1), and after storing Li 3 N at a hydrogen pressure of 3 MPa and 200 ° C. by the same method as in the above document, the sample is heated to remove desorbed gas. Got. The emission spectrum characteristic diagram is shown in FIG. Here, the heating rate of the sample was 5 ° C./min. A characteristic line A in FIG. 11 represents a hydrogen emission spectral line, and a characteristic line B in FIG. 11 represents an ammonia gas (NH 3 (g)) emission spectral line. As is apparent from FIG. 11, the hydrogen release characteristic in the conventional method has a wide temperature range of 200 ° C. to 400 ° C., and has a large peak on the high temperature side (around 320 ° C.).

このように上記文献の技術は、リチウム窒化物という軽量な金属化合物を用いた有効な水素貯蔵方法ではあるが、200℃程度の低い温度域での有効水素貯蔵率は小さく、高容量の水素吸収・放出を実現するためには320℃以上の高い温度域に加熱する必要があるという問題点がある。また、上記文献に記載の技術では、水素吸収・放出のピーク温度が近くなるにしたがって昇温速度を遅くして長い時間をかけて加熱しているので、高応答性のものではなく、実用的ではない。
Ruff, O. , and Goerges, H., Berichte derDeutschen Chemischen Gesellschaft zu Berlin,Vol.44, 502-6(1911) Ping Chen et al., Interaction ofhydrogen with metal nitrides and imides, NATURE Vol.420, 21 NOVEMBER 2002,p302-304
Thus, although the technique of the above-mentioned document is an effective hydrogen storage method using a light metal compound called lithium nitride, the effective hydrogen storage rate in a low temperature range of about 200 ° C. is small, and high-capacity hydrogen absorption. -In order to implement | achieve discharge | release, there exists a problem that it is necessary to heat to the high temperature range of 320 degreeC or more. Further, in the technique described in the above-mentioned document, heating is performed over a long time by slowing the rate of temperature rise as the peak temperature of hydrogen absorption / release approaches, so it is not highly responsive and practical. is not.
Ruff, O., and Goerges, H., Berichte derDeutschen Chemischen Gesellschaft zu Berlin, Vol. 44, 502-6 (1911) Ping Chen et al., Interaction ofhydrogen with metal nitrides and imides, NATURE Vol.420, 21 NOVEMBER 2002, p302-304

本発明はかかる事情に鑑みてなされたものであり、軽量な非金属化合物を用いた高効率かつ低温度動作が可能な水素貯蔵材料およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a hydrogen storage material capable of high-efficiency and low-temperature operation using a light non-metallic compound and a method for producing the same.

本発明によれば、ナノ構造化・組織化されたリチウムイミド化合物前駆複合体を少なくとも含有する水素貯蔵材料であって、前記リチウムイミド化合物前駆複合体は、出発原料として微粉末リチウムアミドに微粉末水素化リチウムを所定の割合で添加した混合物を所定の複合化処理法で処理することによりナノ構造化・組織化されたものであることを特徴とする水素貯蔵材料、が提供される。   According to the present invention, a hydrogen storage material containing at least a nanostructured / organized lithium imide compound precursor complex, wherein the lithium imide compound precursor complex is finely powdered into a fine powder lithium amide as a starting material. Provided is a hydrogen storage material characterized in that it is nanostructured and organized by treating a mixture to which lithium hydride is added in a prescribed ratio by a prescribed composite treatment method.

また本発明によれば、このような水素貯蔵材料の製造方法、すなわち、出発原料として微粉末リチウムアミドと微粉末水素化リチウムとを所定の割合で混合した混合物を所定の複合化処理法で処理することにより、ナノ構造化・組織化されたリチウムイミド化合物前駆複合体を得ることを特徴とする水素貯蔵材料の製造方法、が提供される。   Further, according to the present invention, such a method for producing a hydrogen storage material, that is, a mixture obtained by mixing fine powder lithium amide and fine powder lithium hydride as a starting material in a predetermined ratio is processed by a predetermined composite processing method. Thus, there is provided a method for producing a hydrogen storage material, characterized in that a nanostructured and organized lithium imide compound precursor composite is obtained.

本発明において、前記複合化処理法としては、不活性ガス、水素ガス、窒素ガスのいずれかの雰囲気またはこれらの混合雰囲気中で、前記出発原料の混合物を粉砕媒体に対して微視的な衝突を繰り返させるメカニカルミリング処理が好適に用いられる。また、前記出発原料は、前記微粉末水素化リチウムを前記微粉末リチウムアミドに対して混合モル比1:1正規の反応割合または当該正規の反応割合より20質量%以下まで過剰に添加したものであることが好ましい。   In the present invention, the compounding treatment method includes microscopic collision of the starting material mixture with the grinding medium in an inert gas, hydrogen gas, nitrogen gas atmosphere or a mixed atmosphere thereof. The mechanical milling process which repeats is preferably used. The starting material is a mixture of the finely powdered lithium hydride added in excess to the finely powdered lithium amide at a mixing molar ratio of 1: 1 normal reaction ratio or 20 mass% or less from the normal reaction ratio. Preferably there is.

前記リチウムイミド化合物前駆複合体は、水素吸放出能を高める触媒として、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,Nb,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Os,Mo,W,Ta,Zr,In,Hf,Agからなる群より選択される1種または2種以上の金属単体、合金または化合物をさらに含んでいることが好ましく、このような触媒は、前記メカニカルミリング処理時に、前記微粉末水素化リチウムおよび前記微粉末リチウムアミドとともに混合することで、ナノ構造化・組織化することができる。複合化処理法における好ましい処理雰囲気圧力は0.1〜10MPaの範囲である。   The lithium imide compound precursor composite is used as a catalyst for enhancing hydrogen absorption / release capability as B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, One or more metals selected from the group consisting of La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag Preferably, the catalyst further contains a simple substance, an alloy or a compound, and such a catalyst is mixed with the finely powdered lithium hydride and the finely powdered lithium amide at the time of the mechanical milling process to form a nanostructured and organized can do. A preferable processing atmosphere pressure in the composite processing method is in the range of 0.1 to 10 MPa.

本発明によれば、軽量な非金属化合物を用いた高効率かつ低温動作が可能な水素貯蔵材料が実現される。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogen storage material which can operate | move efficiently and low temperature using a lightweight nonmetallic compound is implement | achieved.

本発明の水素貯蔵材料は、ナノ構造化・組織化されたリチウムイミド化合物前駆複合体を少なくとも含有する。金属系化合物や非金属系化合物の粉体系水素貯蔵材料における水素貯蔵能力は、ナノメートルスケールの組織・構造に関連しており、ナノメートルスケールでの組織・構造制御(すなわち、ナノ組織化・構造化)によって高性能な水素化材料が作製できる。   The hydrogen storage material of the present invention contains at least a nanostructured and organized lithium imide compound precursor complex. The hydrogen storage capacity of metal-based and non-metallic compounds in powder-based hydrogen storage materials is related to the structure and structure of the nanometer scale, and the structure and structure control on the nanometer scale (ie, the nanostructure and structure) High-performance hydrogenation material can be produced by

このようなナノ構造化・組織化されたリチウムイミド化合物前駆複合体は、出発原料として微粉末リチウムアミド(LiNH)に微粉末水素化リチウム(LiH)を所定の割合で添加した混合物を所定の複合化処理法で処理することにより製造することができる。 Such a nanostructured / organized lithium imide compound precursor composite is obtained by adding a mixture of fine powder lithium hydride (LiH) at a predetermined ratio to fine powder lithium amide (LiNH 2 ) as a starting material. It can manufacture by processing by a composite processing method.

ここで、複合化処理法には、硬質ボールを用いて試料を粉砕混合するメカニカルミリング処理(以下「MeM処理」と記す)を利用する方法、あるいは加圧ガスの吹き付けにより試料を粉砕混合するジェットミルを利用する方法等を用いることができる。本発明では複合化処理法にMeM処理を用いることが最も好ましい。これは後述するように、MeM処理によれば出発原料の混合物を十分にナノ構造化・組織化することができるからである。   Here, in the compounding method, a method using a mechanical milling process (hereinafter referred to as “MeM process”) in which a sample is pulverized and mixed using a hard ball, or a jet in which a sample is pulverized and mixed by blowing pressurized gas. A method using a mill or the like can be used. In the present invention, it is most preferable to use MeM treatment for the composite treatment method. This is because, as will be described later, according to the MeM treatment, the mixture of starting materials can be sufficiently nanostructured and organized.

このMeM処理は、さらに詳しくは、原料と粉砕媒体と呼ばれる硬質のボールを密閉容器に入れ、転動あるいは機械的な攪拌を行って原料の粉砕、圧接、練り合わせを行い、原料とは異なる物性を示す材料を得る方法である。より具体的には、複数成分からなる混合粉末と鋼球を密閉容器に一緒に入れ、この容器内部の雰囲気を大気圧以上の還元性ガス雰囲気または不活性ガス(例えば、窒素(N)やヘリウム(He)、アルゴン(Ar))雰囲気またはこれらの混合雰囲気とし、容器を自転させるとともに公転させることにより、試料を練り上げてナノメートルサイズで複合化させる。このようなMeM処理では、出発原料混合物は、粉砕媒体に対して微視的な衝突を繰り返して衝撃圧縮力が印加され、塑性変形(鍛造変形)し、加工硬化し、粉砕され、薄片化し、最終的に練り合わされる。 More specifically, this MeM treatment is carried out by putting a raw material and a hard ball called a grinding medium into a closed container, and rolling or mechanically stirring to crush, press contact, and knead the raw material, and have different physical properties from the raw material. It is a method of obtaining the indicated material. More specifically, a mixed powder composed of a plurality of components and a steel ball are put together in a sealed container, and the atmosphere inside the container is reduced to a reducing gas atmosphere or an inert gas (for example, nitrogen (N 2 ) A helium (He), argon (Ar)) atmosphere or a mixed atmosphere thereof is used, and the sample is kneaded and compounded in a nanometer size by rotating and revolving the container. In such a MeM process, the starting raw material mixture is repeatedly subjected to impact compression force by microscopic collision with the grinding medium, plastically deformed (forged deformation), work-hardened, crushed, flaked, Eventually kneaded.

本明細書において「練り合わせ」は、混合試料が塑性変形し易い性質を有する場合に、それが潰され、伸ばされ、折れ曲がり、畳み込まれ、絡み合いながら分裂し、さらに分裂しながら絡み合い、その結果として混合試料がナノ構造化・組織化されることを意味する。   In the present specification, “kneading” means that when a mixed sample has a property of being easily plastically deformed, it is crushed, stretched, folded, folded, entangled and split, and further split and entangled. It means that the mixed sample is nanostructured and organized.

本発明では、LiNHとLiHから出発して、下記(4)式の可逆的な不均化反応を用いた水素吸放出反応に注目した。すなわち、LiNHとLiHの出発原料混合物を水素雰囲気中でMeM処理することによりナノ構造化・組織化されたリチウムイミド化合物前駆複合体を作製し、これを加熱昇温することにより下記(4)式の反応にしたがってリチウムイミド(LiNH)を生成させると同時に、水素を発生させる。
LiNH+LiH→LiNH+H↑…(4)
In the present invention, starting from LiNH 2 and LiH, attention was paid to a hydrogen absorption / release reaction using a reversible disproportionation reaction of the following formula (4). That is, a LiNH 2 and LiH starting material mixture is treated with MeM in a hydrogen atmosphere to prepare a nanostructured and organized lithium imide compound precursor composite, and this is heated to raise the temperature (4) According to the reaction of the formula, lithium imide (Li 2 NH) is generated, and at the same time, hydrogen is generated.
LiNH 2 + LiH → Li 2 NH + H 2 ↑ (4)

この反応によれば、理論値で6.5質量%の水素を可逆的に吸放出可能である。このとき、水素化反応の標準エンタルピーはΔH=−44.5(kJ/mol H)であり、熱力学的観点からも低温での水素の吸放出が見込まれる。 According to this reaction, it is possible to reversibly absorb and release 6.5% by mass of hydrogen in theory. At this time, the standard enthalpy of the hydrogenation reaction is ΔH = −44.5 (kJ / mol H 2 ), and the absorption and release of hydrogen at a low temperature is expected from the thermodynamic viewpoint.

出発原料においてLiNHに対するLiHの割合を、正規の反応割合(上記(4)式の反応割合を指す)よりも大きくすることによって、下記(5)式の反応によるNH(g)の発生を抑制することが好ましい。
2LiNH→LiNH+NH(g)↑…(5)
By making the ratio of LiH to LiNH 2 in the starting material larger than the normal reaction ratio (referring to the reaction ratio of the above formula (4)), the generation of NH 3 (g) by the reaction of the following formula (5) is suppressed. It is preferable to suppress.
2LiNH 2 → Li 2 NH + NH 3 (g) ↑ (5)

この場合にさらに、LiHの過剰添加量は、LiNHに対する正規のLiHの反応量(上記(4)式で示される反応量)の20質量%以下とすることが望ましい。つまり、LiHの全量は、LiNHに対する正規のLiHの反応量(100質量%)超120質量%以下とすることが望ましい。これは、NH(g)の発生を抑制するためのLiHの過剰添加量は、この量で十分であり、一方、この量を超えると有効水素貯蔵率が減少するという不都合を生じるからである。このため、本発明ではLiNHに対するLiH過剰添加量の上限値を正規のLiHの反応量の20質量%とした。 In this case, the LiH excess addition amount is desirably 20% by mass or less of the normal LiH reaction amount with respect to LiNH 2 (reaction amount represented by the above formula (4)). That, LiH The total amount of reaction volume normal LiH for LiNH 2 (100 wt%) it is desirable that the super-120 mass% or less. This is because the amount of excessive addition of LiH for suppressing the generation of NH 3 (g) is sufficient, and when this amount is exceeded, there is a disadvantage that the effective hydrogen storage rate decreases. . Therefore, the upper limit of LiH excess amount relative LiNH 2 was set to 20 wt% of the reaction volume of normal LiH in the present invention.

さらに、出発原料(LiNHとLiH)に、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,Nb,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Os,Mo,W,Ta,Zr,In,Hf,Agからなる群より選択される1種または2種以上の金属単体、合金または化合物を触媒として加えることが好ましく、これにより上記(4)式の反応を効率的に進行させることができる。また、単位重量当たりまたは単位体積当たりの水素貯蔵率が高められ、低い温度領域でのシャープな水素の吸収・放出が可能となり、良好な耐久性が得られるようになる。 Furthermore, B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, and the starting material (LiNH 2 and LiH) One or more kinds of simple metals, alloys or compounds selected from the group consisting of Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag. It is preferable to add as a catalyst, and thereby the reaction of the above formula (4) can be efficiently advanced. In addition, the hydrogen storage rate per unit weight or per unit volume is increased, and sharp hydrogen absorption / release is possible in a low temperature range, so that good durability can be obtained.

このような触媒の添加量は0.5〜5モル%とすることが好ましい。触媒添加量が0.5モル%を下回るとリチウムイミド化合物前駆複合体中に均一分散化させることが困難になる。一方、触媒添加量が5モル%超の場合には、有効水素貯蔵率の低下を招く。   The amount of such a catalyst added is preferably 0.5 to 5 mol%. When the amount of the catalyst added is less than 0.5 mol%, it becomes difficult to uniformly disperse in the lithium imide compound precursor composite. On the other hand, when the addition amount of the catalyst exceeds 5 mol%, the effective hydrogen storage rate is reduced.

上記触媒は、MeM処理によるリチウムイミド化合物前駆複合体の作製時に、LiNHおよびLiHとともに混合し、ナノ構造化・組織化されたものであることが好ましい。これは、複合化処理後の試料に対して別途に触媒粒子を添加すると、リチウムイミド化合物前駆複合体のナノ構造組織中に触媒粒子が新たに入り込むことが難しくなるからである。 It is preferable that the catalyst is nanostructured and organized by mixing with LiNH 2 and LiH at the time of producing a lithium imide compound precursor complex by MeM treatment. This is because it is difficult to newly enter the catalyst particles into the nanostructure of the lithium imide compound precursor composite when the catalyst particles are separately added to the composite-treated sample.

複合化処理法は、処理雰囲気圧力を0.1〜10MPaの範囲とすることが好ましく、これにより水素の吸収効率を向上させることができる。処理雰囲気圧力が大気圧(0.1MPa)を下回ると、有効成分である水素と窒素が失われるおそれがある。一方、本発明者らが開発したMeM処理装置の高圧力の能力限界が10MPaであり、また、これを超える処理雰囲気圧力は現実的ではないからである。   In the composite treatment method, the treatment atmosphere pressure is preferably in the range of 0.1 to 10 MPa, and thereby the hydrogen absorption efficiency can be improved. When the processing atmosphere pressure is lower than atmospheric pressure (0.1 MPa), hydrogen and nitrogen as active components may be lost. On the other hand, the high pressure capability limit of the MeM processing apparatus developed by the present inventors is 10 MPa, and the processing atmosphere pressure exceeding this is not realistic.

出発原料であるLiNHとLiHの粉末混合物をMeM処理してリチウムイミド化合物前駆複合体を作製した後(つまり、複合化処理後)において、リチウムイミド化合物前駆複合体を所定温度域に加熱し、ナノ構造化・組織化したLiNHとLiHを反応させてLiNHとする可逆的な不均化反応を生じさせることができる。この場合に、可逆的な不均化反応のための加熱温度は250℃以下とすることが好ましく、200℃以下とすることがさらに好ましい。なお、本明細書中において「可逆的な不均化反応」とは、反応が可逆的に進行して異なる複数の成分に分解することをいう。 After a LiM 2 and LiH powder mixture as a starting material is subjected to MeM treatment to produce a lithium imide compound precursor composite (that is, after the composite treatment), the lithium imide compound precursor composite is heated to a predetermined temperature range, A reversible disproportionation reaction can be generated by reacting nanostructured / organized LiNH 2 and LiH to form Li 2 NH. In this case, the heating temperature for the reversible disproportionation reaction is preferably 250 ° C. or less, and more preferably 200 ° C. or less. In the present specification, “reversible disproportionation reaction” means that the reaction proceeds reversibly and decomposes into a plurality of different components.

次に、従来の水素貯蔵材料の作製手順の例と、本発明者らが実施したMeM処理によるナノ組織化・構造化された水素貯蔵材料の作製手順の例とを、比較例および実施例により、以下に説明する。なお、MeM処理の具体的な方法、条件等に関しては、ここに示す例に限定されないことは言うまでもない。   Next, an example of a conventional procedure for producing a hydrogen storage material and an example of a procedure for producing a nanostructured / structured hydrogen storage material by the MeM process performed by the present inventors will be described in comparison examples and examples. This will be described below. Needless to say, the specific method, conditions, and the like of the MeM process are not limited to the examples shown here.

(比較例1)
市販のLiNHとLiHを分子数比で1:1の割合で秤量し、メノウ乳鉢で数分間混合した。こうして得られた混合体(つまり、比較例1に係る試料)を、昇温速度を5℃/分として加熱し、昇温に伴う脱離ガスの質量数分析を行った。
(Comparative Example 1)
Commercially available LiNH 2 and LiH were weighed at a molecular ratio of 1: 1 and mixed for several minutes in an agate mortar. The mixture thus obtained (that is, the sample according to Comparative Example 1) was heated at a heating rate of 5 ° C./min, and mass number analysis of the desorbed gas accompanying the heating was performed.

図1に比較例1の試料の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線図を示す。この図1においては、横軸に温度(℃)をとり、縦軸に昇温に伴う脱離ガスの質量数(MASS)分析法によるガス放出スペクトル強度(任意単位)をとっている。また、図1中の特性線Cは水素の放出スペクトル線を、特性線Dはアンモニアガス(NH(g))の放出スペクトル線をそれぞれ示している。図1から明らかなように、比較例1の試料では、水素放出と同時に多量のNH(g)が放出されている。これは、先に示した式(5)(以下に再掲する)に示すLiNHの熱分解反応によるものと考えられる。
2LiNH→LiNH+NH(g)↑…(5)
FIG. 1 shows a gas emission spectrum diagram representing the mass number analysis result of the desorbed gas accompanying the temperature rise of the sample of Comparative Example 1. In FIG. 1, the horizontal axis represents temperature (° C.), and the vertical axis represents desorption gas mass number (MASS) analysis method (arbitrary unit) as the temperature rises. Further, a characteristic line C in FIG. 1 represents a hydrogen emission spectrum line, and a characteristic line D represents an ammonia gas (NH 3 (g)) emission spectrum line. As is clear from FIG. 1, in the sample of Comparative Example 1, a large amount of NH 3 (g) was released simultaneously with the hydrogen release. This is considered to be due to the thermal decomposition reaction of LiNH 2 shown in the above-described formula (5) (reproduced below).
2LiNH 2 → Li 2 NH + NH 3 (g) ↑ (5)

この結果は、LiNHとLiHが微視的な接触を果たしている場合には、優先的にLiNHとLiHによる水素放出反応が生じていることを支持している。しかし、LiNHとLiHが微視的な接触を果たしていない場合には、(4)式の反応が進行する前に(5)式の分解反応が優先的に進行するため、LiNH単独の熱分解反応のみを生じてしまい、その結果、多量のNH(g)が放出されることとなる。 This result supports that the hydrogen releasing reaction by LiNH 2 and LiH preferentially occurs when LiNH 2 and LiH are in microscopic contact. However, when LiNH 2 and LiH are not in microscopic contact, since the decomposition reaction of formula (5) preferentially proceeds before the reaction of formula (4) proceeds, the heat of LiNH 2 alone Only the decomposition reaction occurs, and as a result, a large amount of NH 3 (g) is released.

(比較例2)
LiNHとLiHの微視的な接触を増加させ、NH(g)の放出を抑えるという目的で、LiNHとLiHを分子数比で1:2の割合で秤量し、メノウ乳鉢で数分間混合させた混合体(比較例2の試料)を作製し、得られた試料について、比較例1と同様の昇温に伴う脱離ガスの質量数分析を行った。
(Comparative Example 2)
For the purpose of increasing the microscopic contact between LiNH 2 and LiH and suppressing the release of NH 3 (g), LiNH 2 and LiH are weighed at a molecular ratio of 1: 2 for several minutes in an agate mortar. A mixed mixture (sample of Comparative Example 2) was prepared, and the obtained sample was subjected to mass number analysis of the desorbed gas accompanying a temperature increase as in Comparative Example 1.

図2に比較例2の試料の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線図を示す。図2中の特性線Eは水素の放出スペクトル線を、特性線FはNH(g)の放出スペクトル線をそれぞれ示している。この図2から明らかなように、比較例2の試料でも水素放出と同時にNH(g)の放出が見られるが、比較例1と比較すると、NH(g)の放出が抑えられていることが判明した。この結果から、本反応系(前記反応式(4))における水素貯蔵システムでは、ナノスケールにおける構造が水素の吸放出特性を大きく支配するパラメータとなっているという知見が得られた。 FIG. 2 shows a gas emission spectrum diagram showing the mass number analysis result of the desorbed gas accompanying the temperature rise of the sample of Comparative Example 2. A characteristic line E in FIG. 2 indicates a hydrogen emission spectral line, and a characteristic line F indicates an NH 3 (g) emission spectral line. As is clear from FIG. 2, NH 3 (g) is released simultaneously with hydrogen release in the sample of Comparative Example 2, but compared with Comparative Example 1, the release of NH 3 (g) is suppressed. It has been found. From this result, in the hydrogen storage system in the present reaction system (the above reaction formula (4)), it was found that the nanoscale structure is a parameter that largely governs the hydrogen absorption / release characteristics.

(実施例1)
LiNH、LiHの重なる微視的接触を果たすことを目的とし、LiNH微粉末とLiH微粉未を分子数比で1:1の割合で秤量し、MeM処理を2時間実施した。LiNH微粉末およびLiH微粉末は、ともに平均粒径が数10μm(20〜40μm)の試薬をそれぞれを用いた。
(Example 1)
For the purpose of achieving microscopic contact where LiNH 2 and LiH overlap, LiNH 2 fine powder and LiH fine powder were weighed at a molecular ratio of 1: 1, and MeM treatment was performed for 2 hours. As the LiNH 2 fine powder and LiH fine powder, reagents having an average particle diameter of several tens of μm (20 to 40 μm) were used.

MeM処理は、具体的には、鋼鉄製のポット(内容積30cc)の中に、混合粉末試料LiNHとLiHとを1:1の割合で混合した粉末および少量の触媒を0.3グラムと、鋼鉄製のボール(直径7mm)20個とを装入し、容器内を水素等の還元性ガスまたはアルゴン(Ar)等の不活性ガスの雰囲気とし、400rpmの回転速度で自転および公転させ、試料を練り上げて、ナノメートルサイズでLiNHとLiHが複合化した数ミクロンサイズの粉末粒子を得た。なお、MeM処理装置にはドイツ国フリッチュ社(Fritsch)製のP7−遊星型ボールミルを使用した。 Specifically, in the MeM treatment, a powder of a mixed powder sample LiNH 2 and LiH mixed at a ratio of 1: 1 in a steel pot (internal volume 30 cc) and a small amount of catalyst 0.3 grams. , 20 steel balls (diameter 7 mm) were charged, the inside of the container was made an atmosphere of a reducing gas such as hydrogen or an inert gas such as argon (Ar), and rotated and revolved at a rotational speed of 400 rpm. The sample was kneaded to obtain nanometer-sized powder particles having a size of several microns in which LiNH 2 and LiH were combined. As the MeM processing apparatus, a P7-planet type ball mill manufactured by Fritsch of Germany was used.

ここで、MeM処理の微視的な作用について図3〜図5を参照して説明する。密閉容器内に封入された混合試料は、硬質の鋼球(粉砕媒体)との衝突を繰り返すことにより衝撃圧縮力を受けて塑性変形(鍛造変形)し、加工硬化し、粉砕され、薄片化し、最終的には練り合わされる。このような混合試料の練り合わせは次のように段階的に進行する。   Here, the microscopic effect of the MeM process will be described with reference to FIGS. The mixed sample sealed in the sealed container is subjected to impact compression force by repeatedly colliding with a hard steel ball (grinding medium), undergoes plastic deformation (forging deformation), work hardens, is pulverized, sliced, Eventually they are kneaded. Such kneading of the mixed sample proceeds in stages as follows.

練り合わせの初期の段階では、図3に示すように分散粒子503中において試料粒子502が鋼球504と鋼球504との間に挟まれて圧縮衝撃力を受けて潰される。練り合わせの中期の段階では、図4に示すように試料粒子502がさらに潰され、伸ばされ、薄片化して積層される。さらに、練り合わせの後期の段階に至ると、図5に示すように試料粒子502が薄片積層化した状態で折れ曲がり、畳み込まれ、破断して破断面502aが現れ、所謂、練り合わせ効果が認められるようになる。こうしてナノ構造化・組織化された、数ミクロンオーダーのサイズの混合粉末粒子が得られる。   In the initial stage of kneading, the sample particles 502 are sandwiched between the steel balls 504 and 504 in the dispersed particles 503 as shown in FIG. In the middle stage of kneading, as shown in FIG. 4, the sample particles 502 are further crushed, stretched, thinned and laminated. Further, when reaching the later stage of kneading, as shown in FIG. 5, the sample particles 502 are folded and folded in a state where they are laminated in a thin piece, and fractured to show a fracture surface 502a, so that a so-called kneading effect is recognized. become. In this way, mixed powder particles having a size of several microns are obtained which are nanostructured and organized.

このようなMeM処理により得られた混合体について、上記比較例1,2と同様に、昇温に伴う脱離ガスの質量数分析を行った。図6に実施例1の試料の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線図を示す。図6中の特性線Gは水素の放出スペクトル線を、特性線HはNH(g)の放出スペクトル線をそれぞれ示している。 About the mixture obtained by such MeM process, the mass number analysis of the desorption gas accompanying a temperature rise was performed similarly to the said Comparative Examples 1 and 2. FIG. FIG. 6 shows a gas emission spectrum diagram showing the mass number analysis result of the desorbed gas accompanying the temperature rise of the sample of Example 1. The characteristic line G in FIG. 6 represents the hydrogen emission spectrum line, and the characteristic line H represents the NH 3 (g) emission spectrum line.

図6から明らかなように、実施例1の試料は、前出のメノウ乳鉢で混ぜ合わせた比較例1,2と比較して、NH(g)の放出が著しく抑えられている。すなわち、上記式(4)の不均化反応を利用した水素貯蔵システムにおいて、MeM処理が非常に有効かつ重要な働きを担うことが判明した。しかしながら、まだNH(g)の放出が認められている。 As is clear from FIG. 6, the sample of Example 1 has remarkably suppressed NH 3 (g) release compared to Comparative Examples 1 and 2 mixed in the above-described agate mortar. That is, it has been found that the MeM treatment plays a very effective and important role in the hydrogen storage system utilizing the disproportionation reaction of the above formula (4). However, the release of NH 3 (g) is still observed.

(実施例2)
続いて、触媒として金属粒子を添加した水素貯蔵材料の製造方法について説明する。MeM処理を利用することにより、水素吸放出の反応速度を上げる触媒の添加も容易に行うことができる。Liのモル数に対して1mol%のNi粒子を、1:1のモル比で混合されたLiNHとLiHの混合体に混入し、上記実施例1と同様のMeM処理を施した試料を作製した。このとき、LiNH微粉末およびLiH微粉末として、ともに平均粒径が数10μmのものを用いた。また、Ni粒子として平均粒径が20nmのNiナノ粒子を用いた。
(Example 2)
Then, the manufacturing method of the hydrogen storage material which added the metal particle as a catalyst is demonstrated. By using the MeM treatment, it is possible to easily add a catalyst that increases the reaction rate of hydrogen absorption / release. A sample obtained by mixing 1 mol% of Ni particles with respect to the number of moles of Li into a mixture of LiNH 2 and LiH mixed at a molar ratio of 1: 1 and performing the same MeM treatment as in Example 1 above. did. At this time, both LiNH 2 fine powder and LiH fine powder having an average particle diameter of several tens of μm were used. Further, Ni nanoparticles having an average particle diameter of 20 nm were used as Ni particles.

得られた試料について昇温に伴う脱離ガスの質量数分析を、上記実施例1等と同様にして行った。図7に実施例2の試料の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線図を示す。図7中に実線で示す特性線は水素の放出スペクトル線を、破線で示す特性線はNH(g)の放出スペクトル線をそれぞれ示している。 The obtained sample was subjected to mass analysis of the desorbed gas accompanying the temperature increase in the same manner as in Example 1 above. FIG. 7 shows a gas emission spectrum diagram representing the mass number analysis result of the desorbed gas accompanying the temperature increase of the sample of Example 2. In FIG. 7, a characteristic line indicated by a solid line indicates a hydrogen emission spectral line, and a characteristic line indicated by a broken line indicates an NH 3 (g) emission spectral line.

図6と図7を比較すると明らかなように、触媒を加えることによって、水素の放出スペクトルがシャープになっていることがわかる。また、実施例2に係る試料では、5℃/分の昇温速度で150℃から300℃の間で水素放出がほぼ完了し、300℃から400℃までの間ではNH(g)の放出を伴った水素放出が観測されたが、この水素の放出スペクトルのピーク高さに対するNH(g)の放出スペクトルのピークの高さは、実施例1と比較すると、低くなっていることがわかる。つまり、NH(g)の発生が抑制されていることがわかる。 As is clear from comparison between FIG. 6 and FIG. 7, it can be seen that the hydrogen emission spectrum is sharpened by adding the catalyst. Further, in the sample according to Example 2, hydrogen release was almost completed between 150 ° C. and 300 ° C. at a temperature rising rate of 5 ° C./min, and NH 3 (g) was released between 300 ° C. and 400 ° C. The hydrogen emission accompanied by the hydrogen emission spectrum was observed, but the peak height of the NH 3 (g) emission spectrum relative to the peak height of the hydrogen emission spectrum was lower than that of Example 1. . That is, it can be seen that the generation of NH 3 (g) is suppressed.

(実施例3)
続いて、金属化合物粒子触媒を添加した水素貯蔵材料の製造方法について説明する。ここでも、MeM処理を利用することにより、水素吸放出の反応速度を上げる触媒の添加を容易に行うことができる。Liのモル数に対して1mol%の三塩化チタン(TiCl)粒子(平均粒径:2〜4μm)を、1:1の分子数比で混合されたLiNHとLiHの混合体に混入し、上記実施例1と同様のMeM処理を施した試料を作製した。
(Example 3)
Then, the manufacturing method of the hydrogen storage material which added the metal compound particle catalyst is demonstrated. Again, by using the MeM treatment, it is possible to easily add a catalyst that increases the reaction rate of hydrogen absorption / release. 1 mol% of titanium trichloride (TiCl 3 ) particles (average particle diameter: 2 to 4 μm) with respect to the number of moles of Li are mixed in a mixture of LiNH 2 and LiH mixed at a molecular ratio of 1: 1. A sample subjected to the same MeM treatment as in Example 1 was prepared.

得られた試料について昇温に伴う脱離ガスの質量数分析を、上記実施例1等と同様にして行った。図8に実施例3の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線図を示す。図8中に実線で示す特性線Jは水素の放出スペクトル線を、破線で示す特性線KはNH(g)の放出スペクトル線をそれぞれ示している。図6と図8とを比較すると明らかなように、触媒を加えることによって、水素の放出スペクトルがシャープになっていることがわかる。また、毎分5℃の昇温速度では、150℃から300℃の間に水素放出が完了し、測定中にNH(g)放出は全く測定されないものとなった。 The obtained sample was subjected to mass analysis of the desorbed gas accompanying the temperature increase in the same manner as in Example 1 above. FIG. 8 shows a gas emission spectrum diagram showing the result of mass number analysis of the desorbed gas accompanying the temperature increase in Example 3. In FIG. 8, a characteristic line J indicated by a solid line indicates a hydrogen emission spectral line, and a characteristic line K indicated by a broken line indicates an NH 3 (g) emission spectral line. As is clear from comparison between FIG. 6 and FIG. 8, it can be seen that the hydrogen emission spectrum is sharpened by adding the catalyst. Further, at a rate of temperature increase of 5 ° C. per minute, hydrogen release was completed between 150 ° C. and 300 ° C., and NH 3 (g) release was not measured at all during the measurement.

なお、TiClを添加した場合には、その後の水素貯蔵材料の加熱によりTiClは分解し、金属チタンTiの形態でリチウムイミド化合物前駆複合体中に存在するものと推察される。 When TiCl 3 is added, it is presumed that TiCl 3 is decomposed by the subsequent heating of the hydrogen storage material and exists in the lithium imide compound precursor composite in the form of metallic titanium Ti.

(サイクル試験とその評価結果)
続いて、TiClを触媒として含むリチウムイミド化合物前駆複合体のサイクル特性について説明する。Liのモル数に対して1mol%のTiCl粒子を1:1の分子数比で混合されたLiNHとLiHの混合体に混入し、実施例1と同様にMeM処理を施した試料を第1サイクル試料とする。そして、第1サイクル試料を220℃で12時間真空脱気し、その後に180℃、3MPaの水素圧の下、12時間水素と反応させることによって得られた試料を第2サイクル試料とし、これと同様の処理をさらに1回施して得られた試料を第3サイクル試料とした。
(Cycle test and its evaluation results)
Subsequently, the cycle characteristics of the lithium imide compound precursor composite containing TiCl 3 as a catalyst will be described. A sample obtained by mixing 1 mol% of TiCl 3 particles with respect to the number of moles of Li into a mixture of LiNH 2 and LiH mixed at a molecular ratio of 1: 1 and performing the MeM treatment in the same manner as in Example 1. One cycle sample is used. Then, the first cycle sample was vacuum degassed at 220 ° C. for 12 hours, and then the sample obtained by reacting with hydrogen under 180 ° C. and 3 MPa hydrogen pressure for 12 hours was used as the second cycle sample. A sample obtained by performing the same treatment once more was used as a third cycle sample.

図9に、こうして得られた3種類の試料について昇温脱離ガス分析を行った結果を表すガス放出スペクトル線と熱重量測定した結果を表す質量損失線を示す。図9中の特性線P1は第1サイクル試料のガス放出スペクトル線を、特性線Q1は第2サイクル試料のガス放出スペクトル線を、特性線R1は第3サイクル試料のガス放出スペクトル線をそれぞれ示している。また、図9中の特性線P2は第1サイクル試料の質量損失線を、特性線Q2は第2サイクル試料の質量損失線を、特性線R2は第3サイクル試料の質量損失線をそれぞれ示している。   FIG. 9 shows a gas emission spectrum line representing the result of the temperature-programmed desorption gas analysis of the three types of samples thus obtained and a mass loss line representing the result of thermogravimetry. The characteristic line P1 in FIG. 9 shows the gas emission spectral line of the first cycle sample, the characteristic line Q1 shows the gas emission spectral line of the second cycle sample, and the characteristic line R1 shows the gas emission spectral line of the third cycle sample. ing. Further, the characteristic line P2 in FIG. 9 represents the mass loss line of the first cycle sample, the characteristic line Q2 represents the mass loss line of the second cycle sample, and the characteristic line R2 represents the mass loss line of the third cycle sample. Yes.

図9から明らかなように、第2および第3サイクル試料は第1サイクル試料と比較すると、水素放出温度と水素放出量の点で多少の特性劣化を示している。これは、添加物(触媒)あるいは原料に当初から混入していたと思われる不純物等が1度目の昇温過程で水素の吸蔵放出に関与しない安定な物質になってしまったことによると考えられる。しかし、第2サイクル試料と第3サイクル試料とでは大きな違いが見られないことから、サイクル特性は非常に良好であると考えられる。さらに、1℃/分の昇温速度で脱離ガス分析を行うと、脱離曲線のピーク位置は200℃以下に低下し、200℃以下での水素吸蔵放出が可能であることが確認された。   As is clear from FIG. 9, the second and third cycle samples show some deterioration in characteristics in terms of the hydrogen release temperature and the hydrogen release amount as compared with the first cycle sample. This is considered to be because the impurities (which are supposed to be mixed into the additive (catalyst) or the raw material from the beginning have become stable substances that are not involved in the storage and release of hydrogen in the first temperature rising process. However, since there is no significant difference between the second cycle sample and the third cycle sample, it is considered that the cycle characteristics are very good. Furthermore, when desorption gas analysis was performed at a heating rate of 1 ° C./min, the peak position of the desorption curve decreased to 200 ° C. or lower, and it was confirmed that hydrogen storage and release at 200 ° C. or lower is possible. .

なお、上述の水素吸蔵実験は全て約3MPaの圧力条件下で実施したが、水素の吸収効率を向上させる観点から、1〜10MPa程度の広範囲の圧力条件下での実施が可能であることは勿論である。   Although all the hydrogen storage experiments described above were performed under a pressure condition of about 3 MPa, it is of course possible to carry out under a wide range of pressure conditions of about 1 to 10 MPa from the viewpoint of improving the hydrogen absorption efficiency. It is.

このような触媒の添加による水素放出特性の向上(放出スペクトルのシャープ化、放出温度の低温化)は、上記Ni粒子やTiCl粒子に特有のものではなく、同様の触媒作用を有する元素、例えば、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,Nb,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Os,Mo,W,Ta,Zr,In,Hf,Agを少なくとも1種類含む単体、合金もしくは化合物によっても実現可能である。次にその実施例について説明する。 The improvement of hydrogen release characteristics (sharpening of the emission spectrum, lowering of the emission temperature) by the addition of such a catalyst is not unique to the Ni particles and TiCl 3 particles, and elements having the same catalytic action, for example, B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si , Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag. Next, the embodiment will be described.

(実施例4〜26)
実施例4は実施例1と同様にLiHとLiNHから構成されるが、下記の通り、試験方法が異なる。また実施例5〜26は、実施例2,3と同様に、LiHとLiNHに各種の触媒を添加したものであるが、下記の通り、試験方法が異なる。下記表1に示すように、実施例5〜23については、LiH、LiNH、各種触媒をモル比で1:1:0.01とし、それらの合計量が1.3gとなるように高純度Arグローブボックス中で秤量した。また、実施例24については、表1に示したようにLiH、LiNH、塩化クロム(CrCl)およびTiClをモル比で1:1:0.01:0.01とし、それらの合計量が1.3gとなるように高純度Arグローブボックス中で秤量した。さらに、実施例25および実施例26については、表1に示したようにLiH、LiNH、所定の触媒をモル比で1.2:1:0.01とし、それらの合計量が1.3gとなるように高純度Arグローブボックス中で秤量した。
(Examples 4 to 26)
Example 4 is composed of LiH and LiNH 2 as in Example 1, but the test method is different as described below. The examples 5 to 26, in the same manner as in Example 2, but in which the addition of various catalysts in LiH and LiNH 2, as follows, test methods differ. As shown in Table 1 below, in Examples 5 to 23, LiH, LiNH 2 , and various catalysts were in a molar ratio of 1: 1: 0.01, and high purity so that the total amount thereof was 1.3 g. Weighed in an Ar glove box. In Example 24, as shown in Table 1, LiH, LiNH 2 , chromium chloride (CrCl 3 ), and TiCl 3 were used at a molar ratio of 1: 1: 0.01: 0.01, and the total amount thereof. Was weighed in a high purity Ar glove box so as to be 1.3 g. Further, for Example 25 and Example 26, as shown in Table 1, the molar ratio of LiH, LiNH 2 and a predetermined catalyst was 1.2: 1: 0.01, and the total amount thereof was 1.3 g. Weighed in a high purity Ar glove box.

Figure 2005095869
Figure 2005095869

次いで、秤量後の試料を高純度Arグローブボックス中で高クロム鋼製のバルブ付ミル容器(250cm)に投入した。続いて、このミル容器内を真空排気した後、ミル容器内が1MPaとなるようにミル容器内に高純度Arを導入し、遊星型ボールミル装置(Fritsch社製、P5)を用いて、室温、250rpmで120分ミリングを行い、試料を作製した。ミル容器内を真空排気してArを充填した後、高純度Arグローブボックス中でミル容器を開き、試料を取り出した。なお、金属Ni、金属Coおよび金属Feは、真空冶金株式会社製の試料(Ni:平均粒径 20nm,BET比表面積:43.8m/g,Co:平均粒子径20nm,BET比表面積:47.9m/g,Fe:平均粒子径20nm,BET比表面積:46.0m/g)を用いた。その他の金属塩化物はいずれもアルドリッチ社製(純度95%以上)のものを使用した。 Next, the weighed sample was put into a high-chromium steel valve-equipped mill container (250 cm 3 ) in a high-purity Ar glove box. Subsequently, after evacuating the inside of the mill container, high purity Ar was introduced into the mill container so that the inside of the mill container became 1 MPa, and a planetary ball mill apparatus (manufactured by Fritsch, P5) was used. Milling was performed at 250 rpm for 120 minutes to prepare a sample. After the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high purity Ar glove box, and a sample was taken out. Metal Ni, metal Co, and metal Fe are samples manufactured by Vacuum Metallurgical Co., Ltd. (Ni: average particle size 20 nm, BET specific surface area: 43.8 m 2 / g, Co: average particle size 20 nm, BET specific surface area: 47 0.9 m 2 / g, Fe: average particle diameter 20 nm, BET specific surface area: 46.0 m 2 / g). All other metal chlorides manufactured by Aldrich (purity 95% or more) were used.

実施例4〜26の試料を高純度Arグローブボックス内でそれぞれ500mg秤量し、内容積50cmのバルブ付のSUS製反応容器(内容積:約50cm)に充填した。なお、この反応容器には、試料上部付近の温度を測定できるように、熱電対が取り付けられている。この試料を充填した反応容器を圧力センサー、真空ポンプならびにガスクロマトグラフ(島津製作所社製、GC9A、TCD検出器、カラム:Molecular Sieve 5A)が付属されている実験装置(内容積:約300cm)に取り付け、真空排気した後、試料を室温〜300℃まで昇温速度10℃/分で加熱し、室温、150℃、200℃および250℃で反応容器内に放出されたガスを付属のガスクロマトグラフを用いて定量し、水素量を測定した。各温度範囲における水素放出率は、各温度範囲にて測定された水素量を加熱前の試料量で除した値とした。なお、水素放出率には、各温度でガスクロマトグラフに採取し消失した水素量を算出し、補正を加えた。 500 mg of each of the samples of Examples 4 to 26 was weighed in a high-purity Ar glove box and filled into a SUS reaction vessel (internal volume: about 50 cm 3 ) with an internal volume of 50 cm 3 and a valve. Note that a thermocouple is attached to the reaction vessel so that the temperature near the top of the sample can be measured. The reaction vessel filled with this sample is attached to an experimental apparatus (internal volume: about 300 cm 3 ) attached with a pressure sensor, a vacuum pump and a gas chromatograph (manufactured by Shimadzu Corp., GC9A, TCD detector, column: Molecular Sieve 5A). After mounting and evacuating, the sample is heated from room temperature to 300 ° C. at a heating rate of 10 ° C./min, and the gas released in the reaction vessel at room temperature, 150 ° C., 200 ° C. and 250 ° C. is attached to the attached gas chromatograph. The amount of hydrogen was measured. The hydrogen release rate in each temperature range was a value obtained by dividing the hydrogen amount measured in each temperature range by the sample amount before heating. The hydrogen release rate was corrected by calculating the amount of hydrogen that had been collected and lost in the gas chromatograph at each temperature.

図10に昇温速度10℃/分で加熱し、室温〜150℃、室温〜200℃および室温〜250℃の温度範囲で放出された水素放出率を示す。なお、各温度で保持をした場合には、昇温によって得られた水素放出率より一般的に向上する。図10に示されるように、実施例7、実施例13、実施例15を除いた各試料は、室温〜250℃の昇温において、1mass%近くの水素放出率を示しており、良好な水素放出特性を示した。また、実施例15では、室温〜200℃までの水素放出率が0.4mass%を超えており、比較的低温領域において高い水素放出率を示している。実施例7および実施例13では、室温〜150℃までの低温領域での水素放出率が0.4mass%を超えており、150℃以下の低温領域で高い水素放出率を示した。   FIG. 10 shows the hydrogen release rate released at a temperature rising rate of 10 ° C./min and released in the temperature ranges of room temperature to 150 ° C., room temperature to 200 ° C., and room temperature to 250 ° C. In addition, when it hold | maintains at each temperature, it generally improves from the hydrogen release rate obtained by temperature rising. As shown in FIG. 10, each sample except Example 7, Example 13, and Example 15 showed a hydrogen release rate of about 1 mass% at a temperature rise of room temperature to 250 ° C. Release characteristics were shown. In Example 15, the hydrogen release rate from room temperature to 200 ° C. exceeds 0.4 mass%, indicating a high hydrogen release rate in a relatively low temperature region. In Example 7 and Example 13, the hydrogen release rate in the low temperature region from room temperature to 150 ° C. exceeded 0.4 mass%, and a high hydrogen release rate was shown in the low temperature region of 150 ° C. or less.

本発明に係る水素貯蔵材料は、水素、酸素を燃料として発電する燃料電池に好適に利用することができ、より具体的には自動車、家庭内発電、自動販売機、携帯電話、ノートパソコンをはじめとするコードレスの家電製品、あるいは自立型ロボット・マイクロマシンなどの動力源として幅広い技術分野で利用することができる。   The hydrogen storage material according to the present invention can be suitably used for a fuel cell that generates power using hydrogen and oxygen as fuel, and more specifically, includes automobiles, domestic power generation, vending machines, mobile phones, and notebook computers. It can be used in a wide range of technical fields as a power source for cordless home appliances or self-supporting robots / micromachines.

比較例1の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線図。FIG. 6 is a gas emission spectrum diagram showing a mass number analysis result of desorbed gas accompanying a temperature increase in Comparative Example 1. 比較例2の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線図。The gas emission spectrum diagram showing the mass number analysis result of the desorption gas accompanying the temperature rise of Comparative Example 2. MeM処理の初期の練り合わせ状態を示す拡大断面模式図。The expanded cross-sectional schematic diagram which shows the initial kneading | mixing state of MeM process. MeM処理の中期の練り合わせ状態を示す拡大断面模式図。The expanded cross-sectional schematic diagram which shows the kneading | mixing state of the middle stage of MeM process. MeM処理の後期の練り合わせ状態を示す拡大断面模式図。The expanded cross-sectional schematic diagram which shows the kneading | mixing state of the latter stage of MeM process. 実施例1の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線図。2 is a gas emission spectrum diagram showing the result of mass number analysis of desorbed gas accompanying the temperature increase in Example 1. FIG. 実施例2の昇温に伴う脱離ガスの質量分析結果を表すガス放出スペクトル線図。FIG. 6 is a gas emission spectrum diagram showing the result of mass spectrometry of desorbed gas accompanying the temperature increase in Example 2. 実施例3の昇温に伴う脱離ガスの質量分析結果を表すガス放出スペクトル線図。FIG. 6 is a gas emission spectrum diagram showing the result of mass spectrometry of desorbed gas accompanying a temperature increase in Example 3. 本発明に係る水素貯蔵材料で水素放出と水素貯蔵を繰り返したときガス放出スペクトル線および昇温時の質量減少量の変化を表す特性線図。The characteristic line figure showing the change of the amount of mass loss at the time of a gas emission spectrum line and temperature rise when hydrogen discharge | release and hydrogen storage are repeated with the hydrogen storage material which concerns on this invention. 実施例4〜26の各試料の所定の温度範囲における水素放出率を示すグラフ。The graph which shows the hydrogen release rate in the predetermined | prescribed temperature range of each sample of Examples 4-26. 従来の窒化リチウム(LiN)を出発材料とした水素貯蔵材料での脱離ガスのガス放出スペクトル線図。Gas emission spectrum diagram of the desorbed gas in the conventional lithium nitride (Li 3 N) in the hydrogen storage material as a starting material.

符号の説明Explanation of symbols

502;試料粒子
502a;破断面
503;分散粒子
504;鋼球
502; Sample particle 502a; Fracture surface 503; Dispersed particle 504; Steel ball

Claims (10)

ナノ構造化・組織化されたリチウムイミド化合物前駆複合体を少なくとも含有する水素貯蔵材料であって、
前記リチウムイミド化合物前駆複合体は、出発原料として微粉末リチウムアミドに微粉末水素化リチウムを所定の割合で添加した混合物を所定の複合化処理法で処理することによりナノ構造化・組織化されたものであることを特徴とする水素貯蔵材料。
A hydrogen storage material containing at least a nanostructured / organized lithium imide compound precursor complex,
The lithium imide compound precursor composite was nanostructured and organized by treating a mixture of fine powder lithium amide added to fine powder lithium amide at a predetermined ratio as a starting material by a predetermined composite processing method. A hydrogen storage material characterized by being a thing.
前記複合化処理法として、不活性ガス、水素ガス、窒素ガスのいずれかの雰囲気またはこれらの混合雰囲気中で、前記出発原料の混合物を粉砕媒体に対して微視的な衝突を繰り返させるメカニカルミリング処理を用いたことを特徴とする請求項1に記載の水素貯蔵材料。   As the composite treatment method, mechanical milling in which microscopic collision of the starting material mixture with the grinding medium is repeated in an atmosphere of any of inert gas, hydrogen gas, nitrogen gas, or a mixed atmosphere thereof. The hydrogen storage material according to claim 1, wherein treatment is used. 前記出発原料は、前記微粉末水素化リチウムを前記微粉末リチウムアミドに対して混合モル比1:1正規の反応割合または当該正規の反応割合より20質量%以下まで過剰に添加したものであることを特徴とする請求項1または請求項2に記載の水素貯蔵材料。   The starting material is obtained by adding the fine powder lithium hydride to the fine powder lithium amide in an excess of a mixing molar ratio of 1: 1 normal reaction ratio or 20 mass% or less from the normal reaction ratio. The hydrogen storage material according to claim 1 or 2, wherein 前記リチウムイミド化合物前駆複合体は、水素吸放出能を高める触媒として、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,Nb,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Os,Mo,W,Ta,Zr,In,Hf,Agからなる群より選択される1種または2種以上の金属単体、合金または化合物をさらに含み、
前記触媒は、前記メカニカルミリング処理時に、前記微粉末水素化リチウムおよび前記微粉末リチウムアミドとともに混合され、ナノ構造化・組織化されたものであることを特徴とする請求項2または請求項3に記載の水素貯蔵材料。
The lithium imide compound precursor composite is used as a catalyst for enhancing hydrogen absorption / release capability as B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, One or more metals selected from the group consisting of La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag Further comprising a simple substance, an alloy or a compound;
4. The catalyst according to claim 2, wherein the catalyst is mixed with the fine powder lithium hydride and the fine powder lithium amide at the time of the mechanical milling process, and is nanostructured and organized. The hydrogen storage material as described.
前記複合化処理法における処理雰囲気圧力を0.1〜10MPaの範囲としたことを特徴とする請求項2から請求項4のいずれか1項に記載の水素貯蔵材料。   The hydrogen storage material according to any one of claims 2 to 4, wherein a treatment atmosphere pressure in the composite treatment method is in a range of 0.1 to 10 MPa. 出発原料として微粉末リチウムアミドと微粉末水素化リチウムとを所定の割合で混合した混合物を所定の複合化処理法で処理することにより、ナノ構造化・組織化されたリチウムイミド化合物前駆複合体を得ることを特徴とする水素貯蔵材料の製造方法。   By treating a mixture of finely powdered lithium amide and finely powdered lithium hydride as a starting material in a predetermined ratio by a predetermined composite processing method, a nanostructured and organized lithium imide compound precursor composite is obtained. A method for producing a hydrogen storage material, characterized by comprising: 前記複合化処理法として、不活性ガス、水素ガス、窒素ガスのいずれかの雰囲気またはこれらの混合雰囲気中で、前記出発原料の混合物を粉砕媒体に対して微視的な衝突を繰り返させるメカニカルミリング処理を用いることを特徴とする請求項6に記載の水素貯蔵材料の製造方法。   As the composite treatment method, mechanical milling in which microscopic collision of the starting material mixture with the grinding medium is repeated in an atmosphere of any of inert gas, hydrogen gas, nitrogen gas, or a mixed atmosphere thereof. The method for producing a hydrogen storage material according to claim 6, wherein treatment is used. 前記微粉末水素化リチウムを前記微粉末リチウムアミドに対して混合モル比1:1正規の反応割合または当該正規の反応割合より20質量%以下まで過剰に添加することを特徴とする請求項6または請求項7に記載の水素貯蔵材料の製造方法。   The fine powder lithium hydride is added in excess to the fine powder lithium amide in a mixture molar ratio of 1: 1 normal reaction ratio or 20 mass% or less from the normal reaction ratio. The method for producing a hydrogen storage material according to claim 7. 前記出発原料の混合物に水素吸放出能を高める触媒としてB,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,Nb,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Os,Mo,W,Ta,Zr,In,Hf,Agからなる群より選択される1種または2種以上の金属単体、合金または化合物をさらに添加し、前記メカニカルミリング処理時に、前記触媒を前記微粉末水素化リチウムおよび前記微粉末リチウムアミドとともにナノ構造化・組織化することを特徴とする請求項7または請求項8に記載の水素貯蔵材料の製造方法。   B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag selected from the group consisting of one or more kinds of simple metals, alloys or The compound is further added, and the catalyst is nanostructured and organized together with the fine powder lithium hydride and the fine powder lithium amide during the mechanical milling treatment. A method for producing a hydrogen storage material. 前記複合化処理法における処理雰囲気圧力を0.1〜10MPaの範囲とすることを特徴とする請求項7から請求項9のいずれか1項に記載の水素貯蔵材料の製造方法。   The method for producing a hydrogen storage material according to any one of claims 7 to 9, wherein a treatment atmosphere pressure in the composite treatment method is in a range of 0.1 to 10 MPa.
JP2004232091A 2003-08-11 2004-08-09 Hydrogen storing material and its production method Pending JP2005095869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232091A JP2005095869A (en) 2003-08-11 2004-08-09 Hydrogen storing material and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003291672 2003-08-11
JP2004232091A JP2005095869A (en) 2003-08-11 2004-08-09 Hydrogen storing material and its production method

Publications (1)

Publication Number Publication Date
JP2005095869A true JP2005095869A (en) 2005-04-14

Family

ID=34466824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232091A Pending JP2005095869A (en) 2003-08-11 2004-08-09 Hydrogen storing material and its production method

Country Status (1)

Country Link
JP (1) JP2005095869A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008441A (en) * 2004-06-24 2006-01-12 Taiheiyo Cement Corp Material for storing hydrogen and method for production the same
JP2007091497A (en) * 2005-09-27 2007-04-12 Taiheiyo Cement Corp Method for producing hydrogen storage material
JP2007207682A (en) * 2006-02-03 2007-08-16 Nissan Motor Co Ltd Hydrogen generation system, fuel cell system, and fuel cell vehicle
JP2008037731A (en) * 2006-08-10 2008-02-21 Nissan Motor Co Ltd Hydrogen generation system, fuel cell system, and fuel cell automobile
JP2009226239A (en) * 2008-03-19 2009-10-08 Japan Steel Works Ltd:The Method of surface-modifying hydrogen storage material
JP2010215429A (en) * 2009-03-13 2010-09-30 Toyota Motor Corp Metal hydride composite and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008441A (en) * 2004-06-24 2006-01-12 Taiheiyo Cement Corp Material for storing hydrogen and method for production the same
JP4615908B2 (en) * 2004-06-24 2011-01-19 太平洋セメント株式会社 Hydrogen storage material and method for producing the same
JP2007091497A (en) * 2005-09-27 2007-04-12 Taiheiyo Cement Corp Method for producing hydrogen storage material
JP4575866B2 (en) * 2005-09-27 2010-11-04 太平洋セメント株式会社 Method for producing hydrogen storage material
JP2007207682A (en) * 2006-02-03 2007-08-16 Nissan Motor Co Ltd Hydrogen generation system, fuel cell system, and fuel cell vehicle
JP2008037731A (en) * 2006-08-10 2008-02-21 Nissan Motor Co Ltd Hydrogen generation system, fuel cell system, and fuel cell automobile
JP2009226239A (en) * 2008-03-19 2009-10-08 Japan Steel Works Ltd:The Method of surface-modifying hydrogen storage material
JP2010215429A (en) * 2009-03-13 2010-09-30 Toyota Motor Corp Metal hydride composite and method for producing the same

Similar Documents

Publication Publication Date Title
Lin et al. Recent advances in metastable alloys for hydrogen storage: a review
Yartys et al. Magnesium based materials for hydrogen based energy storage: Past, present and future
Khafidz et al. The kinetics of lightweight solid-state hydrogen storage materials: A review
Sakintuna et al. Metal hydride materials for solid hydrogen storage: a review
CN101476070B (en) Magnesium-based hydrogen occluding alloy and manufacturing method thereof
CN105734323B (en) A kind of nano Mg base reversible hydrogen storage composite and preparation method thereof
US6387152B1 (en) Process for manufacturing nanocrystalline metal hydrides
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
Lv et al. Improved hydrogen storage properties of TiFe alloy by doping (Zr+ 2V) additive and using mechanical deformation
CN102634714A (en) Copper-added magnesium-aluminum hydrogen storage alloy and preparation method thereof
JP4986101B2 (en) Hydrogen storage material and method for producing the same
JP2008043927A (en) Method of manufacturing hydrogen storage material
Dehouche et al. Effect of activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals
JP2005535785A (en) Reactive grinding method for producing hydrogen storage alloys
JP2005095869A (en) Hydrogen storing material and its production method
JP2007117989A (en) Hydrogen storage material and its production method
JP4121711B2 (en) Hydrogen storage metal-containing material and method for producing the same
JP2006142281A (en) Aluminum type nanocomposite catalyst, its manufacturing method and hydrogen occluding composite material using it
US20140070138A1 (en) Hydrogen storage composite materials and methods of forming the same
Kumar et al. Hydrogen generation from metal chloride doped sodium-borohydride by thermolysis at low temperature: The effect of material preparation methods
Babu et al. Magnesium hydrides for hydrogen storage: A mini review
JP4793900B2 (en) Hydrogen storage material and method for producing the same
Redzeb et al. Influence of boron on the hydriding of nanocrystalline Mg2Ni
Han et al. Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum
JP4575866B2 (en) Method for producing hydrogen storage material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220