JP2006008441A - Material for storing hydrogen and method for production the same - Google Patents

Material for storing hydrogen and method for production the same Download PDF

Info

Publication number
JP2006008441A
JP2006008441A JP2004186450A JP2004186450A JP2006008441A JP 2006008441 A JP2006008441 A JP 2006008441A JP 2004186450 A JP2004186450 A JP 2004186450A JP 2004186450 A JP2004186450 A JP 2004186450A JP 2006008441 A JP2006008441 A JP 2006008441A
Authority
JP
Japan
Prior art keywords
hydrogen storage
lithium
storage material
hydrogen
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004186450A
Other languages
Japanese (ja)
Other versions
JP4615908B2 (en
Inventor
Hironobu Fujii
博信 藤井
Takayuki Ichikawa
貴之 市川
Toyoyuki Kubokawa
豊之 窪川
Shinkichi Tanabe
進吉 田辺
Keisuke Okamoto
恵介 岡本
Kazuhiko Tokiyoda
和彦 常世田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Taiheiyo Cement Corp
Original Assignee
Hiroshima University NUC
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Taiheiyo Cement Corp filed Critical Hiroshima University NUC
Priority to JP2004186450A priority Critical patent/JP4615908B2/en
Priority to PCT/JP2004/009538 priority patent/WO2005014165A1/en
Publication of JP2006008441A publication Critical patent/JP2006008441A/en
Priority to US11/351,244 priority patent/US7537748B2/en
Application granted granted Critical
Publication of JP4615908B2 publication Critical patent/JP4615908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a material for storing hydrogen in which the hydrogen releasing temperature is lowered and to provide a method for producing the same. <P>SOLUTION: In the material for storing hydrogen which is obtained by finely dividing a mixture or a composite material of lithium hydride and lithium amide through a prescribed mechanically pulverizing treatment, the material for storing hydrogen has a specific surface area according to the BET method of 15 m<SP>2</SP>/g or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池等の燃料として用いられる水素貯蔵材料およびその製造方法に関する。   The present invention relates to a hydrogen storage material used as a fuel for fuel cells and the like, and a method for producing the same.

NOやSO等の有害物質やCO等の温室効果ガスを出さないクリーンなエネルギー源として燃料電池の開発が盛んに行われており、既に幾つかの分野で実用化されている。この燃料電池技術を支える重要な技術として、燃料電池の燃料となる水素を貯蔵する技術がある。水素の貯蔵形態としては、高圧ボンベによる圧縮貯蔵や液体水素化させる冷却貯蔵、水素貯蔵物質による貯蔵が知られており、これらの形態の中で、水素貯蔵物質による貯蔵は、分散貯蔵や輸送の点で有利である。水素貯蔵物質としては、水素貯蔵効率の高い材料、つまり水素貯蔵物質の単位重量または単位体積あたりの水素貯蔵量が高い材料、低い温度で水素の吸収/放出が行われる材料、良好な耐久性を有する材料が望まれる。 NO X and development of fuel cells have been actively as a clean energy source that does not emit greenhouse gases such as toxic substances and CO 2 in the SO X or the like, and is already practiced in several areas. As an important technology that supports this fuel cell technology, there is a technology for storing hydrogen as fuel for the fuel cell. As storage forms of hydrogen, compression storage by high-pressure cylinders, cooling storage by liquid hydrogenation, and storage by hydrogen storage materials are known. Among these forms, storage by hydrogen storage materials is used for distributed storage and transportation. This is advantageous. Hydrogen storage materials include materials with high hydrogen storage efficiency, that is, materials with a high hydrogen storage amount per unit weight or volume of the hydrogen storage material, materials that absorb / release hydrogen at a low temperature, and good durability. A material having is desired.

従来、水素貯蔵物質としては、希土類系、チタン系、バナジウム系、マグネシウム系等を中心とする金属材料、金属アラネート(例えば、NaAlHやLiAlH)等の軽量無機化合物、カーボン等の種々の材料が知られている。また、例えば、下記(1)式で示されるリチウム窒化物を用いた水素貯蔵方法も報告されている(例えば、非特許文献1、2参照)。
LiN+2H⇔LiNH+LiH+H⇔LiNH+2LiH…(1)
Conventionally, as a hydrogen storage material, various materials such as metal materials such as rare earth, titanium, vanadium, and magnesium, lightweight inorganic compounds such as metal alanate (for example, NaAlH 4 and LiAlH 4 ), and carbon, etc. It has been known. In addition, for example, a hydrogen storage method using lithium nitride represented by the following formula (1) has also been reported (see, for example, Non-Patent Documents 1 and 2).
Li 3 N + 2H 2 ⇔Li 2 NH + LiH + H 2 ⇔LiNH 2 + 2LiH (1)

ここで、LiNによる水素の吸収は100℃程度から開始し、255℃、30分で9.3質量%の水素吸収が確認されている。また、吸収された水素の放出特性としては、ゆっくり加熱することによって200℃弱で6.3質量%、320℃以上で3.0質量%と、二段階のステップを経ることが報告されている。すなわち、上記(1)式の右辺部分に相当する下記(2)式の反応は200℃弱で進行し始め、上記(1)式の左辺部分に相当する下記(3)式の反応は約320℃で進行し始めることが示されている。
LiNH+2LiH→LiNH+LiH+H↑…(2)
LiNH+LiH→LiN+H↑…(3)
Here, absorption of hydrogen by Li 3 N started from about 100 ° C., and 9.3 mass% hydrogen absorption was confirmed at 255 ° C. for 30 minutes. In addition, it has been reported that the absorption characteristics of absorbed hydrogen pass through two steps: 6.3% by mass at less than 200 ° C. and 3.0% by mass at 320 ° C. or higher by slowly heating. . That is, the reaction of the following formula (2) corresponding to the right side portion of the above formula (1) starts to proceed at a little less than 200 ° C., and the reaction of the following formula (3) corresponding to the left side portion of the above formula (1) is about 320 It has been shown to begin to progress at ° C.
LiNH 2 + 2LiH → Li 2 NH + LiH + H 2 ↑ (2)
Li 2 NH + LiH → Li 3 N + H 2 ↑ (3)

しかしながら、上記(1)式に示されるリチウム窒化物は、水素放出温度が高いという問題がある。
Ruff, O. , and Goerges, H., Berichte der Deutschen ChemischenGesellschaft zu Berlin,Vol.44, 502-6(1911) Ping Chen et al., Interaction of hydrogen with metalnitrides andimides, NATURE Vol.420, 21 NOVEMBER 2002, p302〜304
However, the lithium nitride represented by the above formula (1) has a problem that the hydrogen release temperature is high.
Ruff, O., and Goerges, H., Berichte der Deutschen Chemischen Gesellschaft zu Berlin, Vol. 44, 502-6 (1911) Ping Chen et al., Interaction of hydrogen with metalnitrides andimides, NATURE Vol.420, 21 NOVEMBER 2002, p302〜304

発明者らはかかる事情に鑑み、先に特願2003−291672号において、リチウムアミド(LiNH)と水素化リチウム(LiH)をナノ構造化することにより、水素発生反応温度を低温側へシフトさせた水素貯蔵材料を開示した。しかし、水素発生反応温度をさらに低温化させることが望まれている。
本発明はかかる事情に鑑みてなされたものであり、水素発生温度を低温化させた水素貯蔵材料、およびその製造方法を提供することを目的とする。
In view of such circumstances, the inventors previously made a nanostructure of lithium amide (LiNH 2 ) and lithium hydride (LiH) in Japanese Patent Application No. 2003-291672 to shift the hydrogen generation reaction temperature to the low temperature side. A hydrogen storage material has been disclosed. However, it is desired to further lower the hydrogen generation reaction temperature.
The present invention has been made in view of such circumstances, and an object thereof is to provide a hydrogen storage material in which the hydrogen generation temperature is lowered, and a method for producing the same.

すなわち、本発明の第1の観点によれば、水素化リチウムとリチウムアミドの混合物または複合化物を所定の機械的粉砕処理により微細化してなる水素貯蔵材料であって、BET法による比表面積が15m/g以上であることを特徴とする水素貯蔵材料、が提供される。
この第1の観点に係る水素貯蔵材料においては、さらに水素放出率を高める観点から、その比表面積は30m/g以上であることが好ましい。
That is, according to the first aspect of the present invention, there is provided a hydrogen storage material obtained by refining a mixture or composite of lithium hydride and lithium amide by a predetermined mechanical pulverization treatment, and having a specific surface area of 15 m by the BET method. A hydrogen storage material characterized by being 2 / g or more is provided.
In the hydrogen storage material according to the first aspect, the specific surface area is preferably 30 m 2 / g or more from the viewpoint of further increasing the hydrogen release rate.

本発明の第2の観点によれば、水素化リチウムとマグネシウムアミドとの混合物または複合化物を所定の機械的粉砕処理により微細化してなる水素貯蔵材料であって、BET法による比表面積が7.5m/g以上であることを特徴とする水素貯蔵材料、が提供される。
この第2の観点に係る水素貯蔵材料においては、さらに水素放出率を高める観点から、その比表面積は15m/g以上であることが好ましい。また、1モルのマグネシウムアミドに対する水素化リチウムの混合比は、1.5モル以上4モル以下であることが好ましい。
According to a second aspect of the present invention, there is provided a hydrogen storage material obtained by refining a mixture or composite of lithium hydride and magnesium amide by a predetermined mechanical pulverization treatment, having a specific surface area of 7. A hydrogen storage material characterized by being 5 m 2 / g or more is provided.
In the hydrogen storage material according to the second aspect, the specific surface area is preferably 15 m 2 / g or more from the viewpoint of further increasing the hydrogen release rate. The mixing ratio of lithium hydride to 1 mol of magnesium amide is preferably 1.5 mol or more and 4 mol or less.

本発明の第3の観点によれば、水素化マグネシウムとリチウムアミドの混合物または複合化物を所定の機械的粉砕処理により微細化してなる水素貯蔵材料であって、BET法による比表面積が7.5m/g以上であることを特徴とする水素貯蔵材料、が提供される。 According to a third aspect of the present invention, there is provided a hydrogen storage material obtained by refining a mixture or composite of magnesium hydride and lithium amide by a predetermined mechanical pulverization treatment, having a specific surface area of 7.5 m by the BET method. A hydrogen storage material characterized by being 2 / g or more is provided.

この第3の観点に係る水素貯蔵材料においては、さらに水素放出率を高める観点から、その比表面積は15m/g以上であることが好ましい。また、1モルのリチウムアミドに対する水素化マグネシウムの混合比は、0.5モル以上2モル以下であることが好ましい。 In the hydrogen storage material according to the third aspect, the specific surface area is preferably 15 m 2 / g or more from the viewpoint of further increasing the hydrogen release rate. The mixing ratio of magnesium hydride to 1 mol of lithium amide is preferably 0.5 mol or more and 2 mol or less.

本発明の第4の観点によれば、水素化したリチウムイミドからなる水素貯蔵材料であって、BET法による比表面積が10m/g以上であることを特徴とする水素貯蔵材料、が提供される。 According to a fourth aspect of the present invention, there is provided a hydrogen storage material comprising hydrogenated lithium imide, wherein the specific surface area by the BET method is 10 m 2 / g or more. The

この第4の観点に係る水素貯蔵材料においては、さらに水素放出率を高める観点から、その比表面積は15m/g以上であることが好ましい。また、リチウムイミドとしては、窒化リチウムを水素と反応させることにより、またはリチウムアミドを熱分解することにより合成されたものが好適に用いられる。 In the hydrogen storage material according to the fourth aspect, the specific surface area is preferably 15 m 2 / g or more from the viewpoint of further increasing the hydrogen release rate. As the lithium imide, a lithium imide synthesized by reacting lithium nitride with hydrogen or thermally decomposing lithium amide is preferably used.

本発明の第5の観点によれば、窒化マグネシウムとリチウムイミドとの混合物および複合化物を水素化した水素貯蔵材料であって、BET法による比表面積が5m/g以上であることを特徴とする水素貯蔵材料、が提供される。
この第5の観点に係る水素貯蔵材料においては、さらに水素放出率を高める観点から、その比表面積が10m/g以上であることが好ましい。
According to a fifth aspect of the present invention, there is provided a hydrogen storage material obtained by hydrogenating a mixture and composite of magnesium nitride and lithium imide, wherein the specific surface area by the BET method is 5 m 2 / g or more. A hydrogen storage material is provided.
In the hydrogen storage material according to the fifth aspect, the specific surface area is preferably 10 m 2 / g or more from the viewpoint of further increasing the hydrogen release rate.

上記各水素貯蔵材料は、水素吸放出能を高める触媒をさらに含むことが好ましく、この触媒としては、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,Nb,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Mo,W,Ta,Zr,HfおよびAgから選ばれた1種もしくは2種以上の金属またはその化合物またはその合金、あるいは水素貯蔵合金が好適に用いられる。   Each of the above hydrogen storage materials preferably further contains a catalyst that enhances the ability to absorb and release hydrogen. Examples of this catalyst include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, One or more selected from K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Mo, W, Ta, Zr, Hf and Ag A metal, a compound thereof, an alloy thereof, or a hydrogen storage alloy is preferably used.

本発明の第6の観点によれば、水素化したリチウムイミドからなる水素貯蔵材料の製造方法であって、
リチウムアミド粉末と水素吸放出能を高める触媒とを機械的に粉砕混合する工程と、
前記粉砕工程によって得られた被処理物を熱分解して、前記被処理物に含まれるリチウムアミドをリチウムイミドに変化させる工程と、
前記リチウムイミドを水素化する工程と、
を有し、
前記一連の工程によりBET法による比表面積が10m/g以上の水素化されたリチウムイミドを得ることを特徴とする水素貯蔵材料の製造方法、が提供される。
According to a sixth aspect of the present invention, there is provided a method for producing a hydrogen storage material comprising hydrogenated lithium imide,
Mechanically pulverizing and mixing the lithium amide powder and the catalyst for enhancing hydrogen absorption and release;
Thermally decomposing the object to be processed obtained by the pulverization step, and changing lithium amide contained in the object to be processed into lithium imide;
Hydrogenating the lithium imide;
Have
By the series of steps, a method for producing a hydrogen storage material is provided, wherein a hydrogenated lithium imide having a specific surface area of 10 m 2 / g or more by BET method is obtained.

本発明の第7の観点によれば、水素化したリチウムイミドからなる水素貯蔵材料の製造方法であって、
リチウムアミド粉末を機械的に粉砕する工程と、
前記粉砕工程後に、さらに前記リチウムアミド粉末に水素吸放出能を高める触媒を添加して粉砕混合し、前記触媒を前記リチウムアミド粉末に担持させる工程と、
前記触媒担持工程によって得られた被処理物を熱分解して、前記被処理物に含まれるリチウムアミドをリチウムイミドに変化させる工程と、
前記リチウムイミドを水素化する工程と、
を有し、
前記一連の工程によりBET法による比表面積が10m/g以上の水素化されたリチウムイミドを得ることを特徴とする水素貯蔵材料の製造方法、が提供される。
According to a seventh aspect of the present invention, there is provided a method for producing a hydrogen storage material comprising hydrogenated lithium imide,
Mechanically grinding lithium amide powder;
After the pulverization step, a step of further adding a catalyst that enhances hydrogen absorption / release capability to the lithium amide powder, pulverizing and mixing, and supporting the catalyst on the lithium amide powder;
Pyrolyzing the object to be treated obtained by the catalyst supporting step, and changing lithium amide contained in the object to be treated to lithium imide;
Hydrogenating the lithium imide;
Have
By the series of steps, a method for producing a hydrogen storage material is provided, wherein a hydrogenated lithium imide having a specific surface area of 10 m 2 / g or more by BET method is obtained.

本発明によれば、これら第6および第7の観点に係る水素貯蔵材料の製造方法により製造された水素貯蔵材料が提供される。   According to this invention, the hydrogen storage material manufactured by the manufacturing method of the hydrogen storage material which concerns on these 6th and 7th viewpoints is provided.

本発明によれば、従来よりも水素放出温度を低温化させることができる。これにより、水素貯蔵材料から水素を放出させるための加熱に要するエネルギーを低減させ、また、水素貯蔵材料を充填する容器等の材質や構造の制限が緩和されるようになる。   According to the present invention, the hydrogen release temperature can be lowered as compared with the prior art. As a result, the energy required for heating to release hydrogen from the hydrogen storage material is reduced, and restrictions on the material and structure of the container and the like filled with the hydrogen storage material are relaxed.

本発明に係る水素貯蔵材料は、大略的に、2つの材料系に分けられる。第1の材料系には、金属水素化物と金属アミド化合物の混合物または複合物からなり、所定の機械的粉砕処理により微細化してなる材料が含まれる。また、第2の材料系には、金属イミド化合物を含む材料を水素化してなる材料が含まれる。この第2の材料系に含まれる材料もまた、所定の機械的粉砕処理により微細化されていることが好ましい。   The hydrogen storage material according to the present invention is roughly divided into two material systems. The first material system includes a material made of a mixture or composite of a metal hydride and a metal amide compound and refined by a predetermined mechanical pulverization process. The second material system includes a material obtained by hydrogenating a material containing a metal imide compound. The material included in the second material system is also preferably refined by a predetermined mechanical pulverization process.

最初に第1の材料系について説明する。この系における金属水素化物と金属アミド化合物の組み合わせとしては、水素化リチウム(LiH)とリチウムアミド(LiNH)、水素化リチウムとマグネシウムアミド(Mg(NH)、水素化マグネシウム(MgH)とリチウムアミドの各組み合わせが挙げられる。これらは、材料の基本特性として水素放出温度が異なり、水素放出温度を低下させる比表面積の値にも差がある。 First, the first material system will be described. The combinations of metal hydride and metal amide compound in this system include lithium hydride (LiH) and lithium amide (LiNH 2 ), lithium hydride and magnesium amide (Mg (NH 2 ) 2 ), magnesium hydride (MgH 2). ) And lithium amide. These have different hydrogen release temperatures as basic characteristics of the materials, and there are also differences in specific surface area values that lower the hydrogen release temperature.

後述する実施例で詳細に説明するように、水素化リチウムとリチウムアミドの組み合わせの場合には、BET法による比表面積が15m/g以上になると、急速に水素放出温度が低下する。逆に言えば、その比表面積を15m/g以上とすることで水素放出温度を大きく低温化させることができる。さらに水素放出率を高める観点から、その比表面積は30m/g以上であることが、より好ましい。ここで、水素放出率としては、3質量%(mass%)以上であることを条件としている。 As will be described in detail in the examples described later, in the case of a combination of lithium hydride and lithium amide, when the specific surface area by the BET method is 15 m 2 / g or more, the hydrogen release temperature rapidly decreases. In other words, the hydrogen release temperature can be greatly lowered by setting the specific surface area to 15 m 2 / g or more. Further, from the viewpoint of increasing the hydrogen release rate, the specific surface area is more preferably 30 m 2 / g or more. Here, the hydrogen release rate is set to be 3 mass% (mass%) or more.

水素化リチウムとマグネシウムアミドの組み合わせの場合には、水素放出温度を低温化させるために、BET法による比表面積を7.5m/g以上とする。さらに水素放出率を高める観点から、その比表面積は15m/g以上であることが好ましい。 In the case of a combination of lithium hydride and magnesium amide, the specific surface area by the BET method is set to 7.5 m 2 / g or more in order to lower the hydrogen release temperature. Further, from the viewpoint of increasing the hydrogen release rate, the specific surface area is preferably 15 m 2 / g or more.

水素化リチウムとマグネシウムアミドとの水素放出反応は、下記(4)式および下記(5)式で表される。
2LiH+Mg(NH⇔LiNH+MgNH+2H …(4)
8LiH+3Mg(NH⇔4LiNH+Mg+8H …(5)
The hydrogen releasing reaction between lithium hydride and magnesium amide is represented by the following formula (4) and the following formula (5).
2LiH + Mg (NH 2 ) 2 ⇔Li 2 NH + MgNH + 2H 2 (4)
8LiH + 3Mg (NH 2 ) 2 ⇔4Li 2 NH + Mg 3 N 2 + 8H 2 (5)

上記(4)式および(5)式を考察すると、上記(4)式では、1モルのマグネシウムアミドに対して2モルの水素化リチウムが化学等量であり、理論水素貯蔵率は5.48質量%となる。一方、上記(5)式では、1モルのマグネシウムアミドに対して2.67モルの水素化リチウムが化学等量であり、理論水素貯蔵率は6.85質量%となる。したがって、マグネシウムアミドと水素化リチウムの組成比が変化することで支配的に起こる反応が変わり、また水素貯蔵率も変わってくることになる。   Considering the above formulas (4) and (5), in the above formula (4), 2 mol of lithium hydride is equivalent to 1 mol of magnesium amide, and the theoretical hydrogen storage rate is 5.48. It becomes mass%. On the other hand, in the above formula (5), 2.67 mol of lithium hydride is a chemical equivalent with respect to 1 mol of magnesium amide, and the theoretical hydrogen storage rate is 6.85 mass%. Therefore, the reaction that occurs predominantly changes as the composition ratio of magnesium amide and lithium hydride changes, and the hydrogen storage rate also changes.

ここで、上記(5)式を下記(6a)式および(6b)式に分けて考える。
6LiH+3Mg(NH⇔3LiNH+3MgNH+6H …(6a)
3MgNH+2LiH⇔LiNH+Mg+2H …(6b)
すると、上記(6a)式は上記(4)式における各物質の係数を3倍したものであり、実質的に上記(4)式と同じである。そして、上記(6b)式は上記(6a)式で生成したマグネシウムイミド(MgNH)と水素化リチウムとの反応である。
Here, the above equation (5) is divided into the following equations (6a) and (6b).
6LiH + 3Mg (NH 2 ) 2 ⇔3Li 2 NH + 3MgNH + 6H 2 (6a)
3MgNH + 2LiH⇔Li 2 NH + Mg 3 N 2 + 2H 2 ... (6b)
Then, the above equation (6a) is obtained by multiplying the coefficient of each substance in the above equation (4) by three, and is substantially the same as the above equation (4). The above formula (6b) is a reaction between magnesium imide (MgNH) produced by the above formula (6a) and lithium hydride.

つまり上記(5)式は、上記(4)式の反応を起こさせようとして水素化リチウムをマグネシウムアミドに対して化学量論比よりも過剰にすると、結果的に、生成したマグネシウムイミドの一部が過剰に添加された水素化リチウムと反応し、窒化マグネシウムが生成するところまで反応が進行する、ということを示している。   In other words, the above formula (5) shows that when lithium hydride is made to exceed the stoichiometric ratio with respect to magnesium amide in order to cause the reaction of the above formula (4), a part of the produced magnesium imide is obtained. Shows that the reaction proceeds to the point where magnesium nitride is formed by reacting with excessively added lithium hydride.

これらのことから、1モルのマグネシウムアミドに対する水素化リチウムの混合比が2未満の場合は、マグネシウムアミドが水素化リチウムに対して過剰であるから、このときには上記(4)式が支配的に進行する。また、1モルのマグネシウムアミドに対する水素化リチウムの混合比が化学量論比である2の場合にも、上記(4)式が支配的に進行する。しかしながら、マグネシウムアミドに対する水素化リチウムの混合比を上記(4)式に合わせたとしても、実際には、マグネシウムイミドと水素化リチウムの混合状態(分散状態)等に依存して、生成したマグネシウムイミドと水素化リチウムとが反応して上記(5)式の反応が進行し、一部のマグネシウムアミドは反応せずに残存することも起こり得ると考えられる。   From these facts, when the mixing ratio of lithium hydride to 1 mol of magnesium amide is less than 2, magnesium amide is excessive with respect to lithium hydride. To do. In addition, when the mixing ratio of lithium hydride to 1 mol of magnesium amide is 2 which is a stoichiometric ratio, the above formula (4) proceeds predominantly. However, even if the mixing ratio of lithium hydride to magnesium amide is adjusted to the above formula (4), the generated magnesium imide actually depends on the mixed state (dispersed state) of magnesium imide and lithium hydride. It is considered that the reaction of the above formula (5) proceeds with the reaction of lithium hydride with some magnesium amide remaining without reacting.

これに対して、1モルのマグネシウムアミドに対する水素化リチウムの混合比が2超2.67未満の場合は、上記(4)式からみるとマグネシウムアミドに対して水素化リチウムは過剰であるが、上記(5)式からみるとマグネシウムアミドに対して水素化リチウムが不足している。この場合には、混合比が2に近い場合には上記(4)式が支配的に進行して、生成したマグネシウムイミドの一部が窒化マグネシウムへ変化し、混合比が2.67へ上がるにつれて上記(5)式が支配的に進行するようになる。そして、1モルのマグネシウムアミドに対する水素化リチウムの混合比が2.67の化学量論比である場合と混合比が2.67超の場合には、上記(5)式が支配的に進行する。   On the other hand, when the mixing ratio of lithium hydride to 1 mol of magnesium amide is more than 2 and less than 2.67, lithium hydride is excessive with respect to magnesium amide according to the above formula (4). From the above formula (5), lithium hydride is insufficient with respect to magnesium amide. In this case, when the mixing ratio is close to 2, the above formula (4) proceeds predominantly, and part of the generated magnesium imide changes to magnesium nitride, and as the mixing ratio increases to 2.67. The above formula (5) proceeds dominantly. When the mixing ratio of lithium hydride to 1 mol of magnesium amide is a stoichiometric ratio of 2.67 and when the mixing ratio is more than 2.67, the above formula (5) proceeds predominantly. .

これら上記(4)式と上記(5)式のどちらを主体的に利用するかは、例えば、水素貯蔵率と、水素放出後の生成物に再び水素を吸蔵させる反応のサイクル特性(つまり、上記(4)式と上記(5)式の右辺から左辺への反応の容易さ)等とを考慮して、決定することができる。また、水素化リチウムとマグネシウムアミドのいずれか一方を他方に対して過剰とすることにより、その他方の物質の反応確率を上げて、水素放出を促進させることができると考えられる。しかし、一方の物質が過度に多すぎると、全量に対する水素貯蔵率を低下させてしまう問題が生ずる。   Which of these formulas (4) and (5) is mainly used depends on, for example, the hydrogen storage rate and the cycle characteristics of the reaction in which hydrogen is again stored in the product after hydrogen release (that is, the above-described formula). This can be determined in consideration of the equation (4) and the ease of reaction from the right side to the left side of the above equation (5). Moreover, it is thought that hydrogen release can be promoted by increasing the reaction probability of the other substance by making one of lithium hydride and magnesium amide excessive with respect to the other. However, if one of the substances is too much, there is a problem that the hydrogen storage rate with respect to the total amount is lowered.

したがって、このような水素貯蔵率や反応物質の利用率、水素吸放出反応のサイクル特性等を考慮して、水素化リチウムとマグネシウムアミドの各量を定めることが好ましい。具体的には、1モルのマグネシウムアミドに対する水素化リチウムの混合比を1.5モル以上4モル以下とすることが好ましく、さらに主に上記(5)式が進行するように、2.5モル以上3.5モル以下とすることで、水素貯蔵率をそれ以外の範囲よりも高く維持することができる。   Therefore, it is preferable to determine the respective amounts of lithium hydride and magnesium amide in consideration of such hydrogen storage rate, utilization rate of reactants, cycle characteristics of hydrogen absorption / release reaction, and the like. Specifically, the mixing ratio of lithium hydride to 1 mol of magnesium amide is preferably 1.5 mol or more and 4 mol or less, and more preferably 2.5 mol so that the above formula (5) proceeds mainly. By setting it as 3.5 mol or less above, a hydrogen storage rate can be maintained higher than the other range.

水素化マグネシウムとリチウムアミドの組み合わせの場合には、水素放出温度を低温化させるために、BET法による比表面積を7.5m/g以上とする。さらに水素放出率を高める観点から、その比表面積は15m/g以上であることが好ましい。 In the case of a combination of magnesium hydride and lithium amide, the specific surface area by the BET method is set to 7.5 m 2 / g or more in order to lower the hydrogen release temperature. Further, from the viewpoint of increasing the hydrogen release rate, the specific surface area is preferably 15 m 2 / g or more.

水素化マグネシウムとリチウムアミドとの反応は、下記(7)式および下記(8)式で示される。
MgH+2LiNH⇔LiNH+MgNH+2H …(7)
3MgH+4LiNH⇔Mg+2LiNH+6H …(8)
The reaction between magnesium hydride and lithium amide is represented by the following formula (7) and the following formula (8).
MgH 2 + 2LiNH 2 ⇔Li 2 NH + MgNH + 2H 2 (7)
3MgH 2 + 4LiNH 2 ⇔Mg 3 N 2 + 2Li 2 NH + 6H 2 (8)

上記(7)式および(8)式を考察すると、上記(7)式では、1モルのリチウムアミドに対して0.5モルの水素化マグネシウムが化学等量であり、理論水素貯蔵率は5.48質量%となる。一方、上記(8)式では、1モルのリチウムアミドに対して0.75モルの水素化リチウムが化学等量であり、理論水素貯蔵率は7.08質量%となる。したがって、水素化マグネシウムとリチウムアミドの組成比が変化することで支配的に起こる反応が変わり、また水素貯蔵率も変わってくることになる。   Considering the above formulas (7) and (8), in the above formula (7), 0.5 mol of magnesium hydride is equivalent to 1 mol of lithium amide, and the theoretical hydrogen storage rate is 5 48 mass%. On the other hand, in the above formula (8), 0.75 mol of lithium hydride is a chemical equivalent with respect to 1 mol of lithium amide, and the theoretical hydrogen storage rate is 7.08 mass%. Therefore, the reaction that occurs predominantly changes as the composition ratio of magnesium hydride and lithium amide changes, and the hydrogen storage rate also changes.

つまり、水素化マグネシウムとリチウムアミドの組み合わせの場合にも、前述した水素化リチウムとマグネシウムアミドの組み合わせの場合と同様に、水素貯蔵率や反応物質の利用率、水素吸放出反応のサイクル特性等を考慮して、水素化マグネシウムとリチウムアミドの各量を定めることが好ましい。具体的には、水素化マグネシウムを過剰とすることが好ましく、1モルのマグネシウムアミドに対する水素化リチウムの混合比を0.5モル以上2モル以下とすることが好ましい。さらに、さらに主に上記(8)式が進行するように、0.5モル以上1モル以下とすることで、水素貯蔵率をそれ以外の範囲よりも高く維持することができる。   In other words, in the case of the combination of magnesium hydride and lithium amide, as in the case of the combination of lithium hydride and magnesium amide described above, the hydrogen storage rate, the utilization rate of the reactants, the cycle characteristics of the hydrogen absorption / release reaction, etc. In consideration, it is preferable to determine the amounts of magnesium hydride and lithium amide. Specifically, the magnesium hydride is preferably excessive, and the mixing ratio of lithium hydride to 1 mol of magnesium amide is preferably 0.5 mol or more and 2 mol or less. Furthermore, the hydrogen storage rate can be maintained higher than the other ranges by setting the amount to 0.5 mol or more and 1 mol or less so that the formula (8) proceeds mainly.

次に、第2の材料系について説明する。金属イミド化合物を含む材料を水素化してなる材料としては、リチウムイミド(LiNH)を水素化してなる材料、窒化マグネシウム(Mg)とリチウムイミドとの混合物および複合化物を水素化してなる材料、が挙げられる。ここで、本明細書において「物質の水素化」とは、その物質と水素とを反応させることによって、その物質が水素を取り込んだ状態に変化することをいうものとする。例えば、水素化したリチウムイミドは、リチウムイミドを水素と反応させることにより得られ、その構造は明らかでないが、リチウムアミドやアンモニアに変化することなく、水素と反応して水素を何らかの形で取り込んでおり、後に所定温度に加熱すると取り込まれた水素が放出されて元のリチウムイミドに戻る材料をいう。 Next, the second material system will be described. As a material obtained by hydrogenating a material containing a metal imide compound, a material obtained by hydrogenating lithium imide (Li 2 NH), a mixture of magnesium nitride (Mg 3 N 2 ) and lithium imide, and a composite are hydrogenated. Material. Here, in this specification, “hydrogenation of a substance” means that the substance is changed to a state in which hydrogen is taken in by reacting the substance with hydrogen. For example, hydrogenated lithium imide is obtained by reacting lithium imide with hydrogen, and its structure is not clear, but it does not change to lithium amide or ammonia, but reacts with hydrogen and incorporates hydrogen in some form. It refers to a material that, when heated to a predetermined temperature later, the incorporated hydrogen is released and returns to the original lithium imide.

水素化したリチウムイミドは、水素放出温度を低温化させるために、BET法による比表面積を10m/g以上とする。さらに水素放出率を高める観点から、その比表面積は15m/g以上であることが好ましい。 Hydrogenated lithium imide has a specific surface area of 10 m 2 / g or more by the BET method in order to lower the hydrogen release temperature. Further, from the viewpoint of increasing the hydrogen release rate, the specific surface area is preferably 15 m 2 / g or more.

リチウムイミドとしては、窒化リチウム(LiN)を水素と反応させることによるイミド化またはリチウムアミドの熱分解により合成されたものが好適に用いられる。これは、従来のように水素化リチウムとリチウムアミドとを反応させてリチウムイミドを合成する場合には、この反応が固相反応であることから、ミクロな状態で水素化リチウムとリチウムアミドを均質に接触させるためには大きな機械的エネルギーが必要となり、実際にそのような処理は困難である一方、前記熱分解等では比表面積の大きなリチウムイミドを合成をすることができ、水素化を促進することができるからである。 As the lithium imide, those synthesized by imidization by reacting lithium nitride (Li 3 N) with hydrogen or thermal decomposition of lithium amide are preferably used. This is because when lithium imide is synthesized by reacting lithium hydride and lithium amide as in the past, this reaction is a solid-phase reaction, so that lithium hydride and lithium amide are homogeneous in a microscopic state. While large mechanical energy is required to make contact with the material, such treatment is actually difficult. On the other hand, the thermal decomposition or the like can synthesize lithium imide having a large specific surface area and promote hydrogenation. Because it can.

窒化マグネシウムとリチウムイミドとの混合物および複合化物を水素化してなる材料は、水素放出温度を低温化させるために、BET法による比表面積を5m/g以上とする。さらに水素放出率を高める観点から、その比表面積は10m/g以上であることが好ましい。 A material obtained by hydrogenating a mixture and composite of magnesium nitride and lithium imide has a specific surface area of 5 m 2 / g or more by the BET method in order to lower the hydrogen release temperature. Further, from the viewpoint of increasing the hydrogen release rate, the specific surface area is preferably 10 m 2 / g or more.

上述した各種の水素貯蔵材料は、水素吸放出能を高める触媒をさらに含むことが好ましく、この触媒としては、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,Nb,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Mo,W,Ta,Zr,HfおよびAgから選ばれた1種もしくは2種以上の金属またはその化合物またはその合金、あるいは水素貯蔵合金が好適に用いられる。   The various hydrogen storage materials described above preferably further include a catalyst that enhances the ability to absorb and release hydrogen. Examples of the catalyst include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, One or two selected from Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Mo, W, Ta, Zr, Hf and Ag The above metals or their compounds or their alloys, or hydrogen storage alloys are preferably used.

このような触媒を水素貯蔵材料に担持させる方法としては、各種水素貯蔵材料の原料粉末に添加して粉砕混合する方法や、原料粉末を粉砕混合した後に添加してさらに混合(または粉砕混合)する方法を用いることができる。   As a method for supporting such a catalyst on the hydrogen storage material, it is added to the raw material powder of various hydrogen storage materials and pulverized and mixed, or after the raw material powder is pulverized and mixed, it is further mixed (or pulverized and mixed). The method can be used.

例えば、金属水素化物と金属アミド化合物の混合物または複合物からなる水素貯蔵材料は、所定量の金属水素化物粉末と金属アミド化合物粉末と触媒を同時に粉砕混合することにより、または所定量の金属水素化物粉末と金属アミド化合物粉末を粉砕混合し、得られた被処理物に触媒を添加して混合することにより、製造することができる。そして、その際の粉砕混合条件を、粉砕混合処理後に所定の比表面積となるように設定する。   For example, a hydrogen storage material comprising a mixture or composite of a metal hydride and a metal amide compound is obtained by simultaneously grinding and mixing a predetermined amount of metal hydride powder, metal amide compound powder and catalyst, or a predetermined amount of metal hydride. The powder and the metal amide compound powder are pulverized and mixed, and a catalyst is added to and mixed with the obtained object to be processed. Then, the pulverizing and mixing conditions at that time are set so as to have a predetermined specific surface area after the pulverizing and mixing process.

また、例えば、水素化したリチウムイミドからなる水素貯蔵材料は、最初にリチウムアミド粉末と水素吸放出能を高める触媒とを機械的に粉砕混合し、次いで前段の粉砕工程によって得られた被処理物を熱分解して、この被処理物に含まれるリチウムアミドをリチウムイミドに変化させ、その後に得られたリチウムイミドを水素化することにより製造することができる。   In addition, for example, a hydrogen storage material made of hydrogenated lithium imide is obtained by first mechanically pulverizing and mixing lithium amide powder and a catalyst that enhances hydrogen absorption and desorption ability, and then the object to be processed obtained by the previous pulverization step. Can be produced by changing the lithium amide contained in the material to be treated into lithium imide, and then hydrogenating the obtained lithium imide.

または、最初にリチウムアミド粉末を機械的に粉砕し、次いで前段の粉砕処理によって得られたリチウムアミド粉末に水素吸放出能を高める触媒を添加して粉砕混合して触媒をリチウムアミド粉末に担持させ、続いて触媒を担持した被処理物を熱分解して被処理物に含まれるリチウムアミドをリチウムイミドに変化させ、その後に得られたリチウムイミドを水素化してもよい。水素化したリチウムイミドからなる水素貯蔵材料の製造工程では、リチウムアミドの粉砕処理条件を粉砕処理後に所定の比表面積となるように設定する。   Alternatively, the lithium amide powder is first mechanically pulverized, then a catalyst that enhances hydrogen absorption / release capacity is added to the lithium amide powder obtained by the previous pulverization treatment and pulverized and mixed to support the catalyst on the lithium amide powder. Subsequently, the object to be treated carrying the catalyst may be thermally decomposed to change lithium amide contained in the object to be treated to lithium imide, and then the obtained lithium imide may be hydrogenated. In the process for producing a hydrogen storage material made of hydrogenated lithium imide, the conditions for pulverizing lithium amide are set so as to have a predetermined specific surface area after pulverizing.

なお、窒化マグネシウムとリチウムイミドとの混合物および複合化物を水素化してなる材料は、リチウムアミド粉末と窒化マグネシウムとを粉砕混合し、その後にイミド化と水素化を行うことにより製造することができる。また、リチウムアミド粉末を粉砕処理した後にこれをイミド化し、得られたリチウムイミドと水素化マグネシウムとを粉砕混合し、その後に水素化を行う方法によっても、製造することができる。   A material obtained by hydrogenating a mixture and composite of magnesium nitride and lithium imide can be produced by pulverizing and mixing lithium amide powder and magnesium nitride, followed by imidization and hydrogenation. It can also be produced by a method in which lithium amide powder is pulverized and then imidized, and the resulting lithium imide and magnesium hydride are pulverized and mixed, followed by hydrogenation.

上記各材料系に属する水素貯蔵材料の機械的粉砕処理は、原料粉末を、例えば、ボールミル装置、ローラーミル、内外筒回転型ミル、アトライター、インナーピース型ミル、気流粉砕型ミル等の公知の種々の粉砕手段を用いて行うことができる。   The mechanical pulverization treatment of the hydrogen storage material belonging to each of the above-mentioned material systems is performed using known raw material powders such as a ball mill apparatus, a roller mill, an inner / outer cylinder rotating mill, an attritor, an inner piece mill, an airflow mill Various pulverization means can be used.

(1)水素化リチウム+リチウムアミド系試料の作製
水素化リチウム、リチウムアミドおよび三塩化チタン(TiCl)(いずれもアルドリッチ社製、純度95%)をモル比で1:1:0.02とし、それらの合計量が1.3gとなるように高純度アルゴングローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250ml)に投入した。続いて、このミル容器内を真空排気した後、高純度アルゴンガスを1MPa導入し、遊星型ボールミル装置(Fritsch社製、P−5)を用いて、室温、60〜250rpmで3〜360分ミリング処理し、比表面積の異なる複数の試料を作製した。ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中 ミル容器を開き、試料を取り出した。
(1) Preparation of Lithium Hydride + Lithium Amide Sample Lithium hydride, lithium amide and titanium trichloride (TiCl 3 ) (all manufactured by Aldrich, purity 95%) were used at a molar ratio of 1: 1: 0.02. These were weighed in a high-purity argon glove box so that the total amount was 1.3 g, and put into a mill vessel with a valve (250 ml) made of high chromium steel. Subsequently, after evacuating the inside of the mill vessel, high-purity argon gas was introduced at 1 MPa, and milling was performed at room temperature at 60 to 250 rpm for 3 to 360 minutes using a planetary ball mill apparatus (P-5, manufactured by Fritsch). A plurality of samples having different specific surface areas were processed. After the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high purity argon glove box, and a sample was taken out.

(2)水素化リチウム+マグネシウムアミド系試料の作製
(a)マグネシウムアミドの作製
水素化マグネシウム(アヅマックス社製,純度95%,MgH)2gを高純度アルゴングローブボックス内で高クロム鋼製のミル容器(内容積:250ml)に投入した後、このミル容器内を真空排気し、続いて下記(9)式の反応を生じさせるために、1モルの水素化マグネシウムに対して2モル以上となるようにミル容器内にアンモニアガスを導入した後にミル容器を封止し、次いでこれを室温、大気雰囲気下、250rpmの回転数で、遊星型ボールミル装置を用いて、所定時間ミリング処理した。その後、ミル容器から反応ガス中の水素量を測定し、また粉砕生成物をXRD測定することにより、マグネシウムアミドの生成を確認した。
MgH+2NH(g)→Mg(NH+2H(g) …(9)
(2) Preparation of lithium hydride + magnesium amide-based sample (a) Preparation of magnesium amide 2 g of magnesium hydride (Azmax, purity 95%, MgH 2 ) in a high purity argon glove box made of high chromium steel After charging into the container (internal volume: 250 ml), the inside of the mill container is evacuated, and subsequently the reaction of the following formula (9) is caused, so that the amount becomes 2 mol or more with respect to 1 mol of magnesium hydride. After the ammonia gas was introduced into the mill container, the mill container was sealed, and then this was milled for a predetermined time using a planetary ball mill apparatus at a rotation speed of 250 rpm at room temperature and in an air atmosphere. Thereafter, the amount of hydrogen in the reaction gas was measured from the mill vessel, and the pulverized product was measured by XRD, thereby confirming the formation of magnesium amide.
MgH 2 + 2NH 3 (g) → Mg (NH 2 ) 2 + 2H 2 (g) (9)

(b)マグネシウムアミドと水素化リチウムの混合粉砕
水素化リチウム(アルドリッチ社製、純度95%)と上述の通りに作製したマグネシウムアミドをモル比で8:3とし、それらの合計量が1.3gとなるように高純度アルゴングローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250ml)に投入した。続いて、このミル容器内を真空排気した後、高純度アルゴンガスを1MPa導入し、室温、250rpmで3〜360分、遊星型ボールミル装置を用いてミリング処理し、比表面積の異なる複数の試料を作製した。続いて、ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中でミル容器を開き、試料を取り出した。
(B) Mixed pulverization of magnesium amide and lithium hydride Lithium hydride (manufactured by Aldrich, purity 95%) and magnesium amide prepared as described above at a molar ratio of 8: 3, the total amount of which is 1.3 g Were weighed in a high-purity argon glove box and put into a high-chromium steel valve vessel (250 ml). Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity argon gas was introduced, and milling was performed using a planetary ball mill apparatus at room temperature and 250 rpm for 3 to 360 minutes to obtain a plurality of samples having different specific surface areas. Produced. Subsequently, after the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high purity argon glove box, and a sample was taken out.

(3)水素化マグネシウム+リチウムアミド系試料の作製
水素化マグネシウム(アヅマックス社製、純度95%)とリチウムアミド(アルドリッチ社製、純度95%)をモル比で3:4とし、それらの合計量が1.3gとなるように高純度アルゴングローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250ml)に投入した。続いて、このミル容器内を真空排気した後、高純度アルゴンガスを1MPa導入し、室温、250rpmで3〜360分、遊星型ボールミル装置を用いてミリング処理し、比表面積の異なる複数の試料を作製した。続いて、ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中でミル容器を開き、試料を取り出した。
(3) Preparation of magnesium hydride + lithium amide-based sample Magnesium hydride (manufactured by Amax Co., purity 95%) and lithium amide (manufactured by Aldrich, purity 95%) at a molar ratio of 3: 4, and their total amount Was weighed in a high-purity argon glove box so as to be 1.3 g, and placed in a high-chromium steel valve-equipped mill container (250 ml). Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity argon gas was introduced, and milling was performed using a planetary ball mill apparatus at room temperature and 250 rpm for 3 to 360 minutes to obtain a plurality of samples having different specific surface areas. Produced. Subsequently, after the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high purity argon glove box, and a sample was taken out.

(4)リチウムイミドの作製とその水素化
リチウムアミドに三塩化チタン(共にアルドリッチ社製、純度95%)をモル比で1:0.01とし、それらの合計量が1.3gとなるように高純度アルゴングローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250ml)に投入した。続いて、このミル容器内を真空排気した後、高純度アルゴンガスを1MPa導入し、室温、250rpmで3〜720分間、遊星型ボールミル装置を用いてミリング処理し、比表面積の異なる複数の試料を作製した。続いて、ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中でミル容器を開いて、各試料をステンレス製の反応容器(50ml)に移し替えた。このステンレス容器の内部を真空排気し、350℃、6時間熱処理することでリチウムアミドを熱分解させ、リチウムイミドを合成した。さらに得られたリチウムイミドを水素ガス中、3MPa、180℃で12時間処理し、水素化した。
(4) Production of lithium imide and its hydrogenation Lithium amide and titanium trichloride (both made by Aldrich, purity 95%) are in a molar ratio of 1: 0.01, so that their total amount is 1.3 g. Weighed in a high purity argon glove box and put into a mill vessel with a valve (250 ml) made of high chromium steel. Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity argon gas was introduced, and milling was performed using a planetary ball mill apparatus at room temperature and 250 rpm for 3 to 720 minutes. Produced. Subsequently, after the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high purity argon glove box, and each sample was transferred to a stainless steel reaction container (50 ml). The inside of this stainless steel container was evacuated and heat-treated at 350 ° C. for 6 hours to thermally decompose lithium amide and synthesize lithium imide. Further, the obtained lithium imide was treated in hydrogen gas at 3 MPa and 180 ° C. for 12 hours to be hydrogenated.

(5)窒化マグネシウム+リチウムイミド系試料の作製とその水素化
上記(4)と同じ方法により作製したリチウムイミドと窒化マグネシウム(アルドリッチ社製、純度95%)をモル比で4:1とし、それらの合計量が1.3gとなるように高純度アルゴングローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250ml)に投入した。続いて、このミル容器内を真空排気した後、高純度アルゴンガスを1MPa導入し、室温、250rpmで3〜360分間、遊星型ボールミル装置を用いてミリング処理し、比表面積の異なる複数の試料を作製した。次いで、ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中でミル容器を開き、試料を取り出した。次いで、高純度グローブボックス中でミリング後の試料をステンレス製の反応容器(50ml)に移し、真空排気した後、高純度水素ガスを導入し、220℃、3MPa、12時間保持し水素化を行った。
(5) Preparation of magnesium nitride + lithium imide sample and hydrogenation thereof Lithium imide prepared by the same method as in (4) above and magnesium nitride (Aldrich, purity 95%) were used at a molar ratio of 4: 1. Were weighed in a high-purity argon glove box so that the total amount was 1.3 g, and placed in a high-chromium steel valve vessel (250 ml). Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity argon gas was introduced, and milling was performed using a planetary ball mill device at room temperature and 250 rpm for 3 to 360 minutes. Produced. Subsequently, after the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high purity argon glove box, and a sample was taken out. Next, the sample after milling in a high-purity glove box is transferred to a stainless steel reaction vessel (50 ml), evacuated, and then introduced with high-purity hydrogen gas and maintained at 220 ° C., 3 MPa for 12 hours for hydrogenation. It was.

(6)BET比表面積測定方法
上述の(1)〜(5)により作製した試料のBET比表面積の測定は、窒素ガスによる多点式BET測定(Micromeritics社製、ASAP2400)を用いて行った。
(6) Method for measuring BET specific surface area The BET specific surface area of the samples prepared according to the above (1) to (5) was measured using multipoint BET measurement with nitrogen gas (ASAP2400, manufactured by Micromeritics).

(7)水素放出によるDTA吸熱ピーク温度の測定
上述の(1)〜(5)により作製した各試料を10mg秤量し、昇温速度を5℃/分として、高純度アルゴンガス中に設置したTG/DTA装置(セイコーインスツルメント社製、TG/DTA300)により、DTA曲線を測定した。そして、得られたDTA曲線より水素放出による吸熱ピーク温度を測定し、その温度を水素放出温度とした。
(7) Measurement of DTA endothermic peak temperature by hydrogen release 10 mg of each sample prepared by the above (1) to (5) was weighed, and the temperature rising rate was 5 ° C./min. A DTA curve was measured using a / DTA apparatus (TG / DTA300, manufactured by Seiko Instruments Inc.). And the endothermic peak temperature by hydrogen release was measured from the obtained DTA curve, and the temperature was made into the hydrogen release temperature.

(8)水素放出量の測定
上記(7)の室温〜400℃までのTG/DTA測定より得られたTG曲線の30℃〜250℃における質量減少率をTG曲線より求め、これを水素放出率とした。
(8) Measurement of hydrogen release amount The mass reduction rate from 30 ° C to 250 ° C of the TG curve obtained from the TG / DTA measurement from room temperature to 400 ° C in (7) above is obtained from the TG curve, and this is the hydrogen release rate. It was.

(9)水素化リチウム+リチウムアミド系試料の試験結果
図1に作製した試料の中から選んだ4つの試料A〜DのDTA曲線を示す。試料Aは粉砕条件を250rpmで3分、試料Bは粉砕条件を250rpmで10分、試料Cは粉砕条件を250rpmで30分、試料Dは粉砕条件を250rpmで120分、それぞれ行ったもので、試料A〜Dのそれぞれの比表面積は、11.6m/g、19.9m/g、34.8m/g、40.5m/g、である。図1に示されるように、粉砕時間が長くなると粉砕が進んで比表面積が大きくなっており、比表面積が大きくなると水素放出温度(図1中に黒丸点で示す、吸熱反応の谷の位置の温度)が低温側へシフトしていることがわかる。なお、試料Aは本発明の範囲外であり、試料B〜Dは本発明の範囲内である。
(9) Test results of lithium hydride + lithium amide samples FIG. 1 shows DTA curves of four samples A to D selected from the samples prepared. Sample A was ground at 250 rpm for 3 minutes, Sample B was ground at 250 rpm for 10 minutes, Sample C was ground at 250 rpm for 30 minutes, Sample D was ground at 250 rpm for 120 minutes, each of the specific surface area of the sample A~D is 11.6m 2 /g,19.9m 2 /g,34.8m 2 /g,40.5m 2 / g,. As shown in FIG. 1, as the pulverization time becomes longer, the pulverization progresses and the specific surface area increases, and when the specific surface area increases, the hydrogen release temperature (the position of the endothermic reaction valley indicated by the black dot in FIG. 1). It can be seen that (temperature) has shifted to the low temperature side. Sample A is outside the scope of the present invention, and samples B to D are within the scope of the present invention.

図2に各試料の比表面積と水素放出温度および水素放出率との関係を示すグラフを示す。図2より、水素化リチウム+リチウムアミド系の水素貯蔵材料では、そのBET比表面積が15m/g以上の場合に15m/g未満の場合と比べて、水素放出温度が320℃付近より270℃以下に急激に低温化し、水素放出率も2質量%以上となることが確認された。また、水素放出温度は、BET比表面積が30m/g以上では260℃以下となり、さらに低温化することと、水素放出率が3質量%を超えることが確認された。 FIG. 2 is a graph showing the relationship between the specific surface area of each sample, the hydrogen release temperature, and the hydrogen release rate. From FIG. 2, in the hydrogen hydride + lithium amide type hydrogen storage material, the hydrogen release temperature is about 270 ° C. from about 320 ° C. compared with the case where the BET specific surface area is 15 m 2 / g or more and less than 15 m 2 / g. It was confirmed that the temperature was rapidly lowered to below ℃ and the hydrogen release rate was also 2 mass% or more. The hydrogen release temperature was 260 ° C. or less when the BET specific surface area was 30 m 2 / g or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3 mass%.

(10)水素化リチウム+マグネシウムアミド系試料の試験結果
図3に各試料の比表面積と水素放出温度および水素放出率との関係を示すグラフを示す。水素化リチウム+マグネシウムアミド系の水素貯蔵材料では、そのBET比表面積が7.5m/g以上の場合に7.5m/g未満の場合と比べて、水素放出温度が230℃を超えていたものが230℃以下に低温化することが確認され、水素放出率も2質量%以上となった。また、水素放出温度は、BET比表面積が15m/g以上では220℃以下となり、さらに低温化することと、水素放出率が3質量%を超えることが確認された。
(10) Test results of lithium hydride + magnesium amide samples FIG. 3 is a graph showing the relationship between the specific surface area, hydrogen release temperature, and hydrogen release rate of each sample. In the hydrogen storage material of lithium hydride + magnesium amide, the hydrogen release temperature exceeds 230 ° C. when the BET specific surface area is 7.5 m 2 / g or more, compared with the case where it is less than 7.5 m 2 / g. It was confirmed that the temperature was lowered to 230 ° C. or lower, and the hydrogen release rate was 2% by mass or more. The hydrogen release temperature was 220 ° C. or less when the BET specific surface area was 15 m 2 / g or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3 mass%.

(11)水素化マグネシウム+リチウムアミド系試料の試験結果
図4に各試料の比表面積と水素放出温度および水素放出率との関係を示すグラフを示す。水素化マグネシウム+リチウムアミド系試料では、そのBET比表面積が7.5m/g以上の場合に7.5m/g未満の場合と比べて、水素放出温度が230℃を超えていたものが230℃以下に低温化することが確認され、水素放出率も2質量%以上となった。また、水素放出温度は、BET比表面積が15m/g以上では220℃以下となり、さらに低温化することと、水素放出率が3質量%を超えることが確認された。
(11) Test Results of Magnesium Hydride + Lithium Amide Sample FIG. 4 is a graph showing the relationship between the specific surface area, hydrogen release temperature, and hydrogen release rate of each sample. Among the magnesium hydride + lithium amide samples, the hydrogen release temperature exceeded 230 ° C. when the BET specific surface area was 7.5 m 2 / g or more, compared to the case where the BET specific surface area was less than 7.5 m 2 / g. It was confirmed that the temperature was lowered to 230 ° C. or lower, and the hydrogen release rate was 2% by mass or more. The hydrogen release temperature was 220 ° C. or less when the BET specific surface area was 15 m 2 / g or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3 mass%.

(12)水素化されたリチウムイミドの試験結果
図5に各試料の比表面積と水素放出温度および水素放出率との関係を示すグラフを示す。水素化されたリチウムイミドでは、そのBET比表面積が10m/g以上の場合に10m/g未満の場合と比べて、水素放出温度が300℃付近より290℃以下に低温化することが確認され、水素放出率も2質量%以上となった。また、水素放出温度は、BET比表面積が15m/g以上では280℃以下となり、さらに低温化することと、水素放出率が3質量%を超えることが確認された。
(12) Test results of hydrogenated lithium imide FIG. 5 is a graph showing the relationship between the specific surface area of each sample, the hydrogen release temperature, and the hydrogen release rate. In the case of hydrogenated lithium imide, it is confirmed that the hydrogen release temperature is lowered from about 300 ° C. to 290 ° C. or less when the BET specific surface area is 10 m 2 / g or more, compared to the case of less than 10 m 2 / g. As a result, the hydrogen release rate was 2% by mass or more. The hydrogen release temperature was 280 ° C. or less when the BET specific surface area was 15 m 2 / g or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3 mass%.

(13)窒化マグネシウム+リチウムイミド系試料の試験結果
図6に各試料の比表面積と水素放出温度および水素放出率との関係を示すグラフを示す。窒化マグネシウムとリチウムイミドの粉砕混合物を水素化した水素貯蔵材料では、そのBET比表面積が5m/g以上の場合に5m/g未満の場合と比べて、水素放出温度が240℃を超えていたものが240℃以下に低温化することが確認され、水素放出率も2質量%以上となった。また、水素放出温度は、BET比表面積が10m/g以上では、230℃以下となり、さらに低温化することと、水素放出率が3質量%を超えることが確認された。
(13) Test Results of Magnesium Nitride + Lithium Imide Sample FIG. 6 is a graph showing the relationship between the specific surface area, hydrogen release temperature, and hydrogen release rate of each sample. In a hydrogen storage material obtained by hydrogenating a pulverized mixture of magnesium nitride and lithium imide, the hydrogen release temperature exceeds 240 ° C. when the BET specific surface area is 5 m 2 / g or more, compared to the case where it is less than 5 m 2 / g. It was confirmed that the temperature was lowered to 240 ° C. or lower, and the hydrogen release rate was 2% by mass or more. The hydrogen release temperature was 230 ° C. or less when the BET specific surface area was 10 m 2 / g or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3 mass%.

本発明に係る水素貯蔵材料は、水素と酸素を燃料として発電する燃料電池の水素源として好適である。   The hydrogen storage material according to the present invention is suitable as a hydrogen source of a fuel cell that generates power using hydrogen and oxygen as fuel.

水素化リチウムとリチウムアミドからなる水素貯蔵材料のDTA曲線の一例を示す説明図。Explanatory drawing which shows an example of the DTA curve of the hydrogen storage material which consists of lithium hydride and lithium amide. 水素化リチウムとリチウムアミドからなる水素貯蔵材料の比表面積と水素放出温度および水素放出率との関係を示す説明図。Explanatory drawing which shows the relationship between the specific surface area of the hydrogen storage material which consists of lithium hydride and lithium amide, hydrogen release temperature, and hydrogen release rate. 水素化リチウムとマグネシウムアミドからなる水素貯蔵材料の比表面積と水素放出温度および水素放出率との関係を示す説明図。Explanatory drawing which shows the relationship between the specific surface area of the hydrogen storage material which consists of lithium hydride and magnesium amide, hydrogen release temperature, and hydrogen release rate. 水素化マグネシウムとリチウムアミドからなる水素貯蔵材料の比表面積と水素放出温度および水素放出率との関係を示す説明図。Explanatory drawing which shows the relationship between the specific surface area of the hydrogen storage material which consists of magnesium hydride and lithium amide, hydrogen release temperature, and hydrogen release rate. 水素化されたリチウムイミドからなる水素貯蔵材料の比表面積と水素放出温度および水素放出率との関係を示す説明図。Explanatory drawing which shows the relationship between the specific surface area of the hydrogen storage material which consists of hydrogenated lithium imide, hydrogen release temperature, and hydrogen release rate. 窒化マグネシウムとリチウムイミドの粉砕混合物を水素化した水素貯蔵材料の比表面積と水素放出温度および水素放出率との関係を示す説明図。Explanatory drawing which shows the relationship between the specific surface area of the hydrogen storage material which hydrogenated the grinding | pulverization mixture of magnesium nitride and lithium imide, hydrogen release temperature, and a hydrogen release rate.

Claims (18)

水素化リチウムとリチウムアミドの混合物または複合化物を所定の機械的粉砕処理により微細化してなる水素貯蔵材料であって、
BET法による比表面積が15m/g以上であることを特徴とする水素貯蔵材料。
A hydrogen storage material obtained by refining a mixture or composite of lithium hydride and lithium amide by a predetermined mechanical grinding process,
A hydrogen storage material having a specific surface area of 15 m 2 / g or more by BET method.
前記比表面積が30m/g以上であることを特徴とする請求項1に記載の水素貯蔵材料。 The hydrogen storage material according to claim 1, wherein the specific surface area is 30 m 2 / g or more. 水素化リチウムとマグネシウムアミドとの混合物または複合化物を所定の機械的粉砕処理により微細化してなる水素貯蔵材料であって、
BET法による比表面積が7.5m/g以上であることを特徴とする水素貯蔵材料。
A hydrogen storage material obtained by refining a mixture or composite of lithium hydride and magnesium amide by a predetermined mechanical grinding process,
A hydrogen storage material having a specific surface area of 7.5 m 2 / g or more by BET method.
前記比表面積が15m/g以上であることを特徴とする請求項3に記載の水素貯蔵材料。 The hydrogen storage material according to claim 3, wherein the specific surface area is 15 m 2 / g or more. 1モルのマグネシウムアミドに対する水素化リチウムの混合比が1.5モル以上4モル以下であることを特徴とする請求項3または請求項4に記載の水素貯蔵材料。   The hydrogen storage material according to claim 3 or 4, wherein a mixing ratio of lithium hydride to 1 mol of magnesium amide is 1.5 mol or more and 4 mol or less. 水素化マグネシウムとリチウムアミドの混合物または複合化物を所定の機械的粉砕処理により微細化してなる水素貯蔵材料であって、
BET法による比表面積が7.5m/g以上であることを特徴とする水素貯蔵材料。
A hydrogen storage material obtained by refining a mixture or composite of magnesium hydride and lithium amide by a predetermined mechanical grinding process,
A hydrogen storage material having a specific surface area of 7.5 m 2 / g or more by BET method.
前記比表面積が15m/g以上であることを特徴とする請求項6に記載の水素貯蔵材料。 The hydrogen storage material according to claim 6, wherein the specific surface area is 15 m 2 / g or more. 1モルのリチウムアミドに対する水素化マグネシウムの混合比が0.5モル以上2モル以下であることを特徴とする請求項6または請求項7に記載の水素貯蔵材料。   The hydrogen storage material according to claim 6 or 7, wherein a mixing ratio of magnesium hydride to 1 mol of lithium amide is 0.5 mol or more and 2 mol or less. 水素化したリチウムイミドからなる水素貯蔵材料であって、
BET法による比表面積が10m/g以上であることを特徴とする水素貯蔵材料。
A hydrogen storage material comprising hydrogenated lithium imide,
A hydrogen storage material having a specific surface area of 10 m 2 / g or more by BET method.
前記比表面積が15m/g以上であることを特徴とする請求項9に記載の水素貯蔵材料。 The hydrogen storage material according to claim 9, wherein the specific surface area is 15 m 2 / g or more. 前記リチウムイミドは、窒化リチウムを水素と反応させることにより、またはリチウムアミドを熱分解することにより、合成されたものであることを特徴とする請求項9または請求項10に記載の水素貯蔵材料。   The hydrogen storage material according to claim 9 or 10, wherein the lithium imide is synthesized by reacting lithium nitride with hydrogen or by thermally decomposing lithium amide. 窒化マグネシウムとリチウムイミドとの混合物および複合化物を水素化した水素貯蔵材料であって、
BET法による比表面積が5m/g以上であることを特徴とする水素貯蔵材料。
A hydrogen storage material obtained by hydrogenating a mixture and composite of magnesium nitride and lithium imide,
A hydrogen storage material having a specific surface area of 5 m 2 / g or more by BET method.
前記比表面積が10m/g以上であることを特徴とする請求項12に記載の水素貯蔵材料。 The hydrogen storage material according to claim 12, wherein the specific surface area is 10 m 2 / g or more. 水素吸放出能を高める触媒をさらに含むことを特徴とする請求項1から請求項13のいずれか1項に記載の水素貯蔵材料。   The hydrogen storage material according to any one of claims 1 to 13, further comprising a catalyst that enhances the ability to absorb and release hydrogen. 前記触媒は、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,Nb,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Mo,W,Ta,Zr,HfおよびAgから選ばれた1種もしくは2種以上の金属またはその化合物またはその合金、あるいは水素貯蔵合金であることを特徴とする請求項14に記載の水素貯蔵材料。   The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, 15. One or more metals selected from Al, Si, Ru, Mo, W, Ta, Zr, Hf, and Ag, a compound thereof, an alloy thereof, or a hydrogen storage alloy. 2. A hydrogen storage material according to 1. 水素化したリチウムイミドからなる水素貯蔵材料の製造方法であって、
リチウムアミド粉末と水素吸放出能を高める触媒とを機械的に粉砕混合する工程と、
前記粉砕工程によって得られた被処理物を熱分解して、前記被処理物に含まれるリチウムアミドをリチウムイミドに変化させる工程と、
前記リチウムイミドを水素化する工程と、
を有し、
前記一連の工程によりBET法による比表面積が10m/g以上の水素化されたリチウムイミドを得ることを特徴とする水素貯蔵材料の製造方法。
A method for producing a hydrogen storage material comprising hydrogenated lithium imide,
Mechanically pulverizing and mixing the lithium amide powder and the catalyst for enhancing hydrogen absorption and release;
Thermally decomposing the object to be processed obtained by the pulverization step, and changing lithium amide contained in the object to be processed into lithium imide;
Hydrogenating the lithium imide;
Have
A method for producing a hydrogen storage material, wherein hydrogenated lithium imide having a specific surface area of 10 m 2 / g or more by BET method is obtained by the series of steps.
水素化したリチウムイミドからなる水素貯蔵材料の製造方法であって、
リチウムアミド粉末を機械的に粉砕する工程と、
前記粉砕工程後に、さらに前記リチウムアミド粉末に水素吸放出能を高める触媒を添加して粉砕混合し、前記触媒を前記リチウムアミド粉末に担持させる工程と、
前記触媒担持工程によって得られた被処理物を熱分解して、前記被処理物に含まれるリチウムアミドをリチウムイミドに変化させる工程と、
前記リチウムイミドを水素化する工程と、
を有し、
前記一連の工程によりBET法による比表面積が10m/g以上の水素化されたリチウムイミドを得ることを特徴とする水素貯蔵材料の製造方法。
A method for producing a hydrogen storage material comprising hydrogenated lithium imide,
Mechanically grinding lithium amide powder;
After the pulverization step, a step of further adding a catalyst that enhances hydrogen absorption / release capability to the lithium amide powder, pulverizing and mixing, and supporting the catalyst on the lithium amide powder;
Pyrolyzing the object to be treated obtained by the catalyst supporting step, and changing lithium amide contained in the object to be treated to lithium imide;
Hydrogenating the lithium imide;
Have
A method for producing a hydrogen storage material, wherein hydrogenated lithium imide having a specific surface area of 10 m 2 / g or more by BET method is obtained by the series of steps.
請求項16または請求項17に記載の水素貯蔵材料の製造方法により製造されたことを特徴とする水素貯蔵材料。   A hydrogen storage material produced by the method for producing a hydrogen storage material according to claim 16 or 17.
JP2004186450A 2003-08-11 2004-06-24 Hydrogen storage material and method for producing the same Expired - Fee Related JP4615908B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004186450A JP4615908B2 (en) 2004-06-24 2004-06-24 Hydrogen storage material and method for producing the same
PCT/JP2004/009538 WO2005014165A1 (en) 2003-08-11 2004-07-05 Material for storing hydrogen and method and apparatus for production thereof
US11/351,244 US7537748B2 (en) 2003-08-11 2006-02-09 Hydrogen storage matter and manufacturing method and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186450A JP4615908B2 (en) 2004-06-24 2004-06-24 Hydrogen storage material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006008441A true JP2006008441A (en) 2006-01-12
JP4615908B2 JP4615908B2 (en) 2011-01-19

Family

ID=35776090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186450A Expired - Fee Related JP4615908B2 (en) 2003-08-11 2004-06-24 Hydrogen storage material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4615908B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008446A (en) * 2004-06-25 2006-01-12 Toyota Central Res & Dev Lab Inc Hydrogen storage method, hydrogen storage material, and fuel cell system using the same
WO2006104079A1 (en) * 2005-03-28 2006-10-05 Taiheiyo Cement Corporation Hydrogen-storing materials and process for production of the same
JP2007091497A (en) * 2005-09-27 2007-04-12 Taiheiyo Cement Corp Method for producing hydrogen storage material
JP2008120675A (en) * 2006-11-14 2008-05-29 Korea Inst Of Science & Technology Fabrication method of magnesium-based hydrogen storage material
JP2008243809A (en) * 2007-02-28 2008-10-09 Matsushita Electric Ind Co Ltd Material for alkaline storage battery, electrode for alkaline storage battery, and alkaline storage battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305848A (en) * 2003-04-03 2004-11-04 Honda Motor Co Ltd Powdery hydrogen storage material
JP2005095869A (en) * 2003-08-11 2005-04-14 Hiroshima Univ Hydrogen storing material and its production method
JP2006305486A (en) * 2004-05-14 2006-11-09 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305848A (en) * 2003-04-03 2004-11-04 Honda Motor Co Ltd Powdery hydrogen storage material
JP2005095869A (en) * 2003-08-11 2005-04-14 Hiroshima Univ Hydrogen storing material and its production method
JP2006305486A (en) * 2004-05-14 2006-11-09 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008446A (en) * 2004-06-25 2006-01-12 Toyota Central Res & Dev Lab Inc Hydrogen storage method, hydrogen storage material, and fuel cell system using the same
WO2006104079A1 (en) * 2005-03-28 2006-10-05 Taiheiyo Cement Corporation Hydrogen-storing materials and process for production of the same
JP2007091497A (en) * 2005-09-27 2007-04-12 Taiheiyo Cement Corp Method for producing hydrogen storage material
JP4575866B2 (en) * 2005-09-27 2010-11-04 太平洋セメント株式会社 Method for producing hydrogen storage material
JP2008120675A (en) * 2006-11-14 2008-05-29 Korea Inst Of Science & Technology Fabrication method of magnesium-based hydrogen storage material
JP2008243809A (en) * 2007-02-28 2008-10-09 Matsushita Electric Ind Co Ltd Material for alkaline storage battery, electrode for alkaline storage battery, and alkaline storage battery

Also Published As

Publication number Publication date
JP4615908B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
Zlotea et al. Hydrogen sorption in TiZrNbHfTa high entropy alloy
US7837976B2 (en) Activated aluminum hydride hydrogen storage compositions and uses thereof
Graetz et al. Structures and thermodynamics of the mixed alkali alanates
WO2006104079A1 (en) Hydrogen-storing materials and process for production of the same
Varin et al. The effects of ball milling and nanometric nickel additive on the hydrogen desorption from lithium borohydride and manganese chloride (3LiBH4+ MnCl2) mixture
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
JP2008190004A (en) Mg-M-H BASED HYDROGEN STORAGE ALLOY, AND METHOD FOR PRODUCING THE SAME
JP2006305486A (en) Hydrogen storage material and its manufacturing method
US20070104642A1 (en) Li-B-Mg-X system for reversible hydrogen storage
JP2008043927A (en) Method of manufacturing hydrogen storage material
JP4500534B2 (en) Hydrogen storage material and hydrogen generation method
JP4615908B2 (en) Hydrogen storage material and method for producing the same
JP4853810B2 (en) Hydrogen storage material and method for producing the same
JP4793900B2 (en) Hydrogen storage material and method for producing the same
JP4762579B2 (en) Hydrogen storage material, production method thereof, and hydrogen storage method
Král et al. Influence of Fe on the hydrogen storage properties of LaCeNi alloys
JP2007320815A (en) Hydrogen storage material and hydrogen generation method
JP4575866B2 (en) Method for producing hydrogen storage material
JP2006224021A (en) Hydrogen storage material, its production method, and hydrogen storage material precursor
JP2007307455A (en) Method of manufacturing hydrogen storage material
JP2005126273A (en) Hydrogen storage material precursor and its manufacturing method
JP2008239367A (en) Method for producing hydrogen storage material
JP2006008439A (en) Hydrogen storing material and manufacturing method therefor
JP2007152279A (en) Hydrogen storage material and its manufacturing method
JP4545469B2 (en) Method for supporting catalyst on hydrogen storage material and hydrogen storage material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees