JP4762579B2 - Hydrogen storage material, production method thereof, and hydrogen storage method - Google Patents

Hydrogen storage material, production method thereof, and hydrogen storage method Download PDF

Info

Publication number
JP4762579B2
JP4762579B2 JP2005079096A JP2005079096A JP4762579B2 JP 4762579 B2 JP4762579 B2 JP 4762579B2 JP 2005079096 A JP2005079096 A JP 2005079096A JP 2005079096 A JP2005079096 A JP 2005079096A JP 4762579 B2 JP4762579 B2 JP 4762579B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage material
amide
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005079096A
Other languages
Japanese (ja)
Other versions
JP2005306724A (en
Inventor
博信 藤井
貴之 市川
海燕 冷
豊之 窪川
和彦 常世田
恵介 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Taiheiyo Cement Corp
Original Assignee
Hiroshima University NUC
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Taiheiyo Cement Corp filed Critical Hiroshima University NUC
Priority to JP2005079096A priority Critical patent/JP4762579B2/en
Publication of JP2005306724A publication Critical patent/JP2005306724A/en
Application granted granted Critical
Publication of JP4762579B2 publication Critical patent/JP4762579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池等の燃料として用いられる水素を発生させる水素貯蔵材料およびその製造方法、水素貯蔵材料から水素を放出させた後の水素吸蔵方法に関する。   The present invention relates to a hydrogen storage material that generates hydrogen used as a fuel for fuel cells and the like, a method for producing the same, and a method for storing hydrogen after releasing hydrogen from the hydrogen storage material.

NOやSO等の有害物質やCO等の温室効果ガスを出さないクリーンなエネルギー源として燃料電池の開発が盛んに行われており、既に幾つかの分野で実用化されている。この燃料電池技術を支える重要な技術として、燃料電池の燃料となる水素を貯蔵する技術がある。水素の貯蔵形態としては、高圧ボンベによる圧縮貯蔵や液体水素化させる冷却貯蔵、水素貯蔵物質による貯蔵等が知られている。 NO X and development of fuel cells have been actively as a clean energy source that does not emit greenhouse gases such as toxic substances and CO 2 in the SO X or the like, and is already practiced in several areas. As an important technology that supports this fuel cell technology, there is a technology for storing hydrogen as fuel for the fuel cell. Known storage forms of hydrogen include compression storage using a high-pressure cylinder, cooling storage using liquid hydrogenation, storage using a hydrogen storage material, and the like.

これらの水素貯蔵形態の中で、水素貯蔵物質による貯蔵は、分散貯蔵や輸送の点で有利である。水素貯蔵物質としては、水素貯蔵率の高い材料、つまり水素貯蔵物質の単位重量または単位体積あたりの水素貯蔵量が高い材料、低い温度で水素の吸収/放出が行われる材料、良好な耐久性を有する材料が望まれる。   Among these hydrogen storage forms, storage with a hydrogen storage material is advantageous in terms of distributed storage and transportation. Hydrogen storage materials include materials with a high hydrogen storage rate, that is, materials with a high hydrogen storage amount per unit weight or volume of the hydrogen storage material, materials that absorb and release hydrogen at a low temperature, and good durability. A material having is desired.

公知の水素貯蔵物質としては、希土類系、チタン系、バナジウム系、マグネシウム系等を中心とする金属材料、金属アラネード(例えば、NaAlHやLiAlH)等の軽量無機化合物、カーボン等が挙げられる。また、例えば、下式(1)で示されるリチウム窒化物を用いた水素貯蔵方法も報告されている(例えば、非特許文献1、2参照)。
LiN+2H=LiNH+LiH+H=LiNH+2LiH …(1)
Known hydrogen storage materials include metal materials centered on rare earth, titanium, vanadium, magnesium, etc., lightweight inorganic compounds such as metal alanade (for example, NaAlH 4 and LiAlH 4 ), carbon, and the like. In addition, for example, a hydrogen storage method using lithium nitride represented by the following formula (1) has been reported (for example, see Non-Patent Documents 1 and 2).
Li 3 N + 2H 2 = Li 2 NH + LiH + H 2 = LiNH 2 + 2LiH ... (1)

ここで、LiNによる水素の吸収は100℃程度から開始し、255℃、30分で9.3質量%の水素吸収が確認されている。また、吸収された水素の放出特性としては、ゆっくり加熱することによって200℃弱で6.3質量%、320℃以上で3.0質量%と、二段階のステップを経ることが報告されている。すなわち、上記(1)式の右辺部分に相当する下式(2)の反応は200℃弱で進行し始め、上記(1)式の左辺部分に相当する下式(3)の反応は約320℃で進行し始めることが示されている。
LiNH+2LiH→LiNH+LiH+H↑ …(2)
LiNH+LiH→LiN+H↑ …(3)
Here, absorption of hydrogen by Li 3 N started from about 100 ° C., and 9.3 mass% hydrogen absorption was confirmed at 255 ° C. for 30 minutes. In addition, it has been reported that the absorption characteristics of absorbed hydrogen pass through two steps: 6.3% by mass at less than 200 ° C. and 3.0% by mass at 320 ° C. or higher by slowly heating. . That is, the reaction of the following formula (2) corresponding to the right side portion of the above formula (1) starts to proceed at a little less than 200 ° C., and the reaction of the following formula (3) corresponding to the left side portion of the above formula (1) is about 320 It has been shown to begin to progress at ° C.
LiNH 2 + 2LiH → Li 2 NH + LiH + H 2 ↑ (2)
Li 2 NH + LiH → Li 3 N + H 2 ↑ (3)

しかしながら、上記(1)式に示されるリチウム窒化物は、水素放出開始温度および水素放出ピーク温度が高いという問題がある。
Ruff, O. , and Goerges, H., Berichte der Deutschen ChemischenGesellschaft zu Berlin,Vol.44, 502-6(1911) Ping Chen et al., Interaction of hydrogen with metalnitrides andimides, NATURE Vol.420, 21 NOVEMBER 2002, p302〜304
However, the lithium nitride represented by the above formula (1) has a problem that the hydrogen release start temperature and the hydrogen release peak temperature are high.
Ruff, O., and Goerges, H., Berichte der Deutschen Chemischen Gesellschaft zu Berlin, Vol. 44, 502-6 (1911) Ping Chen et al., Interaction of hydrogen with metalnitrides andimides, NATURE Vol.420, 21 NOVEMBER 2002, p302〜304

本発明はかかる事情に鑑みてなされたものであり、水素放出開始温度と水素放出ピーク温度の低い水素貯蔵材料を提供することを目的とする。また本発明はこのような水素貯蔵材料の製造方法を提供することを目的とする。さらに本発明はこのような水素貯蔵材料から水素を放出させた後の水素貯蔵率を高めるための水素吸蔵方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a hydrogen storage material having a low hydrogen release start temperature and a low hydrogen release peak temperature. Another object of the present invention is to provide a method for producing such a hydrogen storage material. A further object of the present invention is to provide a hydrogen storage method for increasing the hydrogen storage rate after releasing hydrogen from such a hydrogen storage material.

本発明の第1の観点によれば、水素化リチウム(LiH)と、金属アミド化合物としてのマグネシウムアミド(Mg(NH )およびカルシウムアミド(Ca(NH )の少なくとも1種との混合物および反応物を有することを特徴とする水素貯蔵材料、が提供される。 According to the first aspect of the present invention , lithium hydride (LiH) and at least one of magnesium amide (Mg (NH 2 ) 2 ) and calcium amide (Ca (NH 2 ) 2 ) as a metal amide compound , hydrogen storage material characterized by have a mixture of and reactants, is provided.

この水素貯蔵材料においては、前記混合物および反応物は、水素吸放出能を高めるTi化合物からなる触媒をさらに含んでいることが好ましい。また、前記触媒の担持量が、前記水素化リチウム(LiH)と、金属アミド化合物としてのマグネシウムアミド(Mg(NH )およびカルシウムアミド(Ca(NH )の少なくとも1種との混合物および反応物の0.1質量%以上20質量%以下とすることが好ましい。 In this hydrogen storage material, wherein the mixture and the reactants are not preferable that further includes a catalyst comprising a Ti compound which enhances hydrogen release capacity. Also, the supported amount of the catalyst, the lithium hydride and (LiH), and at least one magnesium amide as metal amide compound (Mg (NH 2) 2) and calcium amide (Ca (NH 2) 2) It is preferable to set it as 0.1 mass% or more and 20 mass% or less of a mixture and reaction material of these.

さらに、本発明の水素貯蔵材料においては、金属アミド化合物としてさらにリチウムアミド(LiNH )を有してもよい。さらにまた、本発明の水素貯蔵材料においては、前記混合物および反応物は、メカニカルミリング処理によりナノ構造化・組織化されていることが好ましい。 Further, in the hydrogen storage material of the present invention may further comprise a lithium amide (LiNH 2) as the metal amide compound. Furthermore, in the hydrogen storage material of the present invention, it is preferable that the mixture and the reactant are nanostructured and organized by mechanical milling treatment.

本発明の第2の観点によれば、水素化リチウム(LiH)と、金属アミド化合物としてのマグネシウムアミド(Mg(NH )およびカルシウムアミド(Ca(NH )の少なくとも1種とを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において混合することを特徴とする水素貯蔵材料の製造方法、が提供される。 According to a second aspect of the present invention , lithium hydride (LiH) and at least one of magnesium amide (Mg (NH 2 ) 2 ) and calcium amide (Ca (NH 2 ) 2 ) as a metal amide compound , Is produced in an inert gas atmosphere, a hydrogen gas atmosphere, or a mixed gas atmosphere of an inert gas and a hydrogen gas, and a method for producing a hydrogen storage material is provided.

本発明の第3の観点によれば、水素化リチウム(LiH)と、金属アミド化合物としてのマグネシウムアミド(Mg(NH  According to a third aspect of the present invention, lithium hydride (LiH) and magnesium amide (Mg (NH 2 ) 2 )およびカルシウムアミド(Ca(NH) And calcium amide (Ca (NH 2 ) 2 )の少なくとも1種とを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において混合する工程と、And a mixture of at least one of the above in an inert gas atmosphere, a hydrogen gas atmosphere, or a mixed gas atmosphere of an inert gas and hydrogen gas,
前記混合工程においてさらに水素吸放出能を高めるTi化合物からなる触媒をさらに加えることによって前記Ti化合物からなる触媒を被処理物に担持させる工程、または前記混合工程後に得られる被処理物と水素吸放出能を高めるTi化合物からなる触媒とを混合することによって前記被処理物に前記Ti化合物からなる触媒を担持させる工程、または前記混合工程前に前記水素化リチウム(LiH)と前記金属アミド化合物の少なくとも一方に水素吸放出能を高めるTi化合物からなる触媒を担持させる工程、のいずれかの工程と、  In the mixing step, a step further comprises adding a catalyst composed of a Ti compound that enhances the ability to absorb and desorb hydrogen to carry the catalyst composed of the Ti compound on the object to be treated, or an object to be treated and hydrogen absorption / desorption obtained after the mixing step. At least one of the lithium hydride (LiH) and the metal amide compound before the mixing step, or the step of loading the catalyst consisting of the Ti compound on the object to be treated One of the steps of supporting a catalyst made of a Ti compound that enhances the ability to absorb and release hydrogen on one side;
を有することを特徴とする水素貯蔵材料の製造方法、が提供される。  A method for producing a hydrogen storage material is provided.

このような水素貯蔵材料の製造方法において、前記水素化リチウム(LiH)と金属アミド化合物を混合処理する際の雰囲気圧力を大気圧以上とすることが好ましい。また、金属アミド化合物としてさらにリチウムアミド(LiNH  In such a method for producing a hydrogen storage material, it is preferable that the atmospheric pressure when the lithium hydride (LiH) and the metal amide compound are mixed to be atmospheric pressure or higher. Further, as a metal amide compound, lithium amide (LiNH 2 )を混合してもよい。さらに、前記水素化リチウム(LiH)と金属アミド化合物を混合処理する際に、メカニカルミリング処理により混合物及び反応物をナノ構造化・組織化することが好ましい。) May be mixed. Furthermore, when the lithium hydride (LiH) and the metal amide compound are mixed, it is preferable that the mixture and the reactant are nanostructured and organized by mechanical milling.

本発明の第4の観点によれば、上記第2の観点および第3の観点の製造方法により製造されたことを特徴とする水素貯蔵材料、が提供される。 According to a fourth aspect of the present invention , there is provided a hydrogen storage material produced by the production method of the second aspect and the third aspect.

本発明の第5の観点によれば、上述した水素貯蔵材料の製造方法により製造された水素貯蔵材料から水素を放出させた後の材料に対し、加圧水素ガス雰囲気において水素を吸蔵させることを特徴とする水素吸蔵方法、が提供される。
この水素吸蔵方法においては、加圧水素ガス雰囲気の圧力を4MPa以上とすることが好ましい。また、水素を吸蔵させるための反応温度を80℃以上とすることが好ましい。
According to the fifth aspect of the present invention, hydrogen is occluded in a pressurized hydrogen gas atmosphere with respect to a material after releasing hydrogen from the hydrogen storage material produced by the above-described method for producing a hydrogen storage material. A hydrogen storage method is provided.
In this hydrogen storage method, the pressure of the pressurized hydrogen gas atmosphere is preferably 4 MPa or more. Further, the reaction temperature for storing hydrogen is preferably 80 ° C. or higher.

本発明によれば、水素発生温度および水素放出ピーク温度を従来よりも大きく下げた水素貯蔵材料を得ることができる。また、この水素貯蔵材料から水素を放出させた後の材料を高い水素貯蔵率で再生することができる。つまり、水素放出率の低下を防止することができる。   According to the present invention, it is possible to obtain a hydrogen storage material in which the hydrogen generation temperature and the hydrogen release peak temperature are greatly reduced as compared with the prior art. Moreover, the material after releasing hydrogen from the hydrogen storage material can be regenerated with a high hydrogen storage rate. That is, a decrease in the hydrogen release rate can be prevented.

以下、本発明の実施の形態について説明する。
本発明の水素貯蔵材料は、金属水素化物と金属アミド化合物との混合物および反応物を有し、これらの金属種が少なくとも2種以上である。具体的には、(1)金属水素化物を構成する金属と、金属アミド化合物を構成する金属とが異種である場合、(2)金属成分の異なる複数種の金属水素化物を含む場合、(3)金属成分の異なる複数種の金属アミド化合物を含む場合、が挙げられる。
Embodiments of the present invention will be described below.
The hydrogen storage material of the present invention includes a mixture and a reaction product of a metal hydride and a metal amide compound, and these metal species are at least two or more. Specifically, (1) when the metal constituting the metal hydride is different from the metal constituting the metal amide compound, (2) when containing a plurality of types of metal hydrides having different metal components, (3 In the case of including a plurality of types of metal amide compounds having different metal components,

好適な一例は、水素放出温度の低温化のみを考慮すると、金属水素化物が、金属水素化物の中では分解温度が低いという性質を有する水素化リチウム(LiH)であり、金属アミド化合物が、少なくとも、水素化リチウム(LiH)より低温で分解しアンモニア(NH)を生成するマグネシウムアミド(Mg(NH)、カルシウムアミド(Ca(NH)の単体またはこれらの混合物を含む、という組み合わせが好ましい。 A suitable example is a metal hydride (LiH) having a property that the decomposition temperature is low in the metal hydride, considering only lowering of the hydrogen release temperature, and the metal amide compound is at least Including magnesium amide (Mg (NH 2 ) 2 ), calcium amide (Ca (NH 2 ) 2 ) alone or a mixture thereof, which decomposes at a lower temperature than lithium hydride (LiH) to produce ammonia (NH 3 ). The combination is preferable.

なお、後述する実施例1および実施例を比較するとわかるように、金属アミド化合物を単独(単成分)で用いる場合、金属アミド化合物を構成する金属元素の原子量が重くなるにつれて、水素貯蔵率が低下する。そこで、最も軽量であるリチウムアミド(LiNH)と低温化のためのマグネシウムアミド(Mg(NH)やカルシウムアミド(Ca(NH)を組み合わせて使用することが、実用的に好ましい。 As can be seen by comparing Example 1 and Example 2 described later, when the metal amide compound is used alone (single component), the hydrogen storage rate increases as the atomic weight of the metal element constituting the metal amide compound increases. descend. Therefore, it is practical to use a combination of the lightest lithium amide (LiNH 2 ) and magnesium amide (Mg (NH 2 ) 2 ) or calcium amide (Ca (NH 2 ) 2 ) for lowering the temperature. preferable.

水素化リチウム(LiH)と、リチウムアミド(LiNH)およびマグネシウムアミド(Mg(NH)とを用いてなる水素貯蔵材料の場合において、各物質が当量となるように配合する場合は、下式(4)のように、各物質を組み合わせて用いればよい。なお、この式(4)においては、a=b+2cとすることが好ましい。また、当量から外れたリチウムイミド(例えば、Li2.2NH)を用いることも差し支えないが、その場合には、使用原料の単位質量当たりの水素貯蔵量が減少する。
aLiH+bLiNH+cMg(NH
aH+(b+c)LiNH+cMgNH …(4)
In the case of a hydrogen storage material using lithium hydride (LiH), lithium amide (LiNH 2 ) and magnesium amide (Mg (NH 2 ) 2 ), when blending so that each substance is equivalent, What is necessary is just to use combining each substance like the following Formula (4). In the formula (4), it is preferable that a = b + 2c. Further, it is possible to use lithium imide (eg, Li 2.2 NH) deviating from the equivalent, but in that case, the hydrogen storage amount per unit mass of the used raw material is reduced.
aLiH + bLiNH 2 + cMg (NH 2 ) 2
aH 2 + (b + c) Li 2 NH + cMgNH (4)

水素化リチウム(LiH)とマグネシウムアミド(Mg(NH)を用いてなる水素貯蔵材料の場合には、下式(5)または下式(6)のように各物質を組み合わせることが好ましい。これにより、水素貯蔵率を高めることができる。
8LiH+3Mg(NH→8H+4LiNH+Mg …(5)
12LiH+3Mg(NH→12H+4LiN+Mg …(6)
In the case of a hydrogen storage material using lithium hydride (LiH) and magnesium amide (Mg (NH 2 ) 2 ), it is preferable to combine the substances as in the following formula (5) or the following formula (6). . Thereby, a hydrogen storage rate can be raised.
8LiH + 3Mg (NH 2 ) 2 → 8H 2 + 4Li 2 NH + Mg 3 N 2 (5)
12LiH + 3Mg (NH 2 ) 2 → 12H 2 + 4Li 3 N + Mg 3 N 2 (6)

このような金属水素化物と金属アミド化合物との混合物および反応物は、メカニカルミリング処理によりナノ構造化・組織化されていることが好ましい。このメカニカルミリング処理は、少量生産の場合には、遊星型ボールミル等を用いることで行うことができ、大量生産の場合には、先に発明者らが特願2004−036967号において開示した種々の混合/粉砕方法、例えば、ローラーミル、内外筒回転型ミル、アトライター、インナーピース型ミル、気流粉砕型ミル等を用いて行うことができる。   Such a mixture and reaction product of a metal hydride and a metal amide compound are preferably nanostructured and organized by mechanical milling. This mechanical milling process can be performed by using a planetary ball mill or the like in the case of small-scale production, and in the case of mass production, the inventors previously disclosed various types disclosed in Japanese Patent Application No. 2004-036967. The mixing / pulverization method can be performed using, for example, a roller mill, an inner / outer cylinder rotary mill, an attritor, an inner piece mill, an airflow mill mill, and the like.

金属水素化物と金属アミド化合物との混合物および反応物を得るための、金属水素化物と金属アミド化合物の混合/粉砕処理は、不活性ガス(例えば、アルゴンガス、窒素ガス)雰囲気下、もしくは水素ガス雰囲気下、または不活性ガスと水素ガスとの混合ガス雰囲気下において行う。このとき、雰囲気圧力(ガス圧力)を大気圧以上とすることが好ましい。これにより、明確な理由は不明であるが、混合/粉砕処理後の混合物および反応物からの水素放出量が増加する。   In order to obtain a mixture of metal hydride and metal amide compound and a reaction product, the mixing / pulverization treatment of metal hydride and metal amide compound is performed under an inert gas (eg, argon gas, nitrogen gas) atmosphere or hydrogen gas. It is performed in an atmosphere or in a mixed gas atmosphere of an inert gas and hydrogen gas. At this time, the atmospheric pressure (gas pressure) is preferably set to atmospheric pressure or higher. This increases the amount of hydrogen released from the mixture and the reactants after the mixing / grinding process, for no clear reason.

金属水素化物と金属アミド化合物との混合物および反応物は、水素吸放出能を高める触媒を含むことが好ましい。好適な触媒は、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Na,Mg,K,Ir,Nd,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Mo,Nb,Ta,Zr,HfおよびAgから選ばれた1種もしくは2種以上の化合物、または水素貯蔵合金である。   It is preferable that the mixture and reactant of the metal hydride and the metal amide compound contain a catalyst that enhances the ability to absorb and release hydrogen. Suitable catalysts are B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Na, Mg, K, Ir, Nd, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si. , Ru, Mo, Nb, Ta, Zr, Hf, and Ag, or a hydrogen storage alloy.

このような触媒の担持量は、金属水素化物と金属アミドとの混合物および反応物の0.1質量%以上20質量%以下とすることが好ましい。触媒担持量が0.1質量%未満の場合には、水素発生反応促進の効果が得られず、20質量%を超えると逆に金属水素化物等の反応物質どうしの反応を阻害したり、単位質量あたりの水素貯蔵率が目減りすることとなる。   The amount of the catalyst supported is preferably 0.1% by mass or more and 20% by mass or less of the mixture of the metal hydride and metal amide and the reaction product. When the amount of the catalyst supported is less than 0.1% by mass, the effect of promoting the hydrogen generation reaction cannot be obtained. When the amount exceeds 20% by mass, the reaction between the reactants such as metal hydride is inhibited. The hydrogen storage rate per mass will decrease.

金属水素化物と金属アミド化合物との混合物および反応物に、水素吸放出能を有する触媒物質を担持させる方法としては、以下の3つの方法のいずれかが用いられる。すなわち、(a)金属水素化物と金属アミド化合物を混合、粉砕する際に触媒物質を加えることにより、被処理物(つまり、金属水素化物、金属アミド化合物、これらの混合物、これらの反応物)に担持させる方法、(b)金属水素化物と金属アミド化合物を混合、粉砕することによって得られる被処理物と触媒物質とを混合することによって被処理物に触媒物質を担持させる方法、(c)金属水素化物と金属アミド化合物を混合、粉砕する前に、金属水素化物と金属アミド化合物の少なくとも一方に水素吸放出能を有する触媒物質を混合粉砕処理等により担持させる方法、のいずれか用いられる。   One of the following three methods is used as a method for supporting a catalyst substance having hydrogen absorption / release capability on a mixture and a reaction product of a metal hydride and a metal amide compound. That is, (a) by adding a catalyst substance when mixing and pulverizing a metal hydride and a metal amide compound, the product to be treated (that is, a metal hydride, a metal amide compound, a mixture thereof, a reaction product thereof) A method of supporting, (b) a method of supporting a catalyst material on a material to be processed by mixing the material to be processed obtained by mixing and pulverizing a metal hydride and a metal amide compound, and (c) a metal. Before mixing and pulverizing the hydride and the metal amide compound, any of a method in which at least one of the metal hydride and the metal amide compound is loaded with a catalyst substance having a hydrogen absorption / release capability by a mixed pulverization process or the like is used.

このようにして製造された水素貯蔵材料から水素を放出させた後の材料に、水素を吸蔵させる方法としては、その材料を加圧水素ガス雰囲気にさらす方法が用いられ、その際の加圧水素ガス雰囲気の圧力は4MPa以上とすることが好ましい。加圧水素ガス雰囲気の圧力が4MPa未満の場合には水素化が進み難く、未反応の材料が残ってしまって水素貯蔵率が低下するおそれがある。一方、加圧水素ガス雰囲気の圧力は15MPa以下とすることが好ましい。これは、水素吸蔵を行うために用いる容器に大きな耐圧性が求められることとなり、工業的に好ましくないからである。   As a method for storing hydrogen in the material after releasing hydrogen from the hydrogen storage material thus produced, a method of exposing the material to a pressurized hydrogen gas atmosphere is used, and the pressurized hydrogen gas atmosphere at that time is used. The pressure is preferably 4 MPa or more. When the pressure of the pressurized hydrogen gas atmosphere is less than 4 MPa, hydrogenation is difficult to proceed, and unreacted materials may remain and the hydrogen storage rate may decrease. On the other hand, the pressure in the pressurized hydrogen gas atmosphere is preferably 15 MPa or less. This is because a large pressure resistance is required for the container used for storing hydrogen, which is not industrially preferable.

また、水素吸蔵処理時の温度は80℃以上とすることが好ましい。これは、水素吸蔵処理温度が80℃未満の場合には、水素化が進み難く、未反応の材料が残ってしまって水素貯蔵率が低下するおそれがある。なお、水素吸蔵処理温度は300℃以下とすることが好ましい。300℃を超える温度での水素吸蔵処理では、吸蔵処理に必要とする熱量が大きくなり、工業的に好ましくない。   The temperature during the hydrogen storage treatment is preferably 80 ° C. or higher. This is because when the hydrogen storage temperature is less than 80 ° C., hydrogenation is difficult to proceed, and unreacted materials may remain and the hydrogen storage rate may decrease. The hydrogen storage temperature is preferably 300 ° C. or lower. In the hydrogen occlusion process at a temperature exceeding 300 ° C., the amount of heat required for the occlusion process increases, which is not industrially preferable.

次に、本発明の実施例と比較例について説明する。   Next, examples and comparative examples of the present invention will be described.

(各種金属アミドの調製)
例えば、マグネシウムアミド(Mg(NH)は、1gの水素化マグネシウム(MgH)を高純度アルゴングローブボックス内で高クロム鋼製のミル容器(内容積:250ml)に投入した後、このミル容器内を真空排気し、続いて下式(7)のモル比以上となるように、かつ、ミル容器内が0.4MPa以下(絶対圧)となるように、ミル容器内に所定量のアンモニアガスを導入した後にミル容器を封止し、次いでこれを室温、大気雰囲気下、250rpmの回転数で所定時間ミリング処理することにより、調製した。ミリング処理後のミル容器から反応ガス中の水素量やXRD測定により各種金属アミドの生成を確認した。リチウムアミド、カルシウムアミドについても、同様にして調製した。なお、各金属アミドの調製に使用した原料は、表1に示す通りである。
MgH+2NH(g)→ Mg(NH+2H(g)…(7)
(Preparation of various metal amides)
For example, magnesium amide (Mg (NH 2 ) 2 ) is charged with 1 g of magnesium hydride (MgH 2 ) in a high-chromium steel mill container (internal volume: 250 ml) in a high-purity argon glove box. The inside of the mill container is evacuated, and then, a predetermined amount is placed in the mill container so that the molar ratio of the following formula (7) is exceeded and the inside of the mill container is 0.4 MPa or less (absolute pressure). After the introduction of ammonia gas, the mill container was sealed, and then this was prepared by milling for a predetermined time at a rotation speed of 250 rpm in an air atmosphere at room temperature. Formation of various metal amides was confirmed by measuring the amount of hydrogen in the reaction gas and XRD from the mill vessel after milling. Lithium amide and calcium amide were also prepared in the same manner. The raw materials used for the preparation of each metal amide are as shown in Table 1.
MgH 2 + 2NH 3 (g) → Mg (NH 2 ) 2 + 2H 2 (g) (7)

(実施例1〜
表2に、以下に説明する実施例1〜および比較例1・2の出発原料の配合組成を示す。水素化リチウム(LiH)、水素化マグネシウム(MgH)、リチウムアミド(LiNH)、マグネシウムアミド(Mg(NH)、カルシウムアミド(Ca(NH)から選ばれた所定の原料を、表2に示すように2種類以上の金属元素が含まれる所定の組成となるように、かつ、実施例1〜については三塩化チタン(TiCl)が出発原料の金属成分の合計モル量の1.0mol%となるように、それぞれ高純度アルゴングローブボックス中で計量し、高クロム鋼製のバルブ付ミル容器に投入した。続いて、このミル容器内を真空排気した後、高純度水素ガスを1MPa導入し、遊星型ボールミル装置(Fritsch社製,P−5)を用いて、室温、大気雰囲気下、250rpmの回転数で2時間、ミリング処理した。ミリング後の試料は、ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中で取り出した。
(Examples 1-8 )
Table 2 shows the composition of the starting materials of Examples 1 to 8 and Comparative Examples 1 and 2 described below. A predetermined raw material selected from lithium hydride (LiH), magnesium hydride (MgH 2 ), lithium amide (LiNH 2 ), magnesium amide (Mg (NH 2 ) 2 ), calcium amide (Ca (NH 2 ) 2 ) As shown in Table 2, for Examples 1 to 6 , titanium trichloride (TiCl 3 ) is the total moles of the starting metal components so as to have a predetermined composition containing two or more kinds of metal elements as shown in Table 2. Each was measured in a high-purity argon glove box so as to be 1.0 mol% of the amount, and put in a mill vessel with a valve made of high chromium steel. Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity hydrogen gas was introduced, and a planetary ball mill apparatus (manufactured by Fritsch, P-5) was used at room temperature in an air atmosphere at a rotation speed of 250 rpm. Milled for 2 hours. After milling, the mill container was evacuated and filled with argon gas, and then taken out in a high purity argon glove box.

(比較例1・2)
金属水素化物と金属アミド化合物とが1種の金属を含むように、比較例1では水素化リチウム(LiH)とリチウムアミド(LiNH)とを、比較例2では水素化マグネシウム(MgH)とマグネシウムアミド(Mg(NH)とを、それぞれ表2に示す所定の組成となるように、かつ、三塩化チタン(TiCl)が出発原料の金属成分の合計モル量の1.0mol%となるように、高純度アルゴングローブボックス中で計量し、高クロム鋼製のバルブ付ミル容器に投入した。続いて、このミル容器内を真空排気した後、高純度水素ガスを1MPa導入し、遊星型ボールミル装置を用いて、室温、大気雰囲気下、250rpmの回転数で2時間、ミリング処理した。ミリング後の試料は、ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中で取り出した。
(Comparative Examples 1 and 2)
In Comparative Example 1, lithium hydride (LiH) and lithium amide (LiNH 2 ) are used, and in Comparative Example 2, magnesium hydride (MgH 2 ) is used so that the metal hydride and the metal amide compound contain one kind of metal. Magnesium amide (Mg (NH 2 ) 2 ) so as to have a predetermined composition shown in Table 2, respectively, and titanium trichloride (TiCl 3 ) is 1.0 mol% of the total molar amount of the starting metal components. In a high purity argon glove box, it was weighed and put into a high chrome steel valve-equipped mill vessel. Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity hydrogen gas was introduced, and milling was performed using a planetary ball mill apparatus at room temperature in an air atmosphere at a rotational speed of 250 rpm for 2 hours. After milling, the mill container was evacuated and filled with argon gas, and then taken out in a high purity argon glove box.

(試料評価)
上述のようにして作製した試料を、高純度アルゴングローブボックス内に設置されたTG−MASS装置(熱重量・質量分析装置)を用い、昇温速度を5℃/分として昇温し、その際の各試料からの脱離ガスを採取して分析を行った。
(Sample evaluation)
Using the TG-MASS apparatus (thermogravimetric / mass spectrometer) installed in the high purity argon glove box, the temperature of the sample prepared as described above was increased at a rate of 5 ° C./min. The desorbed gas from each sample was collected and analyzed.

(水素吸蔵特性の測定)
実施例に係る試料をSUS製容器に充填し、200℃、真空雰囲気で12時間保持することにより、水素放出処理を行った。この水素放出処理後の試料を高純度アルゴングローブボックス内で取り出し、2個の耐圧容器にそれぞれ同量を秤量して充填した。続いて、各耐圧容器内を真空排気した後、一方の耐圧容器には高純度水素ガスを内圧が10MPaとなるように導入し、200℃で12時間保持することにより水素吸蔵処理を行った(以下、こうして得られた水素貯蔵材料を「実施例」とする)。また、他方の耐圧容器には高純度水素ガスを内圧が3MPaとなるように導入し、200℃で12時間保持することにより水素吸蔵処理を行った(以下、こうして得られた水素貯蔵材料を「実施例10」とする)。こうして作製した実施例9・10の試料について、高純度アルゴングローブボックス内に設置されたTG−MASS装置を用い、昇温速度を5℃/分として昇温し、その際の各試料からの脱離ガスを採取して分析を行った。
(Measurement of hydrogen storage characteristics)
The sample according to Example 7 was filled in a SUS container and held in a vacuum atmosphere at 200 ° C. for 12 hours to perform hydrogen release treatment. The sample after the hydrogen releasing treatment was taken out in a high purity argon glove box, and the same amount was weighed and filled in two pressure-resistant containers. Subsequently, after each vacuum vessel was evacuated, high-purity hydrogen gas was introduced into one of the pressure vessels so that the internal pressure became 10 MPa, and a hydrogen occlusion treatment was performed by holding at 200 ° C. for 12 hours ( Hereinafter, the hydrogen storage material thus obtained is referred to as “Example 9 ”). In addition, a high-purity hydrogen gas was introduced into the other pressure vessel so that the internal pressure was 3 MPa, and the hydrogen storage treatment was performed by holding at 200 ° C. for 12 hours (hereinafter, the hydrogen storage material obtained in this way was referred to as “ Example 10 ”). The samples of Examples 9 and 10 thus produced were heated using a TG-MASS apparatus installed in a high-purity argon glove box at a heating rate of 5 ° C./min, and the samples were removed from the samples at that time. The separated gas was collected and analyzed.

(PCT測定)
実施例に係る試料をSUS製容器に充填し、200℃、真空雰囲気で12時間保持することにより、水素放出処理を行った。この水素放出処理後の試料を高純度アルゴングローブボックス内で取り出し、2個の耐圧容器にそれぞれ同量を秤量して充填した。続いて、各耐圧容器内を真空排気した後、一方の耐圧容器を200℃に保持し、その内圧が1MPa〜9MPaとなるように、適宜、高純度水素ガスを導入し、所定の圧力におけるPCT測定を行った(こうして最終的に得られた試料を「実施例11」とする)。また、他方の耐圧容器を150℃に保持し、その内圧が1MPa〜9MPaとなるように、適宜、高純度水素ガスを導入し、所定の圧力におけるPCT測定を行った(こうして最終的に得られた試料を「実施例12」とする)。なお、各耐圧容器とも、各圧力下における平衡待ち時間は1時間とした。
(PCT measurement)
The sample according to Example 7 was filled in a SUS container and held in a vacuum atmosphere at 200 ° C. for 12 hours to perform hydrogen release treatment. The sample after the hydrogen releasing treatment was taken out in a high purity argon glove box, and the same amount was weighed and filled in two pressure-resistant containers. Subsequently, after evacuating each pressure vessel, one of the pressure vessels is maintained at 200 ° C., and high-purity hydrogen gas is appropriately introduced so that the internal pressure becomes 1 MPa to 9 MPa, and PCT at a predetermined pressure is obtained. The measurement was performed (the sample finally obtained in this way is referred to as “Example 11 ”). Also, the other pressure vessel was held at 150 ° C., and high-purity hydrogen gas was introduced as appropriate so that the internal pressure would be 1 MPa to 9 MPa, and PCT measurement was performed at a predetermined pressure (thus finally obtained). The sample was referred to as “Example 12 ”). In each pressure vessel, the equilibrium waiting time under each pressure was 1 hour.

(水素吸蔵開始温度測定)
実施例に係る試料をSUS製容器に充填し、200℃、真空雰囲気で12時間保持することにより、水素放出処理を行った。この水素放出処理後の試料を高純度アルゴングローブボックス内で取り出し、2個の耐圧容器にそれぞれ同量を秤量して充填した。続いて、各耐圧容器内を真空排気した後、一方の耐圧容器を10MPaに保持し、室温から200℃までの水素吸蔵量を測定した(こうして最終的に得られた試料を「実施例13」とする)。また、他方の耐圧容器を3MPaに保持し、室温から200℃までの水素吸蔵量を測定した(こうして最終的に得られた試料を「実施例14」とする)。
(Measurement of hydrogen storage start temperature)
The sample according to Example 7 was filled in a SUS container and held in a vacuum atmosphere at 200 ° C. for 12 hours to perform hydrogen release treatment. The sample after the hydrogen releasing treatment was taken out in a high purity argon glove box, and the same amount was weighed and filled in two pressure-resistant containers. Subsequently, after evacuating each pressure vessel, one pressure vessel was held at 10 MPa, and the hydrogen storage amount from room temperature to 200 ° C. was measured (the sample thus obtained was referred to as “Example 13 ”). And). The other pressure vessel was held at 3 MPa, and the hydrogen occlusion amount from room temperature to 200 ° C. was measured (the sample finally obtained in this way is referred to as “Example 14 ”).

(結果)
図1にTG−MASS装置による昇温に伴う脱離水素ガスの放出スペクトル、つまり、温度と水素放出強度の関係を示す説明図を示す。なお、図1の特性線aは実施例1を、特性線bは実施例を、特性線cは実施例を、特性線dは比較例1を、特性線eは比較例2を、それぞれ示している。また、表2には各試料の理論水素貯蔵率(mass%)と、水素ガスの放出スペクトル曲線のピーク温度(℃)(以下「水素放出ピーク温度」という)を併記した。
(result)
FIG. 1 shows an emission spectrum of desorbed hydrogen gas accompanying a temperature rise by the TG-MASS apparatus, that is, an explanatory diagram showing the relationship between temperature and hydrogen emission intensity. The characteristic line a in FIG. 1 is Example 1, the characteristic line b is Example 7 , the characteristic line c is Example 8 , the characteristic line d is Comparative Example 1, the characteristic line e is Comparative Example 2, Each is shown. Table 2 also shows the theoretical hydrogen storage rate (mass%) of each sample and the peak temperature (° C.) of the hydrogen gas release spectrum curve (hereinafter referred to as “hydrogen release peak temperature”).

図1より、実施例1の水素放出ピーク温度は209℃、実施例の水素放出ピーク温度は189℃であり、比較例1の場合の239℃や比較例2の場合の317℃と比較して、水素放出ピーク温度が低温化することが確認された。また、表2に示されるように、実施例2〜でも、水素放出ピーク温度は、比較例1より低温化することが確認された。 From FIG. 1, the hydrogen release peak temperature of Example 1 is 209 ° C., and the hydrogen release peak temperature of Example 8 is 189 ° C., which is compared with 239 ° C. in Comparative Example 1 and 317 ° C. in Comparative Example 2. Thus, it was confirmed that the hydrogen release peak temperature was lowered. Further, as shown in Table 2, it was confirmed that in Examples 2 to 7 , the hydrogen release peak temperature was lower than that in Comparative Example 1.

図2にTG−MASS装置によるTG曲線、つまり、温度と熱重量減少率(wt%)の関係を示すグラフを示す。なお、図2のTG曲線fは実施例を、TG曲線gは実施例を、TG曲線hは実施例10をそれぞれ示している。この図2に示されるように、実施例の重量減少率は7.2wt%となり、理論水素貯蔵率とほぼ等しいことが確認された。また、実施例に係る試料を水素放出処理した後に10MPaの水素ガス雰囲気下で水素吸蔵処理して得られる実施例では、その重量減少率が6.9wt%となり、理論水素貯蔵率とほぼ等しいことが確認された。これに対し、水素吸蔵処理の水素ガス圧力が3MPaの実施例10の場合には重量減少率が4.8wt%となった。 FIG. 2 shows a TG curve by the TG-MASS apparatus, that is, a graph showing the relationship between the temperature and the thermal weight reduction rate (wt%). In FIG. 2, the TG curve f indicates Example 7 , the TG curve g indicates Example 9 , and the TG curve h indicates Example 10 . As shown in FIG. 2, the weight reduction rate of Example 7 was 7.2 wt%, which was confirmed to be substantially equal to the theoretical hydrogen storage rate. Further, in Example 9 obtained by performing hydrogen storage treatment in a 10 MPa hydrogen gas atmosphere after subjecting the sample according to Example 7 to hydrogen release treatment, the weight reduction rate was 6.9 wt%, which is almost equal to the theoretical hydrogen storage rate. It was confirmed that they were equal. On the other hand, in the case of Example 10 where the hydrogen gas pressure in the hydrogen storage treatment was 3 MPa, the weight reduction rate was 4.8 wt%.

図3に、実施例に係る試料を水素放出処理した後に、所定温度で水素ガス圧力を変化させた場合の、水素吸蔵量と水素ガス圧力との関係を示すグラフを示す。この図3より、水素吸蔵処理の温度が200℃である実施例11の水素吸蔵量は約6.5mass%であり、理論水素量に近い水素を吸蔵することが確認された。また、水素吸蔵処理の温度が150℃の実施例12の水素吸蔵量は約4.1mass%であった。 FIG. 3 is a graph showing the relationship between the hydrogen storage amount and the hydrogen gas pressure when the hydrogen gas pressure is changed at a predetermined temperature after the sample according to Example 7 is subjected to hydrogen release treatment. From FIG. 3, the hydrogen storage amount of Example 11 in which the temperature of the hydrogen storage treatment is 200 ° C. is about 6.5 mass%, and it was confirmed that the hydrogen storage near the theoretical hydrogen amount was stored. Further, the hydrogen storage amount of Example 12 where the temperature of the hydrogen storage treatment was 150 ° C. was about 4.1 mass%.

図4に、実施例に係る試料を水素放出処理した後に、室温から200℃において水素ガス圧力を変化させた場合の、吸蔵温度と水素吸蔵量の関係を示すグラフを示す。この図4より、水素吸蔵圧力が10MPaである実施例13の水素の吸蔵開始温度は80℃であることが確認された。一方、水素吸蔵圧力が3MPaである実施例14の水素の吸蔵開始温度は100℃であることが確認された。 FIG. 4 is a graph showing the relationship between the occlusion temperature and the hydrogen occlusion amount when the hydrogen gas pressure was changed from room temperature to 200 ° C. after the sample according to Example 7 was subjected to hydrogen desorption treatment. From FIG. 4, it was confirmed that the hydrogen storage start temperature of Example 13 in which the hydrogen storage pressure was 10 MPa was 80 ° C. On the other hand, it was confirmed that the hydrogen storage start temperature of Example 14 in which the hydrogen storage pressure was 3 MPa was 100 ° C.

Figure 0004762579
Figure 0004762579

Figure 0004762579
Figure 0004762579

本発明の水素貯蔵材料およびその製造方法ならびに水素吸蔵方法は、水素と酸素を燃料として発電する燃料電池等およびその運転に好適である。   The hydrogen storage material, the production method thereof, and the hydrogen storage method of the present invention are suitable for a fuel cell that generates power using hydrogen and oxygen as fuels and the operation thereof.

昇温温度と水素放出強度との関係を示す線図。The diagram which shows the relationship between temperature rising temperature and hydrogen discharge | release intensity | strength. 昇温温度と重量減少率との関係を示すグラフ。The graph which shows the relationship between temperature rising temperature and a weight decreasing rate. 水素吸蔵量と吸蔵圧力との関係を示すグラフ。The graph which shows the relationship between hydrogen storage amount and storage pressure. 水素吸蔵温度と水素吸蔵量との関係を示すグラフ。The graph which shows the relationship between hydrogen storage temperature and hydrogen storage amount.

Claims (14)

水素化リチウム(LiH)と、金属アミド化合物としてのマグネシウムアミド(Mg(NH )およびカルシウムアミド(Ca(NH )の少なくとも1種との混合物および反応物を有することを特徴とする水素貯蔵材料。 Features and lithium hydride (LiH), to have a mixture and a reaction product of at least one magnesium amide as metal amide compound (Mg (NH 2) 2) and calcium amide (Ca (NH 2) 2) And hydrogen storage material. 水素吸放出能を高めるTi化合物からなる触媒をさらに含むことを特徴とする請求項1に記載の水素貯蔵材料。 The hydrogen storage material according to claim 1, further comprising a catalyst made of a Ti compound that enhances the ability to absorb and release hydrogen. 前記触媒の担持量が、前記水素化リチウム(LiH)と、金属アミド化合物としてのマグネシウムアミド(Mg(NH )およびカルシウムアミド(Ca(NH )の少なくとも1種との混合物および反応物の0.1質量%以上20質量%以下であることを特徴とする請求項2に記載の水素貯蔵材料。 The amount of the catalyst supported is a mixture of the lithium hydride (LiH) and at least one of magnesium amide (Mg (NH 2 ) 2 ) and calcium amide (Ca (NH 2 ) 2 ) as a metal amide compound , and The hydrogen storage material according to claim 2, wherein the content is 0.1% by mass or more and 20% by mass or less of the reactant. 金属アミド化合物としてさらにリチウムアミド(LiNH  As a metal amide compound, lithium amide (LiNH 2 )を有することを特徴とする請求項1から請求項3のいずれか1項に記載の水素貯蔵材料。The hydrogen storage material according to any one of claims 1 to 3, wherein 前記混合物および反応物がメカニカルミリング処理によりナノ構造化・組織化されていることを特徴とする請求項1から請求項いずれか1項に記載の水素貯蔵材料。 The hydrogen storage material according to any one of claims 1 to 4, wherein the mixture and the reactant are nanostructured and organized by a mechanical milling process. 水素化リチウム(LiH)と、金属アミド化合物としてのマグネシウムアミド(Mg(NH  Lithium hydride (LiH) and magnesium amide (Mg (NH 2 ) 2 )およびカルシウムアミド(Ca(NH) And calcium amide (Ca (NH 2 ) 2 )の少なくとも1種とを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において混合することを特徴とする水素貯蔵材料の製造方法。And at least one of them in an inert gas atmosphere, a hydrogen gas atmosphere, or a mixed gas atmosphere of an inert gas and hydrogen gas. 水素化リチウム(LiH)と、金属アミド化合物としてのマグネシウムアミド(Mg(NH )およびカルシウムアミド(Ca(NH )の少なくとも1種とを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において混合する工程と、
前記混合工程においてさらに水素吸放出能を高めるTi化合物からなる触媒をさらに加えることによって前記Ti化合物からなる触媒を被処理物に担持させる工程、または前記混合工程後に得られる被処理物と水素吸放出能を高めるTi化合物からなる触媒とを混合することによって前記被処理物に前記Ti化合物からなる触媒を担持させる工程、または前記混合工程前に前記水素化リチウム(LiH)と前記金属アミド化合物の少なくとも一方に水素吸放出能を高めるTi化合物からなる触媒を担持させる工程、のいずれかの工程と、
を有することを特徴とする水素貯蔵材料の製造方法。
Lithium hydride (LiH) and at least one of magnesium amide (Mg (NH 2 ) 2 ) and calcium amide (Ca (NH 2 ) 2 ) as a metal amide compound are used in an inert gas atmosphere or a hydrogen gas atmosphere Mixing under or in a mixed gas atmosphere of an inert gas and hydrogen gas,
In the mixing step, a step further comprises adding a catalyst composed of a Ti compound that enhances the ability to absorb and desorb hydrogen to carry the catalyst composed of the Ti compound on the object to be treated, or an object to be treated and hydrogen absorption / desorption obtained after the mixing step. at least step of supporting a catalyst comprising the Ti compound to the object to be processed by admixing a catalyst comprising a Ti compound which enhances performance, or the mixing step wherein lithium hydride before and (LiH) of the metal amide compound One of the steps of supporting a catalyst made of a Ti compound that enhances the ability to absorb and release hydrogen on one side;
A method for producing a hydrogen storage material, comprising:
前記水素化リチウム(LiH)と金属アミド化合物を混合処理する際の雰囲気圧力を大気圧以上とすることを特徴とする請求項6または請求項7に記載の水素貯蔵材料の製造方法。 The method for producing a hydrogen storage material according to claim 6 or 7 , wherein an atmospheric pressure when the lithium hydride (LiH) and the metal amide compound are mixed is set to atmospheric pressure or higher. 金属アミド化合物としてさらにリチウムアミド(LiNH  As a metal amide compound, lithium amide (LiNH 2 )を混合することを特徴とする請求項6から請求項8のいずれか1項に記載の水素貯蔵材料の製造方法。The method for producing a hydrogen storage material according to any one of claims 6 to 8, wherein the hydrogen storage material is mixed. 前記水素化リチウム(LiH)と金属アミド化合物を混合処理する際に、メカニカルミリング処理により混合物および反応物をナノ構造化・組織化することを特徴とする請求項6から請求項9いずれか1項に記載の水素貯蔵材料の製造方法 10. The structure according to claim 6, wherein when the lithium hydride (LiH) and the metal amide compound are mixed, the mixture and the reactant are nanostructured and organized by a mechanical milling process. The manufacturing method of hydrogen storage material as described in any one of . 請求項から請求項10のいずれかの水素貯蔵材料の製造方法により製造されたことを特徴とする水素貯蔵材料。 A hydrogen storage material manufactured by the method for manufacturing a hydrogen storage material according to any one of claims 6 to 10 . 請求項から請求項10のいずれかの水素貯蔵材料の製造方法により製造された水素貯蔵材料から水素を放出させた後の材料に対し、加圧水素ガス雰囲気において水素を吸蔵させることを特徴とする水素吸蔵方法。 A hydrogen storage material produced by the method for producing a hydrogen storage material according to any one of claims 6 to 10 is made to occlude hydrogen in a pressurized hydrogen gas atmosphere with respect to the material after releasing hydrogen from the hydrogen storage material. Hydrogen storage method. 前記加圧水素ガス雰囲気の圧力を4MPa以上とすることを特徴とする請求項12に記載の水素吸蔵方法。   The hydrogen storage method according to claim 12, wherein the pressure of the pressurized hydrogen gas atmosphere is 4 MPa or more. 前記水素を吸蔵させるための反応温度を80℃以上とすることを特徴とする請求項12または請求項13に記載の水素吸蔵方法。   The hydrogen storage method according to claim 12 or 13, wherein a reaction temperature for storing the hydrogen is 80 ° C or higher.
JP2005079096A 2004-03-24 2005-03-18 Hydrogen storage material, production method thereof, and hydrogen storage method Expired - Fee Related JP4762579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079096A JP4762579B2 (en) 2004-03-24 2005-03-18 Hydrogen storage material, production method thereof, and hydrogen storage method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004086925 2004-03-24
JP2004086925 2004-03-24
JP2005079096A JP4762579B2 (en) 2004-03-24 2005-03-18 Hydrogen storage material, production method thereof, and hydrogen storage method

Publications (2)

Publication Number Publication Date
JP2005306724A JP2005306724A (en) 2005-11-04
JP4762579B2 true JP4762579B2 (en) 2011-08-31

Family

ID=35435892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079096A Expired - Fee Related JP4762579B2 (en) 2004-03-24 2005-03-18 Hydrogen storage material, production method thereof, and hydrogen storage method

Country Status (1)

Country Link
JP (1) JP4762579B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100135898A1 (en) * 2007-03-14 2010-06-03 Taiheiyo Cement Corporation Method for producing metal hydride
JP5114777B2 (en) * 2008-02-22 2013-01-09 国立大学法人広島大学 Method for producing hydrogen storage material
US10000377B1 (en) 2015-10-01 2018-06-19 National Technology & Engineering Solutions Of Sandia, Llc Nanostructured metal amides and nitrides for hydrogen storage
CN113546623B (en) * 2021-07-28 2024-01-30 金宏气体股份有限公司 Rare earth composite organic hydrogen storage and carrying catalytic active substance, carrier and application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2345956A1 (en) * 1998-10-07 2000-04-13 Mcgill University Reversible hydrogen storage composition
DE10012794A1 (en) * 2000-03-16 2001-09-20 Studiengesellschaft Kohle Mbh Process for the reversible storage of hydrogen comprises using reversible hydrogen-storage materials containing mixtures of aluminum metal with alkali metals and/or alkali metal hydrides
JP4754174B2 (en) * 2003-03-26 2011-08-24 太平洋セメント株式会社 Hydrogen storage body manufacturing apparatus, hydrogen storage body manufacturing method, and hydrogen storage body
JP2004305848A (en) * 2003-04-03 2004-11-04 Honda Motor Co Ltd Powdery hydrogen storage material
JP2005126273A (en) * 2003-10-23 2005-05-19 Taiheiyo Cement Corp Hydrogen storage material precursor and its manufacturing method
US20070042223A1 (en) * 2003-10-10 2007-02-22 Japan Science And Technology Agency Light element complex hydride film and method for synthesis thereof

Also Published As

Publication number Publication date
JP2005306724A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US20090121184A1 (en) Hydrogen storage material and method for manufacturing same
US7749484B2 (en) Li-B-Mg-X system for reversible hydrogen storage
Janot et al. Investigation of the processes for reversible hydrogen storage in the Li–Mg–N–H system
JP2006305486A (en) Hydrogen storage material and its manufacturing method
JP2008043927A (en) Method of manufacturing hydrogen storage material
JP4986101B2 (en) Hydrogen storage material and method for producing the same
JP4762579B2 (en) Hydrogen storage material, production method thereof, and hydrogen storage method
JP4500534B2 (en) Hydrogen storage material and hydrogen generation method
JP4853810B2 (en) Hydrogen storage material and method for producing the same
JP4793900B2 (en) Hydrogen storage material and method for producing the same
JP4615908B2 (en) Hydrogen storage material and method for producing the same
JP4575866B2 (en) Method for producing hydrogen storage material
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
JPS6141978B2 (en)
JP2007307455A (en) Method of manufacturing hydrogen storage material
JP2006224021A (en) Hydrogen storage material, its production method, and hydrogen storage material precursor
JP2005126273A (en) Hydrogen storage material precursor and its manufacturing method
JP4545469B2 (en) Method for supporting catalyst on hydrogen storage material and hydrogen storage material
JP2007320815A (en) Hydrogen storage material and hydrogen generation method
JP2008239367A (en) Method for producing hydrogen storage material
JP4807639B2 (en) Hydride composite and method for producing hydrogen gas
JP2005095869A (en) Hydrogen storing material and its production method
JP2006008439A (en) Hydrogen storing material and manufacturing method therefor
JP5346014B2 (en) Method for producing Ti-doped hydride
JP2007152279A (en) Hydrogen storage material and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees