JP4793900B2 - Hydrogen storage material and method for producing the same - Google Patents

Hydrogen storage material and method for producing the same Download PDF

Info

Publication number
JP4793900B2
JP4793900B2 JP2004186451A JP2004186451A JP4793900B2 JP 4793900 B2 JP4793900 B2 JP 4793900B2 JP 2004186451 A JP2004186451 A JP 2004186451A JP 2004186451 A JP2004186451 A JP 2004186451A JP 4793900 B2 JP4793900 B2 JP 4793900B2
Authority
JP
Japan
Prior art keywords
metal
hydrogen
hydride
catalyst
gas atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004186451A
Other languages
Japanese (ja)
Other versions
JP2006007064A (en
Inventor
博信 藤井
貴之 市川
豊之 窪川
和彦 常世田
恵介 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Taiheiyo Cement Corp
Original Assignee
Hiroshima University NUC
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Taiheiyo Cement Corp filed Critical Hiroshima University NUC
Priority to JP2004186451A priority Critical patent/JP4793900B2/en
Priority to PCT/JP2004/009538 priority patent/WO2005014165A1/en
Publication of JP2006007064A publication Critical patent/JP2006007064A/en
Application granted granted Critical
Publication of JP4793900B2 publication Critical patent/JP4793900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、燃料電池等の燃料として用いられる水素貯蔵材料およびその製造方法に関する。   The present invention relates to a hydrogen storage material used as a fuel for fuel cells and the like, and a method for producing the same.

NOやSO等の有害物質やCO等の温室効果ガスを出さないクリーンなエネルギー源として燃料電池の開発が盛んに行われており、既に幾つかの分野で実用化されている。この燃料電池技術を支える重要な技術として、燃料電池の燃料となる水素を貯蔵する技術がある。水素の貯蔵形態としては、高圧ボンベによる圧縮貯蔵や液体水素化させる冷却貯蔵、水素貯蔵物質による貯蔵が知られており、これらの形態の中で、水素貯蔵物質による貯蔵は、分散貯蔵や輸送の点で有利である。水素貯蔵物質としては、水素貯蔵効率の高い材料、つまり水素貯蔵物質の単位重量または単位体積あたりの水素貯蔵量が高い材料、低い温度で水素の吸収/放出が行われる材料、良好な耐久性を有する材料が望まれる。 NO X and development of fuel cells have been actively as a clean energy source that does not emit greenhouse gases such as toxic substances and CO 2 in the SO X or the like, and is already practiced in several areas. As an important technology that supports this fuel cell technology, there is a technology for storing hydrogen as fuel for the fuel cell. As storage forms of hydrogen, compression storage by high-pressure cylinders, cooling storage by liquid hydrogenation, and storage by hydrogen storage materials are known. Among these forms, storage by hydrogen storage materials is used for distributed storage and transportation. This is advantageous. Hydrogen storage materials include materials with high hydrogen storage efficiency, that is, materials with a high hydrogen storage amount per unit weight or volume of the hydrogen storage material, materials that absorb / release hydrogen at a low temperature, and good durability. A material having is desired.

従来、水素貯蔵物質としては、希土類系、チタン系、バナジウム系、マグネシウム系等を中心とする金属材料、金属アラネート(例えば、NaAlHやLiAlH)等の軽量無機化合物、カーボン等の種々の材料が知られている。また、例えば、下式(1)で示されるリチウム窒化物を用いた水素貯蔵方法も報告されている(例えば、非特許文献1、2参照)。
LiN+2H⇔LiNH+LiH+H⇔LiNH+2LiH…(1)
Conventionally, as a hydrogen storage material, various materials such as metal materials such as rare earth, titanium, vanadium, and magnesium, lightweight inorganic compounds such as metal alanate (for example, NaAlH 4 and LiAlH 4 ), and carbon, etc. It has been known. In addition, for example, a hydrogen storage method using lithium nitride represented by the following formula (1) has been reported (for example, see Non-Patent Documents 1 and 2).
Li 3 N + 2H 2 ⇔Li 2 NH + LiH + H 2 ⇔LiNH 2 + 2LiH (1)

ここで、LiNによる水素の吸収は100℃程度から開始し、255℃、30分で9.3質量%の水素吸収が確認されている。また、吸収された水素の放出特性としては、ゆっくり加熱することによって200℃弱で6.3質量%、320℃以上で3.0質量%と、二段階のステップを経ることが報告されている。すなわち、上記(1)式の右辺部分に相当する下式(2)の反応は200℃弱で進行し始め、上記(1)式の左辺部分に相当する下式(3)の反応は約320℃で進行し始めることが示されている。
LiNH+2LiH→LiNH+LiH+H↑…(2)
LiNH+LiH→LiN+H↑…(3)
Here, absorption of hydrogen by Li 3 N started from about 100 ° C., and 9.3 mass% hydrogen absorption was confirmed at 255 ° C. for 30 minutes. In addition, it has been reported that the absorption characteristics of absorbed hydrogen pass through two steps: 6.3% by mass at less than 200 ° C. and 3.0% by mass at 320 ° C. or higher by slowly heating. . That is, the reaction of the following formula (2) corresponding to the right side portion of the above formula (1) starts to proceed at a little less than 200 ° C., and the reaction of the following formula (3) corresponding to the left side portion of the above formula (1) is about 320 It has been shown to begin to progress at ° C.
LiNH 2 + 2LiH → Li 2 NH + LiH + H 2 ↑ (2)
Li 2 NH + LiH → Li 3 N + H 2 ↑ (3)

しかしながら、上記(1)式に示されるリチウム窒化物は、水素放出温度が高いという問題がある。
Ruff, O. , and Goerges, H., Berichte der Deutschen ChemischenGesellschaft zu Berlin,Vol.44, 502-6(1911) Ping Chen et al., Interaction of hydrogen with metalnitrides andimides, NATURE Vol.420, 21 NOVEMBER 2002, p302〜304
However, the lithium nitride represented by the above formula (1) has a problem that the hydrogen release temperature is high.
Ruff, O., and Goerges, H., Berichte der Deutschen Chemischen Gesellschaft zu Berlin, Vol. 44, 502-6 (1911) Ping Chen et al., Interaction of hydrogen with metalnitrides andimides, NATURE Vol.420, 21 NOVEMBER 2002, p302〜304

発明者らはかかる事情に鑑み、先に特願2003−291672号において、リチウムアミド(LiNH)と水素化リチウム(LiH)をナノ構造化することにより、水素発生反応温度を低温側へシフトさせた水素貯蔵材料を開示した。しかし、水素発生反応温度をさらに低温化させることが望まれている。
本発明はかかる事情に鑑みてなされたものであり、水素放出温度を低温化させた水素貯蔵材料、およびその製造方法を提供することを目的とする。
In view of such circumstances, the inventors previously made a nanostructure of lithium amide (LiNH 2 ) and lithium hydride (LiH) in Japanese Patent Application No. 2003-291672 to shift the hydrogen generation reaction temperature to the low temperature side. A hydrogen storage material has been disclosed. However, it is desired to further lower the hydrogen generation reaction temperature.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a hydrogen storage material having a reduced hydrogen release temperature and a method for producing the same.

本発明の第1の観点によれば、金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成される水素貯蔵材料であって、前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムであることを特徴とする水素貯蔵材料、が提供される。 According to a first aspect of the present invention, there is provided a hydrogen storage material comprising a mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability, the catalyst comprising TiO 2 nano Ri particles or Ti nanoparticles Tona, wherein a metal species two metal hydride and a metal amide compound, hydrogen storage material metal species, which is a lithium and magnesium, are provided.

この水素貯蔵材料において、好ましい組み合わせとして、前記金属水素化物が水素化リチウムであり、前記金属アミド化合物がマグネシウムアミドである組み合わせが挙げられ、この場合には、マグネシウムアミド1モルに対する水素化リチウムの混合比を2モル以上5モル以下とすることが好ましい。別の好ましい組み合わせとしては、前記金属水素化物が水素化マグネシウムであり、前記金属アミド化合物がリチウムアミドである組み合わせが挙げられ、この場合には、リチウムアミド1モルに対する水素化マグネシウムの混合比を0.5モル以上3モル以下とすることが好ましい。触媒の担持量は、金属水素化物と金属アミド化合物との混合物または複合化物の合計量の0.1質量%以上20質量%以下とすることが好ましい。 In this hydrogen storage material , a preferable combination includes a combination in which the metal hydride is lithium hydride and the metal amide compound is magnesium amide . In this case, a mixture of lithium hydride with respect to 1 mol of magnesium amide is used. The ratio is preferably 2 mol or more and 5 mol or less. Another preferred combination is a combination in which the metal hydride is magnesium hydride and the metal amide compound is lithium amide . In this case, the mixing ratio of magnesium hydride to 1 mol of lithium amide is 0. It is preferably 5 mol or more and 3 mol or less. The supported amount of the catalyst is preferably 0.1% by mass or more and 20% by mass or less of the total amount of the mixture or composite of the metal hydride and the metal amide compound.

本発明の第の観点によれば、金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成され、前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムである水素貯蔵材料の製造方法であって、
前記金属水素化物と前記金属アミド化合物に、前記触媒を添加して、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において機械的粉砕処理により混合、微細化することを特徴とする水素貯蔵材料の製造方法、が提供される。
According to a second aspect of the present invention, the catalyst is composed of a mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability, and the catalyst is composed of TiO 2 nanoparticles or Ti nanoparticles. A method for producing a hydrogen storage material, wherein the metal hydride and the metal amide compound have two metal species, and the metal species are lithium and magnesium,
To the metal hydride and the metal amide compound with the addition of the catalyst, mixing by mechanical pulverization treatment in a mixed gas atmosphere of an inert gas atmosphere or hydrogen gas atmosphere or an inert gas and hydrogen gas, fine A method for producing a hydrogen storage material is provided.

本発明の第の観点によれば、金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成され、前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムである水素貯蔵材料の製造方法であって、
前記金属水素化物と前記金属アミド化合物を不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において機械的粉砕処理により混合、微細化する第1工程と、
前記第1工程により得られた被処理物に、前記触媒を添加して、前記被処理物に前記触媒を担持させる第2工程と、
を有することを特徴とする水素貯蔵材料の製造方法、が提供される。
According to a third aspect of the present invention, the catalyst is composed of a mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability, the catalyst comprising TiO 2 nanoparticles or Ti nanoparticles. A method for producing a hydrogen storage material, wherein the metal hydride and the metal amide compound have two metal species, and the metal species are lithium and magnesium,
Mixed by mechanical pulverization treatment under a mixed gas atmosphere of said metal hydride with said metal amide compound an inert gas atmosphere or hydrogen gas atmosphere or an inert gas and hydrogen gas, a first step of refining,
A second step of adding the catalyst to the object to be processed obtained in the first step and loading the catalyst on the object to be processed;
A method for producing a hydrogen storage material is provided.

本発明の第の観点によれば、金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成され、前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムである水素貯蔵材料の製造方法であって、
前記金属水素化物または前記金属アミド化合物のいずれか一方に、前記触媒を添加して、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において、機械的粉砕処理により混合、微細化する第1工程と、
前記第1工程により得られた被処理物と他方とを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において、混合粉砕する工程と、
を有することを特徴とする水素貯蔵材料の製造方法、が提供される。
According to a fourth aspect of the present invention, the catalyst comprises a mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability, and the catalyst comprises TiO 2 nanoparticles or Ti nanoparticles. A method for producing a hydrogen storage material, wherein the metal hydride and the metal amide compound have two metal species, and the metal species are lithium and magnesium,
Any one of the metal hydride or the metal amide compound with the addition of the catalyst, a mixed gas atmosphere of an inert gas atmosphere or hydrogen gas atmosphere or an inert gas and hydrogen gas, mechanical pulverization A first step of mixing and refining by processing;
Mixing and pulverizing the object to be processed and the other obtained in the first step under an inert gas atmosphere or a hydrogen gas atmosphere or a mixed gas atmosphere of an inert gas and hydrogen gas;
A method for producing a hydrogen storage material is provided.

本発明の第の観点によれば、金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成され、前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムである水素貯蔵材料の製造方法であって、
前記金属水素化物と前記金属アミド化合物それぞれに、前記触媒を添加して、前記金属水素化物と金属アミド化合物ごとに、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において、機械的粉砕処理により混合、微細化する第1工程と、
前記第1工程により得られた被処理物どうしを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において、混合粉砕する第2工程と、
を有することを特徴とする水素貯蔵材料の製造方法、が提供される。
According to a fifth aspect of the present invention, the catalyst is composed of a mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability, and the catalyst is composed of TiO 2 nanoparticles or Ti nanoparticles. A method for producing a hydrogen storage material, wherein the metal hydride and the metal amide compound have two metal species, and the metal species are lithium and magnesium,
Each said metal hydride with said metal amide compound with the addition of the catalyst, mixing with the per metal hydride and a metal amide compound, under an inert gas atmosphere or under a hydrogen gas atmosphere or an inert gas and hydrogen gas A first step of mixing and refining by a mechanical pulverization process in a gas atmosphere;
A second step of mixing and grinding the objects to be processed obtained in the first step under an inert gas atmosphere or a hydrogen gas atmosphere or a mixed gas atmosphere of an inert gas and hydrogen gas;
A method for producing a hydrogen storage material is provided.

本発明の水素貯蔵材料によれば、従来よりも水素放出温度を低温化させることができる。これにより、水素貯蔵材料から水素を放出させるための加熱に要するエネルギーを低減させ、また、水素貯蔵材料を充填する容器等の材質や構造の制限が緩和されるようになる。   According to the hydrogen storage material of the present invention, the hydrogen release temperature can be lowered as compared with the conventional case. As a result, the energy required for heating to release hydrogen from the hydrogen storage material is reduced, and restrictions on the material and structure of the container and the like filled with the hydrogen storage material are relaxed.

本発明に係る第1の材料系は、金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成される水素貯蔵材料であり、ここで、触媒としてはナノ粒子からなるもの(以下、「ナノ粒子触媒」という)を用いる。ナノ粒子触媒を水素貯蔵材料に担持させることにより、水素放出温度を低温化させることができる。   A first material system according to the present invention is a hydrogen storage material composed of a mixture or a composite containing a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability. What consists of particle | grains (henceforth "nanoparticle catalyst") is used. By supporting the nanoparticle catalyst on the hydrogen storage material, the hydrogen release temperature can be lowered.

一般的に、ナノ粒子とは粒径が実質的にサブミクロンオーダー未満の粒子を言うが、本発明におけるナノ粒子触媒とは、この一般的な定義に加えて、所定の水素貯蔵材料へ添加した場合に、そのナノ粒子触媒と同組成のマイクロ粒子触媒を同添加率で水素貯蔵材料に添加した場合よりも、水素放出スペクトルのピーク温度(以下「水素放出温度」という)を10℃以上低下させる効果を示すものを指すものとする。なお、マイクロ粒子触媒とは、平均粒子径が0.5μm以上30μm以下であるか、または粒子数の9割以上が0.1μm以上100μm以下の範囲にある粒子、または、BET比表面積が1.0m/g超20m/g未満の粒子を指すものとする。 In general, a nanoparticle means a particle having a particle size substantially less than submicron order. In addition to the general definition, the nanoparticle catalyst in the present invention is added to a predetermined hydrogen storage material. In some cases, the peak temperature of the hydrogen release spectrum (hereinafter referred to as “hydrogen release temperature”) is lowered by 10 ° C. or more, compared with the case where a microparticle catalyst having the same composition as the nanoparticle catalyst is added to the hydrogen storage material at the same addition rate. It shall indicate an effect. The microparticle catalyst is a particle having an average particle diameter of 0.5 μm or more and 30 μm or less, or 90% or more of the number of particles in a range of 0.1 μm or more and 100 μm or less, or a BET specific surface area of 1. It is intended to refer to 0 m 2 / g ultra 20 m 2 / g particles less than.

金属水素化物と金属アミド化合物の金属種としては、リチウム、マグネシウム、カルシウムのいずれかが好適に用いられ、水素放出温度を低温化させる観点からは、これら金属水素化物と金属アミド化合物の金属種を2種類以上とすることが好ましい。   As the metal species of the metal hydride and the metal amide compound, any of lithium, magnesium and calcium is preferably used. From the viewpoint of lowering the hydrogen release temperature, the metal species of the metal hydride and the metal amide compound are selected. Two or more types are preferable.

特に好ましい組み合わせとして、水素化リチウムとマグネシウムアミドの組み合わせが挙げられる。水素化リチウムとマグネシウムアミドとの水素放出反応は、下記(4)式および下記(5)式で表される。
2LiH+Mg(NH⇔LiNH+MgNH+2H …(4)
8LiH+3Mg(NH⇔4LiNH+Mg+8H …(5)
A particularly preferred combination is a combination of lithium hydride and magnesium amide. The hydrogen releasing reaction between lithium hydride and magnesium amide is represented by the following formula (4) and the following formula (5).
2LiH + Mg (NH 2 ) 2 ⇔Li 2 NH + MgNH + 2H 2 (4)
8LiH + 3Mg (NH 2 ) 2 ⇔4Li 2 NH + Mg 3 N 2 + 8H 2 (5)

上記(4)式および(5)式を考察すると、上記(4)式では、1モルのマグネシウムアミドに対して2モルの水素化リチウムが化学等量であり、理論水素貯蔵率は5.48質量%となる。一方、上記(5)式では、1モルのマグネシウムアミドに対して2.67モルの水素化リチウムが化学等量であり、理論水素貯蔵率は6.85質量%となる。したがって、マグネシウムアミドと水素化リチウムの組成比が変化することで支配的に起こる反応が変わり、また水素貯蔵率も変わってくることになる。   Considering the above formulas (4) and (5), in the above formula (4), 2 mol of lithium hydride is equivalent to 1 mol of magnesium amide, and the theoretical hydrogen storage rate is 5.48. It becomes mass%. On the other hand, in the above formula (5), 2.67 mol of lithium hydride is a chemical equivalent with respect to 1 mol of magnesium amide, and the theoretical hydrogen storage rate is 6.85 mass%. Therefore, the reaction that occurs predominantly changes as the composition ratio of magnesium amide and lithium hydride changes, and the hydrogen storage rate also changes.

ここで、上記(5)式を下記(6a)式および(6b)式に分けて考える。
6LiH+3Mg(NH⇔3LiNH+3MgNH+6H …(6a)
3MgNH+2LiH⇔LiNH+Mg+2H …(6b)
すると、上記(6a)式は上記(4)式における各物質の係数を3倍したものであり、実質的に上記(4)式と同じである。そして、上記(6b)式は上記(6a)式で生成したマグネシウムイミド(MgNH)と水素化リチウムとの反応である。
Here, the above equation (5) is divided into the following equations (6a) and (6b).
6LiH + 3Mg (NH 2 ) 2 ⇔3Li 2 NH + 3MgNH + 6H 2 (6a)
3MgNH + 2LiH⇔Li 2 NH + Mg 3 N 2 + 2H 2 ... (6b)
Then, the above equation (6a) is obtained by multiplying the coefficient of each substance in the above equation (4) by three, and is substantially the same as the above equation (4). The above formula (6b) is a reaction between magnesium imide (MgNH) produced by the above formula (6a) and lithium hydride.

つまり上記(5)式は、上記(4)式の反応を起こさせようとして水素化リチウムをマグネシウムアミドに対して化学量論比よりも過剰にすると、結果的に、生成したマグネシウムイミドの一部が過剰に添加された水素化リチウムと反応し、窒化マグネシウムが生成するところまで反応が進行する、ということを示している。   In other words, the above formula (5) shows that when lithium hydride is made to exceed the stoichiometric ratio with respect to magnesium amide in order to cause the reaction of the above formula (4), a part of the produced magnesium imide is obtained. Shows that the reaction proceeds to the point where magnesium nitride is formed by reacting with excessively added lithium hydride.

これらのことから、1モルのマグネシウムアミドに対する水素化リチウムの混合比が2未満の場合は、マグネシウムアミドが水素化リチウムに対して過剰であるから、このときには上記(4)式が支配的に進行する。また、1モルのマグネシウムアミドに対する水素化リチウムの混合比が化学量論比である2の場合にも、上記(4)式が支配的に進行する。しかしながら、マグネシウムアミドに対する水素化リチウムの混合比を上記(4)式に合わせたとしても、実際には、マグネシウムイミドと水素化リチウムの混合状態(分散状態)等に依存して、生成したマグネシウムイミドと水素化リチウムとが反応して上記(5)式の反応が進行し、一部のマグネシウムアミドは反応せずに残存することも起こり得ると考えられる。   From these facts, when the mixing ratio of lithium hydride to 1 mol of magnesium amide is less than 2, magnesium amide is excessive with respect to lithium hydride. To do. In addition, when the mixing ratio of lithium hydride to 1 mol of magnesium amide is 2 which is a stoichiometric ratio, the above formula (4) proceeds predominantly. However, even if the mixing ratio of lithium hydride to magnesium amide is adjusted to the above formula (4), the generated magnesium imide actually depends on the mixed state (dispersed state) of magnesium imide and lithium hydride. It is considered that the reaction of the above formula (5) proceeds with the reaction of lithium hydride with some magnesium amide remaining without reacting.

これに対して、1モルのマグネシウムアミドに対する水素化リチウムの混合比が2超2.67未満の場合は、上記(4)式からみるとマグネシウムアミドに対して水素化リチウムは過剰であるが、上記(5)式からみるとマグネシウムアミドに対して水素化リチウムが不足している。この場合には、混合比が2に近い場合には上記(4)式が支配的に進行して、生成したマグネシウムイミドの一部が窒化マグネシウムへ変化し、混合比が2.67へ上がるにつれて上記(5)式が支配的に進行するようになる。そして、1モルのマグネシウムアミドに対する水素化リチウムの混合比が2.67の化学量論比である場合と混合比が2.67超の場合には、上記(5)式が支配的に進行する。   On the other hand, when the mixing ratio of lithium hydride to 1 mol of magnesium amide is more than 2 and less than 2.67, lithium hydride is excessive with respect to magnesium amide according to the above formula (4). From the above formula (5), lithium hydride is insufficient with respect to magnesium amide. In this case, when the mixing ratio is close to 2, the above formula (4) proceeds predominantly, and part of the generated magnesium imide changes to magnesium nitride, and as the mixing ratio increases to 2.67. The above formula (5) proceeds dominantly. When the mixing ratio of lithium hydride to 1 mol of magnesium amide is a stoichiometric ratio of 2.67 and when the mixing ratio is more than 2.67, the above formula (5) proceeds predominantly. .

これら上記(4)式と上記(5)式のどちらを主体的に利用するかは、例えば、水素貯蔵率と、水素放出後の生成物に再び水素を吸蔵させる反応のサイクル特性(つまり、上記(4)式と上記(5)式の右辺から左辺への反応の容易さ)等とを考慮して、決定することができる。また、水素化リチウムとマグネシウムアミドのいずれか一方を他方に対して過剰とすることにより、その他方の物質の反応確率を上げて、水素放出を促進させることができると考えられる。しかし、一方の物質が過度に多すぎると、全量に対する水素貯蔵率を低下させてしまう問題が生ずる。   Which of these formulas (4) and (5) is mainly used depends on, for example, the hydrogen storage rate and the cycle characteristics of the reaction in which hydrogen is again stored in the product after hydrogen release (that is, the above-described formula). This can be determined in consideration of the equation (4) and the ease of reaction from the right side to the left side of the above equation (5). Moreover, it is thought that hydrogen release can be promoted by increasing the reaction probability of the other substance by making one of lithium hydride and magnesium amide excessive with respect to the other. However, if one of the substances is too much, there is a problem that the hydrogen storage rate with respect to the total amount is lowered.

したがって、このような水素貯蔵率や反応物質の利用率、水素吸放出反応のサイクル特性等を考慮して、水素化リチウムとマグネシウムアミドの各量を定めることが好ましい。具体的には、1モルのマグネシウムアミドに対する水素化リチウムの混合比を2モル以上5モル以下とすることが好ましく、さらに主に上記(5)式が進行するように、2.5モル以上3.5モル以下とすることで、水素貯蔵率をそれ以外の範囲よりも高く維持することができる。   Therefore, it is preferable to determine the respective amounts of lithium hydride and magnesium amide in consideration of such hydrogen storage rate, utilization rate of reactants, cycle characteristics of hydrogen absorption / release reaction, and the like. Specifically, the mixing ratio of lithium hydride to 1 mol of magnesium amide is preferably 2 mol or more and 5 mol or less, and more preferably 2.5 mol or more and 3 mol so that the above formula (5) proceeds mainly. By setting it to 0.5 mol or less, the hydrogen storage rate can be maintained higher than the other ranges.

別の好ましい組み合わせとしては、水素化マグネシウムとリチウムアミドの組み合わせが挙げられる。水素化マグネシウムとリチウムアミドとの反応は、下記(7)式および下記(8)式で示される。
MgH+2LiNH⇔LiNH+MgNH+2H …(7)
3MgH+4LiNH⇔Mg+2LiNH+6H …(8)
Another preferred combination is a combination of magnesium hydride and lithium amide. The reaction between magnesium hydride and lithium amide is represented by the following formula (7) and the following formula (8).
MgH 2 + 2LiNH 2 ⇔Li 2 NH + MgNH + 2H 2 (7)
3MgH 2 + 4LiNH 2 ⇔Mg 3 N 2 + 2Li 2 NH + 6H 2 (8)

上記(7)式および(8)式を考察すると、上記(7)式では、1モルのリチウムアミドに対して0.5モルの水素化マグネシウムが化学等量であり、理論水素貯蔵率は5.48質量%となる。一方、上記(8)式では、1モルのリチウムアミドに対して0.75モルの水素化リチウムが化学等量であり、理論水素貯蔵率は7.08質量%となる。したがって、水素化マグネシウムとリチウムアミドの組成比が変化することで支配的に起こる反応が変わり、また水素貯蔵率も変わってくることになる。   Considering the above formulas (7) and (8), in the above formula (7), 0.5 mol of magnesium hydride is equivalent to 1 mol of lithium amide, and the theoretical hydrogen storage rate is 5 48 mass%. On the other hand, in the above formula (8), 0.75 mol of lithium hydride is a chemical equivalent with respect to 1 mol of lithium amide, and the theoretical hydrogen storage rate is 7.08 mass%. Therefore, the reaction that occurs predominantly changes as the composition ratio of magnesium hydride and lithium amide changes, and the hydrogen storage rate also changes.

つまり、水素化マグネシウムとリチウムアミドの組み合わせの場合にも、前述した水素化リチウムとマグネシウムアミドの組み合わせの場合と同様に、水素貯蔵率や反応物質の利用率、水素吸放出反応のサイクル特性等を考慮して、水素化マグネシウムとリチウムアミドの各量を定めることが好ましい。具体的には、水素化マグネシウムを過剰とすることが好ましく、1モルのリチウムアミドに対する水素化マグネシウムの混合比を0.5モル以上3モル以下とすることが好ましい。さらに、さらに主に上記(8)式が進行するように、0.5モル以上1モル以下とすることで、水素貯蔵率をそれ以外の範囲よりも高く維持することができる。   In other words, in the case of the combination of magnesium hydride and lithium amide, as in the case of the combination of lithium hydride and magnesium amide described above, the hydrogen storage rate, the utilization rate of the reactants, the cycle characteristics of the hydrogen absorption / release reaction, etc. In consideration, it is preferable to determine the amounts of magnesium hydride and lithium amide. Specifically, the magnesium hydride is preferably excessive, and the mixing ratio of magnesium hydride to 1 mol of lithium amide is preferably 0.5 mol or more and 3 mol or less. Furthermore, the hydrogen storage rate can be maintained higher than the other ranges by setting the amount to 0.5 mol or more and 1 mol or less so that the formula (8) proceeds mainly.

ナノ粒子触媒の担持量は、金属水素化物と金属アミド化合物との混合物または複合化物の合計量の0.1質量%以上20質量%以下とすることが好ましい。触媒添加率が0.1質量%未満では触媒としての効果が実質的に得られず、20質量%超では水素吸放出反応が逆に阻害され、また全量に対する水素放出率が低下する。   The supported amount of the nanoparticle catalyst is preferably 0.1% by mass or more and 20% by mass or less of the total amount of the mixture or composite of the metal hydride and the metal amide compound. If the catalyst addition rate is less than 0.1% by mass, the effect as a catalyst is not substantially obtained, and if it exceeds 20% by mass, the hydrogen absorption / release reaction is adversely inhibited, and the hydrogen release rate with respect to the total amount decreases.

上述した第1の材料系に属する水素貯蔵材料の製造方法としては、以下に示す4方法のいずれかを用いることができる。第1の製造方法は、金属水素化物と金属アミド化合物に、ナノ粒子触媒を添加して、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下(以下「不活性ガス雰囲気下等」という)において機械的粉砕処理により混合、微細化する方法である。   As a method for producing the hydrogen storage material belonging to the first material system described above, any of the following four methods can be used. In the first production method, a nanoparticle catalyst is added to a metal hydride and a metal amide compound, and an inert gas atmosphere, a hydrogen gas atmosphere, or a mixed gas atmosphere of an inert gas and a hydrogen gas (hereinafter, “ In an inert gas atmosphere etc.)) and mixing and refining by mechanical pulverization.

第2の製造方法は、金属水素化物と金属アミド化合物を不活性ガス雰囲気下等において機械的粉砕処理により混合、微細化し、こうして得られた被処理物にナノ粒子触媒を添加して、被処理物にナノ粒子触媒を担持させる方法である。   In the second production method, a metal hydride and a metal amide compound are mixed and refined by mechanical pulverization in an inert gas atmosphere or the like, and a nanoparticle catalyst is added to the object to be processed thus obtained. This is a method of supporting a nanoparticle catalyst on a product.

第3の製造方法は、金属水素化物または金属アミド化合物のいずれか一方にナノ粒子触媒を添加して、不活性ガス雰囲気下等において機械的粉砕処理により混合、微細化し、次に得られた被処理物と他方とを、不活性ガス雰囲気下等において混合粉砕する方法である。   In the third production method, a nanoparticle catalyst is added to either a metal hydride or a metal amide compound, mixed and refined by mechanical pulverization in an inert gas atmosphere or the like, and then the obtained coating is obtained. In this method, the processed product and the other are mixed and pulverized in an inert gas atmosphere or the like.

第4の製造方法は、金属水素化物と金属アミド化合物それぞれにナノ粒子触媒を添加して、金属水素化物と金属アミド化合物ごとに、不活性ガス雰囲気下等において機械的粉砕処理により混合、微細化し、こうして得られた被処理物どうしを、不活性ガス雰囲気下等において混合粉砕する方法である。後段の混合粉砕処理は、実質的に粉砕が起こらない条件での混合処理であってもよい。   In the fourth production method, a nanoparticle catalyst is added to each of the metal hydride and the metal amide compound, and the metal hydride and the metal amide compound are mixed and refined by mechanical pulverization in an inert gas atmosphere or the like. In this method, the objects to be processed thus obtained are mixed and ground in an inert gas atmosphere or the like. The subsequent mixing and pulverizing process may be a mixing process under conditions where pulverization does not occur substantially.

本発明の第2の材料系は、金属イミド化合物とナノ粒子触媒を含み、かつ、水素化された水素貯蔵材料である。ここで、本明細書において「物質の水素化」とは、その物質と水素とを反応させることによって、その物質が水素を取り込んだ状態に変化することをいうものとする。   The second material system of the present invention is a hydrogenated hydrogen storage material containing a metal imide compound and a nanoparticle catalyst. Here, in this specification, “hydrogenation of a substance” means that the substance is changed to a state in which hydrogen is incorporated by reacting the substance with hydrogen.

この第2の材料系に属する水素貯蔵材料としては、水素化したリチウムイミドが挙げられる。前記水素化の定義によれば、水素化したリチウムイミドは、リチウムイミドを水素と反応させることにより得られ、その構造は明らかでないが、リチウムアミドやアンモニアに変化することなく、水素と反応して水素を何らかの形で取り込んでおり、後に所定温度に加熱すると取り込まれた水素が放出されて元のリチウムイミドに戻る材料をいう。   Examples of the hydrogen storage material belonging to the second material system include hydrogenated lithium imide. According to the definition of hydrogenation, hydrogenated lithium imide is obtained by reacting lithium imide with hydrogen, and its structure is not clear, but it reacts with hydrogen without changing to lithium amide or ammonia. This refers to a material that has taken in hydrogen in some form and returns to the original lithium imide when it is heated to a predetermined temperature later.

リチウムイミドの水素化は、リチウムイミドを所定圧力、所定温度の水素ガス雰囲気下で所定時間保持することにより行うことができる。ナノ粒子触媒の担持量は、第1の材料系の場合と同様の理由により、金属イミド化合物の全量の0.1質量%以上20質量%以下とすることが好ましい。   Hydrogenation of lithium imide can be performed by holding lithium imide in a hydrogen gas atmosphere at a predetermined pressure and a predetermined temperature for a predetermined time. The supported amount of the nanoparticle catalyst is preferably 0.1% by mass or more and 20% by mass or less of the total amount of the metal imide compound for the same reason as in the first material system.

リチウムイミドは、窒化リチウムを水素と反応させ、またはリチウムアミドを熱分解することにより合成することが好ましい。これは次のような理由による。すなわち、リチウムイミドは水素化リチウムとリチウムアミドとを混合して反応させることにより合成することもできるが、この場合には固相反応となるために、ミクロな状態で水素化リチウムとリチウムアミドを均質に接触させるために大きな機械的エネルギーが必要になるという問題がある。これに対して、リチウムイミドを熱分解等により合成すれば、その過程でリチウムイミドの比表面積が大きくなり、水素化が進行しやすくなるというメリットがある。   Lithium imide is preferably synthesized by reacting lithium nitride with hydrogen or thermally decomposing lithium amide. This is due to the following reason. In other words, lithium imide can be synthesized by mixing lithium hydride and lithium amide and reacting them, but in this case, since it becomes a solid-phase reaction, lithium hydride and lithium amide are in a microscopic state. There is a problem that a large amount of mechanical energy is required for homogeneous contact. On the other hand, when lithium imide is synthesized by thermal decomposition or the like, there is an advantage that the specific surface area of lithium imide increases in the process and hydrogenation easily proceeds.

また、第2の材料系には、金属イミド化合物と金属窒化物とナノ粒子触媒を含み、かつ、水素化された水素貯蔵材料が含まれる。具体例としては、リチウムイミドと窒化マグネシウムとナノ粒子触媒を含み、これを水素化したものが挙げられる。この材料の場合にも、ナノ粒子触媒の担持量は、リチウムイミドおよび窒化マグネシウムの合計量の0.1質量%以上20質量%以下とすることが好ましい。   The second material system also includes a hydrogenated hydrogen storage material that includes a metal imide compound, a metal nitride, and a nanoparticle catalyst. Specific examples include lithium imide, magnesium nitride, and a nanoparticle catalyst, which are hydrogenated. Also in the case of this material, the supported amount of the nanoparticle catalyst is preferably 0.1% by mass or more and 20% by mass or less of the total amount of lithium imide and magnesium nitride.

上述した各種の水素貯蔵材料に含まれるナノ粒子触媒としては、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,Nb,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Mo,W,Ta,Zr,HfおよびAgから選ばれた1種または2種以上の金属、またはその化合物またはその合金、あるいは水素貯蔵合金が好適に用いられる。ナノ粒子触媒の形態としては、ナノ金属粒子、ナノ金属酸化物粒子、ナノ金属塩化物が好適に用いられる。ナノ粒子触媒のさらに好ましい例としては、TiO(アナターゼ型)ナノ粒子、Tiナノ粒子が挙げられる。 Nanoparticle catalysts contained in the various hydrogen storage materials described above include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, One or more metals selected from Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Mo, W, Ta, Zr, Hf, and Ag, or a compound or alloy thereof, or A hydrogen storage alloy is preferably used. As the form of the nanoparticle catalyst, nanometal particles, nanometal oxide particles, and nanometal chloride are preferably used. More preferable examples of the nanoparticle catalyst include TiO 2 (anatase type) nanoparticles and Ti nanoparticles.

このような第2の材料系に属する水素貯蔵材料の製造方法としては、以下の4方法が好適に用いられる。第1の製造方法は、金属イミド化合物にナノ粒子触媒を添加して、不活性ガス雰囲気下等において所定の機械的粉砕処理により混合、微細化し、その後に水素化する方法である。   As a method for producing such a hydrogen storage material belonging to the second material system, the following four methods are preferably used. The first production method is a method in which a nanoparticle catalyst is added to a metal imide compound, mixed and refined by a predetermined mechanical pulverization treatment in an inert gas atmosphere or the like, and then hydrogenated.

第2の製造方法は、金属窒化物と金属イミド化合物を不活性ガス雰囲気下等において所定の機械的粉砕処理により混合、微細化し、こうして得られた被処理物にナノ粒子触媒を添加して、被処理物にナノ粒子触媒を担持させ、その後に水素化する方法である。   In the second production method, a metal nitride and a metal imide compound are mixed and refined by a predetermined mechanical pulverization process in an inert gas atmosphere or the like, and a nanoparticle catalyst is added to the object to be processed thus obtained. In this method, a nanoparticle catalyst is supported on an object to be treated and then hydrogenated.

第3の製造方法は、金属窒化物または金属イミド化合物のいずれか一方にナノ粒子触媒を添加して、不活性ガス雰囲気下等において機械的粉砕処理により混合、微細化し、こうして得られた被処理物と他方とを不活性ガス雰囲気下等において混合粉砕し、その後に水素化する方法である。   In the third production method, the nanoparticle catalyst is added to one of the metal nitride and the metal imide compound, mixed and refined by mechanical pulverization in an inert gas atmosphere or the like, and the treatment object thus obtained is obtained. In this method, the product and the other are mixed and pulverized in an inert gas atmosphere or the like, and then hydrogenated.

第4の製造方法は、金属窒化物と金属イミド化合物それぞれにナノ粒子触媒を添加して、金属窒化物と金属イミド化合物ごとに不活性ガス雰囲気下等において機械的粉砕処理により混合、微細化し、こうして得られた被処理物どうしを不活性ガス雰囲気下等において混合粉砕し、その後に水素化する方法である。後段の混合粉砕処理は、実質的に粉砕が起こらない条件での混合処理であってもよい。   In the fourth production method, a nanoparticle catalyst is added to each of the metal nitride and the metal imide compound, and the metal nitride and the metal imide compound are mixed and refined by mechanical pulverization in an inert gas atmosphere or the like. In this method, the workpieces thus obtained are mixed and pulverized in an inert gas atmosphere or the like and then hydrogenated. The subsequent mixing and pulverizing process may be a mixing process under conditions where pulverization does not occur substantially.

上記各材料系に属する水素貯蔵材料の機械的粉砕処理は、原料粉末を、例えば、ボールミル装置、ローラーミル、内外筒回転型ミル、アトライター、インナーピース型ミル、気流粉砕型ミル等の公知の種々の粉砕手段を用いて行うことができる。このような機械的粉砕処理では、粉砕助剤として、無機質担体、合成品担体、植物担体や有機溶剤などを添加することは、効率よく原料粉末を微細化する上で有効である。   The mechanical pulverization treatment of the hydrogen storage material belonging to each of the above-mentioned material systems is performed by using a known raw material powder such as a ball mill apparatus, a roller mill, an inner / outer cylinder rotating mill, an attritor, an inner piece mill, an airflow milling mill, etc. Various pulverization means can be used. In such a mechanical pulverization treatment, adding an inorganic carrier, a synthetic carrier, a plant carrier, an organic solvent, or the like as a pulverization aid is effective in efficiently refining the raw material powder.

(1)LiH+LiNH系試料(実施例1,2、比較例1,2)の作製
表1に示すように、水素化リチウムとリチウムアミド(いずれもアルドリッチ社製、純度95%)と各種触媒とを、モル比が1:1:0.02でその合計量が1.3gとなるように、高純度アルゴングローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250ml)に投入した。続いて、このミル容器内を真空排気した後、高純度アルゴンガスを1MPa導入し、遊星型ボールミル装置(Fritsch社製、P−5)を用いて、室温、250rpmで120分ミリング処理した。ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中でミル容器を開き、試料を取り出した。
(1) Preparation of LiH + LiNH 2 System Samples (Examples 1 and 2, Comparative Examples 1 and 2) As shown in Table 1, lithium hydride and lithium amide (all manufactured by Aldrich, purity 95%), various catalysts, Was weighed in a high-purity argon glove box so that the molar ratio was 1: 1: 0.02 and the total amount was 1.3 g, and charged into a high-chromium steel valve vessel (250 ml). . Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity argon gas was introduced, and milling was performed at room temperature and 250 rpm for 120 minutes using a planetary ball mill apparatus (P-5, manufactured by Fritsch). After the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high purity argon glove box, and a sample was taken out.

なお、TiOナノ粒子はミレニアムケミカルズ社製の純度が82.8%でBET比表面積が129.8m/g、TiOマイクロ粒子はアルドリッチ社製で純度が99.9%でBET比表面積が18m/g、Tiナノ粒子は平均粒径が1nm、Tiマイクロ粒子はレアメタル社製の純度が99.9%で粒子径が10〜100μm、である。 The TiO 2 nanoparticles have a purity of 82.8% and a BET specific surface area of 129.8 m 2 / g manufactured by Millennium Chemicals, and the TiO 2 microparticles have a purity of 99.9% and a BET specific surface area of 99.9%. 18 m 2 / g, Ti nanoparticles have an average particle diameter of 1 nm, and Ti microparticles have a purity of 99.9% and a particle diameter of 10 to 100 μm manufactured by Rare Metal.

(2)リチウムイミド系試料(実施例3,4、比較例3,4)の作製
表2に示すように最終的にリチウムイミドと各種触媒とがモル比で1:0.02となるように、原料たるリチウムアミド(アルドリッチ社製、純度95%)と各種触媒とを、モル比が1:0.01でその合計量が1.3gとなるように高純度アルゴングローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250ml)に投入した。続いて、このミル容器内を真空排気した後、高純度アルゴンガスを1MPa導入し、遊星型ボールミル装置を用いて、室温、250rpmで120分ミリング処理を行った。続いて、ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中でミル容器を開き、試料を取り出してステンレス製の反応容器(50ml)に移した。この反応容器内を真空排気した後、350℃で6時間熱処理することでリチウムアミドを熱分解し、各種触媒を担持したリチウムイミドを合成した。さらに得られたリチウムイミドを水素ガス中、3MPa、180℃で12時間処理し、水素化した。
(2) Preparation of Lithiumimide Samples (Examples 3 and 4, Comparative Examples 3 and 4) As shown in Table 2, finally, the lithium imide and various catalysts were in a molar ratio of 1: 0.02. The raw material lithium amide (manufactured by Aldrich, purity 95%) and various catalysts were weighed in a high-purity argon glove box so that the molar ratio was 1: 0.01 and the total amount was 1.3 g. It was put into a mill vessel with a valve (250 ml) made of high chromium steel. Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity argon gas was introduced, and a milling process was performed at room temperature and 250 rpm for 120 minutes using a planetary ball mill apparatus. Subsequently, after the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high-purity argon glove box, and the sample was taken out and transferred to a stainless steel reaction container (50 ml). After evacuating the inside of the reaction vessel, the lithium amide was thermally decomposed by heat treatment at 350 ° C. for 6 hours to synthesize lithium imide carrying various catalysts. Further, the obtained lithium imide was treated in hydrogen gas at 3 MPa and 180 ° C. for 12 hours to be hydrogenated.

(3)LiH+Mg(NH系試料(実施例5,6、比較例5,6)の作製
最初に水素化マグネシウム(アヅマックス社製、純度95%)をアンモニアと反応させてマグネシウムアミドを合成した。次に、表3に示すように、水素化リチウム(アルドリッチ社製、純度95%)と合成したマグネシウムアミドと各種触媒とを、モル比が8:3:0.11でその合計量が1.3gとなるように高純度アルゴングローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250ml)に投入した。続いて、このミル容器内を真空排気した後、高純度アルゴンガスを1MPa導入し、遊星型ボールミル装置を用いて、室温、250rpmで所定時間ミリング処理した。ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中でミル容器を開き、試料を取り出した。
(3) Production of LiH + Mg (NH 2 ) 2 System Samples (Examples 5 and 6, Comparative Examples 5 and 6) First, magnesium hydride (manufactured by Amax Co., purity 95%) was reacted with ammonia to synthesize magnesium amide. did. Next, as shown in Table 3, lithium hydride (manufactured by Aldrich, purity 95%), synthesized magnesium amide, and various catalysts were in a molar ratio of 8: 3: 0.11 and the total amount was 1. It was weighed in a high purity argon glove box so as to be 3 g, and put into a mill vessel with a valve (250 ml) made of high chromium steel. Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity argon gas was introduced, and milling was performed at room temperature and 250 rpm for a predetermined time using a planetary ball mill apparatus. After the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high purity argon glove box, and a sample was taken out.

(4)LiNH+MgH系試料(実施例7,8、比較例7,8)の作製
表4に示すように、リチウムアミドと水素化マグネシウムと各種触媒を、モル比が4:3:0.07でその合計量が1.3gとなるように高純度アルゴングローブボックス中で秤量し、高純度アルゴンガスを1MPa導入し、遊星型ボールミル装置を用いて、室温、250rpmで所定時間ミリング処理した。ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中でミル容器を開き、試料を取り出した。
(4) Production of LiNH 2 + MgH 2 Samples (Examples 7 and 8, Comparative Examples 7 and 8) As shown in Table 4, the molar ratio of lithium amide, magnesium hydride, and various catalysts was 4: 3: 0. 0.07, and weighed in a high purity argon glove box so that the total amount becomes 1.3 g, introduced 1 MPa of high purity argon gas, and milled for a predetermined time at 250 rpm at room temperature using a planetary ball mill device. . After the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high purity argon glove box, and a sample was taken out.

(5)LiNH+Mg系試料(実施例9,10、比較例9,10)の作製
表5に示すように、上記(3)に記載の方法で合成したリチウムイミドと窒化マグネシウム(アルドリッチ社製、純度95%)に各種触媒とを、モル比が4:1:0.05でその合計量が1.3gとなるように高純度アルゴングローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250ml)に投入した。続いて、このミル容器内を真空排気した後、高純度アルゴンガスを1MPa導入し、遊星型ボールミル装置を用いて、室温、250rpmで所定時間ミリング処理した。ミル容器内を真空排気してアルゴンガスを充填した後、高純度アルゴングローブボックス中でミル容器を開き、試料を取り出した。さらに得られた被処理物を水素ガス中、3MPa、220℃で12時間処理し、水素化した。
(5) Production of Li 2 NH + Mg 3 N 2 System Samples (Examples 9 and 10, Comparative Examples 9 and 10) As shown in Table 5, lithium imide and magnesium nitride synthesized by the method described in (3) above ( Aldrich (purity 95%) and various catalysts were weighed in a high-purity argon glove box so that the total amount was 1.3 g with a molar ratio of 4: 1: 0.05 and made of high chromium steel. In a mill vessel with a valve (250 ml). Subsequently, after the inside of the mill container was evacuated, 1 MPa of high-purity argon gas was introduced, and milling was performed at room temperature and 250 rpm for a predetermined time using a planetary ball mill apparatus. After the inside of the mill container was evacuated and filled with argon gas, the mill container was opened in a high purity argon glove box, and a sample was taken out. Further, the obtained object to be treated was treated with hydrogen in hydrogen gas at 3 MPa and 220 ° C. for 12 hours to be hydrogenated.

(6)試料評価
BET比表面積の測定は、窒素ガスによる多点式BET測定(Micromeritics社製、ASAP2400)により行った。また、高純度アルゴングローブボックス内に設置されたTG−MASS装置(熱重量・質量分析装置)を用い、昇温速度を5℃/分として昇温して水素放出スペクトルを測定し、そのピーク温度を水素放出温度とした。
(6) Sample evaluation The BET specific surface area was measured by multipoint BET measurement using nitrogen gas (ASAP2400, manufactured by Micromeritics). In addition, using a TG-MASS device (thermogravimetric / mass spectrometer) installed in a high purity argon glove box, the temperature was raised at a rate of temperature rise of 5 ° C./minute, and the hydrogen release spectrum was measured. Was the hydrogen release temperature.

(7)試験結果
図1に実施例1および比較例1の水素放出スペクトルを示すグラフを示し、図2に実施例2および比較例2の水素放出スペクトルを示すグラフを示す。また、実施例1,2および比較例1,2の水素放出温度を表1に併記する。図1および図2ならびに表1から、ナノ粒子触媒を用いることによって、水素放出反応が起こる温度範囲が狭くなって、水素放出温度が低温側にシフトしていることがわかる。これにより、例えば250℃で実施例1と比較例1とを比べると、250℃までに放出される水素の全量は、実施例1の方が比較例1よりも多くなる。実施例2と比較例2についても同様のことが言える。
(7) Test Results FIG. 1 shows a graph showing the hydrogen release spectra of Example 1 and Comparative Example 1, and FIG. 2 shows a graph showing the hydrogen release spectra of Example 2 and Comparative Example 2. The hydrogen release temperatures of Examples 1 and 2 and Comparative Examples 1 and 2 are also shown in Table 1. From FIG. 1 and FIG. 2 and Table 1, it can be seen that by using the nanoparticle catalyst, the temperature range where the hydrogen releasing reaction occurs is narrowed, and the hydrogen releasing temperature is shifted to the low temperature side. Thereby, for example, when Example 1 and Comparative Example 1 are compared at 250 ° C., the total amount of hydrogen released up to 250 ° C. is larger in Example 1 than in Comparative Example 1. The same can be said for Example 2 and Comparative Example 2.

実施例3〜10および比較例3〜10の水素放出温度は表2〜表5に併記している。これらの表からも、ナノ粒子触媒を用いた場合に水素放出温度が低温側にシフトしていることが確認された。   The hydrogen release temperatures of Examples 3 to 10 and Comparative Examples 3 to 10 are shown in Tables 2 to 5. From these tables, it was confirmed that the hydrogen release temperature was shifted to the low temperature side when the nanoparticle catalyst was used.

Figure 0004793900
Figure 0004793900

Figure 0004793900
Figure 0004793900

Figure 0004793900
Figure 0004793900

Figure 0004793900
Figure 0004793900

Figure 0004793900
Figure 0004793900

本発明に係る水素貯蔵材料は、水素と酸素を燃料として発電する燃料電池の水素源として好適である。   The hydrogen storage material according to the present invention is suitable as a hydrogen source of a fuel cell that generates power using hydrogen and oxygen as fuel.

実施例1と比較例1の水素放出スペクトルを示す説明図。Explanatory drawing which shows the hydrogen emission spectrum of Example 1 and Comparative Example 1. 実施例2と比較例2の水素放出スペクトルを示す説明図。Explanatory drawing which shows the hydrogen emission spectrum of Example 2 and Comparative Example 2. FIG.

Claims (10)

金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成される水素貯蔵材料であって、
前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、
前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムであることを特徴とする水素貯蔵材料。
A hydrogen storage material comprising a mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst for enhancing hydrogen absorption / release capability,
The catalyst Ri TiO 2 nanoparticles or Ti nanoparticles Tona,
A hydrogen storage material, wherein the metal hydride and the metal amide compound have two metal species, and the metal species are lithium and magnesium .
前記金属水素化物は水素化リチウムであり、前記金属アミド化合物はマグネシウムアミドであることを特徴とする請求項1に記載の水素貯蔵材料。   The hydrogen storage material according to claim 1, wherein the metal hydride is lithium hydride, and the metal amide compound is magnesium amide. 前記マグネシウムアミド1モルに対する前記水素化リチウムの混合比は2モル以上5モル以下であることを特徴とする請求項に記載の水素貯蔵材料。 The hydrogen storage material according to claim 2 , wherein a mixing ratio of the lithium hydride to 1 mol of the magnesium amide is 2 mol or more and 5 mol or less. 前記金属水素化物は水素化マグネシウムであり、前記金属アミド化合物はリチウムアミドであることを特徴とする請求項1に記載の水素貯蔵材料。   The hydrogen storage material according to claim 1, wherein the metal hydride is magnesium hydride, and the metal amide compound is lithium amide. 前記リチウムアミド1モルに対する前記水素化マグネシウムの混合比が0.5モル以上3モル以下であることを特徴とする請求項に記載の水素貯蔵材料。 The hydrogen storage material according to claim 4 , wherein a mixing ratio of the magnesium hydride to 1 mol of the lithium amide is 0.5 mol or more and 3 mol or less. 前記触媒の担持量が、前記金属水素化物と金属アミド化合物との混合物または複合化物の合計量の0.1質量%以上20質量%以下であることを特徴とする請求項1から請求項のいずれか1項に記載の水素貯蔵材料。 Supported amount of the catalyst is from claim 1, wherein the metal mixture of a hydride and a metal amide compound or at most 20 mass% 0.1 mass% the total amount of the composite compound of claim 5 The hydrogen storage material according to any one of the above. 金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成され、前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムである水素貯蔵材料の製造方法であって、
前記金属水素化物と前記金属アミド化合物に、前記触媒を添加して、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において機械的粉砕処理により混合、微細化することを特徴とする水素貯蔵材料の製造方法。
A mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability, the catalyst comprising TiO 2 nanoparticles or Ti nanoparticles, and the metal hydride and the metal of the metal amide compound A method for producing a hydrogen storage material, wherein the species is two species and the metal species are lithium and magnesium,
To the metal hydride and the metal amide compound with the addition of the catalyst, mixing by mechanical pulverization treatment in a mixed gas atmosphere of an inert gas atmosphere or hydrogen gas atmosphere or an inert gas and hydrogen gas, fine A method for producing a hydrogen storage material, characterized by comprising:
金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成され、前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムである水素貯蔵材料の製造方法であって、
前記金属水素化物と前記金属アミド化合物を不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において機械的粉砕処理により混合、微細化する第1工程と、
前記第1工程により得られた被処理物に、前記触媒を添加して、前記被処理物に前記触媒を担持させる第2工程と、
を有することを特徴とする水素貯蔵材料の製造方法。
A mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability, the catalyst comprising TiO 2 nanoparticles or Ti nanoparticles, and the metal hydride and the metal of the metal amide compound A method for producing a hydrogen storage material, wherein the species is two species and the metal species are lithium and magnesium,
Mixed by mechanical pulverization treatment under a mixed gas atmosphere of said metal hydride with said metal amide compound an inert gas atmosphere or hydrogen gas atmosphere or an inert gas and hydrogen gas, a first step of refining,
A second step of adding the catalyst to the object to be processed obtained in the first step and loading the catalyst on the object to be processed;
A method for producing a hydrogen storage material, comprising:
金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成され、前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムである水素貯蔵材料の製造方法であって、
前記金属水素化物または前記金属アミド化合物のいずれか一方に、前記触媒を添加して、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において、機械的粉砕処理により混合、微細化する第1工程と、
前記第1工程により得られた被処理物と他方とを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において、混合粉砕する工程と、
を有することを特徴とする水素貯蔵材料の製造方法。
A mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability, the catalyst comprising TiO 2 nanoparticles or Ti nanoparticles, and the metal hydride and the metal of the metal amide compound A method for producing a hydrogen storage material, wherein the species is two species and the metal species are lithium and magnesium,
Any one of the metal hydride or the metal amide compound with the addition of the catalyst, a mixed gas atmosphere of an inert gas atmosphere or hydrogen gas atmosphere or an inert gas and hydrogen gas, mechanical pulverization A first step of mixing and refining by processing;
Mixing and pulverizing the object to be processed and the other obtained in the first step under an inert gas atmosphere or a hydrogen gas atmosphere or a mixed gas atmosphere of an inert gas and hydrogen gas;
A method for producing a hydrogen storage material, comprising:
金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成され、前記触媒はTiO ナノ粒子またはTiナノ粒子からなり、前記金属水素化物と金属アミド化合物の金属種が2種であって、金属種はリチウムおよびマグネシウムである水素貯蔵材料の製造方法であって、
前記金属水素化物と前記金属アミド化合物それぞれに、前記触媒を添加して、前記金属水素化物と金属アミド化合物ごとに、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において、機械的粉砕処理により混合、微細化する第1工程と、
前記第1工程により得られた被処理物どうしを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において、混合粉砕する第2工程と、
を有することを特徴とする水素貯蔵材料の製造方法。
A mixture or composite comprising a metal hydride, a metal amide compound, and a catalyst that enhances hydrogen absorption / release capability, the catalyst comprising TiO 2 nanoparticles or Ti nanoparticles, and the metal hydride and the metal of the metal amide compound A method for producing a hydrogen storage material, wherein the species is two species and the metal species are lithium and magnesium,
Each said metal hydride with said metal amide compound with the addition of the catalyst, mixing with the per metal hydride and a metal amide compound, under an inert gas atmosphere or under a hydrogen gas atmosphere or an inert gas and hydrogen gas A first step of mixing and refining by a mechanical pulverization process in a gas atmosphere;
A second step of mixing and grinding the objects to be processed obtained in the first step under an inert gas atmosphere or a hydrogen gas atmosphere or a mixed gas atmosphere of an inert gas and hydrogen gas;
A method for producing a hydrogen storage material, comprising:
JP2004186451A 2003-08-11 2004-06-24 Hydrogen storage material and method for producing the same Expired - Fee Related JP4793900B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004186451A JP4793900B2 (en) 2004-06-24 2004-06-24 Hydrogen storage material and method for producing the same
PCT/JP2004/009538 WO2005014165A1 (en) 2003-08-11 2004-07-05 Material for storing hydrogen and method and apparatus for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186451A JP4793900B2 (en) 2004-06-24 2004-06-24 Hydrogen storage material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006007064A JP2006007064A (en) 2006-01-12
JP4793900B2 true JP4793900B2 (en) 2011-10-12

Family

ID=35774883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186451A Expired - Fee Related JP4793900B2 (en) 2003-08-11 2004-06-24 Hydrogen storage material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4793900B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121184A1 (en) * 2005-03-28 2009-05-14 Hironobu Fujii Hydrogen storage material and method for manufacturing same
JP4957007B2 (en) * 2006-02-03 2012-06-20 日産自動車株式会社 Hydrogen generation system, fuel cell system, and fuel cell vehicle
JP4853810B2 (en) * 2006-06-13 2012-01-11 太平洋セメント株式会社 Hydrogen storage material and method for producing the same
JP2007330877A (en) * 2006-06-14 2007-12-27 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method
JP5233094B2 (en) * 2006-08-10 2013-07-10 日産自動車株式会社 Hydrogen generation system, fuel cell system and fuel cell vehicle
JP5050920B2 (en) * 2008-02-26 2012-10-17 学校法人神奈川大学 Hydrogen storage material and method for producing the same
CN106163658B (en) 2014-02-27 2019-03-15 国立研究开发法人科学技术振兴机构 Metal supported catalyst and the ammonia synthesis for using the catalyst
CN113896167B (en) * 2021-11-12 2023-10-20 江苏科技大学 Composite hydrogen storage material, preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526434A1 (en) * 1995-07-19 1997-01-23 Studiengesellschaft Kohle Mbh Process for the reversible storage of hydrogen
KR20010079623A (en) * 1998-08-06 2001-08-22 나까무라 글렌 케이. Novel hydrogen storage materials and method of making by dry homogenation
DE10002117A1 (en) * 2000-01-20 2001-08-16 Geesthacht Gkss Forschung Catalysis of the hydrogen sorption kinetics of hydrides by nitrides and carbides

Also Published As

Publication number Publication date
JP2006007064A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
US7837976B2 (en) Activated aluminum hydride hydrogen storage compositions and uses thereof
Bobet et al. Hydrogen sorption of Mg-based mixtures elaborated by reactive mechanical grinding
CN105734323B (en) A kind of nano Mg base reversible hydrogen storage composite and preparation method thereof
Liu et al. Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO 2@ C-doped NaAlH 4
JP5484745B2 (en) Hydrogen storage materials and related methods
Pandey et al. Catalytic characteristics of titanium‐(IV)‐isopropoxide (TTIP) on de/re‐hydrogenation of wet ball‐milled MgH2/Mg
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
US20090121184A1 (en) Hydrogen storage material and method for manufacturing same
US20070104642A1 (en) Li-B-Mg-X system for reversible hydrogen storage
JP2008043927A (en) Method of manufacturing hydrogen storage material
JP2006305486A (en) Hydrogen storage material and its manufacturing method
JP4986101B2 (en) Hydrogen storage material and method for producing the same
JP4793900B2 (en) Hydrogen storage material and method for producing the same
Li et al. NbN nanoparticles as additive for the high dehydrogenation properties of LiAlH 4
JP4853810B2 (en) Hydrogen storage material and method for producing the same
JP2006142281A (en) Aluminum type nanocomposite catalyst, its manufacturing method and hydrogen occluding composite material using it
JP4500534B2 (en) Hydrogen storage material and hydrogen generation method
JP2007117989A (en) Hydrogen storage material and its production method
JP4762579B2 (en) Hydrogen storage material, production method thereof, and hydrogen storage method
JP4615908B2 (en) Hydrogen storage material and method for producing the same
Amama et al. Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2
JP4575866B2 (en) Method for producing hydrogen storage material
JP2007320815A (en) Hydrogen storage material and hydrogen generation method
JP2008239367A (en) Method for producing hydrogen storage material
JP2005095869A (en) Hydrogen storing material and its production method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees