WO2005014165A1 - Material for storing hydrogen and method and apparatus for production thereof - Google Patents

Material for storing hydrogen and method and apparatus for production thereof Download PDF

Info

Publication number
WO2005014165A1
WO2005014165A1 PCT/JP2004/009538 JP2004009538W WO2005014165A1 WO 2005014165 A1 WO2005014165 A1 WO 2005014165A1 JP 2004009538 W JP2004009538 W JP 2004009538W WO 2005014165 A1 WO2005014165 A1 WO 2005014165A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
storage material
hydrogen
container
metal
Prior art date
Application number
PCT/JP2004/009538
Other languages
French (fr)
Japanese (ja)
Inventor
Hironobu Fujii
Takayuki Ichikawa
Haiyan Leng
Shigehito Isobe
Nobuko Hanada
Toyoyuki Kubokawa
Kazuhiko Tokoyoda
Keisuke Okamoto
Shinkichi Tanabe
Shigeru Matsuura
Kenji Ogawa
Original Assignee
National University Corporation Hiroshima University
Taiheiyo Cement Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003362943A external-priority patent/JP2005126273A/en
Priority claimed from JP2003398542A external-priority patent/JP4500534B2/en
Priority claimed from JP2004036967A external-priority patent/JP4754174B2/en
Priority claimed from JP2004096074A external-priority patent/JP4545469B2/en
Priority claimed from JP2004096075A external-priority patent/JP4703126B2/en
Priority claimed from JP2004102773A external-priority patent/JP2005291227A/en
Priority claimed from JP2004101759A external-priority patent/JP4729674B2/en
Priority claimed from JP2004101948A external-priority patent/JP4615240B2/en
Priority claimed from JP2004186449A external-priority patent/JP4711644B2/en
Priority claimed from JP2004186451A external-priority patent/JP4793900B2/en
Priority claimed from JP2004186450A external-priority patent/JP4615908B2/en
Application filed by National University Corporation Hiroshima University, Taiheiyo Cement Corporation filed Critical National University Corporation Hiroshima University
Publication of WO2005014165A1 publication Critical patent/WO2005014165A1/en
Priority to US11/351,244 priority Critical patent/US7537748B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Hydrogen storage material is Hydrogen storage material, method for producing the same, and apparatus for producing the same
  • the present invention relates to a hydrogen storage material for efficiently storing hydrogen as a raw material for a fuel cell and the like, a method for producing the same, a production apparatus therefor, a hydrogen generation method, and a hydrogen storage material precursor used for the hydrogen storage material
  • the present invention relates to a hydrogen storage material filling container for filling a hydrogen storage material, a moving body equipped with the same, and a gas purification device used for absorbing and releasing hydrogen to and from the hydrogen storage material.
  • Fuel cells are being actively developed as one source, and some of them have already been commercialized.
  • An important technology that supports fuel cell technology is the technology that stores hydrogen, which is a raw material for fuel cells.
  • As a form of hydrogen storage compression storage using a high-pressure cylinder or cold storage as liquid hydrogen has also been proposed.
  • carbon-based materials such as carbon nanotubes and activated carbon.
  • lightweight-based inorganic compound-based materials and carbon-based materials are light-weight materials. And these are powder-based materials.
  • a method and apparatus for mass-producing a powder-type hydrogen storage material an efficient storage method of a hydrogen storage material (specifically, a method of filling a predetermined container), and a method for storing a predetermined container.
  • a design suitable for each hydrogen storage material is required for a method of supplying a fuel cell mainly containing hydrogen released from the hydrogen storage material to the fuel cell.
  • Fig. 1 shows that LiN was absorbed at a hydrogen pressure of 3 MPa and 200 ° C by a method similar to that of the above-mentioned literature.
  • the sample After the storage, the sample is heated to obtain a desorption gas emission spectrum diagram.
  • the heating rate of the sample was 5 ° C / min.
  • the characteristic line A in FIG. 1 shows the emission spectrum line of hydrogen
  • the characteristic line B in FIG. 1 shows the emission spectrum line of ammonia gas (NH (g)).
  • the hydrogen release characteristics of the conventional method have a wide temperature range from 200 ° C to 400 ° C, and have a large peak on the high temperature side (around 320 ° C). I have.
  • the technology of the above-mentioned document is an effective hydrogen storage method using a lightweight metal compound called lithium nitride, but the effective hydrogen storage rate in a temperature range as low as about 200 ° C is low. There is a problem that it is necessary to heat to a high temperature range of 320 ° C or higher in order to realize high-capacity hydrogen absorption and release. In addition, in the technology described in the above-mentioned literature, the heating rate is reduced as the peak temperature of hydrogen absorption and desorption becomes closer, and heat is applied over a long period of time. Absent.
  • the planetary ball mill can give high energy to the material to be crushed, it has a problem that it is not suitable for mass production because it is of a gravity type, so there is a limit in increasing its size. .
  • the pulverization process using a planetary ball mill is dry pulverization, if pulverization proceeds and the material to be pulverized becomes finer, aggregation of particles is likely to occur, which makes pulverization difficult. .
  • a hydrogen storage material precursor can be obtained by a method different from the method of producing a hydrogen storage material by mechanical pulverization, there is a possibility that the hydrogen storage rate can be increased. Therefore, development of a hydrogen storage material precursor capable of increasing the hydrogen storage rate and a method for producing the same are also strongly desired.
  • the hydrogen storage alloy has a low hydrogen storage rate per unit weight, and a hydrogen storage tank using a hydrogen storage alloy has not yet been put into practical use.
  • lightweight powder-based hydrogen storage materials such as arylate-based materials, carbon-based materials, and lithium-based materials such as lithium nitride exhibit powder characteristics and hydrogen storage-release characteristics different from those of conventional storage alloys. Unless the filling container for filling them has a structure that meets the characteristics, it is not possible to secure a sufficient amount of hydrogen storage per unit volume. The development of such lightweight powder-based hydrogen storage material filled containers has not been sufficiently developed.
  • Japanese Patent Application Laid-Open No. 62-108702 discloses a hydrogen storage container filled with an alloy powder for hydrogen storage, in which a hydrogen inlet pipe is provided at a lower portion. Disclosed is a hydrogen storage material-filled container in which a hydrogen releasing tube is provided at an upper portion to suppress agglomeration and overcrowding of the alloy powder for hydrogen storage.
  • NH (g) may be generated simultaneously with hydrogen due to 2 etc., and water containing such NH (g)
  • the present invention has been made in view of such circumstances, and a first object of the present invention is to provide a hydrogen storage material capable of operating at a high efficiency and a low temperature, a method for producing the same, and a method for generating hydrogen. Is to do.
  • a second object of the present invention is to provide a powdery hydrogen storage material having a high hydrogen storage capacity by mechanical pulverization at a mass production level, and to facilitate the handling of the hydrogen storage material after the pulverization treatment.
  • An object of the present invention is to provide an apparatus and a method for manufacturing a material.
  • a third object of the present invention is to provide a hydrogen storage material precursor capable of improving the characteristics of a hydrogen storage material, and a method for producing the same.
  • the fourth object of the present invention is A hydrogen storage material-filled container that can be filled with a hydrogen storage material so that hydrogen can be absorbed and released efficiently, and that can increase the hydrogen storage rate per unit weight or unit volume.
  • Another object of the present invention is to provide a gas purification apparatus capable of supplying a high-purity hydrogen or the like that prolongs the life of a fuel cell and a hydrogen storage material.
  • a hydrogen storage material containing at least a nanostructured and organized lithium imide compound precursor complex, wherein the lithium imide compound precursor complex is a starting material
  • the nanostructured material is obtained by treating a mixture obtained by mixing fine powdered lithium amide and fine powdered lithium hydride at a predetermined ratio by a predetermined complexing method. And a method for producing a hydrogen storage material for obtaining an organized lithium imide compound precursor composite.
  • nanostructured and organized means that each mixed particle in a sample has a nanometer size (for example, an average particle size of 10-100 nm). It means that these particles are further miniaturized, and these particles are complexed at the nanometer level to have a desired structure and shape.
  • a mechanical milling process (hereinafter, referred to as "MeM process") in which a sample is crushed and mixed using a hard ball is used for the compounding process.
  • a method using a jet mill that pulverizes and mixes a sample by spraying a pressurized gas.
  • this MeM treatment is a process in which a sample is charged into a closed container together with a grinding medium, tumbled or mechanically stirred to grind, press-contact, and knead the sample.
  • the MeM treatment involves mixing a mixed powder sample consisting of multiple components with steel balls as a grinding medium.
  • the atmosphere inside the container is reduced or inert gas atmosphere higher than atmospheric pressure, and the container is rotated and revolved to knead the sample to form a nanometer-sized composite.
  • processing In such a MeM treatment, the starting material mixture is repeatedly subjected to microscopic collision with the grinding medium, and is subjected to impact compression force, resulting in plastic deformation (forging deformation), work hardening, pulverization, and thinning. Are finally kneaded.
  • “kneading” means that when a mixed sample has a property of being easily plastically deformed, it is crushed, stretched, bent, folded, entangled, split, and further split. Mean that the mixed sample is nanostructured 'organized as a result.
  • the starting material mixture of LiNH and LiH is subjected to MeM treatment in a hydrogen atmosphere.
  • the ratio of LiH to LiNH in the starting material is determined by the regular reaction ratio (as described above).
  • the content be 20% by mass or less of the normal reaction amount of LiH (reaction amount represented by the above formula (4)).
  • the total amount of LiH is the normal LiH reaction amount to LiNH (100
  • the content be more than 120% by mass. This suppresses the generation of NH (g)
  • the upper limit of the amount of LiH excessively added to the mixture was set to 20% by mass of the normal LiH reaction amount.
  • the amount of catalyst added is preferably 0.5-5 mol%. If the amount of the catalyst is less than 0.5 mol%, it is difficult to uniformly disperse the catalyst in the lithium imide compound precursor composite. On the other hand, if the amount of catalyst added exceeds 5 mol%, the effective hydrogen storage rate will decrease.
  • Such a catalyst is mixed with LiNH and LiH at the time of preparing a lithium imide compound precursor complex by MeM treatment, and is nanostructured and organized by MeM treatment.
  • the pressure for the compounding treatment is preferably in the range of 0.1 lOMPa. If the processing pressure is lower than the atmospheric pressure (0. IMPa), the active ingredients hydrogen and nitrogen may be lost. On the other hand, the high pressure capability limit of the MeM processing apparatus developed by the present inventors is lOMPa, and a processing pressure exceeding this is not practical.
  • the lithium imide compound precursor complex is heated to a predetermined temperature range to allow the nanostructured and organized LiNH and LiH to react.
  • the heating temperature for such a disproportionation reaction is preferably 250 ° C or lower, more preferably 200 ° C or lower.
  • the term “reversible disproportionation reaction” means that the reaction proceeds reversibly and decomposes into a plurality of different components.
  • a hydrogen storage material that uses a lightweight nonmetallic compound and that can operate at high efficiency and at low temperature is provided. Also, LiNH and Li
  • a lithium imide compound precursor complex is prepared by MeM treatment in an atmosphere of a reactive gas such as hydrogen, and when the reaction represented by the above equation (4) proceeds by increasing the temperature, Li NH is released along with hydrogen release. Can be generated.
  • the ratio of LiH to LiNH was set to be 0 to 20% higher than the normal molar ratio of 1: 1.
  • Such a hydrogen storage material can be suitably used for a fuel cell that generates power using hydrogen and oxygen as fuels. More specifically, it can be used for automobiles, home power generation, vending machines, mobile phones, and fuel cells. It can be used in a wide range of technical fields as a power source for cordless home appliances such as laptop computers, or as a power source for self-contained robots' micro machines.
  • a hydrogen storage material that includes a metal hydride and ammonia and generates hydrogen by a reaction between the two.
  • a hydrogen generation method for generating hydrogen by reacting a metal hydride with ammonia.
  • the hydrogen generation temperature can be lowered to near room temperature, and a sufficient amount of hydrogen can be obtained.
  • a hydrogen storage material having a mixture, complex, or reactant of a metal hydride and a metal amide compound, wherein at least two of these metal species are used. Is done.
  • a metal hydride, a metal amide compound, and a catalyst that enhances the ability to absorb and release hydrogen are used under an inert gas atmosphere or a hydrogen atmosphere, or an inert gas and hydrogen.
  • a method for producing a hydrogen storage material is provided.
  • a metal hydride and a metal amide compound are mixed with an inert gas.
  • a method for producing a hydrogen storage material wherein the metal hydride and the metal amide compound comprise two or more metal components.
  • a step of supporting a catalyst for increasing hydrogen absorption / desorption ability on at least one of a metal hydride and a metal amide compound, and a metal hydride and a metal on which the catalyst is supported respectively.
  • An amide compound, or a metal hydride supporting the catalyst and a metal amide compound not supporting the catalyst, or a metal amide compound supporting the catalyst and a metal hydride not supporting the catalyst In an inert gas atmosphere, a hydrogen atmosphere, or a mixed gas atmosphere of an inert gas and hydrogen, and a metal component constituting the metal hydride and the metal amide compound.
  • a hydrogen storage material having a mixture, a complex, or a reactant of a metal hydride and a metal amide compound, wherein these metal species are two kinds of lithium and magnesium. Is provided.
  • a method for producing a hydrogen storage material which comprises a metal hydride and a metal amide compound and generates hydrogen by a reaction between the metal hydride and the metal amide.
  • a metal amide compound to produce a metal amide compound, and a step of mixing a metal hydride with the metal amide compound obtained in the synthesis step.
  • a metal amide compound having high purity can be easily produced by itself, and therefore, for example, the metal constituting the metal hydride and the metal amide compound are formed. Even when different metals are used, the hydrogen storage material can be manufactured with high purity. Further, a mixture of a plurality of types of metal amide compounds can be easily obtained.
  • a hydrogen storage material obtained by pulverizing a mixture, complex, or reaction product of lithium hydride and lithium amide by a predetermined mechanical pulverization treatment. And a hydrogen storage material having a BET specific surface area of 15 m 2 / g or more.
  • a hydrogen storage material obtained by pulverizing a mixture, complex or reaction product of lithium hydride and magnesium amide by a predetermined mechanical pulverization treatment, A hydrogen storage material having a specific surface area of 7.5 m 2 Zg or more.
  • a hydrogen storage material obtained by pulverizing a mixture, complex, or reaction product of magnesium hydride and lithium amide by a predetermined mechanical pulverization process, A hydrogen storage material having a specific surface area of 7.5 m 2 Zg or more.
  • a hydrogen storage material having a hydrogenated lithium imide wherein the hydrogen storage material has a specific surface area of 10 m 2 / g or more by a BET method.
  • a hydrogen storage material obtained by hydrogenating a mixture, a composite, or a reaction product of magnesium nitride and lithium imide, and has a specific surface area of 5 m 2 / g or more by a BET method.
  • a hydrogen storage material which is:
  • a hydrogen storage material having a mixture, a complex, or a reactant containing a metal hydride, a metal amide compound, and a catalyst that enhances the ability to absorb and release hydrogen.
  • a hydrogen storage material comprising nanoparticles.
  • a hydrogenated hydrogen storage material containing a metal imide compound and a catalyst for enhancing the ability to absorb and release hydrogen, wherein the catalyst is hydrogen comprising nanoparticles.
  • Storage material is provided.
  • a hydrogen storage material having a lower hydrogen release temperature than conventional ones can be obtained.
  • the energy required for heating for releasing hydrogen from the hydrogen storage material is reduced, and restrictions on the material and structure of a container or the like for filling the hydrogen storage material are relaxed.
  • a hydrogen storage comprising two or more types of catalysts that releases hydrogen by the reaction of a metal hydride and a metal amide compound and promotes the hydrogen release reaction.
  • a method for producing a material comprising: adding one kind of a catalyst and a predetermined easily crushable inorganic substance to one of a metal hydride and a metal amide compound, and crushing and mixing; Adding the remaining one of the metal hydride and the metal amide compound to the object to be treated obtained as described above, and another type of catalyst that promotes the hydrogen release reaction, and pulverizing and mixing the hydrogen storage material. And a method for producing the same.
  • a method for producing a hydrogen storage material containing two or more types of catalysts that releases hydrogen by reacting a metal hydride with a metal amide compound and promotes the hydrogen release reaction A step of adding one kind of catalyst and a predetermined easily crushable inorganic substance to either one of the metal hydride and the metal amide compound, and crushing and mixing the metal hydride and the metal amide compound.
  • a method for producing a hydrogen storage material comprising: a step of adding another type of catalyst to one of the remaining components and crushing and mixing; and a step of crushing and mixing the objects to be processed obtained in the two mixing steps. Is done.
  • Conventional methods for supporting a plurality of catalysts on a hydrogen storage material include a method in which a plurality of catalysts are added to the hydrogen storage material at the same time and a pulverizing treatment is performed, and a method in which a plurality of catalysts are staggered in the hydrogen storage material. And then pulverizing.
  • a plurality of types of catalysts are supported on a hydrogen storage material by such a method for supporting a catalyst, the expected effect of improving characteristics has not been obtained.
  • a hydrogen storage material having a high hydrogen release rate and a low hydrogen release start temperature can be obtained by exhibiting the functions of a plurality of catalysts.
  • a cylindrical pulverizing container in which a hydrogen storage material is pulverized, and the pulverizing container so that the inside of the pulverizing container can be maintained in a hydrogen atmosphere.
  • a hydrogen storage material is mechanically pulverized by a compressive force and a shearing force between an inner wall of the pulverizing container and the pulverizing roller to produce a hydrogen storage material.
  • a pulverizing container having an inner cylinder and an outer cylinder coaxially provided, and an annular pulverization chamber formed between the inner cylinder and the outer cylinder, A hydrogen introduction unit for introducing hydrogen into the annular grinding chamber so that the annular grinding chamber can be maintained in a hydrogen atmosphere; and a hydrogen storage material in the annular grinding chamber while maintaining the hydrogen atmosphere in the annular grinding chamber.
  • a hydrogen storage material discharge portion for discharging the hydrogen storage material in the annular grinding chamber, and a drive for causing relative rotation between the inner cylinder and the outer cylinder.
  • a hydrogen atmosphere in the annular grinding chamber introducing a hydrogen storage material and a grinding medium into the annular grinding chamber, and causing relative rotation between the inner cylinder and the outer cylinder. And mechanically pulverize the hydrogen storage material to produce a hydrogen storage material.
  • An apparatus for producing a hydrogen storage material to be produced is provided.
  • a rotatable cylindrical pulverizing vessel for pulverizing a hydrogen storage material therein, and the rotatable cylindrical pulverizing vessel so that the inside of the pulverizing vessel can be maintained in a hydrogen atmosphere.
  • a hydrogen introduction unit that introduces hydrogen into the grinding container
  • a hydrogen storage material introduction unit that can introduce a hydrogen storage material into the grinding container while maintaining the hydrogen atmosphere in the grinding container
  • a hydrogen storage material discharge section for discharging the hydrogen storage material
  • an impeller provided in the pulverizing container with the longitudinal direction of the rotating shaft coinciding with the longitudinal direction of the pulverizing vessel, the pulverizing vessel and the impeller.
  • a drive mechanism for rotating the impeller in a direction opposite to each other, and the inside of the pulverizing container is set to a hydrogen atmosphere, and a hydrogen storage material material and a pulverizing medium are filled in the pulverizing container.
  • An apparatus for producing a hydrogen storage material, which mechanically pulverizes a hydrogen storage material by rotating to produce a hydrogen storage material is provided.
  • the hydrogen storage material raw material is crushed therein, and the hydrogen storage material discharge port for discharging the crushed hydrogen storage material to the outside is provided at the lower portion of the side wall.
  • Cylindrical crushing container having a bottom, a housing for accommodating the crushing container and maintaining the inside of the crushing container in a predetermined gas atmosphere, and having a cylindrical curved surface, the curved surface and a side wall of the crushing container
  • One or more inner pieces arranged so as to have a predetermined gap between the inner surface, a holding member for holding the inner piece, and a gap width between the milling vessel and the inner piece are substantially equal.
  • a jet nozzle for injecting a predetermined processing gas containing hydrogen at high pressure, and a high-pressure processing gas injected from the jet nozzle are introduced into the inside thereof,
  • a hydrogen storage material discharge unit for discharging the hydrogen storage material in the pulverizing container, and introducing the hydrogen storage material into the pulverizing container by setting the atmosphere in the pulverizing container to an atmosphere containing hydrogen.
  • the hydrogen storage material is mechanically pulverized by collision or grinding of the hydrogen storage material on the jet of the high-pressure processing gas or by shearing force applied from the high-pressure processing gas.
  • An apparatus for producing a hydrogen storage material that crushes to produce a hydrogen storage material is provided.
  • a hydrogen storage material is introduced into the above-mentioned pulverization container while the inside of the cylindrical pulverization container is kept in a hydrogen atmosphere, and the hydrogen storage material is introduced into the pulverization container and the inner wall of the pulverization container.
  • Hydrogen storage by the relative rotational movement between the plurality of crushing rollers provided along and the compressive and shearing forces generated between the inner wall of the crushing container and the crushing rollers due to the rotation of the plurality of crushing rollers.
  • an annular grinding chamber formed between the inner cylinder and the outer cylinder of a grinding vessel having an inner cylinder and an outer cylinder provided coaxially is set to a hydrogen atmosphere. Meanwhile, a grinding medium and a hydrogen storage material are introduced into the annular grinding chamber, and a relative rotational movement is caused between the inner cylinder and the outer cylinder to mechanically pulverize the hydrogen storage material to perform a hydrogen storage material. And a method for producing a hydrogen storage material.
  • a pulverizing medium and a hydrogen storage material are filled in the pulverizing container while the inside of the cylindrical pulverizing container is in a hydrogen atmosphere.
  • a method for producing a hydrogen storage material wherein a hydrogen storage material is mechanically pulverized by rotating an impeller provided in a pulverization container in directions opposite to each other to mechanically pulverize the hydrogen storage material.
  • a hydrogen storage material is introduced into the crushing vessel while the inside of the bottomed cylindrical crushing vessel is in a hydrogen atmosphere, and the cylinder provided in the crushing vessel is provided.
  • the inner piece and the inner piece are formed by rotating the inner piece or rotating the milling vessel so that the gap width between the cylindrical curved surface of the inner piece having a curved surface and the side wall of the milling vessel does not substantially change.
  • a method for producing a hydrogen storage material wherein a hydrogen storage material is mechanically pulverized by a compressive force and a shear force generated between the hydrogen storage material and the side wall of the container to produce a hydrogen storage material.
  • the hydrogen storage material is so supplied as to ride on the gas flow of the processing gas generated in the pulverizing container. Is introduced into the milling vessel, and the hydrogen storage material is mechanically pulverized by collision or grinding of the hydrogen storage material in the gas stream or by shearing force given by the gas stream.
  • a method for producing a hydrogen storage material for producing hydrogen is provided.
  • a hydrogen storage material that exhibits a hydrogen storage function by granulation by mechanical pulverization in a hydrogen atmosphere is pulverized with high energy. Therefore, a hydrogen storage material having a high hydrogen storage capacity can be obtained.
  • the industrialization is possible because the grinding mechanism does not limit the amount of grinding like a planetary ball mill. Therefore, it can sufficiently cope with mass production.
  • a metal component having a function of dissociating hydrogen molecules into hydrogen atoms Is added during the mechanical pulverization of the hydrogen storage function material, the metal component can be supported in a highly dispersed state without the metal component being thickly covered with the hydrogen storage function material. High hydrogen storage capacity is obtained by the action of the metal component.
  • a cylindrical pulverizing container for pulverizing a hydrogen storage material therein, and a slurry comprising the hydrogen storage material and a predetermined solvent are placed in the pulverization container.
  • An apparatus for producing a hydrogen storage material comprising:
  • a grinding container which is held in a liquid-tight manner, is filled with a milling ball and a slurry comprising a hydrogen storage material and a solvent, and the grinding container is filled in the grinding container.
  • a method for producing a hydrogen storage material is provided, wherein the raw material for hydrogen storage material is mechanically pulverized by collision of the ground balls by rotating an impeller provided to produce a hydrogen storage material.
  • the object to be ground is ground by wet grinding, aggregation of the ground particles is suppressed. Thereby, fine graining can be efficiently promoted, and a fine hydrogen storage material having a high hydrogen storage rate can be obtained. In addition, continuous grinding is easy, and high mass productivity can be obtained. Further, by filling the hydrogen storage material after the pulverization treatment into a predetermined container or the like, it becomes easy to store and transport the hydrogen storage material.
  • a hydrogen storage material precursor having a metal imide compound which changes into a hydrogen storage material containing a metal hydride and a metal amide compound by reacting with hydrogen. And a hydrogen storage material precursor, wherein the metal imide compound is synthesized without undergoing a reaction between the metal hydride and the metal amide compound.
  • a hydrogen storage material precursor which reversibly changes into a hydrogen storage material capable of releasing hydrogen by reacting with hydrogen, the heat of a metal amide compound being A hydrogen storage material precursor having a metal imide compound generated by decomposition is provided.
  • a method for producing a hydrogen storage material precursor having a metal imide compound which reversibly changes into a hydrogen storage material capable of releasing hydrogen by reacting with hydrogen is provided.
  • a method for producing a hydrogen storage material precursor that obtains the metal imide compound by thermally decomposing a metal amide compound is provided.
  • a hydrogen storage material having a high hydrogen release rate can be obtained based on the obtained hydrogen storage material precursor. Further, a hydrogen storage material having a low hydrogen release start temperature can be obtained.
  • a hydrogen storage material-filling container for filling a solid hydrogen storage material containing a catalyst containing the hydrogen storage material, the container being filled with the hydrogen storage material, and a flow of hydrogen flowing inside the container.
  • a hydrogen storage material-filled container comprising: a flow path forming member for forming a path; and heating means for heating the hydrogen storage material to a temperature of 80 ° C. or higher.
  • the hydrogen storage material when the hydrogen storage material is heated by the heating means, the function of occluding or releasing hydrogen of the hydrogen storage material is activated. It can store and release hydrogen. As a result, it is possible to provide a hydrogen storage material filled container that is particularly suitable for a lithium-based material. Further, since the lithium-based material has a higher hydrogen storage rate per unit weight than the hydrogen storage alloy or the like, the hydrogen storage rate per mass of the filled container can be increased. As a result, this hydrogen storage material-filled container can be used for a hydrogen supply device mounted on a fuel cell vehicle, etc., and a storage tank system for a buffer tank hydrogen station for stationary fuel cells.
  • the hydrogen storage material-filled container according to the thirty-fifth aspect, can be efficiently heated, so that the storage and release of hydrogen can be performed in a short time. Further, the surface area of the gas flow pipe can be increased, and the efficiency of the hydrogen storage material storing or releasing hydrogen can be increased.
  • a moving object equipped with the hydrogen storage material-filled container according to the thirty-fifth aspect.
  • a lightweight fuel cell vehicle or a hydrogen engine vehicle capable of traveling over a long distance with one replenishment can be realized.
  • a plurality of independent storage chambers filled with a powder-based hydrogen storage material openings provided on floors of the plurality of storage chambers, A hydrogen introduction line communicating with the plurality of storage chambers through openings, wherein the hydrogen storage material does not occlude hydrogen and the hydrogen is introduced into the hydrogen storage material.
  • the hydrogen storage material is scattered in each storage chamber by being introduced from the outside through the line and ejected from the opening into the plurality of storage chambers so that the hydrogen storage material and the hydrogen are brought into contact with each other.
  • a hydrogen storage material-filled container for storing the hydrogen for storing the hydrogen.
  • agglomeration of a hydrogen storage material (a hydrogen storage material precursor in a state in which the hydrogen storage material has absorbed hydrogen and is in a state of absorbing hydrogen) in the hydrogen storage container.
  • a hydrogen storage material a hydrogen storage material precursor in a state in which the hydrogen storage material has absorbed hydrogen and is in a state of absorbing hydrogen
  • hydrogen containing ammonia and / or water vapor, or a mixed gas of hydrogen and one or more selected from the group consisting of He, Ne, Ar, and N is used.
  • a gas purification apparatus characterized in that a filter containing an alkali metal hydride and a Z or alkaline earth metal hydride is provided in a flow path.
  • ammonia and Z or water poisoning the fuel cell can be efficiently removed from these gases suitably used for the fuel cell and the like by reducing the residual concentration. It can be removed by the PPM order.
  • FIG. 1 A first figure.
  • FIG. 2 is a gas emission spectrum diagram showing the results of mass number analysis of desorbed gas accompanying a rise in temperature in Comparative Example 1.
  • FIG. 3 is a gas emission spectrum diagram showing the results of mass number analysis of desorbed gas accompanying a rise in temperature in Comparative Example 2.
  • FIG. 4A is an enlarged schematic cross-sectional view showing an initial kneaded state of the MeM treatment.
  • FIG. 4B is an enlarged schematic cross-sectional view showing a kneaded state in the middle stage of the MeM treatment.
  • FIG. 4C is an enlarged schematic cross-sectional view showing a kneaded state in the latter half of the MeM treatment.
  • FIG. 5 is a gas emission spectrum diagram showing the result of mass number analysis of desorbed gas accompanying a rise in temperature in Example 1.
  • FIG. 6 is a gas emission spectrum diagram showing the results of mass spectrometry of desorbed gas accompanying temperature rise in Example 2.
  • FIG. 7 is a gas emission spectrum diagram showing the results of mass spectrometry of desorbed gas accompanying a rise in temperature in Example 3.
  • FIG. 8 is a characteristic diagram showing a change in a gas release spectrum line and a change in mass loss at the time of temperature rise when hydrogen release and hydrogen storage are repeated with the hydrogen storage material according to the present invention.
  • FIG. 9 is a graph showing the hydrogen release rate of each sample of Example 4-1-24 in a predetermined temperature range.
  • FIG. 10 is a graph showing the relationship between the reaction temperature and the hydrogen release rate of each sample of Examples 31 to 34.
  • FIG. 11 is an XRD chart diagram after a hydrogen generation reaction in Example 35.
  • FIG. 12 is a graph showing emission spectra of desorbed hydrogen in Example 41 and Comparative Examples 41 and 42 as the temperature was increased by the TG-MASS apparatus.
  • FIG. 13 is a graph showing emission spectra of desorbed hydrogen with temperature rise by the TG-MASS apparatus of Examples 51 and 52 and Comparative Examples 51 and 52.
  • FIG. 14 is a diagram showing an example of a DTA curve of a hydrogen storage material composed of lithium hydride and lithium amide.
  • FIG. 15 is a graph showing the relationship between the specific surface area, the hydrogen release temperature, and the hydrogen release rate of a hydrogen storage material composed of lithium hydride and lithium amide.
  • FIG. 16 is a graph showing a relationship between a specific surface area of a hydrogen storage material composed of lithium hydride and magnesium amide, and a hydrogen release temperature and a hydrogen release rate.
  • FIG. 17 is a graph showing a relationship between a specific surface area of a hydrogen storage material composed of magnesium hydride and lithium amide, and a hydrogen release temperature and a hydrogen release rate.
  • FIG. 18 is a graph showing the relationship between the specific surface area of a hydrogen storage material composed of hydrogenated lithium imide, the hydrogen release temperature, and the hydrogen release rate.
  • FIG. 19 is a graph showing a relationship between a specific surface area, a hydrogen release temperature, and a hydrogen release rate of a hydrogen storage material obtained by hydrogenating a pulverized mixture of magnesium nitride and lithium imide.
  • FIG. 20 is a hydrogen release spectrum chart of Example 81 and Comparative Example 81.
  • FIG. 21 is a hydrogen release spectrum chart of Example 82 and Comparative Example 82.
  • FIG. 22 is a flowchart showing a production process of a hydrogen storage material in which two or more types of catalyst are supported.
  • FIG. 23 is a flow chart showing another production process of a hydrogen storage material carrying two or more types of catalysts.
  • FIG. 24 is a flow chart showing still another production process of a hydrogen storage material carrying two or more types of catalysts.
  • FIG. 25 is a graph showing the relationship between the temperature of the hydrogen storage material and the amount of released hydrogen in Examples 91-93 and Comparative Examples 91-93.
  • FIG. 26A is a horizontal sectional view showing a schematic structure of a first manufacturing apparatus.
  • FIG. 26B is a vertical sectional view showing a schematic structure of the first manufacturing apparatus.
  • FIG. 27 is a sectional view showing a schematic structure of a second manufacturing apparatus.
  • FIG. 28 is a diagram schematically showing a pulverizing operation by a second manufacturing apparatus.
  • FIG. 29 is a perspective view showing a schematic structure of a third manufacturing apparatus with a part cut away.
  • FIG. 30 is a sectional view showing a schematic structure of a fourth manufacturing apparatus.
  • FIG. 31 is a diagram showing a pulverization mode in a fourth manufacturing apparatus.
  • FIG. 32 is a sectional view showing a schematic structure of a fifth manufacturing apparatus.
  • FIG. 33 is a graph showing the relationship between the milling time and the average particle size of the hydrogen storage material in Examples 101-104 and Comparative Example 101.
  • FIG. 34 is an enlarged view of the relationship between the milling time in FIG. 33 and the average particle size of the hydrogen storage material.
  • FIG. 35 is a graph showing the relationship between the milling time and the hydrogen storage amount in Examples 101-104 and Comparative Example 101.
  • FIG. 36 is a graph showing the relationship between the retention time at 250 ° C. and the hydrogen storage amount (cumulative value) in Examples 105-109 and Comparative Example 102.
  • FIG. 37 is a sectional view showing a schematic configuration of a sixth manufacturing apparatus.
  • FIG. 38 is a cross-sectional view showing a schematic configuration of a manufacturing apparatus in which the sixth manufacturing apparatus is transformed into a form capable of continuous processing.
  • FIG. 39 is a cross-sectional view showing a schematic configuration of another manufacturing apparatus in which the sixth manufacturing apparatus is transformed into a form capable of continuous processing.
  • FIG. 40 is a graph showing the relationship between the heating time and temperature and the hydrogen storage rate in Example 111 and Comparative Example 111.
  • FIG. 41 is a graph showing the relationship between the temperature and the hydrogen release amount in Example 121 and Comparative Example 121.
  • FIG. 42 is a graph showing the relationship between the temperature and the hydrogen release amount in Examples 122 and 123 and Comparative Examples 122 and 123.
  • FIG. 43 is a cross-sectional view showing a schematic structure of a first hydrogen storage material-filled container.
  • FIG. 44 is a cross-sectional view showing a schematic structure of a second hydrogen storage material-filled container.
  • FIG. 45 is a cross-sectional view showing a schematic structure of a third hydrogen storage material-filled container.
  • FIG. 46 is a sectional view showing a schematic structure of a fourth hydrogen storage material-filled container.
  • FIG. 47 is a view showing a schematic configuration of a moving body equipped with a hydrogen storage material-filled container.
  • FIG. 48 is a perspective view showing a schematic structure of a fifth hydrogen storage material filled container.
  • FIG. 49 is a diagram showing a configuration in which a gas purification device is combined with a hydrogen storage material-filled container.
  • a hydrogen storage material containing at least a lithium imide compound precursor composite that has been nanostructured and organized will be described.
  • Metallic and non-metallic compounds The hydrogen storage capacity is related to the nanometer-scale structure / structure, and high-performance hydrogenated materials can be produced by nanostructure / structure control, that is, nanostructure / structuring at the nanometer scale.
  • MeM treatment One of the methods of nanostructuring and organizing a powder material is MeM treatment.
  • a hard ball called a crushing medium and a raw material are placed in a closed container, and the raw material is crushed, pressed, and kneaded by rolling or mechanical stirring to obtain a material having physical properties different from those of the starting material.
  • MeM treatment An example of a procedure for producing a nanostructured-structured hydrogen storage material by MeM treatment performed by the present inventors will be described below. Needless to say, the specific method and conditions of the MeM processing are not limited to the examples shown here.
  • Hydrogen absorption and desorption at low temperature is also expected from a mechanical point of view.
  • LiNH and LiH are weighed at a ratio of 1: 1 by the number of molecules, and then weighed in an agate mortar.
  • the mixture thus obtained (that is, the sample according to Comparative Example 1) was heated at a heating rate of 5 ° C./min, and mass number analysis of desorbed gas accompanying the heating was performed.
  • FIG. 2 shows a gas emission spectrum diagram showing the results of mass number analysis of desorbed gas accompanying the temperature rise of the sample of Comparative Example 1.
  • the horizontal axis represents temperature (° C.)
  • the vertical axis represents gas emission spectrum intensity (arbitrary unit) by mass number (MASS) analysis of desorbed gas accompanying temperature rise.
  • a characteristic line C in FIG. 2 represents a hydrogen emission spectrum line
  • a characteristic line D represents an emission spectrum line of ammonia gas (NH (g)).
  • LiNH and LiH are weighed in a ratio of 1: 2 in the number ratio of molecules and mixed in an agate mortar for several minutes.
  • a mixed mixture (sample of Comparative Example 2) was prepared, and the obtained sample was subjected to the same mass number analysis of desorbed gas accompanying temperature rise as in Comparative Example 1.
  • Fig. 3 is a gas release spectrum diagram showing the results of mass number analysis of desorbed gas accompanying the temperature rise of the sample of Comparative Example 2.
  • a characteristic line E in FIG. 3 indicates an emission spectrum line of hydrogen, and a characteristic line F indicates an emission spectrum line of N H (g). As is evident from Figure 3, the comparison
  • Example 1 the purpose was to achieve overlapping microscopic contact of LiNH and LiH,
  • LiNH fine powder and LiH fine powder are weighed at a ratio of 1: 1 in number of molecules, and MeM treatment is performed for 2 hours.
  • Both the LiNH fine powder and the LiH fine powder have an average particle size of several tens of m (20 4
  • the MeM processing apparatus used was a P7 planetary ball mill manufactured by Fritsch (Germany).
  • the mixed sample sealed in the hermetically sealed container undergoes impact compression force due to repeated collisions with hard steel balls (pulverizing medium), undergoes plastic deformation (forging deformation), work hardens, is pulverized, and becomes thin. And finally kneaded.
  • the kneading of such a mixed sample proceeds stepwise as follows.
  • FIG. 5 shows a gas emission spectrum diagram showing the mass number analysis result of the desorbed gas accompanying the temperature rise of the sample of Example 1.
  • a characteristic line G indicates an emission spectrum line of hydrogen
  • a characteristic line H indicates an emission spectrum line of NH (g).
  • Example 1 has remarkably suppressed NH (g) emission as compared with Comparative Examples 1 and 2 mixed with the agate mortar described above. That is, in the above equation (4)
  • Ni nanoparticles having an average particle diameter of 20 nm were used as the Ni particles.
  • FIG. 6 shows a gas emission spectrum diagram showing the result of mass number analysis of the desorbed gas accompanying the temperature rise of the sample of Example 2.
  • the characteristic line indicated by a solid line indicates the emission spectrum line of hydrogen
  • the characteristic line indicated by a broken line indicates the emission spectrum line of NH (g).
  • Li C1 Lmol% titanium trichloride particles (average particle size: 2-4 ⁇ ⁇ ) with respect to the number of moles of Li are mixed in a 1: 1 ratio of the number of molecules to a mixture of LiNH and LiH.
  • a sample was prepared which was mixed with the 32 merging and subjected to the same MeM treatment as in Example 1 above.
  • FIG. 7 shows a gas emission spectrum diagram showing the mass number analysis result of the desorbed gas accompanying the temperature rise in Example 3.
  • the characteristic! ⁇ Indicated by a solid line indicates the emission spectrum line of hydrogen
  • the characteristic line K indicated by the broken line indicates the emission spectrum line of NH (g).
  • Lmol% TiCl particles are mixed in a molar ratio of 1: 1 based on the number of moles of Li.
  • the first cycle sample was degassed under vacuum at 220 ° C for 12 hours, and then the sample obtained by reacting with hydrogen at 180 ° C under a hydrogen pressure of 3 MPa for 12 hours was used as the second cycle sample.
  • FIG. 8 shows a gas release outside line representing the results of a temperature programmed desorption gas analysis performed on the three types of samples thus obtained, and a mass loss line representing the results of thermogravimetric measurement.
  • the characteristic line P1 is the gas emission spectrum line of the first cycle sample
  • the characteristic line Q1 is the gas emission spectrum line of the second cycle sample
  • the characteristic line R1 is the gas emission spectrum of the third cycle sample. Lines are shown.
  • the characteristic line P2 in Fig. 8 shows the mass loss line of the first cycle sample
  • the characteristic line Q2 shows the mass loss line of the second cycle sample
  • the characteristic line R2 shows the mass loss line of the third cycle sample. Show me.
  • the second and third cycle samples show some characteristic deterioration in terms of hydrogen release temperature and hydrogen release amount as compared with the first cycle sample. This is thought to be due to the fact that the material became a stable substance that did not participate in the storage and release of hydrogen during the third heating process, which was considered to have originally been included in the carohydrate (catalyst) or raw material. It is. However, there is no significant difference between the second cycle sample and the third cycle sample, so the cycle characteristics are considered to be very good. Furthermore, when desorption gas analysis is performed at a heating rate of 1 ° C / min, the peak position of the desorption curve decreases to 200 ° C or less, and hydrogen storage and release at 200 ° C or less may be possible.
  • Example 4 is composed of LiH and LiNH as in Example 1, but the test method is different.
  • Example 524 as in Examples 2 and 3, various catalysts were added to LiH and LiNH.
  • Example 22 was weighed in a high purity Ar glove box as described above. Further, in Example 22, as shown in Table 1, LiH, LiNH, chromium chloride (CrCl) and TiCl were used in a molar ratio of 1: 1: 0.01:
  • Example 23 and Example 24 as shown in Table 1, the molar ratio of LiH, LiNH, and the predetermined catalyst was set to 1: 2: 1: 0.01, and the total amount thereof was 1.3 g. So high
  • the weighed sample was placed in a high-chromium steel mill container with a valve (250 cm 3 ) in a high-purity Ar glove box. Subsequently, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the internal pressure of the mill container became MPa, and room temperature was reduced using a planetary ball mill (Fritsch, P5). Milling was performed at 25 (kpm for 120 minutes to prepare a sample. After the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and the sample was taken out. , Metal Ni, metal Co and metal Fe are samples manufactured by Vacuum Metallurgy Co., Ltd.
  • Example 4 Each of the 24 samples was weighed in a high-purity Ar glove box in an amount of 500 mg, and filled in a SUS reaction vessel (internal volume: about 50 cm 3 ) equipped with a valve having an internal volume of 50 cm 3 .
  • the reaction vessel is equipped with a thermocouple so that the temperature near the upper part of the sample can be measured.
  • the reaction vessel filled with this sample was placed in a pressure sensor, a vacuum pump, and an experimental apparatus (internal volume: about 300 cm 3 ) equipped with a gas chromatograph (manufactured by Shimadzu Corporation, GC9A, TCD detector, column: Molecular Sieve 5A).
  • the sample was heated to room temperature-300 ° C at a heating rate of 10 ° C / min, and discharged into the reaction vessel at room temperature, 150 ° C, 200 ° C, and 250 ° C.
  • the gas was quantified using the attached gas chromatograph, and the hydrogen content was measured.
  • the hydrogen release rate was a value obtained by dividing the amount of hydrogen measured in this manner by the amount of the sample before heating. Note that the hydrogen release rate was corrected by calculating the amount of hydrogen collected and lost on a gas chromatograph at each temperature.
  • Figure 9 shows the hydrogen release rates released in the temperature range of room temperature-150 ° C, room temperature-200 ° C, and room temperature-250 ° C.
  • each of the samples except for Examples 7, 13, and 15 showed a hydrogen release rate near lmass% at a temperature rise of room temperature to 250 ° C.
  • the hydrogen release characteristics were shown.
  • Example 15 the hydrogen release rate from room temperature to 200 ° C. exceeded 0.4 mass%, indicating a high hydrogen release rate in a relatively low temperature range.
  • Example 7 and Example 13 the hydrogen release rate in the low temperature range from room temperature to 150 ° C exceeded 0.4 mass%, and the high hydrogen release rate was shown in the low temperature range of 150 ° C or lower.
  • LiH lithium hydride
  • the hydrogen generation reaction in this case is represented by the following formula (6). Since the reaction of the following formula (6) starts even at room temperature, hydrogen can be extracted from the hydrogen storage material at a low temperature near room temperature, which was conventionally difficult.
  • Metal hydrides other than LiH include sodium hydride (NaH) and magnesium hydride.
  • Hydrogen may be generated by reacting with (g).
  • the metal hydride it is preferable to use a metal that supports a catalyst that promotes the hydrogen generation reaction.
  • catalysts include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu , Zn, Al, Si, Ru, ⁇ s, Mo, W, Ta, Zr, In, Hf, Ag
  • One or more metals or their compounds or alloys, or hydrogen storage alloys are preferred Used for
  • the amount of the supported catalyst is preferably from 0.1% by mass to 20% by mass of the metal hydride.
  • the amount of the supported catalyst is less than 0.1% by mass, the effect of accelerating the hydrogen generation reaction is not obtained.
  • the amount exceeds 20% by mass, the reaction between the reactants such as metal hydride is hindered. The hydrogen release rate per mass will be reduced.
  • the metal hydride and NH (g) are sealed in a reaction vessel so that the H (g) can be easily contacted.
  • Three Are preferably used to generate hydrogen.
  • LiH purity 95%, manufactured by Sigma-Aldrich
  • LiH to which titanium trichloride (TiCl; manufactured by Sigma-Aldrich) was added as a catalyst was converted to high-purity argon (
  • Example 31 LiH in Example 31 is the reagent itself taken out of the reagent bottle.
  • the LiH of Example 32 was prepared by using a planetary ball mill (Fritsch, Model P5) to transfer the reagent lg taken out of the reagent bottle into a high chrome steel mill container (internal volume; 250 cm 3 ) in an Ar glove box. And milled (crushed) at 250 rpm for 2 hours in an atmosphere of room temperature.
  • Example 33 LiH and TiCl taken out of the reagent bottle were mixed in an Ar glove box using an agate mortar.
  • Example 34 As in Example 32, LiH and TiCl taken out of the reagent bottle were subjected to milling using a planetary ball mill.
  • the sample container was attached to the reactor, and the inside of the sample container was evacuated. Thereafter, NH (g) is introduced into the sample container so that the molar ratio shown in Table 2 is obtained and the inside of the sample container is set to 0.2 MPa (absolute pressure). The temperature inside the sample container is increased by heating
  • the reaction gas was sampled from the inside of the sample container at a predetermined temperature, and the composition of the sampling gas was analyzed by gas chromatography (Shimadzu Corporation, model: GC9A, using TCD detector, column: molecular sieve 5A).
  • Example 35 The composition of Example 35 is shown in Table 2.
  • the LiH taken out of the reagent bottle is placed in a high chrome steel mill container (modified so that exhaust Z sealing can be performed) in the Ar glove box, and then the inside of the mill container is evacuated and placed in the mill container. Introduce a predetermined amount of NH (g) and seal the mill container.
  • Fig. 10 is a graph showing the relationship between the reaction temperature and the hydrogen release rate for Examples 31 to 34. This hydrogen release rate is calculated by adding the mass of generated hydrogen to the sum of the initial masses of LiH and NH (g).
  • FIG. 11 shows an XRD image of the powder in the sample container after the hydrogen generation reaction of Example 35. From FIG. 11, it was confirmed that LiNH based on the formula (6) shown above was almost used. Note that lithium hydroxide (LiOH) was detected in FIG.
  • a mixture or complex or reaction product of a metal hydride and a metal amide compound (
  • a hydrogen storage material having a mixture or the like and at least two or more of these metal species will be described.
  • “having a mixture, a complex, or a reactant (that is, a mixture, etc.)” means that the mixture, the complex, and the reactant do not have to have only one of the forces. Or two, and all of these.
  • Such hydrogen storage materials include, specifically, (1) a metal constituting a metal hydride and a metal constituting a metal amide compound are different, and (2) a plurality of kinds of metals having different metal components. One containing a metal hydride and (3) one containing a plurality of metal amide compounds having different metal components.
  • a preferable example is lithium hydride (LiH), which has a property that the decomposition temperature is low among metal hydrides, considering only the reduction of the hydrogen release temperature, and the metal amide compound At least, it decomposes at lower temperature than LiH to produce ammonia gas (NH (g))
  • each substance When they are blended so as to be equivalent, each substance may be used in combination as shown in the following formula (9).
  • lithium imide for example, Li NH
  • Such a mixture of a metal hydride and a metal amide compound is preferably nanostructured and organized by MeM treatment.
  • This MeM treatment can be performed by using a planetary ball mill or the like in the case of small-scale production.
  • various mixed Z grinding methods described later for example, a roller mill, inner and outer cylinders, etc.
  • Rotary mill, attritor, in It can be carried out using a nap-piece type mill, an air current milling type mill or the like.
  • the mixing / crushing treatment of the metal hydride and the metal amide compound is performed using an inert gas (eg, argon (Ar), nitrogen (N)).
  • an inert gas eg, argon (Ar), nitrogen (N)
  • the atmospheric pressure gas pressure
  • the atmospheric pressure be equal to or higher than the atmospheric pressure. This increases the amount of hydrogen released from the mixture after the mixing / pulverization process, for unknown reasons.
  • a mixture of a metal hydride and a metal amide compound or the like may contain a catalyst that enhances the ability to absorb and release hydrogen.
  • Suitable horny media include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr,
  • One or more metals selected from Cu, Zn, Al, Si, Ru, ⁇ s, Mo, W, Ta, Zr, In, Hf, Ag, or their compounds or alloys, or hydrogen storage Alloys are preferably used.
  • the amount of such a catalyst carried is preferably 0.1% by mass or more and 20% by mass or less of a mixture of a metal hydride and a metal amide. If the amount of supported catalyst is less than 0.1% by mass, the effect of accelerating the hydrogen generation reaction cannot be obtained. If the amount exceeds 20% by mass, the reaction between the reactants such as metal hydrides is adversely affected, and The rate of hydrogen release per mass will be reduced.
  • One of the following three methods is used as a method for causing a mixture of a metal hydride and a metal amide compound to carry a catalyst having a hydrogen absorbing / releasing ability. That is, (a) by adding a catalyst when mixing and pulverizing a metal hydride and a metal amide compound, an object to be treated (that is, a metal hydride, a metal amide compound, a mixture thereof, or a reaction product thereof) is obtained. (B) a method in which the catalyst is supported on the object by mixing the catalyst with the object obtained by mixing and pulverizing the metal hydride and the metal amide compound, and (c) the metal hydrogen.
  • any one of the methods in which at least one of the metal hydride and the metal amide compound is loaded with a catalyst capable of absorbing and releasing hydrogen by a mixed pulverization treatment or the like is used.
  • Mg (NH) converts magnesium hydride (MgH) lg to high-purity Ar glove box.
  • Table 4 shows the composition of the starting materials of Examples 41 to 47 described below. Table 4 shows the specified raw materials whose LiH, MgH, LiNH, Mg (NH), and Ca (NH) powers were also selected.
  • High-purity Ar gross so that it has a predetermined composition containing two or more metal elements and that the amount of titanium trisalt (Ti C1) is 1.0 mol% of the total molar amount of the metal components of the starting material.
  • Table 4 shows the composition of the starting materials of Comparative Examples 41 and 42.
  • Comparative Example 41 LiH and LiNH were used, and in Comparative Example 42, LiH and LiNH were contained such that the metal hydride and the metal amide compound contained one metal.
  • MgH and Mg (NH 2) were each prepared so as to have a predetermined composition shown in Table 4, and TiCl
  • the temperature was raised at a rate of 5 ° C / min, and the desorbed gas from each sample was sampled and analyzed.
  • FIG. 12 shows the emission spectrum of desorbed hydrogen with increasing temperature using the TG-MASS device.
  • FIG. 3 is an explanatory diagram showing the relationship between the degree and the hydrogen release intensity.
  • a characteristic line a indicates Example 41
  • a characteristic line b indicates Comparative Example 41
  • a characteristic line c indicates Comparative Example 42.
  • Table 4 shows the theoretical hydrogen release rate (mass%) of each sample and the peak temperature (° C) of the hydrogen emission spectrum curve (hereinafter referred to as “hydrogen release peak temperature”).
  • Example 41 the hydrogen release peak temperature of Example 41 was 209 ° C, which was lower than that of 239 ° C in Comparative Example 41 and 317 ° C in Comparative Example 42. It was confirmed that the temperature decreased. Also, as shown in Table 4, it was confirmed that the hydrogen release peak temperature in Example 42 47 was lower than that in Comparative Example 41.
  • a metal constituting the metal hydride is Li and a metal constituting the metal amide compound is Mg
  • a metal constituting the metal hydride Is Li and the metal constituting the metal amide compound is Mg and Li
  • the metal constituting the metal hydride is Mg
  • the metal constituting the metal amide compound is Li
  • the metal that constitutes the metal hydride is Mg
  • the metal that constitutes the metal amide compound is Mg and Li.
  • the metal that constitutes the metal hydride is Mg and Li, and the metal amide compound Wherein the metal constituting Mg is Mg and / or Li.
  • the metal hydride is lithium hydride (LiH) and the metal amide compound is magnesium amide (Mg (NH)) alone or a mixture thereof with lithium amide (LiNH)
  • the combination may be made as in the following equation (11). Further, in the case of a material using magnesium hydride (MgH) and LiNH, the combination is as shown in the following equation (12).
  • LiH be 1.5 mol or more and 4 mol or less with respect to H. Furthermore,
  • LiH is at least 2.5 mol and not more than 3.5 mol per mol of Mg (NH).
  • the mixing ratio of MgH is 0.5 mol or more and 2 mol or less.
  • the mixing ratio of MgH to 1 mol of LiNH should be 0.5 mol or more and 1 mol or less.
  • lithium nitride Li
  • is as large as -148 kj / mol, so a high temperature is required and it is difficult to lower the hydrogen release temperature.
  • the fact that the hydrogen storage material according to the present invention can maintain a relatively high hydrogen release rate despite the low hydrogen release peak temperature is based on the fact that the magnesium imide (MgNH) generated by the above formula (15) can Up to Mg N as in the formula
  • Such a mixture of a metal hydride and a metal amide compound is preferably nano-structured and organized by MeM treatment.
  • This mechanical milling process can be performed by using a planetary ball mill or the like in the case of small-scale production, and in the case of mass production, various mixing / pulverization methods described later, for example, a roller mill, inner and outer cylinder rotation It can be carried out by using a mold mill, an attritor, an inner piece type mill, an airflow pulverizing type mill and the like.
  • the mixing / crushing treatment of the metal hydride and the metal amide compound is performed using an inert gas (eg, argon (Ar), nitrogen (N)).
  • an inert gas eg, argon (Ar), nitrogen (N)
  • the test is performed under two atmospheres, a hydrogen atmosphere, or a mixed gas atmosphere of an inert gas and hydrogen.
  • the atmospheric pressure gas pressure
  • the atmospheric pressure be equal to or higher than the atmospheric pressure. This increases the amount of hydrogen released from the mixture or the like after the mixing / crushing treatment.
  • a mixture of a metal hydride and a metal amide compound or the like contains a catalyst that enhances the ability to absorb and release hydrogen.
  • Suitable catalysts are B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn , Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag, at least one metal or a compound or alloy thereof, or a hydrogen storage alloy.
  • the amount of such a catalyst carried is preferably 0.1% by mass or more and 20% by mass or less based on a mixture of a metal hydride and a metal amide. If the amount of supported catalyst is less than 0.1% by mass, the effect of accelerating the hydrogen generation reaction cannot be obtained. If the amount exceeds 20% by mass, the reaction between the reactants such as metal hydrides is adversely affected, and The rate of hydrogen release per mass will be reduced.
  • One of the following three methods is used as a method for causing a mixture of a metal hydride and a metal amide compound to carry a catalyst that enhances the ability to absorb and release hydrogen. That is, (a) A method in which a catalyst is added when mixing and pulverizing a metal hydride and a metal amide compound, thereby allowing the metal hydride and the metal amide compound to be supported on an object to be processed (that is, a metal hydride, a metal amide compound, a mixture thereof, or a reactant thereof); ) A method in which the catalyst is supported on the workpiece by mixing the catalyst with the workpiece obtained by mixing and pulverizing the metal hydride and the metal amide compound, (C) the metal hydride and the metal amide compound Before mixing and pulverizing, a method having a catalyst capable of absorbing and releasing hydrogen supported on at least one of a metal hydride and a metal amide compound by a mixing and pulverizing treatment or the like is used
  • Mg (NH) is a high-purity mill made of chrome Mg in a high-purity Ar glove box.
  • the raw materials used in the invention are as shown in Table 5.
  • Table 66 shows the composition of the starting materials of Working Examples 5511-57. LiH, MgH, LiNH, Mg (
  • the selected raw material contains two types of metal elements as shown in Table 6.
  • Titanium trichloride (TiCl) is the total of the metal components of the starting material so that it has the specified composition. It was weighed in a high-purity Ar glove box so as to have a molar amount of 1. Omol%, and was charged into a high-chromium steel mill container with a valve. Subsequently, after evacuation of the inside of the mill container, high-purity hydrogen was introduced into the mill container so that the inside of the mill container became IMPa, and room temperature was set using a planetary ball mill device (Fritsch, P5). Milling was performed at 250 rpm for 2 hours under an air atmosphere. After milling, the mill container was evacuated and filled with Ar, and then taken out in a high-purity Ar glove box.
  • a planetary ball mill device Fritsch, P5
  • Table 6 shows the composition of the starting materials of Comparative Examples 51 and 52.
  • Comparative Example 51 LiH and LiNH were used, and in Comparative Example 52, the metal hydride and the metal amide compound contained one kind of metal.
  • MgH and Mg (NH 2) were each prepared so as to have a predetermined composition shown in Table 6, and TiCl
  • the temperature was raised at a rate of 5 ° C / min, and the desorbed gas from each sample was sampled and analyzed.
  • Fig. 13 shows the emission spectrum of desorbed hydrogen with increasing temperature by the TG-MASS device, that is, an explanatory diagram showing the relationship between temperature and hydrogen emission intensity.
  • the characteristic line a in FIG. 13 shows the example 51
  • the characteristic line b shows the example 52
  • the characteristic line c shows the comparative example 51
  • the characteristic line d shows the comparative example 52, respectively.
  • Table 6 also shows the peak temperature (° C) of the hydrogen emission spectrum curve of each sample (hereinafter referred to as “hydrogen emission peak temperature”).
  • the hydrogen release peak temperature of Example 51 was 192 ° C
  • the peak hydrogen release temperature of Example 52 was 209 ° C
  • the peak temperature of Comparative Example 51 was 239 ° C and that of Comparative Example 52 was 239 ° C. It was confirmed that the peak temperature of hydrogen release was lower than 317 ° C in this case. Further, as shown in Table 6, it was confirmed that in Examples 53-57, the hydrogen release peak temperature was lower than that in Comparative Example 51.
  • the hydrogen release peak temperature is lower, and the molar ratio between LiH and Mg (NH) is 2.5- 3
  • Table 7 shows the composition of the starting materials of Examples 58-62 described below.
  • a given raw material selected from LiH, MgH, LiNH, and Mg (NH) is
  • TiCl is used as a starting material so that it has a predetermined composition containing the elemental elements.
  • the solution was weighed in a high-purity Ar glove box so as to have a total molar amount of 1. Omol%, and charged into a high-chromium steel mill container with a valve. Subsequently, after evacuating the inside of the mill container, high-purity hydrogen was introduced into the mill container so that the inside of the mill container became IMPa, and the room temperature was adjusted using a planetary ball mill (Fritsch, P5). The milling treatment was performed at 250 rpm in an air atmosphere for 2 hours. After milling, the inside of the mill container was evacuated and filled with Ar. Later, it was taken out in a high purity Ar glove box
  • the hydrogen release peak temperature is lower than 52. Also, the molar ratio between MgH and LiNH is 0
  • Example 58-61 in the range of 5-2, the hydrogen release peak temperature was further lowered, and in Example 58-60 in which the molar ratio of MgH to LiNH was in the range of 0.5-1.
  • Metal amide compounds react metal hydrides with ammonia (NH).
  • Metal hydrides include lithium hydride (LiH), sodium hydride (NaH), potassium hydride (KH), rubidium hydride (RbH), cesium hydride (CsH), magnesium hydride (MgH), Calcium hydride (CaH), beryllium hydride (BeH),
  • the metal hydride preferably contains a hydride of an alkali metal or an alkaline earth metal. This is the hydrogen release of the metal amide compound obtained by the reaction. This is because the characteristics are good.
  • the metal hydride is finely divided by predetermined mechanical grinding.
  • reaction between LiH and NH is represented by the following formula (19). Also, the reaction between MgH and NH
  • the reaction is represented by the following formula (20), and the reaction between CaH and NH is represented by the following formula (21).
  • liquid ammonia (NH (liq)
  • NH liquid ammonia
  • reaction temperature is kept below the boiling point of NH (about -33 ° C).
  • N is kept below the boiling point of NH (about -33 ° C).
  • H (liq) is sufficiently stirred.
  • ammonia gas for example, pentane, hexane,
  • Metal hydrides are dispersed in various organic inert solvents such as saturated aliphatic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as benzene and toluene, alkyl halides such as chloroform, and ethers.
  • organic inert solvents such as saturated aliphatic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as benzene and toluene, alkyl halides such as chloroform, and ethers.
  • Examples of such simple metals or alloys include Li, Na, K, Be, Mg, Ca and the like.
  • the reaction between Li and NH is represented by the following formula (22).
  • the reaction of the metal amide compound described above may be any of a batch system, a semi-batch system, and a continuous system.
  • a hydrogen storage material having excellent hydrogen releasing characteristics can be obtained.
  • the yield of Mg (NH 2) was 72% by quantitative determination of the amount of hydrogen in the solution.
  • the container was returned to room temperature, the pressure of the generated gas was measured, and sampling was performed.
  • the yield of a mixture of Ca (NH 2) and LiNH (a solid equivalent to Ca Li (NH 2)) was 83%.
  • the yield was calculated by measuring the amount of hydrogen in the reaction gas collected from the inside of the mill after each milling, and the final yield of Ca (NH 3) was 83%.
  • the first material system includes a material composed of a mixture or a composite or a reaction product (mixture or the like) of a metal hydride and a metal amide compound, which is finely divided by a predetermined mechanical pulverization treatment.
  • the second material system includes a material obtained by hydrogenating a material containing a metal imide compound. The material contained in the second material system is also preferably finely divided by a predetermined mechanical pulverizing process.
  • the hydrogen release temperature decreases rapidly. Conversely, by setting the specific surface area to 15 m 2 Zg or more, the hydrogen release temperature can be greatly reduced. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is more preferably 30 m 2 / g or more. Here, the hydrogen release rate must be 3% by mass (111 & 33%) or more. [0199] In the case of a combination of LiH and Mg (NH), the hydrogen release temperature is lowered to lower the temperature.
  • the specific surface area by the BET method is 7.5 m 2 / g or more. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is preferably 15 m 2 / g or more.
  • the above equation (25a) is three times the coefficient of each substance in the above equation (23), and is substantially the same as the above equation (23).
  • the above equation (25b) is a reaction between the magnesium imide (MgNH) generated in the above equation (25a) and LiH.
  • MgN magnesium nitride
  • LiH is excessive in relation to Mg (NH).
  • Equation (24) becomes dominant as the mixing ratio increases to 2.67. If the mixing ratio of LiH to 1 mol of Mg (NH) is 2.67 stoichiometric
  • equation (24) predominates.
  • reaction probability of the other substance can be increased and hydrogen release can be promoted.
  • hydrogen storage rate with respect to the total amount is reduced.
  • the mixing ratio of LiH to 1 mol of Mg (NH) should be 1.5 mol or more and 4 mol or less.
  • the hydrogen storage rate be maintained higher than the other range by setting the molar ratio to 2.5 mol or more and 3.5 mol or less so that the above-mentioned formula (24) proceeds.
  • the specific surface area by the BET method is 7.5 m 2 Zg or more. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is preferably 15 m 2 / g or more.
  • the theoretical hydrogen storage rate is 7.08% by mass. Therefore, the composition ratio of MgH and LiNH changes.
  • the respective amounts of MgH and LiNH in consideration of the hydrogen storage rate, the utilization rate of the reactants, the vital properties of the hydrogen absorption / desorption reaction, and the like.
  • the amount be 0.5 mol or more and 2 mol or less. Further, as the above equation (27) progresses, the hydrogen storage rate can be maintained higher than the other range by adjusting the amount to 0.5 mol or more and 1 mol or less.
  • Materials obtained by hydrogenating a material containing a metal imide compound include materials obtained by hydrogenating lithium imide (Li NH), Mg N and Li NH
  • hydrogenation of a substance means that the substance changes into a state that has taken in hydrogen by reacting the substance with hydrogen.
  • hydrogenated Li NH can react Li NH with hydrogen.
  • the hydrogenated Li NH has a specific surface determined by the BET method to lower the hydrogen release temperature.
  • the product should be 10m 2 Zg or more. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is preferably 15 m 2 / g or more.
  • Li NH imidation by reacting lithium nitride (Li N) with hydrogen or Li
  • Li NH with a large surface area can be synthesized and hydrogenation can be promoted.
  • the specific surface area by the BET method is set to 5 m 2 Zg or more. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is preferably 10 m 2 Zg or more.
  • the various hydrogen storage materials described above preferably further include a catalyst for enhancing the ability to absorb and release hydrogen.
  • a catalyst for enhancing the ability to absorb and release hydrogen examples include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, ⁇ s, Mo, W, Ta, Zr, In, Hf, Ag
  • One or more metals selected from the group consisting of a metal, a compound thereof, an alloy thereof, and a hydrogen storage alloy are preferably used.
  • a hydrogen storage material composed of a mixture of a metal hydride and a metal amide compound is prepared by simultaneously grinding and mixing a predetermined amount of a metal hydride powder, a metal amide compound powder, and a catalyst, or
  • the hydride powder and the metal amide compound powder can be manufactured by pulverizing and mixing, adding a catalyst to the obtained object to be treated, and mixing. Then, the pulverizing and mixing conditions at that time are set so as to have a predetermined specific surface area after the pulverizing and mixing treatment.
  • a hydrogen storage material composed of hydrogenated Li NH is first combined with LiNH powder.
  • the LiNH powder is first mechanically pulverized and then obtained by the previous pulverization process.
  • the object to be treated supported on NH powder and then the catalyst is thermally decomposed and contained in the object to be treated.
  • the resulting LiNH may be converted to LiNH, and then the resulting LiNH may be hydrogenated.
  • the material obtained by hydrogenating a mixture of MgN and LiNH is, for example, LiNH powder and MgN
  • It can be manufactured by pulverizing and mixing 3 2 2 2 3 2 and then performing imidation and hydrogenation. After pulverizing the LiNH powder, it is imidized and the resulting LiNH and MgH are powdered.
  • It can also be produced by a method involving crushing and mixing, followed by hydrogenation.
  • the mechanical pulverization of the hydrogen storage material belonging to each of the above-mentioned material systems may be performed, for example, by subjecting the raw material powder to a ball mill, a roller mill, an inner / outer cylinder rotary type mill, an attritor, an inner piece type mill, an airflow type mill, or the like. Can be performed using various known pulverizing means.
  • LiH, LiNH and titanium trichloride (TiCl) (all manufactured by Aldrich, purity 95%)
  • MgH and LiNH are in a molar ratio of 3: 4, and high-purity Ar such that their total amount is 1.3 g.
  • the sample was weighed in a glove box and placed in a high-chromium steel mill container with a valve (250 cm 3 ). Next, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and the planetary ball mill was used at room temperature and 250i "pm for 3 to 360 minutes. After evacuating the inside of the mill container to fill it with Ar, the mill container was opened in a high-purity Ar glove box, and the samples were taken out.
  • a valve 250 cm 3
  • the sample was weighed in an Ar glove box and placed in a high-chromium steel mill container with a valve (250 cm 3 ). Then, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and the planetary ball mill was used at room temperature for 3 to 720 minutes at 250 rpm. Milling was performed to produce a plurality of samples having different specific surface areas. Subsequently, after the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and each sample was transferred to a stainless steel reaction container (50 cm 3 ). The inside of the stainless steel container was evacuated and heat-treated at 350 ° C for 6 hours to thermally decompose LiNH.
  • Li NH was synthesized. Further treatment of the obtained Li NH in hydrogen at 3MPa, 180 ° C for 12 hours
  • the ratio was set to 4: 1, and they were weighed in a high-purity Ar glove box so that the total amount thereof was 1.3 g, and was put into a high-chromium steel mill container with a valve (250 cm 3 ). Subsequently, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and the planetary ball mill device was used at room temperature and 250 ⁇ ⁇ for 3 360 minutes. Milling was performed to produce a plurality of samples with different specific surface areas. Next, after the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and a sample was taken out.
  • the sample after milling in a high-purity glove box was transferred to a stainless-steel reaction vessel (50 cm 3 ), evacuated, then introduced with high-purity hydrogen, and kept at 220 ° C, 3 MPa, and 12 hours for hydrogenation.
  • a stainless-steel reaction vessel 50 cm 3
  • high-purity hydrogen was kept at 220 ° C, 3 MPa, and 12 hours for hydrogenation.
  • the BET specific surface area of each sample prepared as described above was measured using a multipoint BET measurement (ASAP2400, manufactured by Micromeritics) with nitrogen gas.
  • the mass reduction rate between 30 ° C and 250 ° C of the TG curve obtained from the TG / DTA measurement from room temperature to 400 ° C was determined from the TG curve, and this was defined as the hydrogen release rate.
  • Figure 14 shows the DTA curves of four samples A to D selected from the prepared samples.
  • Sample A was crushed at 250 rpm for 3 minutes
  • Sample B was crushed at 250 rpm for 10 minutes
  • Sample C was crushed at 250 rpm for 30 minutes
  • Sample D was crushed at 250 rpm for 120 minutes.
  • the specific surface areas of Samples A to D are 11.6 m 2 Zg, 19.9 m 2 / g, 34.8 m 2 / g, and 40.5 m 2 / g.
  • the hydrogen release temperature the temperature of the valley position of the endothermic reaction indicated by the black dot in FIG. 14
  • Sample A is outside the scope of the present invention
  • Samples BD are within the scope of the present invention.
  • Fig. 15 shows a graph showing the relationship between the specific surface area of each sample, the hydrogen release temperature, and the hydrogen release rate. According to Fig. 15, the BET specific surface area of LiH + LiNH based hydrogen storage material is 1
  • the temperature of hydrogen release drops sharply from around 320 ° C to 270 ° C or less, and the hydrogen release rate becomes 2% by mass or more.
  • the hydrogen release temperature was 260 ° C or less when the BET specific surface area was 30 m 2 Zg or more. It was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3% by mass.
  • Figure 16 shows a graph showing the relationship between the specific surface area of each sample and the hydrogen release temperature and hydrogen release rate.
  • LiH + Mg (NH 2) based hydrogen storage material has a BET specific surface area of 7.5 m 2
  • Figure 17 shows a graph showing the relationship between the specific surface area of each sample and the hydrogen release temperature and hydrogen release rate.
  • the BET specific surface area is 7.5 m 2 / g or more
  • the temperature at which the hydrogen release temperature exceeded 230 ° C decreased to 230 ° C or lower, and the hydrogen release rate also increased to 2% by mass. That's all.
  • the hydrogen release temperature was 220 ° C or less when the BET specific surface area was 15 m 2 Zg or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3% by mass.
  • Figure 18 shows a graph showing the relationship between the specific surface area of each sample and the hydrogen release temperature and hydrogen release rate.
  • Hydrogenated Li NH has a BET specific surface area of 10m
  • the hydrogen release temperature is When the BET specific surface area was 15 m 2 / g or more, the temperature was 280 ° C or less. It was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3% by mass.
  • Figure 19 shows a graph showing the relationship between the specific surface area of each sample, the hydrogen release temperature and the hydrogen release rate.
  • the hydrogen release temperature exceeded 240 ° C compared to the case of less than 5 m 2 / g, but the temperature dropped to 240 ° C or less.
  • the release rate was 2% by mass or more.
  • the hydrogen release temperature was 230 ° C or less when the BET specific surface area was 10 m 2 Zg or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3% by mass.
  • This hydrogen storage material is roughly divided into two material systems, and the first material system includes a mixture or a composite containing a metal hydride, a metal amide compound, and a catalyst that enhances the ability to absorb and release hydrogen.
  • a hydrogen storage material having a compound or a reactant (such as a mixture) belongs to the second material system, and a hydrogenated hydrogen storage material containing a metal imide compound and a nanoparticle catalyst belongs to the second material system.
  • a catalyst composed of nanoparticles hereinafter referred to as “nanoparticle catalyst” is used. By loading the nanoparticle catalyst on the hydrogen storage material, the hydrogen release temperature can be lowered.
  • nanoparticles refer to particles having a particle size substantially smaller than the submicron order.
  • the nanoparticle catalyst according to the present invention has a predetermined hydrogen storage according to this general definition.
  • hydrogen release temperature the peak temperature of the hydrogen release spectrum
  • a microparticle catalyst having the same composition as the nanoparticle catalyst is added to the hydrogen storage material at the same addition rate. It refers to one that shows the effect of lowering by 10 ° C or more.
  • microparticle catalyst refers to particles having an average particle diameter of 0.5 111 or more and 30 111 or less, or particles in which 90% or more of the particles are in the range of 0.1 ⁇ m or more and 100 ⁇ m or less. or, the BET specific surface area is intended to refer to 1. 0 m 2 Zg super 20 m 2 Zg particles less than.
  • the first material force will be described.
  • Any of lithium (Li), magnesium (Mg), and calcium (Ca) is preferably used as the metal species of the metal hydride and the metal amide compound. From the viewpoint of lowering the hydrogen release temperature, it is preferable to use two or more metal species of these metal hydrides and metal amide compounds.
  • Lithium hydride (LiH) and magnesium amide (Mg (N) Lithium hydride (LiH) and magnesium amide (Mg (N)
  • 22 is preferably determined in consideration of the hydrogen storage rate, the utilization rate of the reactants, the cycle characteristics of the hydrogen absorption / desorption reaction, and the like. Specifically, for 1 mole of Mg (NH)
  • the mixing ratio of LiH be 2 mol or more and 5 mol or less. Furthermore, as the above equation (24) progresses, by setting the mixing ratio of 2.5 mol or more to 3.5 mol or less, the hydrogen storage rate can be increased. Can be maintained higher than the other ranges.
  • Another preferred combination includes magnesium hydride (MgH 2) and lithium amide (Li
  • MgH and LiNH are also stored in hydrogen.
  • the mixing ratio of MgH is 0.5 mol or more and 3 mol or less. Furthermore, even more
  • the hydrogen storage rate can be maintained higher than the other range.
  • the loading amount of the nanoparticle catalyst is preferably 0.1% by mass or more and 20% by mass or less based on the total amount of the mixture of the metal hydride and the metal amide compound. If the catalyst addition ratio is less than 0.1% by mass, the effect as a catalyst is not substantially obtained, and if it exceeds 20% by mass, the hydrogen absorption / desorption reaction is adversely inhibited, and the hydrogen release ratio with respect to the total amount decreases.
  • any of the following four methods can be used.
  • a nanoparticle catalyst is added to a metal hydride and a metal amide compound, and the mixture is placed under an inert gas atmosphere or a hydrogen atmosphere, or a mixed gas atmosphere of an inert gas and hydrogen (hereinafter, referred to as a mixed gas atmosphere).
  • a mixed gas atmosphere a mixed gas atmosphere of an inert gas and hydrogen
  • a metal hydride and a metal amide compound are mixed under an inert gas atmosphere or the like.
  • the particles are mixed and refined by mechanical pulverization, and a nanoparticle catalyst is added to the object to be treated thus obtained, so that the object to be treated carries the nanoparticle catalyst.
  • a nanoparticle catalyst is added to one or the other of the metal hydride and the metal amide compound, and the mixture is refined and mechanically pulverized under an inert gas atmosphere or the like, and thus, This is a method of mixing and pulverizing the obtained object and the other under an inert gas atmosphere or the like.
  • a nanoparticle catalyst is added to each of the metal hydride and the metal amide compound, and each of the metal hydride and the metal amide compound is subjected to mechanical pulverization treatment under an inert gas atmosphere or the like.
  • This is a method of mixing and pulverizing, and mixing and pulverizing the objects to be processed thus obtained under an inert gas atmosphere or the like. In the latter stage of the mixing and pulverizing process, the pulverizing does not substantially occur, or the mixing and pulverizing process under the conditions may be performed.
  • the hydrogen storage material belonging to the second material system includes a metal imide compound and a nanoparticle catalyst, and is hydrogenated.
  • the definition of “hydrogenation of a substance” is as described above.
  • hydrogenated Li NH can be converted from Li NH to water.
  • Li NH is kept under a hydrogen atmosphere at a predetermined pressure and a predetermined temperature for a predetermined time.
  • the amount of the supported nanoparticle catalyst is preferably 0.1% by mass or more and 20% by mass or less of the total amount of the metal imide compound.
  • Li NH is the reaction of lithium nitride (Li N) with hydrogen or the thermal decomposition of LiNH.
  • Li NH is Li
  • the second material system includes a metal imide compound, a metal nitride, and a nanoparticle catalyst, and also includes a hydrogenated hydrogen storage material.
  • a metal imide compound such as Li NH and magnesium nitride.
  • the supported amount of the nanoparticle catalyst is 0.1 mass of the total amount of Li NH and Mg N.
  • nanoparticle catalyst contained in the various hydrogen storage materials described above examples include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, and Nb. , La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, ⁇ s, Mo, W, Ta, Zr, In, Hf, Ag Alternatively, a compound or an alloy thereof, or a hydrogen storage alloy is preferably used.
  • nanometal particles, nanometal oxide particles, and nanometal chlorides are suitably used. More preferred examples of nanoparticle catalysts include TiO (
  • the first production method is a method in which a nanoparticle catalyst is added to a metal imide compound, mixed and refined by a predetermined mechanical pulverization treatment in an inert gas atmosphere or the like, and then hydrogenated.
  • a metal nitride and a metal imide compound are mixed and refined by a predetermined mechanical pulverizing treatment under an inert gas atmosphere or the like, and the thus-obtained object is treated with a nanoparticle catalyst.
  • This is a method in which a nanoparticle catalyst is supported on an object to be treated, followed by hydrogenation.
  • a nanoparticle catalyst is added to either the metal nitride or the metal imide compound, and the mixture is pulverized and pulverized by mechanical pulverization in an inert gas atmosphere or the like.
  • This is a method in which the obtained object and the other are mixed and pulverized in an inert gas atmosphere or the like, and then hydrogenated.
  • a nanoparticle catalyst is added to each of a metal nitride and a metal imide compound.
  • the metal nitride and the metal imide compound are mixed and refined by mechanical pulverization in an inert gas atmosphere or the like for each metal nitride and metal imide compound, and the objects to be treated thus obtained are mixed and pulverized in an inert gas atmosphere or the like.
  • the mixing and pulverizing treatment substantially no pulverizing occurs, and the mixing and pulverizing treatment may be performed under conditions.
  • the raw material powder is processed by, for example, a ball mill, a roller mill, an inner / outer cylinder rotary mill, an attritor, an inner piece mill, an airflow mill, or the like.
  • a ball mill for example, a ball mill, a roller mill, an inner / outer cylinder rotary mill, an attritor, an inner piece mill, an airflow mill, or the like.
  • addition of an inorganic carrier, a synthetic product carrier, a plant carrier, an organic solvent, or the like as a pulverization aid is effective in efficiently refining the raw material powder.
  • the medium was weighed in a high-purity argon (Ar) glove box such that the molar ratio was 1: 1: 0.02 and the total amount was 1.3 g. 250cm 3 ).
  • high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and room temperature was reduced using a planetary ball mill (Fritsch, P5). Milling treatment was performed at 250 rpm for 120 minutes. After the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and a sample was taken out.
  • the TiO nanoparticles had a purity of 82.8% and a BET specific surface area of Millennium Chemicals.
  • the surface area is 18m 2 / g
  • the average particle size of the Ti nanoparticles is lnm
  • the Ti microparticles have a purity of 99.9% and a particle size of 10-100 / im, manufactured by Rare Metals.
  • the raw material LiNH and the various catalysts were mixed at a molar ratio of 1: 0.01 so that the final molar ratio of LiNH and the various catalysts was 1: 0.02. It was weighed in a high-purity Ar glove box so as to have a weight of 1.3 g, and charged into a mill container (250 cm 3 ) made of high chromium steel with a valve. Subsequently, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the mill container internal force became SlMPa, and milling was performed at room temperature and 250 rpm for 120 minutes using a planetary ball mill. went.
  • the mill container was opened in a high-purity Ar glove box, and a sample was taken out and transferred to a stainless steel reaction container (50 cm 3 ).
  • LiNH was thermally decomposed by heat treatment at 350 ° C for 6 hours to synthesize LiNH supporting various catalysts. Further, the obtained Li NH was treated in hydrogen at 3 MPa and 180 ° C. for 12 hours to be hydrogenated.
  • MgH manufactured by ADAMAX, purity 95%) was reacted with ammonia to synthesize Mg (NH 2).
  • Mg (NH) synthesized with LiH and various catalysts were used.
  • the mixture was weighed in a high-purity Ar glove box so as to have a molar ratio of 8: 3: 0.11 and a total amount of 1.3 g, and charged into a high-chromium steel mill container with a valve (250 cm 3 ). Subsequently, after evacuation of the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and milling was performed at room temperature and 250 rpm for a predetermined time using a planetary ball mill. did. After the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and a sample was taken out.
  • Example 85 8 3 0.11 190 Comparative Example 85 8 3 0.11 212
  • Example 86 8 3 0.11 197 Comparative Example 86 8 3 0.11 207 Preparation of LiNH + MgH-based Samples (Examples 87 and 88, Comparative Examples 87 and 88))
  • LiNH, MgH and various catalysts were mixed at a molar ratio of 4: 3: 0
  • the measurement of the BET specific surface area was performed by multipoint BET measurement (Micromeritics, ASAP2400) using nitrogen gas. Further, installed in a high purity Ar glow O in Bed Box TG- ⁇ 1 ⁇
  • the temperature was raised at a rate of 5 ° C / min, and the hydrogen emission spectrum was measured.
  • the peak temperature was defined as the hydrogen release temperature.
  • FIG. 20 is a graph showing the hydrogen release spectra of Example 81 and Comparative Example 81
  • FIG. 21 is a graph showing the hydrogen release spectra of Example 82 and Comparative Example 82
  • Table 8 also shows the hydrogen release temperatures of Examples 81 and 82 and Comparative Examples 81 and 82.
  • 20 and 21 and Table 8 show that the use of the nanoparticle catalyst narrows the temperature range in which the hydrogen release reaction occurs and shifts the hydrogen release temperature to a lower temperature.
  • the total amount of hydrogen released up to 250 ° C. is greater in Example 81 than in Comparative Example 81. Ru same this and force s words also Comparative Example 82 Example 82.
  • Fig. 22 is a flowchart showing a process for producing a hydrogen storage material having two or more types of catalysts supported thereon.
  • a metal hydride which is one of the components constituting the hydrogen storage material
  • a first catalyst for promoting the hydrogen release reaction of the hydrogen storage material and A predetermined amount of each of the inorganic substance and the inorganic substance is weighed, and these are crushed and mixed under predetermined conditions (first step).
  • the processing atmosphere in the first step is preferably a hydrogen atmosphere.

Abstract

A material for storing hydrogen which comprises a lithium imide compound precursor composite material which has been converted to have a manometer size and to form a composite having a desired structure and shape, wherein the lithium imide compound precursor composite material is prepared by a method comprising mixing a fine lithium amide powder, as a starting material, with a fine lithium powder at a prescribed ratio and treating the resultant mixture with a prescribed treating process.

Description

明 細 書  Specification
水素貯蔵材料およびその製造方法ならびにその製造装置  Hydrogen storage material, method for producing the same, and apparatus for producing the same
技術分野  Technical field
[0001] 本発明は燃料電池等の原料となる水素を効率よく貯蔵する水素貯蔵材料およびそ の製造方法ならびにその製造装置、さらには水素発生方法、水素貯蔵材料に用いら れる水素貯蔵材料前駆体とその製造方法、水素貯蔵材料を充填するための水素貯 蔵材料充填容器とこれを搭載した移動体、水素貯蔵材料に対する水素の吸放出に 用いられる気体精製装置に関する。  The present invention relates to a hydrogen storage material for efficiently storing hydrogen as a raw material for a fuel cell and the like, a method for producing the same, a production apparatus therefor, a hydrogen generation method, and a hydrogen storage material precursor used for the hydrogen storage material The present invention relates to a hydrogen storage material filling container for filling a hydrogen storage material, a moving body equipped with the same, and a gas purification device used for absorbing and releasing hydrogen to and from the hydrogen storage material.
^景技術  ^ Scenic technology
[0002] NOや SO等の有害物質や CO等の温室効果ガスを出さないクリーンなエネルギ  [0002] Clean energy that does not emit harmful substances such as NO and SO and greenhouse gases such as CO
X X 2  X X 2
一源として燃料電池の開発が盛んであり、既に幾つかの実用化がなされている。燃 料電池技術を支える重要な技術として、燃料電池の原料となる水素を貯蔵する技術 がある。水素の貯蔵形態としては高圧ボンベによる圧縮貯蔵や液体水素としての冷 却貯蔵も提案されている。  Fuel cells are being actively developed as one source, and some of them have already been commercialized. An important technology that supports fuel cell technology is the technology that stores hydrogen, which is a raw material for fuel cells. As a form of hydrogen storage, compression storage using a high-pressure cylinder or cold storage as liquid hydrogen has also been proposed.
[0003] しかし、高圧ガスボンベによる水素の貯蔵では、水素貯蔵量を増加させるためには 、水素圧力を高めていく必要があり、容器の重量が重くなるとともに、バルブなどの耐 圧性や信頼性に問題がある。また、水素を液体として貯蔵する手段としては、液体水 素を断熱容器に貯蔵する方法があるが、液体水素は沸点が非常に低ぐ液化のため に多くのエネルギーを要するとともに、断熱容器への液体水素の供給時に蒸発によ る損失が 10— 20%、断熱をしても 8%の水素が蒸発すると言われており、経済的に 問題がある。  [0003] However, in the storage of hydrogen by a high-pressure gas cylinder, it is necessary to increase the hydrogen pressure in order to increase the hydrogen storage amount, which increases the weight of the container and the pressure resistance and reliability of valves and the like. There's a problem. As a method of storing hydrogen as a liquid, there is a method of storing liquid hydrogen in an insulated container.Liquid hydrogen has a very low boiling point and requires a lot of energy for liquefaction. It is said that the loss due to evaporation during the supply of liquid hydrogen is 10-20%, and that even if insulation is provided, 8% of the hydrogen evaporates, which is economically problematic.
[0004] そこで、このような問題を解決するために、分散貯蔵'輸送に有利な水素貯蔵物質 による水素貯蔵技術が注目されている。 R&D News Kansai 2002.7, p38~40に記載さ れているように、水素貯蔵物質として、希土類系、チタン系、バナジウム系、マグネシ ゥム系等の金属材料、可逆的な不均化反応を利用したァラネート(例えば、 NaAlH  [0004] In order to solve such a problem, attention has been paid to a hydrogen storage technology using a hydrogen storage material that is advantageous for distributed storage and transport. As described in R & D News Kansai 2002.7, pp. 38-40, as a hydrogen storage material, metal materials such as rare earth, titanium, vanadium, and magnesium, and reversible disproportionation reactions were used. Alanate (eg, NaAlH
4 等)等の軽量元素無機化合物系材料、カーボンナノチューブ、活性炭等の炭素系材 料が知られており、このうち、軽量元素無機化合物系材料と炭素系材料が軽量材料 として有望であり、これらは粉体系の材料である。 4)) and other carbon-based materials such as carbon nanotubes and activated carbon. Of these, lightweight-based inorganic compound-based materials and carbon-based materials are light-weight materials. And these are powder-based materials.
[0005] そこで、このような粉体系の軽量材料による効率のよい貯蔵技術の開発、具体的に は、単位重量当たりの水素貯蔵率の高い水素貯蔵材料の開発、単位体積当たりの 水素貯蔵率の高い水素貯蔵材料の開発、低い温度領域で水素の吸収 ·放出性能を 示す水素貯蔵材料の開発、良好な耐久性を有する水素貯蔵材料の開発、が望まれ ている。  [0005] Therefore, the development of an efficient storage technology using such a powder-based lightweight material, specifically, the development of a hydrogen storage material having a high hydrogen storage rate per unit weight, the development of a hydrogen storage rate per unit volume, and the like. There is a demand for the development of a high hydrogen storage material, the development of a hydrogen storage material that exhibits hydrogen absorption and desorption performance in a low temperature range, and the development of a hydrogen storage material with good durability.
[0006] また、粉体系の水素貯蔵材料の量産的製造方法や製造装置、水素貯蔵材料の効 率的な貯蔵方法 (具体的には、所定の容器への充填方法)、所定の容器等に充填さ れた水素貯蔵材料力 の簡便な水素放出方法、水素貯蔵材料が水素を放出した後 (または水素を吸蔵する前)の状態である水素貯蔵材料前駆体への効率的な水素吸 蔵方法、水素貯蔵材料から放出された水素を主成分とする燃料ガスの燃料電池へ 供給方法等についても、個々の水素貯蔵材料に適した設計が必要とされる。  [0006] In addition, a method and apparatus for mass-producing a powder-type hydrogen storage material, an efficient storage method of a hydrogen storage material (specifically, a method of filling a predetermined container), and a method for storing a predetermined container. A simple hydrogen release method using the filled hydrogen storage material power, and an efficient hydrogen storage method for the hydrogen storage material precursor after the hydrogen storage material has released hydrogen (or before storing hydrogen). Also, a design suitable for each hydrogen storage material is required for a method of supplying a fuel cell mainly containing hydrogen released from the hydrogen storage material to the fuel cell.
[0007] そこで最初に従来の粉体系の水素貯蔵材料を材料面から見てみる。軽量な水素貯 蔵材料として、 NaAlHや LiAlH等ァラネート系材料がよく知られ、研究されている  [0007] First, a conventional powder-type hydrogen storage material will be examined from the material side. Alanate-based materials such as NaAlH and LiAlH are well known and studied as lightweight hydrogen storage materials.
4 4  4 4
。また、下記(1)式で示されるリチウム窒化物を用いた水素貯蔵方法が、 Ruff, 0., and Goerges, Η·, Benchte der Deutschen Cnemischen eselischaft zu Berlin, Vol.44, 502-6 (1911)に報告されている。最近になってこの下記(1)式に示すリチウム 窒化物を用いた水素貯蔵方式が再確認され、 Ping Chen et al., Interaction of hydrogen with metal nitrides and imides, NATURE Vol.420, 21 NOVEMBER 2002, P302-304に報告されてレ、る。  . The hydrogen storage method using lithium nitride represented by the following formula (1) is described in Ruff, 0., and Goerges, Η ·, Benchte der Deutschen Cnemischen eselischaft zu Berlin, Vol.44, 502-6 (1911) Has been reported to. Recently, the hydrogen storage method using lithium nitride shown in the following formula (1) was reconfirmed, and Ping Chen et al., Interaction of hydrogen with metal nitrides and imides, NATURE Vol. 420, 21 NOVEMBER 2002, Reported on P302-304.
Li N + 2H Li NH + LiH + H LiNH + 2ΠΗ· · · (1)  Li N + 2H Li NH + LiH + H LiNH + 2ΠΗ
3 2 2 2 2  3 2 2 2 2
[0008] これらの文献によれば、窒化リチウム (Li N)による水素の吸収は 100°C程度から開  [0008] According to these documents, the absorption of hydrogen by lithium nitride (LiN) starts at about 100 ° C.
3  Three
始し、 255°C、 30分で 9. 3質量%の水素吸収が確認されている。また、吸収した水 素の放出特性としては、昇温速度を落としてゆっくり加熱することにより 200°C弱で 6 . 3質量%、 320°C以上で 3質量%と 2段階のステップを経ることが報告されている。  Starting at 255 ° C for 30 minutes, hydrogen absorption of 9.3% by mass was confirmed. In addition, the release characteristics of absorbed hydrogen are as follows: two steps: 6.3% by mass at a little less than 200 ° C and 3% by mass at a temperature of 320 ° C or more by slow heating at a reduced rate. Have been reported.
[0009] すなわち、上式(1)の右側部分に相当する下記(2)式に示されるリチウムアミド (Li NH )と水素化リチウム(LiH)の反応は 200°C弱で進行し始め、上式(1)の左側部[0009] That is, the reaction between lithium amide (Li NH 3) and lithium hydride (LiH) represented by the following formula (2), which corresponds to the right portion of the above formula (1), starts to proceed at a little less than 200 ° C. Left side of equation (1)
2 2
分に相当する下記(3)式に示されるリチウムイミド (Li NH)と LiHの反応は 320°C以 上で進行し始めることが示されている。 The reaction between lithium imide (Li NH) and LiH shown in formula (3) below It is shown to begin to progress above.
LiNH + 2LiH→Li NH + LiH + H † - - - (2)  LiNH + 2LiH → Li NH + LiH + H †---(2)
2 2 2  2 2 2
Li NH + LiH→Li N + H ΐ…(3)  Li NH + LiH → Li N + H ΐ… (3)
2 3 2  2 3 2
[0010] 図 1に、上記文献と同様の方法によって、 Li Nを水素圧 3MPa、 200°Cで水素吸  [0010] Fig. 1 shows that LiN was absorbed at a hydrogen pressure of 3 MPa and 200 ° C by a method similar to that of the above-mentioned literature.
3  Three
蔵した後、この試料を加熱して得た脱離ガスの放出スペクトル特性線図を示す。ここ で、試料の昇温速度は 5°C/分とした。図 1中の特性線 Aは水素の放出スペクトル線 を、図 1中の特性線 Bはアンモニアガス(NH (g) )の放出スぺクトノレ線をそれぞれ示  After the storage, the sample is heated to obtain a desorption gas emission spectrum diagram. Here, the heating rate of the sample was 5 ° C / min. The characteristic line A in FIG. 1 shows the emission spectrum line of hydrogen, and the characteristic line B in FIG. 1 shows the emission spectrum line of ammonia gas (NH (g)).
3  Three
している。この図 1から明らかなように、従来法での水素放出特性は、その温度域が 2 00°C— 400°Cの広範囲にわたっており、高温側(320°C付近)に大きなピークを有し ている。  are doing. As can be seen from Fig. 1, the hydrogen release characteristics of the conventional method have a wide temperature range from 200 ° C to 400 ° C, and have a large peak on the high temperature side (around 320 ° C). I have.
[0011] このように上記文献の技術は、リチウム窒化物という軽量な金属化合物を用いた有 効な水素貯蔵方法ではあるが、 200°C程度の低レ、温度域での有効水素貯蔵率は小 さぐ高容量の水素吸収 ·放出を実現するためには 320°C以上の高い温度域に加熱 する必要があるという問題点がある。また、上記文献に記載の技術では、水素吸収 · 放出のピーク温度が近くなるにしたがって昇温速度を小さくして長い時間を掛けてカロ 熱しているので、高応答性のものではなぐ実用的ではない。  [0011] As described above, the technology of the above-mentioned document is an effective hydrogen storage method using a lightweight metal compound called lithium nitride, but the effective hydrogen storage rate in a temperature range as low as about 200 ° C is low. There is a problem that it is necessary to heat to a high temperature range of 320 ° C or higher in order to realize high-capacity hydrogen absorption and release. In addition, in the technology described in the above-mentioned literature, the heating rate is reduced as the peak temperature of hydrogen absorption and desorption becomes closer, and heat is applied over a long period of time. Absent.
[0012] 続いて粉体系の水素貯蔵材料の製造方法と製造装置の観点から従来技術を見て みる。例えば、本発明者らは先に、特開 2001-302224号公報において、水素雰囲 気下で機械的に粉碎処理することで、ナノ構造化されたグラフアイトが得られることこ とを開示している。このような微細な粉碎には高エネルギーが必要なことから、特開 2 001— 302224号公報では、高エネルギーで機械的粉砕を行うことができる遊星型ボ ールミルを用いることが記載されている。このような粉砕方法は、上記窒化リチウム等 のリチウム系材料ゃァラネート系材料にも適用することができる。  [0012] Next, conventional technologies will be examined from the viewpoint of a method and an apparatus for producing a powder-type hydrogen storage material. For example, the present inventors have previously disclosed in Japanese Patent Application Laid-Open No. 2001-302224 that a nanostructured graphite can be obtained by mechanically pulverizing under a hydrogen atmosphere. ing. Since high energy is required for such fine grinding, Japanese Patent Application Laid-Open No. 2001-302224 describes the use of a planetary ball mill capable of mechanical grinding with high energy. Such a pulverization method can also be applied to a lithium-based material such as the above-mentioned lithium nitride and a dianate-based material.
[0013] し力、しながら、遊星型ボールミルは、高エネルギーを被粉砕物に与えることは可能 であるものの、重力式であるため大型化には限界があり、量産には不向きという問題 がある。また、遊星型ボールミルによる粉砕処理は乾式粉砕であるために、粉砕が進 んで被粉砕物が微細粒化すると、粒子の凝集が起こり易くなり、これによつて粉砕が 進み難くなるという問題がある。さらに、粉砕処理後の水素貯蔵材料を別の容器に移 さなければならず、し力もこの作業は所定の水素貯蔵材料によっては空気等に触れ ないように不活性雰囲気で行う必要がある等、粉碎処理後の水素貯蔵材料の取り扱 いは容易ではない。 [0013] However, although the planetary ball mill can give high energy to the material to be crushed, it has a problem that it is not suitable for mass production because it is of a gravity type, so there is a limit in increasing its size. . In addition, since the pulverization process using a planetary ball mill is dry pulverization, if pulverization proceeds and the material to be pulverized becomes finer, aggregation of particles is likely to occur, which makes pulverization difficult. . Furthermore, transfer the hydrogen storage material after the grinding process to another container. It is not easy to handle the hydrogen storage material after crushing because it is necessary to perform this work in an inert atmosphere so that it does not come into contact with air etc. depending on the specified hydrogen storage material. .
[0014] なお、このように機械的粉砕によって水素貯蔵材料を製造する方法とは別の方法 で水素貯蔵材料前駆体を得ることができれば、水素貯蔵率を増大させることができる 可能性がある。このため、水素貯蔵率を増大させることができる水素貯蔵材料前駆体 およびその製造方法の開発も強く望まれている。  [0014] If a hydrogen storage material precursor can be obtained by a method different from the method of producing a hydrogen storage material by mechanical pulverization, there is a possibility that the hydrogen storage rate can be increased. Therefore, development of a hydrogen storage material precursor capable of increasing the hydrogen storage rate and a method for producing the same are also strongly desired.
[0015] 次に、水素貯蔵材料の貯蔵方法の観点から従来技術を見てみる。従来から、水素 ボンベに代わって、小さい容積で多量の水素を貯蔵できる水素貯蔵タンクが研究開 発されてきた。このような水素貯蔵タンクに用いられる水素貯蔵材料としては水素吸 蔵合金の開発が進められおり、水素吸蔵合金を使用した水素貯蔵タンクについて提 案力 特開 2000— 120996号公報、特開 2002— 122294号公報、特開 2002— 221 297号公報、特開 2002-340430号公報に記載されている。  [0015] Next, conventional techniques will be examined from the viewpoint of a method of storing a hydrogen storage material. Conventionally, hydrogen storage tanks that can store large amounts of hydrogen in small volumes have been researched and developed in place of hydrogen cylinders. As a hydrogen storage material used in such a hydrogen storage tank, a hydrogen storage alloy is being developed, and a hydrogen storage tank using the hydrogen storage alloy is proposed in Japanese Patent Application Laid-Open Nos. 2000-120996 and 2002- No. 122294, JP-A-2002-221297 and JP-A-2002-340430.
[0016] し力しながら、水素吸蔵合金は単位重量あたりの水素吸蔵率が低ぐ水素吸蔵合 金を使用した水素貯蔵タンクは実用化には至っていない。一方、ァラネート系材料や カーボン系材料、窒化リチウム等のリチウム系材料等の軽量な粉体系の水素貯蔵材 料は、従来の吸蔵合金とは異なる粉体特性や水素吸蔵放出特性を示すことから、そ れらを充填するための充填容器は、その特性にあった構造にしなければ、単位体積 あたりの水素貯蔵量を十分に確保することができない。このような軽量な粉体系の水 素貯蔵材料の充填容器に関する開発は十分になされていない。  However, the hydrogen storage alloy has a low hydrogen storage rate per unit weight, and a hydrogen storage tank using a hydrogen storage alloy has not yet been put into practical use. On the other hand, lightweight powder-based hydrogen storage materials such as arylate-based materials, carbon-based materials, and lithium-based materials such as lithium nitride exhibit powder characteristics and hydrogen storage-release characteristics different from those of conventional storage alloys. Unless the filling container for filling them has a structure that meets the characteristics, it is not possible to secure a sufficient amount of hydrogen storage per unit volume. The development of such lightweight powder-based hydrogen storage material filled containers has not been sufficiently developed.
[0017] 次に、水素貯蔵材料からの水素放出方法および水素貯蔵材料前駆体への水素吸 蔵方法の観点から従来技術を見てみる。粉体系の水素貯蔵材料と水素貯蔵材料前 駆体による水素の吸放出は、水素貯蔵材料充填容器に充填された水素貯蔵材料前 駆体に水素を圧入接触させて水素化合物として水素を保持させたり、逆に水素貯蔵 材料を加熱して水素を発生させることにより、行われてレ、た。  Next, conventional techniques will be examined from the viewpoint of a method of releasing hydrogen from a hydrogen storage material and a method of storing hydrogen in a hydrogen storage material precursor. The absorption and desorption of hydrogen by the powdered hydrogen storage material and the hydrogen storage material precursor can be achieved by press-contacting hydrogen into the hydrogen storage material precursor filled in the hydrogen storage material filling container to hold hydrogen as a hydrogen compound. Conversely, this was accomplished by heating the hydrogen storage material to generate hydrogen.
[0018] しかし、このような方法では、水素の吸放出を繰り返すと、水素貯蔵材料 (または水 素貯蔵材料前駆体)が凝集して水素貯蔵容器の下部に密に詰まり、水素の吸放出 効率が低下するという問題があった。 [0019] そこで、このような問題を解決するために、例えば、特開昭 62-108702号公報に は、水素吸蔵用合金粉末が充填されている水素貯蔵容器において、下部に水素導 入管を、上部に水素放出管を設けることにより水素吸蔵用合金粉末の凝集と過密化 を抑制した水素貯蔵材料充填容器が開示されている。 [0018] However, in such a method, when the absorption and desorption of hydrogen are repeated, the hydrogen storage material (or the hydrogen storage material precursor) is agglomerated and closely packed in the lower part of the hydrogen storage container, and the hydrogen absorption and desorption efficiency is reduced. However, there was a problem that was reduced. Therefore, in order to solve such a problem, for example, Japanese Patent Application Laid-Open No. 62-108702 discloses a hydrogen storage container filled with an alloy powder for hydrogen storage, in which a hydrogen inlet pipe is provided at a lower portion. Disclosed is a hydrogen storage material-filled container in which a hydrogen releasing tube is provided at an upper portion to suppress agglomeration and overcrowding of the alloy powder for hydrogen storage.
[0020] しかし、特開昭 62—108702号公報に記載の方法では、充填容器の形状によって は水素貯蔵材料の過密化を十分に防げなかったり、水素貯蔵材料前駆体と水素と の接触が不均一になることがある。また、飛散した水素貯蔵材料 (または水素貯蔵材 料前駆体)が水素放出管の水素放出口に目詰まりすることにより水素放出効率が低 下するといつた問題がある。  However, according to the method described in Japanese Patent Application Laid-Open No. 62-108702, depending on the shape of the filling container, it is not possible to sufficiently prevent the hydrogen storage material from becoming overcrowded, or the contact between the hydrogen storage material precursor and hydrogen is insufficient. May be uniform. Another problem is that the hydrogen storage efficiency (or hydrogen storage material precursor) decreases when the hydrogen storage material (or hydrogen storage material precursor) is clogged in the hydrogen discharge port of the hydrogen discharge tube.
[0021] 次に、燃料電池への燃料ガス供給の観点から従来技術を見てみる。従来の高圧ボ ンべによる圧縮貯蔵や液体水素化させる冷却貯蔵においては、その貯蔵の処理また は水素を取り出すハンドリング途中において、空気とともに水分が混入し、この水分 が燃料電池に導入させるとこれを被毒させるという一般的な問題があった。このような 問題に対して、特開昭 59— 47599号公報には、金属水素化物とモレキュラーシーブ スとの吸着材の混合物を除去材として用いるものが開示されてレ、る。  Next, conventional technologies will be examined from the viewpoint of fuel gas supply to the fuel cell. In conventional compression storage using a high-pressure boiler or cooling storage in which liquid hydrogenation is performed, moisture is mixed with air during the storage processing or during the handling of extracting hydrogen, and when this moisture is introduced into the fuel cell, it is removed. There was a general problem of poisoning. To cope with such a problem, Japanese Patent Application Laid-Open No. Sho 59-47599 discloses a method using a mixture of an adsorbent of a metal hydride and a molecular sieve as a removing material.
[0022] し力しながら、上記(1)式で示されるリチウム材料系では、加熱時に LiNHの分解  In the lithium material system represented by the above formula (1), the decomposition of LiNH
2 等により NH (g)が水素と同時に発生する場合があり、このような NH (g)を含んだ水  NH (g) may be generated simultaneously with hydrogen due to 2 etc., and water containing such NH (g)
3 3  3 3
素が燃料電池に導入されると、その燃料電池を被毒させるという問題が生ずる。この ように NH (g)が共存した水素から不純物を除去するための精製装置はこれまで開  When element is introduced into a fuel cell, a problem arises that the fuel cell is poisoned. Thus, a refinery has been developed to remove impurities from hydrogen coexisting with NH (g).
3  Three
示されていない。  Not shown.
発明の開示  Disclosure of the invention
[0023] 本発明はこのような事情に鑑みてなされたものであり、その第 1の目的は、高効率か つ低温度動作が可能な水素貯蔵材料およびその製造方法、ならびに水素発生方法 を提供することにある。本発明の第 2の目的は、量産レベルで機械的粉砕して水素 貯蔵能力の高い粉体系の水素貯蔵材料を得ることができ、また粉碎処理後の水素 貯蔵材料の取り扱いを容易とした水素貯蔵材料の製造装置および製造方法を提供 することにある。本発明の第 3の目的は、水素貯蔵材料の特性を高めることができる 水素貯蔵材料前駆体とその製造方法を提供することにある。本発明の第 4の目的は 、水素の吸放出を効率的に行うことができるように水素貯蔵材料を充填することがで き、また、単位重量または単位体積あたりの水素貯蔵率を増加させることができる水 素貯蔵材料充填容器とこれを搭載した移動体、さらに燃料電池および水素貯蔵材料 を長寿命化させる高純度水素等を供給することができる気体精製装置を提供するこ とにある。 The present invention has been made in view of such circumstances, and a first object of the present invention is to provide a hydrogen storage material capable of operating at a high efficiency and a low temperature, a method for producing the same, and a method for generating hydrogen. Is to do. A second object of the present invention is to provide a powdery hydrogen storage material having a high hydrogen storage capacity by mechanical pulverization at a mass production level, and to facilitate the handling of the hydrogen storage material after the pulverization treatment. An object of the present invention is to provide an apparatus and a method for manufacturing a material. A third object of the present invention is to provide a hydrogen storage material precursor capable of improving the characteristics of a hydrogen storage material, and a method for producing the same. The fourth object of the present invention is A hydrogen storage material-filled container that can be filled with a hydrogen storage material so that hydrogen can be absorbed and released efficiently, and that can increase the hydrogen storage rate per unit weight or unit volume. Another object of the present invention is to provide a gas purification apparatus capable of supplying a high-purity hydrogen or the like that prolongs the life of a fuel cell and a hydrogen storage material.
[0024] 本発明の第 1の観点によれば、ナノ構造化'組織化されたリチウムイミド化合物前駆 複合体を少なくとも含有する水素貯蔵材料であって、前記リチウムイミド化合物前駆 複合体は、出発原料として微粉末リチウムアミドに微粉末水素化リチウムを所定の割 合で添加した混合物を所定の複合化処理法で処理することによりナノ構造化'組織 ィ匕されたものである水素貯蔵材料、が提供される。  According to a first aspect of the present invention, there is provided a hydrogen storage material containing at least a nanostructured and organized lithium imide compound precursor complex, wherein the lithium imide compound precursor complex is a starting material A hydrogen storage material that has been nanostructured by subjecting a mixture obtained by adding a fine powder of lithium hydride to a fine powder lithium amide in a predetermined ratio to a predetermined complexing method. Is done.
[0025] 本発明の第 2の観点によれば、微粉末リチウムアミドと微粉末水素化リチウムとを所 定の割合で混合した混合物を所定の複合化処理法で処理することにより、ナノ構造 ィ匕 '組織化されたリチウムイミド化合物前駆複合体を得る水素貯蔵材料の製造方法、 が提供される。  [0025] According to a second aspect of the present invention, the nanostructured material is obtained by treating a mixture obtained by mixing fine powdered lithium amide and fine powdered lithium hydride at a predetermined ratio by a predetermined complexing method. And a method for producing a hydrogen storage material for obtaining an organized lithium imide compound precursor composite.
[0026] これら第 1および第 2の観点に係る発明において、「ナノ構造化'組織化される」とは 、試料中の各混合粒子がナノメートルサイズ(例えば平均粒径が 10— lOOnm)まで 微細化され、さらにこれらの粒子がナノメートノレレベルで複合化して所望の構造と形 状を有するようになることを意味する。  In the inventions according to the first and second aspects, “nanostructured and organized” means that each mixed particle in a sample has a nanometer size (for example, an average particle size of 10-100 nm). It means that these particles are further miniaturized, and these particles are complexed at the nanometer level to have a desired structure and shape.
[0027] また、これら第 1および第 2の観点に係る発明において、複合化処理法には、硬質 ボールを用いて試料を粉砕混合するメカニカルミリング処理(以下「MeM処理」と記 す)を利用する方法、あるいは加圧ガスの吹き付けにより試料を粉碎混合するジェット ミルを利用する方法等を用いることができる。  [0027] In the inventions according to the first and second aspects, a mechanical milling process (hereinafter, referred to as "MeM process") in which a sample is crushed and mixed using a hard ball is used for the compounding process. Or a method using a jet mill that pulverizes and mixes a sample by spraying a pressurized gas.
[0028] 本発明では、複合化処理法に MeM処理を用いることが最も好ましい。これは後述 するように、 MeM処理によれば出発原料混合物を十分にナノ構造化 ·組織化するこ とができるからである。この MeM処理とは、さらに詳しくは、試料を粉砕媒体とともに 密閉容器内に装入し、転動あるいは機械的な攪拌を行って試料の粉砕、圧接、練り 合わせを行い、出発原料とは異なる物性を示す材料を得る処理方法をいう。すなわ ち MeM処理とは、複数成分からなる混合粉末試料を粉砕媒体としての鋼球と一緒 に密閉容器に入れ、この容器内部の雰囲気を大気庄以上の還元性ガス雰囲気また は不活性ガス雰囲気とし、容器を自転させるとともに公転させることにより、試料を練り 上げてナノメートルサイズで複合化させる処理をいう。このような MeM処理では、出 発原料混合物は、粉砕媒体に対して微視的な衝突を繰り返して衝撃圧縮力が印加 され、塑性変形 (鍛造変形)し、加工硬化し、粉砕され、薄片化し、最終的に練り合わ される。 [0028] In the present invention, it is most preferable to use the MeM treatment for the compounding treatment method. This is because the starting material mixture can be sufficiently nanostructured and organized by the MeM treatment, as described later. More specifically, this MeM treatment is a process in which a sample is charged into a closed container together with a grinding medium, tumbled or mechanically stirred to grind, press-contact, and knead the sample. Refers to a processing method for obtaining a material showing In other words, the MeM treatment involves mixing a mixed powder sample consisting of multiple components with steel balls as a grinding medium. In a closed container, the atmosphere inside the container is reduced or inert gas atmosphere higher than atmospheric pressure, and the container is rotated and revolved to knead the sample to form a nanometer-sized composite. Refers to processing. In such a MeM treatment, the starting material mixture is repeatedly subjected to microscopic collision with the grinding medium, and is subjected to impact compression force, resulting in plastic deformation (forging deformation), work hardening, pulverization, and thinning. Are finally kneaded.
[0029] 本明細書において「練り合わせ」は、混合試料が塑性変形し易い性質を有する場 合に、それが潰され、伸ばされ、折れ曲がり、畳み込まれ、絡み合いながら分裂し、さ らに分裂しながら絡み合い、その結果として混合試料がナノ構造化'組織化されるこ とを意味する。  [0029] In the present specification, "kneading" means that when a mixed sample has a property of being easily plastically deformed, it is crushed, stretched, bent, folded, entangled, split, and further split. Mean that the mixed sample is nanostructured 'organized as a result.
[0030] 本発明では、 LiNHと LiHの出発原料混合物を水素雰囲気中で MeM処理するこ  [0030] In the present invention, the starting material mixture of LiNH and LiH is subjected to MeM treatment in a hydrogen atmosphere.
2  2
とによりナノ構造化'組織化されたリチウムイミド化合物前駆複合体を生成し、加熱昇 温による下記 (4)式の反応にしたがって水素を発生させるとともに、ナノ構造化した Li NHを生成する。  This produces a nano-structured and organized lithium imide compound precursor complex, generates hydrogen according to the reaction of the following formula (4) by heating and heating, and generates nano-structured Li NH.
2  2
LiNH +LiH→Li ΝΗ + Η ΐ…(4)  LiNH + LiH → Li ΝΗ + Η ΐ… (4)
2 2 2  2 2 2
[0031] このとき、出発原料において LiNHに対する LiHの割合を、正規の反応割合(上記  [0031] At this time, the ratio of LiH to LiNH in the starting material is determined by the regular reaction ratio (as described above).
2  2
(4)式の反応割合を指す)よりも大きくすることによって、下記(5)式の反応による NH (g)の発生を抑制することが好ましい。この場合に、 LiHの過剰添加量は、 LiNHに It is preferable to suppress the generation of NH (g) by the reaction of the following formula (5) by making the ratio larger than the reaction ratio of the formula (4). In this case, the excess amount of LiH
3 2 対する正規の LiHの反応量 (上記 (4)式で示される反応量)の 20質量%以下とする ことが望ましレ、。つまり、 LiHの全量は、 LiNHに対する正規の LiHの反応量(100 It is desirable that the content be 20% by mass or less of the normal reaction amount of LiH (reaction amount represented by the above formula (4)). In other words, the total amount of LiH is the normal LiH reaction amount to LiNH (100
2  2
質量%)超 120質量%以下とすることが望ましい。これは、 NH (g)の発生を抑制す  It is desirable that the content be more than 120% by mass. This suppresses the generation of NH (g)
3  Three
るための LiHの過剰添加量は、この量で十分であり、一方、この量を超えると有効水 素貯蔵率が減少するという不都合を生じるからである。このため、本発明では LiNH  This amount is sufficient for the excess addition of LiH for the purpose, but on the other hand, exceeding this amount causes a disadvantage that the effective hydrogen storage rate decreases. Therefore, in the present invention, LiNH
2 に対する LiH過剰添カ卩量の上限値を正規の LiHの反応量の 20質量%とした。  The upper limit of the amount of LiH excessively added to the mixture was set to 20% by mass of the normal LiH reaction amount.
2LiNH→Li NH + NH (g)†…(5)  2LiNH → Li NH + NH (g) †… (5)
2 2 3  2 2 3
[0032] さらに、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La , Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Agからなる 群より選択される 1種または 2種以上の金属単体、合金または化合物を触媒として加 えることにより、上式 (4)の反応を効率的に進行させることができる。触媒添加量は 0. 5— 5モル%とすることが好ましい。触媒添加量が 0· 5モル%を下回るとリチウムイミド 化合物前駆複合体中に均一分散化させることが困難になる。一方、触媒添加量が 5 モル%超の場合には、有効水素貯蔵率の低下を招く。 [0032] Further, B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn , Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag, one or more metals, alloys or compounds selected from the group as catalysts As a result, the reaction of the above formula (4) can proceed efficiently. The amount of catalyst added is preferably 0.5-5 mol%. If the amount of the catalyst is less than 0.5 mol%, it is difficult to uniformly disperse the catalyst in the lithium imide compound precursor composite. On the other hand, if the amount of catalyst added exceeds 5 mol%, the effective hydrogen storage rate will decrease.
[0033] このような触媒は、 MeM処理により、リチウムイミド化合物前駆複合体の作製時に、 LiNHおよび LiHとともに混合し、 MeM処理によりナノ構造化'組織化されたもので[0033] Such a catalyst is mixed with LiNH and LiH at the time of preparing a lithium imide compound precursor complex by MeM treatment, and is nanostructured and organized by MeM treatment.
2 2
あることが好ましい。これは、複合化処理後の試料に対して別途に触媒粒子を添カロ すると、リチウムイミド化合物前駆複合体のナノ構造組織中に触媒粒子が新たに入り 込むことが難しくなるからである。  Preferably, there is. This is because if catalyst particles are separately added to the sample after the complexing treatment, it becomes difficult for the catalyst particles to newly enter the nanostructure of the lithium imide compound precursor complex.
[0034] 複合化処理法は圧力を 0. 1 lOMPaの範囲とすることが好ましレ、。処理圧力が大 気圧(0. IMPa)を下回ると、有効成分である水素と窒素が失われるおそれがある。 一方、本発明者らが開発した MeM処理装置の高圧力の能力限界が lOMPaであり 、これを超える処理圧力は現実的ではないからである。  [0034] The pressure for the compounding treatment is preferably in the range of 0.1 lOMPa. If the processing pressure is lower than the atmospheric pressure (0. IMPa), the active ingredients hydrogen and nitrogen may be lost. On the other hand, the high pressure capability limit of the MeM processing apparatus developed by the present inventors is lOMPa, and a processing pressure exceeding this is not practical.
[0035] 出発原料である LiNHと LiHの粉末混合物を MeM処理してリチウムイミド化合物  [0035] A powder mixture of LiNH and LiH, which is a starting material, is treated with MeM to obtain a lithium imide compound.
2  2
前駆複合体を作製した後(つまり、複合化処理後)において、リチウムイミド化合物前 駆複合体を所定温度域に加熱し、ナノ構造化 ·組織化した LiNHと LiHを反応させ  After forming the precursor complex (that is, after the complexing treatment), the lithium imide compound precursor complex is heated to a predetermined temperature range to allow the nanostructured and organized LiNH and LiH to react.
2  2
て Li NHとする可逆的な不均化反応を生じさせることができる。この場合に、可逆的 To produce a reversible disproportionation reaction to LiNH. In this case, reversible
2 2
な不均化反応のための加熱温度は 250°C以下とすることが好ましぐ 200°C以下とす ることがさらに好ましい。なお、本明細書中において「可逆的な不均化反応」とは、反 応が可逆的に進行して異なる複数の成分に分解することをいう。  The heating temperature for such a disproportionation reaction is preferably 250 ° C or lower, more preferably 200 ° C or lower. In this specification, the term “reversible disproportionation reaction” means that the reaction proceeds reversibly and decomposes into a plurality of different components.
[0036] このような第 1および第 2の観点に係る本発明によれば、軽量な非金属化合物を用 レ、た高効率かつ低温度動作が可能な水素貯蔵材料が提供される。また、 LiNHと Li [0036] According to the first and second aspects of the present invention, a hydrogen storage material that uses a lightweight nonmetallic compound and that can operate at high efficiency and at low temperature is provided. Also, LiNH and Li
2 2
Hの混合原料を窒素(N )やヘリウム(He)、アルゴン (Ar)等の不活性ガス雰囲気中 H mixed raw material in an inert gas atmosphere such as nitrogen (N), helium (He), argon (Ar)
2  2
または水素等の反応性ガス雰囲気中で MeM処理することにより、リチウムイミド化合 物前駆複合体を作製し、温度上昇により上記 (4)式に示した反応を進行させると、水 素放出とともに Li NHを生成することが可能となる。  Alternatively, a lithium imide compound precursor complex is prepared by MeM treatment in an atmosphere of a reactive gas such as hydrogen, and when the reaction represented by the above equation (4) proceeds by increasing the temperature, Li NH is released along with hydrogen release. Can be generated.
2  2
[0037] さらに、 LiNHに対する LiHの割合を正規のモル比 1 : 1の反応割合よりも 0— 20%  [0037] Furthermore, the ratio of LiH to LiNH was set to be 0 to 20% higher than the normal molar ratio of 1: 1.
2  2
程度多くすることにより、上記(5)式に示す反応による NH (g)の発生を抑制すること  By increasing the amount, the generation of NH (g) by the reaction shown in the above formula (5) is suppressed.
3 ができる。 Three Can do.
[0038] さらにまた、角虫媒として B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir , Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, H f, Ag等の少なくとも 1種を単体、合金もしくは化合物とを加えて MeM処理することに より、上記 (4)式に示す反応を効率的に進行させることが可能になり、従来技術に比 ベ、効率のよい水素貯蔵が可能となる。例えば、単位重量当たりまたは単位体積当 たりの水素貯蔵率が高められ、低い温度領域でのシャープな水素の吸収 '放出が可 能となり、良好な耐久性が得られる。さらにまた、 1一 lOMPa程度の広範囲の圧力条 件下での実施により、水素の吸収効率を向上させることができる。  [0038] Furthermore, B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, By adding at least one of Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag, etc. alone, an alloy or a compound, and performing MeM treatment, The reaction represented by the above formula (4) can be efficiently advanced, and hydrogen storage can be performed more efficiently than in the prior art. For example, the hydrogen storage rate per unit weight or per unit volume can be increased, and sharp absorption and release of hydrogen can be achieved in a low temperature range, and good durability can be obtained. Furthermore, the hydrogen absorption efficiency can be improved by performing the treatment under a wide range of pressure conditions of about 11 lOMPa.
[0039] このような水素貯蔵材料は、水素、酸素を燃料として発電する燃料電池に好適に利 用することができ、より具体的には自動車、家庭内発電、自動販売機、携帯電話、ノ ートパソコンをはじめとするコードレスの家電製品、あるいは自立型ロボット 'マイクロ マシンなどの動力源として幅広い技術分野で利用することが可能である。 [0039] Such a hydrogen storage material can be suitably used for a fuel cell that generates power using hydrogen and oxygen as fuels. More specifically, it can be used for automobiles, home power generation, vending machines, mobile phones, and fuel cells. It can be used in a wide range of technical fields as a power source for cordless home appliances such as laptop computers, or as a power source for self-contained robots' micro machines.
[0040] 本発明の第 3の観点によれば、金属水素化物とアンモニアを含み、これらの反応に より水素を発生させる水素貯蔵材料、が提供される。 [0040] According to a third aspect of the present invention, there is provided a hydrogen storage material that includes a metal hydride and ammonia and generates hydrogen by a reaction between the two.
[0041] 本発明の第 4の観点によれば、金属水素化物とアンモニアとを反応させることにより 水素を発生させる水素発生方法、が提供される。 [0041] According to a fourth aspect of the present invention, there is provided a hydrogen generation method for generating hydrogen by reacting a metal hydride with ammonia.
[0042] これら第 3および第 4の発明によれば、水素発生温度を室温近くにまで下げることが でき、かつ、十分な水素発生量を得ることができる。 According to the third and fourth inventions, the hydrogen generation temperature can be lowered to near room temperature, and a sufficient amount of hydrogen can be obtained.
[0043] 本発明の第 5の観点によれば、金属水素化物と金属アミド化合物の混合物または 複合化物または反応物を有し、これらの金属種が少なくとも 2種以上である水素貯蔵 材料、が提供される。 According to a fifth aspect of the present invention, there is provided a hydrogen storage material having a mixture, complex, or reactant of a metal hydride and a metal amide compound, wherein at least two of these metal species are used. Is done.
[0044] 本発明の第 6の観点によれば、金属水素化物と金属アミド化合物と水素吸放出能 を高める触媒とを、不活性ガス雰囲気下もしくは水素雰囲気下または不活性ガスと水 素との混合ガス雰囲気下において、前記触媒が前記金属水素化物と金属アミド化合 物に担持されるように混合する工程を有し、前記金属水素化物と金属アミド化合物を 構成する金属成分は 2種類以上である水素貯蔵材料の製造方法、が提供される。  [0044] According to a sixth aspect of the present invention, a metal hydride, a metal amide compound, and a catalyst that enhances the ability to absorb and release hydrogen are used under an inert gas atmosphere or a hydrogen atmosphere, or an inert gas and hydrogen. A step of mixing the catalyst so that the metal hydride and the metal amide compound are supported in a mixed gas atmosphere, wherein the metal hydride and the metal amide compound are composed of two or more metal components. A method for producing a hydrogen storage material is provided.
[0045] 本発明の第 7の観点によれば、金属水素化物と金属アミド化合物とを、不活性ガス 雰囲気下もしくは水素雰囲気下または不活性ガスと水素との混合ガス雰囲気下にお いて混合する工程と、前記混合工程後に得られる被処理物に水素吸放出能を高め る触媒を担持させる工程と、を有し、前記金属水素化物と金属アミド化合物を構成す る金属成分は 2種類以上である水素貯蔵材料の製造方法、が提供される。 [0045] According to a seventh aspect of the present invention, a metal hydride and a metal amide compound are mixed with an inert gas. Mixing in an atmosphere or a hydrogen atmosphere or in a mixed gas atmosphere of an inert gas and hydrogen; and supporting a catalyst that enhances hydrogen absorption / desorption ability on the object to be processed obtained after the mixing step; And a method for producing a hydrogen storage material, wherein the metal hydride and the metal amide compound comprise two or more metal components.
[0046] 本発明の第 8の観点によれば、金属水素化物と金属アミド化合物の少なくとも一方 に水素吸放出能を高める触媒を担持する工程と、前記触媒がそれぞれ担持された 金属水素化物と金属アミド化合物とを、または前記触媒が担持された金属水素化物 と前記触媒が担持されていない金属アミド化合物とを、または前記触媒が担持された 金属アミド化合物と前記触媒が担持されていない金属水素化物とを、不活性ガス雰 囲気下もしくは水素雰囲気下または不活性ガスと水素との混合ガス雰囲気下におい て混合する工程と、を有し、前記金属水素化物と金属アミド化合物を構成する金属成 分が 2種類以上である水素貯蔵材料の製造方法、が提供される。  [0046] According to an eighth aspect of the present invention, a step of supporting a catalyst for increasing hydrogen absorption / desorption ability on at least one of a metal hydride and a metal amide compound, and a metal hydride and a metal on which the catalyst is supported, respectively. An amide compound, or a metal hydride supporting the catalyst and a metal amide compound not supporting the catalyst, or a metal amide compound supporting the catalyst and a metal hydride not supporting the catalyst In an inert gas atmosphere, a hydrogen atmosphere, or a mixed gas atmosphere of an inert gas and hydrogen, and a metal component constituting the metal hydride and the metal amide compound. A method for producing a hydrogen storage material, wherein
[0047] 本発明の第 9の観点によれば、金属水素化物と金属アミド化合物の混合物または 複合化物または反応物を有し、これらの金属種がリチウムとマグネシウムの 2種類で ある水素貯蔵材料、が提供される。  According to a ninth aspect of the present invention, there is provided a hydrogen storage material having a mixture, a complex, or a reactant of a metal hydride and a metal amide compound, wherein these metal species are two kinds of lithium and magnesium. Is provided.
[0048] これら第 5から第 9の観点に係る発明によれば、水素発生温度および水素放出ピー ク温度を従来よりも大きく低温化させた水素貯蔵材料が得られる。  According to the inventions according to the fifth to ninth aspects, it is possible to obtain a hydrogen storage material in which the hydrogen generation temperature and the hydrogen release peak temperature are set to be lower than those in the related art.
[0049] 本発明の第 10の観点によれば、金属水素化物と金属アミド化合物とを含み、これら の反応により水素を発生する水素貯蔵材料の製造方法であって、金属水素化物とァ ンモニァとを反応させて、金属アミド化合物を合成する工程と、金属水素化物と前記 合成工程により得られた金属アミド化合物とを混合する工程と、を有する水素貯蔵材 料の製造方法、が提供される。  [0049] According to a tenth aspect of the present invention, there is provided a method for producing a hydrogen storage material which comprises a metal hydride and a metal amide compound and generates hydrogen by a reaction between the metal hydride and the metal amide. To produce a metal amide compound, and a step of mixing a metal hydride with the metal amide compound obtained in the synthesis step.
[0050] この第 10の観点に係る発明によれば、純度の高い金属アミド化合物を単体で容易 に製造することができるため、例えば、金属水素化物を構成する金属と金属アミド化 合物を構成する金属が異種である場合にも、高い純度で水素貯蔵材料を製造するこ とができる。さらに、複数種の金属アミド化合物の混合物も容易に得ることができる。  [0050] According to the invention according to the tenth aspect, a metal amide compound having high purity can be easily produced by itself, and therefore, for example, the metal constituting the metal hydride and the metal amide compound are formed. Even when different metals are used, the hydrogen storage material can be manufactured with high purity. Further, a mixture of a plurality of types of metal amide compounds can be easily obtained.
[0051] 本発明の第 11の観点によれば、水素化リチウムとリチウムアミドの混合物または複 合化物または反応物を所定の機械的粉砕処理により微細化してなる水素貯蔵材料 であって、 BET法による比表面積が 15m2/g以上である水素貯蔵材料、が提供され る。 [0051] According to an eleventh aspect of the present invention, a hydrogen storage material obtained by pulverizing a mixture, complex, or reaction product of lithium hydride and lithium amide by a predetermined mechanical pulverization treatment. And a hydrogen storage material having a BET specific surface area of 15 m 2 / g or more.
[0052] 本発明の第 12の観点によれば、水素化リチウムとマグネシウムアミドの混合物また は複合化物または反応物を所定の機械的粉砕処理により微細化してなる水素貯蔵 材料であって、 BET法による比表面積が 7. 5m2Zg以上である水素貯蔵材料、が提 供される。 [0052] According to a twelfth aspect of the present invention, there is provided a hydrogen storage material obtained by pulverizing a mixture, complex or reaction product of lithium hydride and magnesium amide by a predetermined mechanical pulverization treatment, A hydrogen storage material having a specific surface area of 7.5 m 2 Zg or more.
[0053] 本発明の第 13の観点によれば、水素化マグネシウムとリチウムアミドの混合物また は複合化物または反応物を所定の機械的粉砕処理により微細化してなる水素貯蔵 材料であって、 BET法による比表面積が 7. 5m2Zg以上である水素貯蔵材料、が提 供される。 [0053] According to a thirteenth aspect of the present invention, there is provided a hydrogen storage material obtained by pulverizing a mixture, complex, or reaction product of magnesium hydride and lithium amide by a predetermined mechanical pulverization process, A hydrogen storage material having a specific surface area of 7.5 m 2 Zg or more.
[0054] 本発明の第 14の観点によれば、水素化したリチウムイミドを有する水素貯蔵材料で あって、 BET法による比表面積が 10m2/g以上である水素貯蔵材料、が提供される [0054] According to a fourteenth aspect of the present invention, there is provided a hydrogen storage material having a hydrogenated lithium imide, wherein the hydrogen storage material has a specific surface area of 10 m 2 / g or more by a BET method.
[0055] 本発明の第 15の観点によれば、窒化マグネシウムとリチウムイミドの混合物または 複合化物または反応物を水素化した水素貯蔵材料であって、 BET法による比表面 積が 5m2/g以上である水素貯蔵材料、が提供される。 [0055] According to a fifteenth aspect of the present invention, there is provided a hydrogen storage material obtained by hydrogenating a mixture, a composite, or a reaction product of magnesium nitride and lithium imide, and has a specific surface area of 5 m 2 / g or more by a BET method. A hydrogen storage material, which is:
[0056] 本発明の第 16の観点によれば、金属水素化物と金属アミド化合物と水素吸放出能 を高める触媒とを含む混合物または複合化物または反応物を有する水素貯蔵材料 であって、前記触媒はナノ粒子からなる水素貯蔵材料、が提供される。  [0056] According to a sixteenth aspect of the present invention, there is provided a hydrogen storage material having a mixture, a complex, or a reactant containing a metal hydride, a metal amide compound, and a catalyst that enhances the ability to absorb and release hydrogen. Is a hydrogen storage material comprising nanoparticles.
[0057] 本発明の第 17の観点によれば、金属イミド化合物と水素吸放出能を高める触媒を 含み、かつ、水素化された水素貯蔵材料であって、前記触媒はナノ粒子からなる水 素貯蔵材料、が提供される。  According to a seventeenth aspect of the present invention, there is provided a hydrogenated hydrogen storage material containing a metal imide compound and a catalyst for enhancing the ability to absorb and release hydrogen, wherein the catalyst is hydrogen comprising nanoparticles. Storage material is provided.
[0058] これら第 11から第 17の観点に係る発明によれば、従来よりも水素放出温度を低温 化させた水素貯蔵材料が得られる。これにより、水素貯蔵材料から水素を放出させる ための加熱に要するエネルギーを低減させ、また、水素貯蔵材料を充填する容器等 の材質や構造の制限が緩和されるようになる。  [0058] According to the inventions according to the eleventh to seventeenth aspects, a hydrogen storage material having a lower hydrogen release temperature than conventional ones can be obtained. As a result, the energy required for heating for releasing hydrogen from the hydrogen storage material is reduced, and restrictions on the material and structure of a container or the like for filling the hydrogen storage material are relaxed.
[0059] 本発明の第 18の観点によれば、金属水素化物と金属アミド化合物との反応により 水素を放出し、その水素放出反応を促進させる触媒を 2種類以上含有する水素貯蔵 材料の製造方法であって、金属水素化物と金属アミド化合物のいずれか一方に、 1 種類の触媒と、所定の易粉砕性の無機物質と、を加えて粉碎混合する工程と、前記 粉砕混合工程により得られた被処理物に、前記金属水素化物と金属アミド化合物の 残る一方と、水素放出反応を促進させる別の 1種類の触媒と、を加えて粉砕混合する 工程と、を有する水素貯蔵材料の製造方法、が提供される。 [0059] According to an eighteenth aspect of the present invention, a hydrogen storage comprising two or more types of catalysts that releases hydrogen by the reaction of a metal hydride and a metal amide compound and promotes the hydrogen release reaction. A method for producing a material, comprising: adding one kind of a catalyst and a predetermined easily crushable inorganic substance to one of a metal hydride and a metal amide compound, and crushing and mixing; Adding the remaining one of the metal hydride and the metal amide compound to the object to be treated obtained as described above, and another type of catalyst that promotes the hydrogen release reaction, and pulverizing and mixing the hydrogen storage material. And a method for producing the same.
[0060] 本発明の第 19の観点によれば、金属水素化物と金属アミド化合物との反応により 水素を放出し、その水素放出反応を促進させる触媒を 2種類以上含有する水素貯蔵 材料の製造方法であって、金属水素化物と金属アミド化合物のいずれか一方に、 1 種類の触媒と、所定の易粉砕性の無機物質と、を加えて粉砕混合する工程と、前記 金属水素化物と金属アミド化合物の残る一方に別の 1種類の触媒を加えて粉砕混合 する工程と、前記 2つの混合工程により得られた被処理物どうしを粉砕混合する工程 と、を有する水素貯蔵材料の製造方法、が提供される。  [0060] According to a nineteenth aspect of the present invention, a method for producing a hydrogen storage material containing two or more types of catalysts that releases hydrogen by reacting a metal hydride with a metal amide compound and promotes the hydrogen release reaction A step of adding one kind of catalyst and a predetermined easily crushable inorganic substance to either one of the metal hydride and the metal amide compound, and crushing and mixing the metal hydride and the metal amide compound. A method for producing a hydrogen storage material, comprising: a step of adding another type of catalyst to one of the remaining components and crushing and mixing; and a step of crushing and mixing the objects to be processed obtained in the two mixing steps. Is done.
[0061] 従来の水素貯蔵材料に複数の触媒を担持させる方法としては、水素貯蔵材料に同 時に複数の触媒を添加し、粉碎処理する方法や、水素貯蔵材料に複数の触媒を時 間をずらして添加し、粉砕処理する方法が用いられる。し力 ながら、このような触媒 担持方法により、複数種の触媒を水素貯蔵材料に担持させた場合に、期待されるだ けの特性向上効果は得られていない。これら第 18および第 19の観点に係る発明に よれば、複数の触媒の機能が発揮されることにより、水素放出速度が速ぐまた、水素 放出開始温度の低い水素貯蔵材料が得られる。  [0061] Conventional methods for supporting a plurality of catalysts on a hydrogen storage material include a method in which a plurality of catalysts are added to the hydrogen storage material at the same time and a pulverizing treatment is performed, and a method in which a plurality of catalysts are staggered in the hydrogen storage material. And then pulverizing. However, when a plurality of types of catalysts are supported on a hydrogen storage material by such a method for supporting a catalyst, the expected effect of improving characteristics has not been obtained. According to the inventions according to the eighteenth and nineteenth aspects, a hydrogen storage material having a high hydrogen release rate and a low hydrogen release start temperature can be obtained by exhibiting the functions of a plurality of catalysts.
[0062] 本発明の第 20の観点によれば、その中で水素貯蔵材原料を粉碎する円筒状の粉 砕容器と、前記粉砕容器内を水素雰囲気に保つことが可能なように前記粉砕容器内 に水素を導入する水素導入部と、前記粉砕容器内の水素雰囲気を維持したまま前 記粉砕容器内に水素貯蔵材原料を導入可能な水素貯蔵材原料導入部と、前記粉 砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、回転軸の長手方向を 前記粉砕容器の長手方向に一致させるとともに前記粉砕容器の内壁に沿って配置 された複数の粉砕ローラと、前記粉砕容器と前記複数の粉砕ローラとの間の相対的 な回転移動および前記複数の粉砕ローラの自転を生じさせる駆動機構と、を具備し 、前記粉砕容器内を水素雰囲気にして水素貯蔵材原料を前記粉砕容器内に導入し 、前記粉砕容器の内壁と前記粉碎ローラとの間の圧縮力および剪断力によって水素 貯蔵材原料を機械的粉碎して水素貯蔵材料を製造する水素貯蔵材料の製造装置、 が提供される。 [0062] According to a twentieth aspect of the present invention, a cylindrical pulverizing container in which a hydrogen storage material is pulverized, and the pulverizing container so that the inside of the pulverizing container can be maintained in a hydrogen atmosphere. A hydrogen introduction section for introducing hydrogen into the inside; a hydrogen storage material introduction section capable of introducing a hydrogen storage material into the grinding vessel while maintaining the hydrogen atmosphere in the grinding vessel; A hydrogen storage material discharge unit that discharges the hydrogen storage material, a plurality of grinding rollers arranged along the inner wall of the grinding container while matching the longitudinal direction of the rotation axis with the longitudinal direction of the grinding container, and the grinding container. A drive mechanism for causing relative rotation between the plurality of crushing rollers and rotation of the plurality of crushing rollers, wherein the inside of the crushing container is set to a hydrogen atmosphere, and the hydrogen storage material is supplied to the crushing container. Introduced within An apparatus for producing a hydrogen storage material, wherein a hydrogen storage material is mechanically pulverized by a compressive force and a shearing force between an inner wall of the pulverizing container and the pulverizing roller to produce a hydrogen storage material.
[0063] 本発明の第 21の観点によれば、同軸に設けられた内筒と外筒とを有し、これら内筒 と外筒との間に環状粉砕室が形成される粉砕容器と、前記環状粉砕室内を水素雰 囲気に保つことが可能なように前記環状粉砕室内に水素を導入する水素導入部と、 前記環状粉砕室内の水素雰囲気を維持したまま前記環状粉砕室内に水素貯蔵材 原料を導入可能な水素貯蔵材原料導入部と、前記環状粉砕室内の水素貯蔵材料を 排出する水素貯蔵材料排出部と、前記内筒と前記外筒との間に相対的な回転移動 を生じさせる駆動機構と、を具備し、前記環状粉砕室内を水素雰囲気にして、水素 貯蔵材原料および粉砕媒体を前記環状粉砕室内に導入し、前記内筒と外筒との間 の相対的な回転移動を生じさせて水素貯蔵材原料を機械的粉砕して水素貯蔵材料 を製造する水素貯蔵材料の製造装置、が提供される。  [0063] According to a twenty-first aspect of the present invention, a pulverizing container having an inner cylinder and an outer cylinder coaxially provided, and an annular pulverization chamber formed between the inner cylinder and the outer cylinder, A hydrogen introduction unit for introducing hydrogen into the annular grinding chamber so that the annular grinding chamber can be maintained in a hydrogen atmosphere; and a hydrogen storage material in the annular grinding chamber while maintaining the hydrogen atmosphere in the annular grinding chamber. , A hydrogen storage material discharge portion for discharging the hydrogen storage material in the annular grinding chamber, and a drive for causing relative rotation between the inner cylinder and the outer cylinder. A hydrogen atmosphere in the annular grinding chamber, introducing a hydrogen storage material and a grinding medium into the annular grinding chamber, and causing relative rotation between the inner cylinder and the outer cylinder. And mechanically pulverize the hydrogen storage material to produce a hydrogen storage material. An apparatus for producing a hydrogen storage material to be produced is provided.
[0064] 本発明の第 22の観点によれば、その中で水素貯蔵材原料を粉碎する回転可能な 円筒状の粉碎容器と、前記粉碎容器内を水素雰囲気に保つことが可能なように前記 粉砕容器内に水素を導入する水素導入部と、前記粉砕容器内の水素雰囲気を維持 したまま前記粉碎容器内に水素貯蔵材原料を導入可能な水素貯蔵材原料導入部と 、前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、回転軸の長 手方向を前記粉碎容器の長手方向に一致させて前記粉砕容器の中に設けられたィ ンペラと、前記粉碎容器と前記インペラとを互いに反対方向に回転させる駆動機構と 、を具備し、前記粉砕容器内を水素雰囲気にして、水素貯蔵材原料および粉碎媒体 を前記粉砕容器内に充填させ、前記粉砕容器と前記インペラとを互いに反対方向に 回転させることにより、水素貯蔵材原料を機械的粉砕して水素貯蔵材料を製造する 水素貯蔵材料の製造装置、が提供される。  [0064] According to a twenty-second aspect of the present invention, a rotatable cylindrical pulverizing vessel for pulverizing a hydrogen storage material therein, and the rotatable cylindrical pulverizing vessel so that the inside of the pulverizing vessel can be maintained in a hydrogen atmosphere. A hydrogen introduction unit that introduces hydrogen into the grinding container, a hydrogen storage material introduction unit that can introduce a hydrogen storage material into the grinding container while maintaining the hydrogen atmosphere in the grinding container, A hydrogen storage material discharge section for discharging the hydrogen storage material, an impeller provided in the pulverizing container with the longitudinal direction of the rotating shaft coinciding with the longitudinal direction of the pulverizing vessel, the pulverizing vessel and the impeller. And a drive mechanism for rotating the impeller in a direction opposite to each other, and the inside of the pulverizing container is set to a hydrogen atmosphere, and a hydrogen storage material material and a pulverizing medium are filled in the pulverizing container. In the opposite direction An apparatus for producing a hydrogen storage material, which mechanically pulverizes a hydrogen storage material by rotating to produce a hydrogen storage material, is provided.
[0065] 本発明の第 23の観点によれば、その中で水素貯蔵材原料を粉砕し、粉砕されてな る水素貯蔵材料を外部に排出するための水素貯蔵材料排出口を側壁下部に有する 有底円筒状の粉砕容器と、前記粉砕容器を収容し、内部を所定のガス雰囲気に保 持することができるハウジングと、円柱曲面を有し、その曲面と前記粉砕容器の側壁 内面との間に所定の間隙ができるように配置された 1または複数のインナーピースと、 前記インナーピースを保持する保持部材と、前記粉碎容器と前記インナーピースとの 間の間隙幅が実質的に変わらないように前記粉碎容器および/または前記保持部 材を回転させる容器回転機構と、を具備し、前記ハウジングは、その内部に水素を導 入するガス導入部と、その内部を水素雰囲気に保持したまま前記粉砕容器内に水素 貯蔵材原料を導入する水素貯蔵材原料導入部と、前記粉砕容器から前記水素貯蔵 材料排出口を通って排出された水素貯蔵材料の一部をその内部からその外部に排 出する水素貯蔵材料排出部と、前記粉砕容器から前記水素貯蔵材料排出口を通つ て排出された水素貯蔵材料の一部を前記粉砕容器内に戻す水素貯蔵材循環部と、 を有し、前記ハウジング内を水素雰囲気にして水素貯蔵材原料を前記粉砕容器内 に導入し、前記粉砕容器の側壁と前記インナーピースとの間の圧縮力および剪断力 によって水素貯蔵材原料を機械的粉砕して水素貯蔵材料を製造する水素貯蔵材料 の製造装置、が提供される。 [0065] According to the twenty-third aspect of the present invention, the hydrogen storage material raw material is crushed therein, and the hydrogen storage material discharge port for discharging the crushed hydrogen storage material to the outside is provided at the lower portion of the side wall. Cylindrical crushing container having a bottom, a housing for accommodating the crushing container and maintaining the inside of the crushing container in a predetermined gas atmosphere, and having a cylindrical curved surface, the curved surface and a side wall of the crushing container One or more inner pieces arranged so as to have a predetermined gap between the inner surface, a holding member for holding the inner piece, and a gap width between the milling vessel and the inner piece are substantially equal. A container rotating mechanism for rotating the milling container and / or the holding member so as not to change, wherein the housing has a gas introducing portion for introducing hydrogen into the inside thereof, and holds the inside thereof in a hydrogen atmosphere. A hydrogen storage material introduction unit for introducing a hydrogen storage material into the grinding container while keeping the hydrogen storage material discharged from the grinding container through the hydrogen storage material discharge port; A hydrogen storage material discharge unit that discharges a part of the hydrogen storage material discharged from the grinding container through the hydrogen storage material discharge port into the grinding container; A hydrogen atmosphere in the housing, introducing a hydrogen storage material into the pulverizing container, and mechanically converting the hydrogen storage material by a compressive force and a shearing force between a side wall of the pulverizing container and the inner piece. And an apparatus for producing a hydrogen storage material that is subjected to mechanical pulverization to produce a hydrogen storage material.
[0066] 本発明の第 24の観点によれば、水素を含む所定の処理ガスを高圧噴射するジエツ トノズルと、その内部に前記ジェットノズルから噴射された高圧処理ガスが導入され、 前記高圧処理ガスの気流によって水素貯蔵材原料を粉砕する所定形状の粉砕容器 と、前記粉砕容器内のガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材原 料を導入可能な水素貯蔵材原料導入部と、前記粉砕容器内の水素貯蔵材料を排出 する水素貯蔵材料排出部と、を具備し、前記粉碎容器内を水素を含む雰囲気にして 水素貯蔵材原料を前記粉碎容器内に導入し、前記ジェットノズル力 噴射された高 圧処理ガスの気流に乗った水素貯蔵材原料どうしの衝突もしくは磨砕または前記高 圧処理ガスの気流から与えられる剪断力によって、水素貯蔵材原料を機械的粉砕し て水素貯蔵材料を製造する水素貯蔵材料の製造装置、が提供される。  [0066] According to a twenty-fourth aspect of the present invention, a jet nozzle for injecting a predetermined processing gas containing hydrogen at high pressure, and a high-pressure processing gas injected from the jet nozzle are introduced into the inside thereof, A pulverizing container having a predetermined shape for pulverizing the hydrogen storage material by the gas flow; a hydrogen storage material source introduction unit capable of introducing the hydrogen storage material into the pulverization container while maintaining the gas atmosphere in the pulverization container; A hydrogen storage material discharge unit for discharging the hydrogen storage material in the pulverizing container, and introducing the hydrogen storage material into the pulverizing container by setting the atmosphere in the pulverizing container to an atmosphere containing hydrogen. The hydrogen storage material is mechanically pulverized by collision or grinding of the hydrogen storage material on the jet of the high-pressure processing gas or by shearing force applied from the high-pressure processing gas. An apparatus for producing a hydrogen storage material that crushes to produce a hydrogen storage material is provided.
[0067] 本発明の第 25の観点によれば、円筒状の粉砕容器内を水素雰囲気にしつつ、前 記粉砕容器内に水素貯蔵材原料を導入し、前記粉砕容器と前記粉砕容器の内壁に 沿って設けられた複数の粉砕ローラとの間の相対的な回転移動および前記複数の 粉碎ローラの自転により前記粉碎容器の内壁と前記粉碎ローラとの間に生じる圧縮 力および剪断力によって、水素貯蔵材原料を機械的粉砕して水素貯蔵材料を製造 する水素貯蔵材料の製造方法、が提供される。 According to a twenty-fifth aspect of the present invention, a hydrogen storage material is introduced into the above-mentioned pulverization container while the inside of the cylindrical pulverization container is kept in a hydrogen atmosphere, and the hydrogen storage material is introduced into the pulverization container and the inner wall of the pulverization container. Hydrogen storage by the relative rotational movement between the plurality of crushing rollers provided along and the compressive and shearing forces generated between the inner wall of the crushing container and the crushing rollers due to the rotation of the plurality of crushing rollers. Mechanically pulverize raw materials to produce hydrogen storage materials And a method for producing a hydrogen storage material.
[0068] 本発明の第 26の観点によれば、同軸に設けられた内筒と外筒とを有する粉碎容器 の前記内筒と外筒との間に形成された環状粉碎室内を水素雰囲気にしつつ、前記 環状粉砕室内に粉砕媒体および水素貯蔵材原料を導入し、前記内筒と外筒との間 の相対的な回転移動を生じさせて水素貯蔵材原料を機械的粉砕して水素貯蔵材料 を製造する水素貯蔵材料の製造方法、が提供される。  [0068] According to a twenty-sixth aspect of the present invention, an annular grinding chamber formed between the inner cylinder and the outer cylinder of a grinding vessel having an inner cylinder and an outer cylinder provided coaxially is set to a hydrogen atmosphere. Meanwhile, a grinding medium and a hydrogen storage material are introduced into the annular grinding chamber, and a relative rotational movement is caused between the inner cylinder and the outer cylinder to mechanically pulverize the hydrogen storage material to perform a hydrogen storage material. And a method for producing a hydrogen storage material.
[0069] 本発明の第 27の観点によれば、円筒状の粉砕容器内を水素雰囲気にしつつ、前 記粉砕容器内に粉砕媒体および水素貯蔵材原料を充填させ、前記粉砕容器内と前 記粉砕容器内に設けられたインペラとを互いに反対方向に回転させることにより水素 貯蔵材原料を機械的粉砕して水素貯蔵材料を製造する水素貯蔵材料の製造方法、 が提供される。  [0069] According to a twenty-seventh aspect of the present invention, a pulverizing medium and a hydrogen storage material are filled in the pulverizing container while the inside of the cylindrical pulverizing container is in a hydrogen atmosphere. A method for producing a hydrogen storage material, wherein a hydrogen storage material is mechanically pulverized by rotating an impeller provided in a pulverization container in directions opposite to each other to mechanically pulverize the hydrogen storage material.
[0070] 本発明の第 28の観点によれば、有底円筒状の粉砕容器内を水素雰囲気にしつつ 、水素貯蔵材原料を前記粉砕容器内に導入し、前記粉碎容器内に設けられた円柱 曲面を有するインナーピースの該円柱曲面と前記粉碎容器の側壁との間隙幅が実 質的に変化しないように前記インナーピースを回動させる力または前記粉碎容器を 回転させることにより前記インナーピースと前記粉碎容器の側壁との間に生ずる圧縮 力および剪断力によって、水素貯蔵材原料を機械的粉碎して水素貯蔵材料を製造 する水素貯蔵材料の製造方法、が提供される。  [0070] According to a twenty-eighth aspect of the present invention, a hydrogen storage material is introduced into the crushing vessel while the inside of the bottomed cylindrical crushing vessel is in a hydrogen atmosphere, and the cylinder provided in the crushing vessel is provided. The inner piece and the inner piece are formed by rotating the inner piece or rotating the milling vessel so that the gap width between the cylindrical curved surface of the inner piece having a curved surface and the side wall of the milling vessel does not substantially change. Provided is a method for producing a hydrogen storage material, wherein a hydrogen storage material is mechanically pulverized by a compressive force and a shear force generated between the hydrogen storage material and the side wall of the container to produce a hydrogen storage material.
[0071] 本発明の第 29の観点によれば、粉砕容器に水素を含む所定の処理ガスを高圧噴 射しつつ、前記粉砕容器内に生ずる前記処理ガスの気流に乗るように水素貯蔵材 原料を前記粉碎容器に導入することにより、前記気流に乗った水素貯蔵材原料どう しの衝突もしくは磨砕または前記気流から与えられる剪断力によって、水素貯蔵材原 料を機械的粉砕して水素貯蔵材料を製造する水素貯蔵材料の製造方法、が提供さ れる。  [0071] According to a twenty-ninth aspect of the present invention, while a high-pressure injection of a predetermined processing gas containing hydrogen is performed on the pulverizing container, the hydrogen storage material is so supplied as to ride on the gas flow of the processing gas generated in the pulverizing container. Is introduced into the milling vessel, and the hydrogen storage material is mechanically pulverized by collision or grinding of the hydrogen storage material in the gas stream or by shearing force given by the gas stream. A method for producing a hydrogen storage material for producing hydrogen.
[0072] これら第 20から第 29の観点に係る本発明によれば、水素雰囲気下での機械的粉 砕による細粒化によって水素貯蔵機能を発現する水素貯蔵材料を、高工ネルギ一で 粉砕することができるために、水素貯蔵能力の高い水素貯蔵材料を得ることができる 。しかも、粉砕機構上、遊星ボールミルのような粉砕量の制約がなぐ工業化が可能 であり、大量生産に十分に対応することができる。また、水素雰囲気下での機械的粉 砕による細粒化によって水素貯蔵機能を発現する水素貯蔵機能材料を用いて水素 貯蔵材料を製造するにあたり、水素分子を水素原子へ解離させる機能を有する金属 成分を、前記水素貯蔵機能材料の機械的粉砕の途中に添加した場合には、その金 属成分が水素貯蔵機能材料に厚く覆われることなぐしかも金属成分を高分散状態 で担持することができ、その金属成分の作用によって高い水素貯蔵能力が得られる。 [0072] According to the present invention according to the twentieth to twenty-ninth aspects, a hydrogen storage material that exhibits a hydrogen storage function by granulation by mechanical pulverization in a hydrogen atmosphere is pulverized with high energy. Therefore, a hydrogen storage material having a high hydrogen storage capacity can be obtained. In addition, the industrialization is possible because the grinding mechanism does not limit the amount of grinding like a planetary ball mill. Therefore, it can sufficiently cope with mass production. Also, in producing a hydrogen storage material using a hydrogen storage function material that exhibits a hydrogen storage function by mechanically pulverizing under a hydrogen atmosphere, a metal component having a function of dissociating hydrogen molecules into hydrogen atoms. Is added during the mechanical pulverization of the hydrogen storage function material, the metal component can be supported in a highly dispersed state without the metal component being thickly covered with the hydrogen storage function material. High hydrogen storage capacity is obtained by the action of the metal component.
[0073] 本発明の第 30の観点によれば、その中で水素貯蔵材原料を粉砕するための円筒 状の粉砕容器と、水素貯蔵材原料と所定の溶剤からなるスラリーを前記粉砕容器内 に導入するスラリー供給部と、前記粉砕容器内のスラリーを排出するスラリー排出部 と、前記粉砕容器に所定量充填された粉砕ボールと、前記粉砕ボールを前記粉砕 容器内で搔き回す攪拌装置と、を具備する水素貯蔵材料の製造装置、が提供される  [0073] According to a thirtieth aspect of the present invention, a cylindrical pulverizing container for pulverizing a hydrogen storage material therein, and a slurry comprising the hydrogen storage material and a predetermined solvent are placed in the pulverization container. A slurry supply unit to be introduced, a slurry discharge unit to discharge the slurry in the grinding container, a grinding ball filled in a predetermined amount in the grinding container, and a stirring device for rotating the grinding ball in the grinding container, An apparatus for producing a hydrogen storage material comprising:
[0074] 本発明の第 31の観点によれば、液密に保持される粉砕容器内に、粉碎ボールと、 水素貯蔵材原料と溶剤とからなるスラリーと、を充填し、前記粉砕容器内に設けられ たインペラを回転させることによる前記粉碎ボールどうしの衝突により前記水素貯蔵 材原料を機械的に粉砕して水素貯蔵材料を製造する水素貯蔵材料の製造方法、が 提供される。 [0074] According to a thirty-first aspect of the present invention, a grinding container, which is held in a liquid-tight manner, is filled with a milling ball and a slurry comprising a hydrogen storage material and a solvent, and the grinding container is filled in the grinding container. A method for producing a hydrogen storage material is provided, wherein the raw material for hydrogen storage material is mechanically pulverized by collision of the ground balls by rotating an impeller provided to produce a hydrogen storage material.
[0075] これら第 30および第 31の観点に係る発明によれば、湿式粉砕により被粉砕物を粉 砕するために、粉砕された粒子の凝集が抑制される。これによつて微細粒化を効率よ く進めることができ、微細で水素貯蔵率の高い水素貯蔵材料を得ることができる。ま た、粉碎の連続処理が容易であり、これによつて高い量産性が得られる。さらに、粉 砕処理後の水素貯蔵材料を所定の容器等に充填することにより、水素貯蔵材料の貯 蔵、運搬等の取り扱いが容易となる。  [0075] According to the inventions according to the thirtieth and thirty-first aspects, since the object to be ground is ground by wet grinding, aggregation of the ground particles is suppressed. Thereby, fine graining can be efficiently promoted, and a fine hydrogen storage material having a high hydrogen storage rate can be obtained. In addition, continuous grinding is easy, and high mass productivity can be obtained. Further, by filling the hydrogen storage material after the pulverization treatment into a predetermined container or the like, it becomes easy to store and transport the hydrogen storage material.
[0076] 本発明の第 32の観点によれば、水素と反応することによって金属水素化物と金属 アミド化合物とを同時に含む水素貯蔵材料に変化する金属イミド化合物を有する水 素貯蔵材料前駆体であって、前記金属イミド化合物は、前記金属水素化物と前記金 属アミド化合物との反応を経ることなく合成されたものである水素貯蔵材料前駆体、 が提供される。 [0077] 本発明の第 33の観点によれば、水素と反応することによって水素を放出可能となる 水素貯蔵材料に可逆的に変化する水素貯蔵材料前駆体であって、金属アミド化合 物の熱分解により生成した金属イミド化合物を有する水素貯蔵材料前駆体、が提供 される。 According to a thirty-second aspect of the present invention, there is provided a hydrogen storage material precursor having a metal imide compound which changes into a hydrogen storage material containing a metal hydride and a metal amide compound by reacting with hydrogen. And a hydrogen storage material precursor, wherein the metal imide compound is synthesized without undergoing a reaction between the metal hydride and the metal amide compound. [0077] According to a thirty-third aspect of the present invention, there is provided a hydrogen storage material precursor which reversibly changes into a hydrogen storage material capable of releasing hydrogen by reacting with hydrogen, the heat of a metal amide compound being A hydrogen storage material precursor having a metal imide compound generated by decomposition is provided.
[0078] 本発明の第 34の観点によれば、水素と反応することによって水素を放出可能となる 水素貯蔵材料に可逆的に変化する金属イミド化合物を有する水素貯蔵材料前駆体 の製造方法であって、  [0078] According to a thirty-fourth aspect of the present invention, there is provided a method for producing a hydrogen storage material precursor having a metal imide compound which reversibly changes into a hydrogen storage material capable of releasing hydrogen by reacting with hydrogen. hand,
金属アミド化合物を熱分解することにより前記金属イミド化合物を得る水素貯蔵材 料前駆体の製造方法、が提供される。  A method for producing a hydrogen storage material precursor that obtains the metal imide compound by thermally decomposing a metal amide compound is provided.
[0079] これら第 32から第 34の観点に係る発明によれば、得られた水素貯蔵材料前駆体を 基にして、水素放出速度の速い水素貯蔵材料を得ることができる。また、水素放出開 始温度の低い水素貯蔵材料を得ることができる。  According to the inventions according to the thirty-second to thirty-fourth aspects, a hydrogen storage material having a high hydrogen release rate can be obtained based on the obtained hydrogen storage material precursor. Further, a hydrogen storage material having a low hydrogen release start temperature can be obtained.
[0080] 本発明の第 35の観点によれば、 80°C以上の温度で水素を吸蔵または放出する機 能が活性化される水素吸蔵材料と前記水素吸蔵材料の水素の吸蔵および放出を高 める触媒とを含む固体の水素貯蔵材料とを充填するための水素貯蔵材料充填容器 であって、前記水素貯蔵材料を封入する容器と、外部に連通するとともに、前記容器 の内部において水素の流路を形成する流路形成部材と、前記水素貯蔵材料を 80°C 以上の温度に加熱する加熱手段と、を具備する水素貯蔵材料充填容器、が提供さ れる。  [0080] According to a thirty-fifth aspect of the present invention, the function of occluding or releasing hydrogen at a temperature of 80 ° C or higher is activated, and the hydrogen occluding and releasing of the hydrogen occluding material is enhanced. A hydrogen storage material-filling container for filling a solid hydrogen storage material containing a catalyst containing the hydrogen storage material, the container being filled with the hydrogen storage material, and a flow of hydrogen flowing inside the container. A hydrogen storage material-filled container comprising: a flow path forming member for forming a path; and heating means for heating the hydrogen storage material to a temperature of 80 ° C. or higher.
[0081] この第 35の観点に係る発明によれば、加熱手段により水素貯蔵材料が加熱された 場合には、水素貯蔵材料の水素を吸蔵または放出する機能が活性化するため、速 やかに水素の吸蔵 ·放出を行うことができる。その結果、特にリチウム系材料に最適 な水素貯蔵材料充填容器を提供することができる。また、水素吸蔵合金等に比べ、リ チウム系材料は単位重量あたりの水素吸蔵率が大きいため、充填容器の質量あたり の水素貯蔵率を増加させることができる。その結果、この水素貯蔵材料充填容器は、 燃料電池自動車などに搭載される水素供給装置、定置式燃料電池用のバッファタン クゃ水素ステーションの貯蔵容器システムに利用することができ、さらに今後期待さ れる水素エネルギー社会における水素貯蔵装置全般に、応用することができる。 [0082] また、第 35の観点に係る水素貯蔵材料充填容器によれば、効率よく水素貯蔵材料 を加熱することができるため、水素の吸蔵および放出を短時間で行うことができる。さ らにガス流通管の表面積を大きくし、水素貯蔵材料が水素を吸蔵または放出する効 率を上げることができる。 [0081] According to the invention of the thirty-fifth aspect, when the hydrogen storage material is heated by the heating means, the function of occluding or releasing hydrogen of the hydrogen storage material is activated. It can store and release hydrogen. As a result, it is possible to provide a hydrogen storage material filled container that is particularly suitable for a lithium-based material. Further, since the lithium-based material has a higher hydrogen storage rate per unit weight than the hydrogen storage alloy or the like, the hydrogen storage rate per mass of the filled container can be increased. As a result, this hydrogen storage material-filled container can be used for a hydrogen supply device mounted on a fuel cell vehicle, etc., and a storage tank system for a buffer tank hydrogen station for stationary fuel cells. It can be applied to all hydrogen storage devices in the hydrogen energy society. [0082] Further, according to the hydrogen storage material-filled container according to the thirty-fifth aspect, the hydrogen storage material can be efficiently heated, so that the storage and release of hydrogen can be performed in a short time. Further, the surface area of the gas flow pipe can be increased, and the efficiency of the hydrogen storage material storing or releasing hydrogen can be increased.
[0083] 本発明の第 36の観点によれば、前記第 35の観点に係る水素貯蔵材料充填容器 を搭載した移動体が提供される。  [0083] According to a thirty-sixth aspect of the present invention, there is provided a moving object equipped with the hydrogen storage material-filled container according to the thirty-fifth aspect.
[0084] この第 36の観点に係る移動体によれば、例えば、 1回の補給で長い距離を走行す ること力 Sできる、軽量な燃料電池自動車または水素エンジン自動車を実現することが できる。  [0084] According to the moving object according to the thirty-sixth aspect, for example, a lightweight fuel cell vehicle or a hydrogen engine vehicle capable of traveling over a long distance with one replenishment can be realized.
[0085] 本発明の第 37の観点によれば、粉体系の水素貯蔵材料が充填される複数の独立 した貯蔵室と、前記複数の貯蔵室の各床面に設けられた開口部と、前記開口部を介 して前記複数の貯蔵室と連通する水素導入ラインと、を有する水素貯蔵材料充填容 器であって、前記水素貯蔵材料が水素を吸蔵していない状態で、水素を前記水素 導入ラインを通して外部から導入し、前記開口部から前記複数の貯蔵室に噴出させ ることにより前記水素貯蔵材料を各貯蔵室内で飛散させて前記水素貯蔵材料と前記 水素とを接触させ、前記水素貯蔵材料に前記水素を吸蔵させる水素貯蔵材料充填 容器、が提供される。  [0085] According to a thirty-seventh aspect of the present invention, a plurality of independent storage chambers filled with a powder-based hydrogen storage material, openings provided on floors of the plurality of storage chambers, A hydrogen introduction line communicating with the plurality of storage chambers through openings, wherein the hydrogen storage material does not occlude hydrogen and the hydrogen is introduced into the hydrogen storage material. The hydrogen storage material is scattered in each storage chamber by being introduced from the outside through the line and ejected from the opening into the plurality of storage chambers so that the hydrogen storage material and the hydrogen are brought into contact with each other. And a hydrogen storage material-filled container for storing the hydrogen.
[0086] この第 37の観点に係る発明によれば、水素貯蔵容器内での水素貯蔵材料 (水素 貯蔵材料が水素を吸蔵してレ、なレ、状態にある水素貯蔵材料前駆体)の凝集 ·過密化 が低減されるので、水素貯蔵材料前駆体に水素を効率よく充填することができる。ま た、これにより水素貯蔵材料からの水素の放出能力が高められるので、水素ェネル ギ一の供給効率を高めることができる。  [0086] According to the invention of the thirty-seventh aspect, agglomeration of a hydrogen storage material (a hydrogen storage material precursor in a state in which the hydrogen storage material has absorbed hydrogen and is in a state of absorbing hydrogen) in the hydrogen storage container. · Because overcrowding is reduced, hydrogen can be efficiently filled in the hydrogen storage material precursor. In addition, since the ability to release hydrogen from the hydrogen storage material can be increased, the supply efficiency of hydrogen energy can be increased.
[0087] 本発明の第 38の観点によれば、アンモニアおよび/または水蒸気を含む水素、ま たは、前記水素と He、 Ne、 Ar、 N力 選ばれた 1または 2以上力 なる混合気体の  [0087] According to a thirty-eighth aspect of the present invention, hydrogen containing ammonia and / or water vapor, or a mixed gas of hydrogen and one or more selected from the group consisting of He, Ne, Ar, and N is used.
2  2
流路に、アルカリ金属水素化物および Zまたはアルカリ土類金属水素化物を含むフ ィルタが設置されている特徴とする気体精製装置、が提供される。  There is provided a gas purification apparatus characterized in that a filter containing an alkali metal hydride and a Z or alkaline earth metal hydride is provided in a flow path.
[0088] この第 38の観点に係る発明によれば、燃料電池等に好適に用いられるこれらの気 体から、燃料電池を被毒させるアンモニアおよび Zまたは水を高効率で残存濃度を PPMオーダーまでに除去することができる。 [0088] According to the invention of the thirty-eighth aspect, ammonia and Z or water poisoning the fuel cell can be efficiently removed from these gases suitably used for the fuel cell and the like by reducing the residual concentration. It can be removed by the PPM order.
図面の簡単な説明 Brief Description of Drawings
[図 1]従来の窒化リチウム (Li N)を出発材料とした水素貯蔵材料での脱離ガスのガ [Figure 1] Gas of desorption gas from a conventional hydrogen storage material starting from lithium nitride (Li N)
3  Three
ス放出スペクトル線図。 FIG.
[図 2]比較例 1の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線 図。  FIG. 2 is a gas emission spectrum diagram showing the results of mass number analysis of desorbed gas accompanying a rise in temperature in Comparative Example 1.
[図 3]比較例 2の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線 図。  FIG. 3 is a gas emission spectrum diagram showing the results of mass number analysis of desorbed gas accompanying a rise in temperature in Comparative Example 2.
[図 4A]MeM処理の初期の練り合わせ状態を示す拡大断面模式図。  FIG. 4A is an enlarged schematic cross-sectional view showing an initial kneaded state of the MeM treatment.
[図 4B]MeM処理の中期の練り合わせ状態を示す拡大断面模式図。  FIG. 4B is an enlarged schematic cross-sectional view showing a kneaded state in the middle stage of the MeM treatment.
[図 4C]MeM処理の後期の練り合わせ状態を示す拡大断面模式図。  FIG. 4C is an enlarged schematic cross-sectional view showing a kneaded state in the latter half of the MeM treatment.
[図 5]実施例 1の昇温に伴う脱離ガスの質量数分析結果を表すガス放出スペクトル線 図。  FIG. 5 is a gas emission spectrum diagram showing the result of mass number analysis of desorbed gas accompanying a rise in temperature in Example 1.
[図 6]実施例 2の昇温に伴う脱離ガスの質量分析結果を表すガス放出スペクトル線図  FIG. 6 is a gas emission spectrum diagram showing the results of mass spectrometry of desorbed gas accompanying temperature rise in Example 2.
[図 7]実施例 3の昇温に伴う脱離ガスの質量分析結果を表すガス放出スペクトル線図 FIG. 7 is a gas emission spectrum diagram showing the results of mass spectrometry of desorbed gas accompanying a rise in temperature in Example 3.
[図 8]本発明に係る水素貯蔵材料で水素放出と水素貯蔵を繰り返したときガス放出ス ぺクトル線および昇温時の質量減少量の変化を表す特性線図。 FIG. 8 is a characteristic diagram showing a change in a gas release spectrum line and a change in mass loss at the time of temperature rise when hydrogen release and hydrogen storage are repeated with the hydrogen storage material according to the present invention.
[図 9]実施例 4一 24の各試料の所定の温度範囲における水素放出率を示すグラフ。 FIG. 9 is a graph showing the hydrogen release rate of each sample of Example 4-1-24 in a predetermined temperature range.
[図 10]実施例 31— 34の各試料の反応温度と水素放出率との関係を示すグラフ。 FIG. 10 is a graph showing the relationship between the reaction temperature and the hydrogen release rate of each sample of Examples 31 to 34.
[図 11]実施例 35の水素発生反応後の XRDチャート線図。 FIG. 11 is an XRD chart diagram after a hydrogen generation reaction in Example 35.
[図 12]実施例 41および比較例 41, 42の TG— MASS装置による昇温に伴う脱離水 素の放出スペクトル線図。  FIG. 12 is a graph showing emission spectra of desorbed hydrogen in Example 41 and Comparative Examples 41 and 42 as the temperature was increased by the TG-MASS apparatus.
[図 13]実施例 51 , 52および比較例 51 , 52の TG— MASS装置による昇温に伴う脱 離水素の放出スペクトル線図。  FIG. 13 is a graph showing emission spectra of desorbed hydrogen with temperature rise by the TG-MASS apparatus of Examples 51 and 52 and Comparative Examples 51 and 52.
[図 14]水素化リチウムとリチウムアミドからなる水素貯蔵材料の DTA曲線の一例を示 す図。 [図 15]水素化リチウムとリチウムアミドからなる水素貯蔵材料の比表面積と水素放出 温度および水素放出率との関係を示すグラフ。 FIG. 14 is a diagram showing an example of a DTA curve of a hydrogen storage material composed of lithium hydride and lithium amide. FIG. 15 is a graph showing the relationship between the specific surface area, the hydrogen release temperature, and the hydrogen release rate of a hydrogen storage material composed of lithium hydride and lithium amide.
[図 16]水素化リチウムとマグネシウムアミドからなる水素貯蔵材料の比表面積と水素 放出温度および水素放出率との関係を示すグラフ。  FIG. 16 is a graph showing a relationship between a specific surface area of a hydrogen storage material composed of lithium hydride and magnesium amide, and a hydrogen release temperature and a hydrogen release rate.
[図 17]水素化マグネシウムとリチウムアミドからなる水素貯蔵材料の比表面積と水素 放出温度および水素放出率との関係を示すグラフ。  FIG. 17 is a graph showing a relationship between a specific surface area of a hydrogen storage material composed of magnesium hydride and lithium amide, and a hydrogen release temperature and a hydrogen release rate.
[図 18]水素化されたリチウムイミドからなる水素貯蔵材料の比表面積と水素放出温度 および水素放出率との関係を示すグラフ。  FIG. 18 is a graph showing the relationship between the specific surface area of a hydrogen storage material composed of hydrogenated lithium imide, the hydrogen release temperature, and the hydrogen release rate.
[図 19]窒化マグネシウムとリチウムイミドの粉砕混合物を水素化した水素貯蔵材料の 比表面積と水素放出温度および水素放出率との関係を示すグラフ。  FIG. 19 is a graph showing a relationship between a specific surface area, a hydrogen release temperature, and a hydrogen release rate of a hydrogen storage material obtained by hydrogenating a pulverized mixture of magnesium nitride and lithium imide.
[図 20]実施例 81と比較例 81の水素放出スペクトル線図。 FIG. 20 is a hydrogen release spectrum chart of Example 81 and Comparative Example 81.
[図 21]実施例 82と比較例 82の水素放出スペクトル線図。 FIG. 21 is a hydrogen release spectrum chart of Example 82 and Comparative Example 82.
[図 22]2種類以上が触媒が担持された水素貯蔵材料の製造工程を示すフローチヤ ート。  FIG. 22 is a flowchart showing a production process of a hydrogen storage material in which two or more types of catalyst are supported.
[図 23]2種類以上の触媒が担持された水素貯蔵材料の別の製造工程を示すフロー チャート。  FIG. 23 is a flow chart showing another production process of a hydrogen storage material carrying two or more types of catalysts.
[図 24]2種類以上の触媒が担持された水素貯蔵材料のさらに別の製造工程を示すフ π ~~チヤ' ~~卜。  FIG. 24 is a flow chart showing still another production process of a hydrogen storage material carrying two or more types of catalysts.
[図 25]実施例 91一 93と比較例 91一 93の水素貯蔵材料の温度と水素放出量との関 係を示すグラフ。  FIG. 25 is a graph showing the relationship between the temperature of the hydrogen storage material and the amount of released hydrogen in Examples 91-93 and Comparative Examples 91-93.
[図 26A]第 1の製造装置の概略構造を示す水平断面図。  FIG. 26A is a horizontal sectional view showing a schematic structure of a first manufacturing apparatus.
[図 26B]第 1の製造装置の概略構造を示す垂直断面図。  FIG. 26B is a vertical sectional view showing a schematic structure of the first manufacturing apparatus.
[図 27]第 2の製造装置の概略構造を示す断面図。  FIG. 27 is a sectional view showing a schematic structure of a second manufacturing apparatus.
[図 28]第 2の製造装置による粉砕動作を模式的に示す図。  FIG. 28 is a diagram schematically showing a pulverizing operation by a second manufacturing apparatus.
[図 29]第 3の製造装置の概略構造を一部切り欠いて示す斜視図。  FIG. 29 is a perspective view showing a schematic structure of a third manufacturing apparatus with a part cut away.
[図 30]第 4の製造装置の概略構造を示す断面図。  FIG. 30 is a sectional view showing a schematic structure of a fourth manufacturing apparatus.
[図 31]第 4の製造装置における粉砕形態を示す図。  FIG. 31 is a diagram showing a pulverization mode in a fourth manufacturing apparatus.
[図 32]第 5の製造装置の概略構造を示す断面図。 [図 33]実施例 101— 104と比較例 101におけるミリング時間と水素貯蔵材料の平均 粒径との関係を示すグラフ。 FIG. 32 is a sectional view showing a schematic structure of a fifth manufacturing apparatus. FIG. 33 is a graph showing the relationship between the milling time and the average particle size of the hydrogen storage material in Examples 101-104 and Comparative Example 101.
[図 34]図 33のミリング時間と水素貯蔵材料の平均粒径との関係の拡大図。  FIG. 34 is an enlarged view of the relationship between the milling time in FIG. 33 and the average particle size of the hydrogen storage material.
[図 35]実施例 101— 104および比較例 101におけるミリング時間と水素貯蔵量との 関係を示すグラフ。  FIG. 35 is a graph showing the relationship between the milling time and the hydrogen storage amount in Examples 101-104 and Comparative Example 101.
[図 36]実施例 105— 109および比較例 102の 250°C保持時間と水素貯蔵量(累積 値)との関係を示すグラフ。  FIG. 36 is a graph showing the relationship between the retention time at 250 ° C. and the hydrogen storage amount (cumulative value) in Examples 105-109 and Comparative Example 102.
[図 37]第 6の製造装置の概略構成を示す断面図。  FIG. 37 is a sectional view showing a schematic configuration of a sixth manufacturing apparatus.
[図 38]第 6の製造装置を連続処理可能な形態に変形した製造装置の概略構成を示 す断面図。  FIG. 38 is a cross-sectional view showing a schematic configuration of a manufacturing apparatus in which the sixth manufacturing apparatus is transformed into a form capable of continuous processing.
[図 39]第 6の製造装置を連続処理可能な形態に変形した別の製造装置の概略構成 を示す断面図。  FIG. 39 is a cross-sectional view showing a schematic configuration of another manufacturing apparatus in which the sixth manufacturing apparatus is transformed into a form capable of continuous processing.
[図 40]実施例 111と比較例 111の昇温時間および温度と水素貯蔵率との関係を示 すグラフ。  FIG. 40 is a graph showing the relationship between the heating time and temperature and the hydrogen storage rate in Example 111 and Comparative Example 111.
[図 41]実施例 121と比較例 121の温度と水素放出量との関係を示すグラフ。  FIG. 41 is a graph showing the relationship between the temperature and the hydrogen release amount in Example 121 and Comparative Example 121.
[図 42]実施例 122, 123と比較例 122, 123の温度と水素放出量との関係を示すダラ フ。  FIG. 42 is a graph showing the relationship between the temperature and the hydrogen release amount in Examples 122 and 123 and Comparative Examples 122 and 123.
[図 43]第 1の水素貯蔵材料充填容器の概略構造を示す断面図。  FIG. 43 is a cross-sectional view showing a schematic structure of a first hydrogen storage material-filled container.
[図 44]第 2の水素貯蔵材料充填容器の概略構造を示す断面図。  FIG. 44 is a cross-sectional view showing a schematic structure of a second hydrogen storage material-filled container.
[図 45]第 3の水素貯蔵材料充填容器の概略構造を示す断面図。  FIG. 45 is a cross-sectional view showing a schematic structure of a third hydrogen storage material-filled container.
[図 46]第 4の水素貯蔵材料充填容器の概略構造を示す断面図。  FIG. 46 is a sectional view showing a schematic structure of a fourth hydrogen storage material-filled container.
[図 47]水素貯蔵材料充填容器を搭載した移動体の概略構成を示す図。  FIG. 47 is a view showing a schematic configuration of a moving body equipped with a hydrogen storage material-filled container.
[図 48]第 5の水素貯蔵材料充填容器の概略構造を示す斜視図。  FIG. 48 is a perspective view showing a schematic structure of a fifth hydrogen storage material filled container.
[図 49]水素貯蔵材料充填容器に気体精製装置を組み合わせた構成を示す図。 発明を実施するための最良の形態  FIG. 49 is a diagram showing a configuration in which a gas purification device is combined with a hydrogen storage material-filled container. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について添付図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
最初に、ナノ構造化'組織化されたリチウムイミド化合物前駆複合体を少なくとも含 有する水素貯蔵材料について説明する。金属系化合物および非金属系化合物にお ける水素貯蔵能力は、ナノメートルスケールの組織'構造に関連しており、ナノメート ノレスケールでの組織 ·構造制御すなわちナノ組織化 ·構造化によって高性能な水素 化材料が作製できる。 First, a hydrogen storage material containing at least a lithium imide compound precursor composite that has been nanostructured and organized will be described. Metallic and non-metallic compounds The hydrogen storage capacity is related to the nanometer-scale structure / structure, and high-performance hydrogenated materials can be produced by nanostructure / structure control, that is, nanostructure / structuring at the nanometer scale.
[0091] 粉体系材料をナノ構造化'組織化する方法の 1つとして MeM処理がある。これは、 粉砕媒体と呼ばれる硬質のボールと原料とを密閉容器に入れ、転動あるいは機械的 な攪拌を行って原材料の粉砕、圧接、練り合わせを行い、出発原料とは異なる物性 を示す材料を得る方法である。本発明者らが実施した MeM処理によるナノ組織化- 構造化された水素貯蔵物質の作製手順の例を以下に説明する。なお、 MeM処理の 具体的な方法、条件等に関しては、ここに示す例に限定されないことは言うまでもな レ、。  [0091] One of the methods of nanostructuring and organizing a powder material is MeM treatment. In this method, a hard ball called a crushing medium and a raw material are placed in a closed container, and the raw material is crushed, pressed, and kneaded by rolling or mechanical stirring to obtain a material having physical properties different from those of the starting material. Is the way. An example of a procedure for producing a nanostructured-structured hydrogen storage material by MeM treatment performed by the present inventors will be described below. Needless to say, the specific method and conditions of the MeM processing are not limited to the examples shown here.
[0092] LiNHと LiHから出発して、先に示した式 (4) (以下に再掲する)の可逆的な不均  [0092] Starting from LiNH and LiH, the reversible inequality of Eq. (4) shown above (repeated below)
2  2
化反応を用いた水素吸放出反応に注目した。  Attention was paid to a hydrogen absorption / desorption reaction using a chemical reaction.
LiNH +LiH→Li ΝΗ + Η ΐ…(4)  LiNH + LiH → Li ΝΗ + Η ΐ… (4)
2 2 2  2 2 2
[0093] この反応によれば、理論値で 6. 5質量%の水素を可逆的に吸放出可能である。こ のとき、水素化反応の標準ェンタルピーは Δ Η=_44· 5 (kj/mol H )であり、熱  According to this reaction, 6.5% by mass of hydrogen as a theoretical value can be reversibly absorbed and released. At this time, the standard enthalpy of the hydrogenation reaction is Δ Η = _44.5 (kj / mol H),
2  2
力学的観点からも低温での水素の吸放出が見込まれる。  Hydrogen absorption and desorption at low temperature is also expected from a mechanical point of view.
[0094] (比較例 1)  [0094] (Comparative Example 1)
そこでまず、市販の LiNHと LiHを分子数比で 1: 1の割合で秤量し、メノウ乳鉢で  Therefore, first, commercially available LiNH and LiH are weighed at a ratio of 1: 1 by the number of molecules, and then weighed in an agate mortar.
2  2
数分間混合した。こうして得られた混合体 (つまり、比較例 1に係る試料)を、昇温速 度を 5°C/分として加熱し、昇温に伴う脱離ガスの質量数分析を行った。  Mix for a few minutes. The mixture thus obtained (that is, the sample according to Comparative Example 1) was heated at a heating rate of 5 ° C./min, and mass number analysis of desorbed gas accompanying the heating was performed.
[0095] 図 2に比較例 1の試料の昇温に伴う脱離ガスの質量数分析結果を表すガス放出ス ぺクトル線図を示す。この図 2においては、横軸に温度(°C)をとり、縦軸に昇温に伴う 脱離ガスの質量数 (MASS)分析法によるガス放出スペクトル強度 (任意単位)をとつ ている。また、図 2中の特性線 Cは水素の放出スぺクトノレ線を、特性線 Dはアンモニア ガス(NH (g) )の放出スペクトル線をそれぞれ示している。図 2から明らかなように、  FIG. 2 shows a gas emission spectrum diagram showing the results of mass number analysis of desorbed gas accompanying the temperature rise of the sample of Comparative Example 1. In FIG. 2, the horizontal axis represents temperature (° C.), and the vertical axis represents gas emission spectrum intensity (arbitrary unit) by mass number (MASS) analysis of desorbed gas accompanying temperature rise. In addition, a characteristic line C in FIG. 2 represents a hydrogen emission spectrum line, and a characteristic line D represents an emission spectrum line of ammonia gas (NH (g)). As is evident from Figure 2,
3  Three
比較例 1の試料では、水素放出と同時に多量の NH (g)が放出されている。これは、  In the sample of Comparative Example 1, a large amount of NH (g) was released simultaneously with the release of hydrogen. this is,
3  Three
先に示した式(5) (以下に再掲する)に示す LiNHの熱分解反応によるものと考えら  It is thought to be due to the thermal decomposition reaction of LiNH shown in equation (5) shown above (reprinted below).
2  2
れる。 2LiNH→Li NH + NH (g)†…(5) It is. 2LiNH → Li NH + NH (g) †… (5)
2 2 3  2 2 3
[0096] この結果は、 LiNHと LiHが微視的な接触を果たしている場合には、優先的に LiN  [0096] This result indicates that when LiNH and LiH make microscopic contact, LiN
2  2
Hと LiHによる水素放出反応が生じていることを支持している。し力し、 LiNHと LiH It supports that the hydrogen release reaction by H and LiH is occurring. LiNH and LiH
2 2 が微視的な接触を果たしてレ、なレ、場合には、 (4)式の反応が進行する前に(5)式の 分解反応が優先的に進行するため、 LiNH単独の熱分解反応のみを生じてしまい、 In the case where 2 2 makes microscopic contact, the decomposition reaction of equation (5) takes precedence before the reaction of equation (4) proceeds, so the thermal decomposition of LiNH alone Only reaction occurs,
2  2
その結果、多量の NH (g)が放出されることとなる。  As a result, a large amount of NH (g) is released.
3  Three
[0097] (比較例 2)  (Comparative Example 2)
そこで、 LiNHと LiHの微視的な接触を増加させ、 NH (g)の放出を抑えるという  Therefore, it is said that the microscopic contact between LiNH and LiH is increased to suppress the release of NH (g).
2 3  twenty three
目的で、 LiNHと LiHを分子数比で 1: 2の割合で秤量し、メノウ乳鉢で数分間混合さ  For the purpose, LiNH and LiH are weighed in a ratio of 1: 2 in the number ratio of molecules and mixed in an agate mortar for several minutes.
2  2
せた混合体 (比較例 2の試料)を作製し、得られた試料について、比較例 1と同様の 昇温に伴う脱離ガスの質量数分析を行った。  A mixed mixture (sample of Comparative Example 2) was prepared, and the obtained sample was subjected to the same mass number analysis of desorbed gas accompanying temperature rise as in Comparative Example 1.
[0098] 図 3に比較例 2の試料の昇温に伴う脱離ガスの質量数分析結果を表すガス放出ス ベクトル線図を示す。図 3中の特性線 Eは水素の放出スペクトル線を、特性線 Fは N H (g)の放出スペクトル線をそれぞれ示している。この図 3から明らかなように、比較[0098] Fig. 3 is a gas release spectrum diagram showing the results of mass number analysis of desorbed gas accompanying the temperature rise of the sample of Comparative Example 2. A characteristic line E in FIG. 3 indicates an emission spectrum line of hydrogen, and a characteristic line F indicates an emission spectrum line of N H (g). As is evident from Figure 3, the comparison
3 Three
例 2の試料でも水素放出と同時に NH (g)の放出が見られるが、比較例 1と比較する  In the sample of Example 2, the release of NH (g) was observed at the same time as the release of hydrogen, but compared with Comparative Example 1.
3  Three
と、 NH (g)の放出が抑えられていることが判明した。この結果から、本反応系(反応 It was found that the release of NH (g) was suppressed. From this result, this reaction system (reaction
3 Three
式 (4) )における水素貯蔵システムでは、ナノスケールにおける構造が水素の吸放出 特性を大きく支配するパラメータとなっているという知見が得られた。  In the hydrogen storage system in Eq. (4), it was found that the structure at the nanoscale is a parameter that largely controls the absorption and desorption characteristics of hydrogen.
[0099] (実施例 1) [0099] (Example 1)
そこで実施例 1として、 LiNH、 LiHの重なる微視的接触を果たすことを目的とし、  Therefore, as Example 1, the purpose was to achieve overlapping microscopic contact of LiNH and LiH,
2  2
LiNH微粉末と LiH微粉未を分子数比で 1 : 1の割合で秤量し、 MeM処理を 2時間 LiNH fine powder and LiH fine powder are weighed at a ratio of 1: 1 in number of molecules, and MeM treatment is performed for 2 hours.
2 2
実施した。 LiNH微粉末および LiH微粉末は、ともに平均粒径が数 10 x m (20 4  Carried out. Both the LiNH fine powder and the LiH fine powder have an average particle size of several tens of m (20 4
2  2
0 μ m)の試薬をそれぞれを用いた。  0 μm) of each reagent.
[0100] MeM処理は、具体的には、鋼鉄製のポット(内容積 30cc)の中に、混合粉末試料 LiNHと LiHとを 1 : 1の割合で混合した粉末および少量の触媒を 0. 3グラムと、鋼鉄[0100] Specifically, in the MeM treatment, a powder obtained by mixing a mixed powder sample LiNH and LiH at a ratio of 1: 1 and a small amount of a catalyst are placed in a steel pot (30 cc internal volume). Grams and steel
2 2
製のボール(直径 7mm) 20個とを装入し、容器内を水素等の還元性ガスまたはアル ゴン (Ar)等の不活性ガスの雰囲気とし、 400rpmの回転速度で自転および公転させ 、試料を練り上げて、ナノメートルサイズで LiNHと LiHが複合化した数ミクロンサイ  20 balls (diameter: 7 mm) are charged, and the inside of the container is rotated and revolved at a rotation speed of 400 rpm with a reducing gas atmosphere such as hydrogen or an inert gas atmosphere such as argon (Ar). A few micron-sized nanometer-sized composite of LiNH and LiH.
2 ズの粉末粒子を得た。なお、 MeM処理装置にはドイツ国フリッチュ社(Fritsch)製の P7—遊星型ボールミルを使用した。 2 Powder particles were obtained. The MeM processing apparatus used was a P7 planetary ball mill manufactured by Fritsch (Germany).
[0101] ここで、 MeM処理の微視的な作用について図 4A—図 4Cを参照して説明する。密 閉容器内に封入された混合試料は、硬質の鋼球 (粉砕媒体)との衝突を繰り返すこと により衝撃圧縮力を受けて塑性変形 (鍛造変形)し、加工硬化し、粉砕され、薄片化 し、最終的には練り合わされる。このような混合試料の練り合わせは次のように段階的 に進行する。  Here, the microscopic effect of the MeM processing will be described with reference to FIGS. 4A to 4C. The mixed sample sealed in the hermetically sealed container undergoes impact compression force due to repeated collisions with hard steel balls (pulverizing medium), undergoes plastic deformation (forging deformation), work hardens, is pulverized, and becomes thin. And finally kneaded. The kneading of such a mixed sample proceeds stepwise as follows.
[0102] 練り合わせの初期の段階では、図 4Aに示すように分散粒子 503中におレ、て試料 粒子 502が鋼球 504と鋼球 504との間に挟まれて圧縮衝撃力を受けて潰される。練 り合わせの中期の段階では、図 4Bに示すように試料粒子 502がさらに潰され、伸ば され、薄片化して積層される。さらに、練り合わせの後期の段階に至ると、図 4Cに示 すように試料粒子 502が薄片積層化した状態で折れ曲がり、畳み込まれ、破断して 破断面 502aが現れ、所謂、練り合わせ効果が認められるようになる。こうしてナノ構 造化 ·組織化された、数ミクロンオーダーのサイズの混合粉末粒子が得られる。  [0102] In the initial stage of kneading, as shown in Fig. 4A, the sample particles 502 are sandwiched between the steel balls 504 and crushed by a compressive impact force as shown in Fig. 4A. It is. In the middle stage of kneading, the sample particles 502 are further crushed, stretched, flaked and laminated as shown in FIG. 4B. Furthermore, at the latter stage of the kneading, as shown in FIG. Become like In this way, nanostructured and organized mixed powder particles having a size on the order of several microns are obtained.
[0103] このような MeM処理により得られた混合体について、上記比較例 1, 2と同様に、昇 温に伴う脱離ガスの質量数分析を行った。図 5に実施例 1の試料の昇温に伴う脱離 ガスの質量数分析結果を表すガス放出スペクトル線図を示す。図 5中の特性線 Gは 水素の放出スペクトル線を、特性線 Hは NH (g)の放出スぺクトノレ線をそれぞれ示し ている。  [0103] The mixture obtained by such a MeM treatment was subjected to mass number analysis of desorbed gas accompanying the temperature increase in the same manner as in Comparative Examples 1 and 2. FIG. 5 shows a gas emission spectrum diagram showing the mass number analysis result of the desorbed gas accompanying the temperature rise of the sample of Example 1. In FIG. 5, a characteristic line G indicates an emission spectrum line of hydrogen, and a characteristic line H indicates an emission spectrum line of NH (g).
[0104] 図 5から明らかなように、実施例 1の試料は、前出のメノウ乳鉢で混ぜ合わせた比較 例 1 , 2と比較して、 NH (g)の放出が著しく抑えられている。すなわち、上記式 (4)の  As is clear from FIG. 5, the sample of Example 1 has remarkably suppressed NH (g) emission as compared with Comparative Examples 1 and 2 mixed with the agate mortar described above. That is, in the above equation (4)
3  Three
不均化反応を利用した水素貯蔵システムにおいて、 MeM処理が非常に有効かつ重 要な働きを担うことが判明した。し力 ながら、まだ NH (g)の放出が認められている  It has been found that MeM treatment plays a very effective and important role in hydrogen storage systems using disproportionation reactions. However, the release of NH (g) is still recognized
3  Three
[0105] (実施例 2) (Example 2)
続いて、触媒として金属粒子を添加した水素貯蔵材料の製造方法について説明す る。 MeM処理を利用することにより、水素吸放出の反応速度を上げる触媒の添加も 容易に行うことができる。 Liのモル数に対して lmol%の Ni粒子を、 1 : 1のモル比で 混合された LiNHと LiHの混合体に混入し、上記実施例 1と同様の MeM処理を施 Next, a method for producing a hydrogen storage material to which metal particles are added as a catalyst will be described. By using the MeM treatment, it is possible to easily add a catalyst that increases the reaction rate of hydrogen absorption and desorption. Lmol% Ni particles with respect to the number of moles of Li in a molar ratio of 1: 1 Mixed with the mixed mixture of LiNH and LiH and subjected to the same MeM treatment as in Example 1 above.
2  2
した試料を作製した。このとき、 LiNH微粉末および LiH微粉末として、ともに平均粒  A sample was prepared. At this time, the average particle size of both LiNH fine powder and LiH fine powder is
2  2
径が数 10 μ ΐηのものを用いた。また、 Ni粒子として平均粒径が 20nmの Niナノ粒子 を用いた。  Those with a diameter of several tens of μΐη were used. Ni nanoparticles having an average particle diameter of 20 nm were used as the Ni particles.
[0106] 得られた試料について昇温に伴う脱離ガスの質量数分析を、上記実施例 1等と同 様にして行った。図 6に実施例 2の試料の昇温に伴う脱離ガスの質量数分析結果を 表すガス放出スペクトル線図を示す。図 6中に実線で示す特性線は水素の放出スぺ タトル線を、破線で示す特性線は NH (g)の放出スペクトル線をそれぞれ示している  For the obtained sample, mass number analysis of desorbed gas accompanying temperature rise was performed in the same manner as in Example 1 and the like. FIG. 6 shows a gas emission spectrum diagram showing the result of mass number analysis of the desorbed gas accompanying the temperature rise of the sample of Example 2. In FIG. 6, the characteristic line indicated by a solid line indicates the emission spectrum line of hydrogen, and the characteristic line indicated by a broken line indicates the emission spectrum line of NH (g).
3  Three
[0107] 図 5と図 6を比較すると明らかなように、触媒を加えることによって、水素の放出スぺ タトルがシャープになっていることがわかる。また、実施例 2に係る試料では、 5°C/ 分の昇温速度で 150°Cから 300°Cの間で水素放出がほぼ完了し、 300°C力 400 °Cまでの間では NH (g)の放出を伴った水素放出が観測されたが、この水素の放出 As is clear from comparison between FIG. 5 and FIG. 6, it can be seen that the addition of the catalyst sharpens the hydrogen release statue. Further, in the sample according to Example 2, hydrogen release was almost completed between 150 ° C and 300 ° C at a heating rate of 5 ° C / min, and NH ( g) with the release of hydrogen was observed.
3  Three
スペクトルのピーク高さに対する NH (g)の放出スペクトルのピークの高さは、実施例  The peak height of the emission spectrum of NH (g) with respect to the peak height of the spectrum
3  Three
1と比較すると、低くなつていることがわかる。つまり、 NH (g)の発生が抑制されてい  Compared to 1, you can see that it is lower. In other words, the generation of NH (g) is suppressed.
3  Three
ること力わ力る。  To work hard.
[0108] (実施例 3)  (Example 3)
続いて、金属化合物粒子触媒を添加した水素貯蔵材料の製造方法について説明 する。ここでも、 MeM処理を利用することにより、水素吸放出の反応速度を上げる触 媒の添加を容易に行うことができる。 Liのモル数に対して lmol%の三塩化チタン (Ti C1 )粒子(平均粒径: 2— 4 μ ΐη)を、 1 : 1の分子数比で混合された LiNHと LiHの混 Next, a method for producing a hydrogen storage material to which a metal compound particle catalyst has been added will be described. Here, too, by using the MeM treatment, it is possible to easily add a catalyst that increases the reaction rate of hydrogen absorption and desorption. Lmol% titanium trichloride (Ti C1) particles (average particle size: 2-4 μ μη) with respect to the number of moles of Li are mixed in a 1: 1 ratio of the number of molecules to a mixture of LiNH and LiH.
3 2 合体に混入し、上記実施例 1と同様の MeM処理を施した試料を作製した。 A sample was prepared which was mixed with the 32 merging and subjected to the same MeM treatment as in Example 1 above.
[0109] 得られた試料について昇温に伴う脱離ガスの質量数分析を、上記実施例 1等と同 様にして行った。図 7に実施例 3の昇温に伴う脱離ガスの質量数分析結果を表すガ ス放出スペクトル線図を示す。図 7中に実線で示す特性!^は水素の放出スペクトル 線を、破線で示す特性線 Kは NH (g)の放出スペクトル線をそれぞれ示している。図  [0109] The mass number analysis of the desorbed gas accompanying the temperature rise was performed on the obtained sample in the same manner as in Example 1 above. FIG. 7 shows a gas emission spectrum diagram showing the mass number analysis result of the desorbed gas accompanying the temperature rise in Example 3. In FIG. 7, the characteristic! ^ Indicated by a solid line indicates the emission spectrum line of hydrogen, and the characteristic line K indicated by the broken line indicates the emission spectrum line of NH (g). Figure
3  Three
5と図 7とを比較すると明らかなように、触媒を加えることによって、水素の放出スぺタト ルがシャープになっていることがわかる。また、毎分 5°Cの昇温速度では、 150°Cから 300°Cの間に水素放出が完了し、測定中に NH (g)放出は全く測定されないものと As is clear from the comparison between FIG. 5 and FIG. 7, it can be seen that the addition of the catalyst sharpens the hydrogen emission total. At a rate of 5 ° C / min, Hydrogen release was completed at 300 ° C, and no NH (g) release was measured during the measurement.
3  Three
なった。  became.
[0110] なお、 TiClを添加した場合には、その後の水素貯蔵材料の加熱により TiClは分  [0110] When TiCl is added, TiCl is separated by the subsequent heating of the hydrogen storage material.
3 3 解し、金属チタン Tiの形態でリチウムイミド化合物前駆複合体中に存在するものと推 察される。  33, it is presumed that the metal titanium exists in the lithium imide compound precursor complex in the form of Ti.
[0111] (サイクル試験とその評価結果)  [0111] (Cycle test and its evaluation results)
続いて、 TiClを触媒として含むリチウムイミド化合物前駆複合体のサイクル特性に  Next, the cycle characteristics of the lithium imide compound precursor complex containing TiCl as a catalyst
3  Three
ついて説明する。 Liのモル数に対して lmol%の TiCl粒子を 1 : 1の分子数比で混  explain about. Lmol% TiCl particles are mixed in a molar ratio of 1: 1 based on the number of moles of Li.
3  Three
合された LiNHと LiHの混合体に混入し、実施例 1と同様に MeM処理を施した試料  Sample mixed with mixed LiNH and LiH and treated with MeM as in Example 1.
2  2
を第 1サイクル試料とする。そして、第 1サイクル試料を 220°Cで 12時間真空脱気し、 その後に 180°C、 3MPaの水素圧の下、 12時間水素と反応させることによって得られ た試料を第 2サイクル試料とし、これと同様の処理をさらに 1回施して得られた試料を 第 3サイクル試料とした。  Is the first cycle sample. Then, the first cycle sample was degassed under vacuum at 220 ° C for 12 hours, and then the sample obtained by reacting with hydrogen at 180 ° C under a hydrogen pressure of 3 MPa for 12 hours was used as the second cycle sample. A sample obtained by performing the same treatment one more time was used as a third cycle sample.
[0112] 図 8に、こうして得られた 3種類の試料について昇温脱離ガス分析を行った結果を 表すガス放出スぺ外ル線と熱重量測定した結果を表す質量損失線を示す。図 8中 の特性線 P1は第 1サイクル試料のガス放出スペクトル線を、特性線 Q1は第 2サイク ノレ試料のガス放出スペクトル線を、特性線 R1は第 3サイクル試料のガス放出スぺタト ル線をそれぞれ示している。また、図 8中の特性線 P2は第 1サイクル試料の質量損 失線を、特性線 Q2は第 2サイクル試料の質量損失線を、特性線 R2は第 3サイクル試 料の質量損失線をそれぞれ示してレ、る。  [0112] FIG. 8 shows a gas release outside line representing the results of a temperature programmed desorption gas analysis performed on the three types of samples thus obtained, and a mass loss line representing the results of thermogravimetric measurement. In Fig. 8, the characteristic line P1 is the gas emission spectrum line of the first cycle sample, the characteristic line Q1 is the gas emission spectrum line of the second cycle sample, and the characteristic line R1 is the gas emission spectrum of the third cycle sample. Lines are shown. The characteristic line P2 in Fig. 8 shows the mass loss line of the first cycle sample, the characteristic line Q2 shows the mass loss line of the second cycle sample, and the characteristic line R2 shows the mass loss line of the third cycle sample. Show me.
[0113] 図 8から明らかなように、第 2および第 3サイクル試料は第 1サイクル試料と比較する と、水素放出温度と水素放出量の点で多少の特性劣化を示している。これは、添カロ 物(触媒)あるいは原料に当初から混入していたと思われる不純物等力 ^度目の昇温 過程で水素の吸蔵放出に関与しない安定な物質になってしまったことによると考えら れる。しかし、第 2サイクル試料と第 3サイクル試料とでは大きな違いが見られないこと から、サイクル特性は非常に良好であると考えられる。さらに、 1°C/分の昇温速度で 脱離ガス分析を行うと、脱離曲線のピーク位置は 200°C以下に低下し、 200°C以下 での水素吸蔵放出が可能であることが確認された。 [0114] なお、上述の水素吸蔵実験は全て約 3MPaの圧力条件下で実施した力 水素の 吸収効率を向上させる観点から、 1一 lOMPa程度の広範囲の圧力条件下での実施 が可能であることは勿論である。 [0113] As is clear from Fig. 8, the second and third cycle samples show some characteristic deterioration in terms of hydrogen release temperature and hydrogen release amount as compared with the first cycle sample. This is thought to be due to the fact that the material became a stable substance that did not participate in the storage and release of hydrogen during the third heating process, which was considered to have originally been included in the carohydrate (catalyst) or raw material. It is. However, there is no significant difference between the second cycle sample and the third cycle sample, so the cycle characteristics are considered to be very good. Furthermore, when desorption gas analysis is performed at a heating rate of 1 ° C / min, the peak position of the desorption curve decreases to 200 ° C or less, and hydrogen storage and release at 200 ° C or less may be possible. confirmed. [0114] Note that all of the hydrogen storage experiments described above were performed under a pressure condition of about 3MPa. From the viewpoint of improving the absorption efficiency of hydrogen and hydrogen, it can be performed under a wide range of pressure conditions of about 11 lOMPa. Of course.
[0115] このような触媒の添カ卩による水素放出特性の向上 (放出スペクトルのシャープ化、 放出温度の低温化)は、上記 Ni粒子や TiCl粒子に特有のものではなぐ同様の触  [0115] The improvement of the hydrogen release characteristics (sharpening of the emission spectrum and lowering of the release temperature) by the addition of the catalyst to the catalyst is similar to that of the Ni particles and TiCl particles described above.
3  Three
媒作用を有する他の元素、例えば、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta Other elements having a medium action, such as B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta
, Zr, In, Hf, Agを少なくとも 1種類含む単体、合金もしくは化合物によっても実現可 能である。次にその実施例について説明する。 It can also be realized by a simple substance, alloy or compound containing at least one of, Zr, In, Hf and Ag. Next, the embodiment will be described.
[0116] (実施例 4一 24) (Examples 4-1 to 24)
実施例 4は実施例 1と同様に LiHと LiNHから構成されるが、試験方法が異なる。  Example 4 is composed of LiH and LiNH as in Example 1, but the test method is different.
2  2
また実施例 5 24は、実施例 2, 3と同様に、 LiHと LiNHに各種の触媒を添加した  In Example 524, as in Examples 2 and 3, various catalysts were added to LiH and LiNH.
2  2
ものであるが、試験方法が異なる。下記表 1に示すように、実施例 5— 21については 、 LiH、 LiNH、各種触媒をモル比で 1 : 1 : 0. 01とし、それらの合計量が 1. 3gとなる  Although the test method is different. As shown in Table 1 below, for Examples 5-21, LiH, LiNH, and various catalysts were set at a molar ratio of 1: 1: 0.01, and the total amount thereof was 1.3 g.
2  2
ように高純度 Arグローブボックス中で秤量した。また、実施例 22については、表 1に 示したように LiH、 LiNH、塩化クロム(CrCl )および TiClをモル比で 1 : 1 : 0. 01 :  Was weighed in a high purity Ar glove box as described above. Further, in Example 22, as shown in Table 1, LiH, LiNH, chromium chloride (CrCl) and TiCl were used in a molar ratio of 1: 1: 0.01:
2 3 3  2 3 3
0. 01とし、それらの合計量が 1. 3gとなるように高純度 Arグローブボックス中で秤量 した。さらに、実施例 23および実施例 24については、表 1に示したように LiH、 LiNH 、所定の触媒をモル比で 1 · 2 : 1 : 0. 01とし、それらの合計量が 1 · 3gとなるように高 0.01, and weighed in a high-purity Ar glove box so that their total amount was 1.3 g. Further, in Example 23 and Example 24, as shown in Table 1, the molar ratio of LiH, LiNH, and the predetermined catalyst was set to 1: 2: 1: 0.01, and the total amount thereof was 1.3 g. So high
2 2
純度 Arグローブボックス中で秤量した。  Purity Weighed in Ar glove box.
[0117] [表 1] [0117] [Table 1]
配合(モル比) Mixing (molar ratio)
触媒種類  Catalyst type
LiH LiNH2 触媒 LiH LiNH 2 catalyst
実施例 4 1.00 1.00 0 (なし)  Example 4 1.00 1.00 0 (none)
実施例 5 1.00 1.00 0.01 TiCI3 Example 5 1.00 1.00 0.01 TiCI 3
実施例 6 1.00 1.00 0.01 CrCI3 Example 6 1.00 1.00 0.01 CrCI 3
実施例 7 1.00 1.00 0.01 VCI2 Example 7 1.00 1.00 0.01 VCI 2
実施例 8 1.00 1.00 0.01 HfCI4 Example 8 1.00 1.00 0.01 HfCI 4
実施例 9 1.00 1.00 0.01 lrCI3 Example 9 1.00 1.00 0.01 lrCI 3
実施例 10 1.00 1.00 0.01 CoCI2 Example 10 1.00 1.00 0.01 CoCI 2
実施例 11 1.00 1.00 0.01 NiCI2 Example 11 1.00 1.00 0.01 NiCI 2
実施例 12 1.00 1.00 0.01 PtCI2 Example 12 1.00 1.00 0.01 PtCI 2
実施例 13 1.00 1.00 0.01 FeCI3 Example 13 1.00 1.00 0.01 FeCI 3
実施例 14 1.00 1.00 0.01 NdCI2 Example 14 1.00 1.00 0.01 NdCI 2
実施例 15 1.00 1.00 0.01 PdCI2 Example 15 1.00 1.00 0.01 PdCI 2
実施例 16 1.00 1.00 0.01 MoCI3 Example 16 1.00 1.00 0.01 MoCI 3
実施例 17 1.00 1.00 0.01 RhCI3 Example 17 1.00 1.00 0.01 RhCI 3
実施例 18 1.00 1.00 0.01 WCI4 Example 18 1.00 1.00 0.01 WCI 4
実施例 19 1.00 1.00 0.01 Co  Example 19 1.00 1.00 0.01 Co
実施例 20 1.00 1.00 0.01 Fe  Example 20 1.00 1.00 0.01 Fe
実施例 21 1.00 1.00 0.01 Ni  Example 21 1.00 1.00 0.01 Ni
実施例 22 1.00 1.00 0.02 CrCI3+TiCI3 Example 22 1.00 1.00 0.02 CrCI 3 + TiCI 3
実施例 23 1.20 1.00 0.01 TiCI3 Example 23 1.20 1.00 0.01 TiCI 3
実施例 24 1.20 1.00 0.01 CrCI3 Example 24 1.20 1.00 0.01 CrCI 3
次いで、秤量後の試料を高純度 Arグローブボックス中で高クロム鋼製のバルブ付ミ ル容器(250cm3)に投入した。続いて、このミル容器内を真空排気した後、ミル容器 内力 MPaとなるようにミル容器内に高純度 Arを導入し、遊星型ボールミル装置 (Fr itsch社製、 P5)を用いて、室温、 25(kpmで 120分ミリングを行レ、、試料を作製した 。ミル容器内を真空排気して Arを充填した後、高純度 Arグローブボックス中でミル容 器を開き、試料を取り出した。なお、金属 Ni、金属 Coおよび金属 Feは、真空冶金株 式会社製の試料 (Ni:平均粒径 20nm BET比表面積: 43.8m2/g, Co:平均粒 子径 20nm, BET比表面積: 47. 9m g, Fe:平均粒子径 20nm, BET比表面積: 46. 0m2/g)を用いた。その他の金属塩化物はいずれもアルドリッチ社製(純度 95 %以上)のものを使用した。 Next, the weighed sample was placed in a high-chromium steel mill container with a valve (250 cm 3 ) in a high-purity Ar glove box. Subsequently, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the internal pressure of the mill container became MPa, and room temperature was reduced using a planetary ball mill (Fritsch, P5). Milling was performed at 25 (kpm for 120 minutes to prepare a sample. After the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and the sample was taken out. , Metal Ni, metal Co and metal Fe are samples manufactured by Vacuum Metallurgy Co., Ltd. (Ni: average particle size 20 nm BET specific surface area: 43.8 m 2 / g, Co: average particle size Particle diameter 20 nm, BET specific surface area: 47.9 mg, Fe: average particle diameter 20 nm, BET specific surface area: 46.0 m 2 / g). All other metal chlorides were manufactured by Aldrich (purity 95% or more).
[0119] 実施例 4一 24の試料を高純度 Arグローブボックス内でそれぞれ 500mg秤量し、内 容積 50cm3のバルブ付の SUS製反応容器(内容積:約 50cm3)に充填した。なお、 この反応容器には、試料上部付近の温度を測定できるように、熱電対が取り付けられ ている。この試料を充填した反応容器を圧力センサー、真空ポンプならびにガスクロ マトグラフ(島津製作所社製、 GC9A、 TCD検出器、カラム: Molecular Sieve 5A )が付属されている実験装置(内容積:約 300cm3)に取り付け、真空排気した後、試 料を室温一 300°Cまで昇温速度 10°C/分で加熱し、室温、 150°C、 200°Cおよび 2 50°Cで反応容器内に放出されたガスを付属のガスクロマトグラフを用いて定量し、水 素量を測定した。水素放出率は、このようにして測定された水素量を加熱前の試料 量で除した値とした。なお、水素放出率には、各温度でガスクロマトグラフに採取し消 失した水素量を算出し、補正を加えた。 Example 4 [0119] Each of the 24 samples was weighed in a high-purity Ar glove box in an amount of 500 mg, and filled in a SUS reaction vessel (internal volume: about 50 cm 3 ) equipped with a valve having an internal volume of 50 cm 3 . The reaction vessel is equipped with a thermocouple so that the temperature near the upper part of the sample can be measured. The reaction vessel filled with this sample was placed in a pressure sensor, a vacuum pump, and an experimental apparatus (internal volume: about 300 cm 3 ) equipped with a gas chromatograph (manufactured by Shimadzu Corporation, GC9A, TCD detector, column: Molecular Sieve 5A). After mounting and evacuating, the sample was heated to room temperature-300 ° C at a heating rate of 10 ° C / min, and discharged into the reaction vessel at room temperature, 150 ° C, 200 ° C, and 250 ° C. The gas was quantified using the attached gas chromatograph, and the hydrogen content was measured. The hydrogen release rate was a value obtained by dividing the amount of hydrogen measured in this manner by the amount of the sample before heating. Note that the hydrogen release rate was corrected by calculating the amount of hydrogen collected and lost on a gas chromatograph at each temperature.
[0120] 図 9に室温一 150°C、室温一 200°Cおよび室温一 250°Cの温度範囲で放出された 水素放出率を示す。図 9に示されるように、実施例 7、実施例 13、実施例 15を除いた 各試料は、室温一 250°Cの昇温において、 lmass%近くの水素放出率を示しており 、良好な水素放出特性を示した。また、実施例 15では、室温一 200°Cまでの水素放 出率が 0. 4mass%を超えており、比較的低温領域において高い水素放出率を示し ている。実施例 7および実施例 13では、室温一 150°Cまでの低温領域での水素放 出率が 0. 4mass%を超えており、 150°C以下の低温領域で高い水素放出率を示し た。  [0120] Figure 9 shows the hydrogen release rates released in the temperature range of room temperature-150 ° C, room temperature-200 ° C, and room temperature-250 ° C. As shown in FIG. 9, each of the samples except for Examples 7, 13, and 15 showed a hydrogen release rate near lmass% at a temperature rise of room temperature to 250 ° C. The hydrogen release characteristics were shown. In Example 15, the hydrogen release rate from room temperature to 200 ° C. exceeded 0.4 mass%, indicating a high hydrogen release rate in a relatively low temperature range. In Example 7 and Example 13, the hydrogen release rate in the low temperature range from room temperature to 150 ° C exceeded 0.4 mass%, and the high hydrogen release rate was shown in the low temperature range of 150 ° C or lower.
[0121] 次に、金属水素化物(固体)とアンモニアガス (NH (g) )により構成され、これらの  [0121] Next, it is composed of a metal hydride (solid) and ammonia gas (NH (g)).
3  Three
反応により水素を発生させる水素貯蔵材料について説明する。ここで、金属水素化 物としては、水素化リチウム (LiH)が好適に用いられ、この場合の水素発生反応は下 記(6)式で示される。この下記(6)式の反応は室温でも開始するために、従来は困難 であった室温近辺の低レ、温度で水素貯蔵材料から水素を取り出すことができる。  A hydrogen storage material that generates hydrogen by a reaction will be described. Here, lithium hydride (LiH) is suitably used as the metal hydride, and the hydrogen generation reaction in this case is represented by the following formula (6). Since the reaction of the following formula (6) starts even at room temperature, hydrogen can be extracted from the hydrogen storage material at a low temperature near room temperature, which was conventionally difficult.
LiH + NH (g)→LiNH +H ト - (6)  LiH + NH (g) → LiNH + H G-(6)
3 2 2 [0122] なお、反応温度が高くなると、下記(7)式で示されるように、生成したリチウムアミド( LiNH )の分解反応によってリチウムイミド (Li NH)と NH (g)が発生する二次反応3 2 2 [0122] When the reaction temperature increases, as shown by the following formula (7), a secondary reaction in which lithium imide (Li NH) and NH (g) are generated by a decomposition reaction of the generated lithium amide (LiNH).
2 2 3 2 2 3
が生ずるおそれがあるために、このような反応が起こらないように、反応条件を制御す ることが好ましい。  Therefore, it is preferable to control the reaction conditions so that such a reaction does not occur.
2LiNH→Li NH + NH (g)†…(7)  2LiNH → Li NH + NH (g) †… (7)
2 2 3  2 2 3
[0123] LiH以外の金属水素化物としては、水素化ナトリウム(NaH)、水素化マグネシウム  [0123] Metal hydrides other than LiH include sodium hydride (NaH) and magnesium hydride.
(MgH )、水素化カルシウム(CaH )等が挙げられる。 NaHの場合の水素発生反応 (MgH 2), calcium hydride (CaH 2) and the like. Hydrogen evolution reaction in the case of NaH
2 2 twenty two
は上記(6)式に準じ、 MgHの場合は下記(8)式で示される。 CaHの場合の水素発  Is based on the above formula (6), and in the case of MgH, it is expressed by the following formula (8). Hydrogen release in the case of CaH
2 2  twenty two
生反応は下記(8)式に準ずる。このような複数の金属水素化物を混合したものと NH  The raw reaction conforms to the following equation (8). A mixture of such multiple metal hydrides and NH
3 Three
(g)とを反応させることによって水素を発生させてもよい。 Hydrogen may be generated by reacting with (g).
MgH + 2NH (g)→Mg (NH ) + 2H †…(8)  MgH + 2NH (g) → Mg (NH) + 2H †… (8)
2 3 2 2 2  2 3 2 2 2
[0124] 例えば、 LiHと NH (g)との反応においては、固相-気相反応により表面付近に作  [0124] For example, in the reaction between LiH and NH (g), a solid-phase reaction forms near the surface.
3  Three
られた Li NH相が NH (g)と LiHとの反応を阻止するため、所定の機械的粉砕処理 Prescribed mechanical grinding treatment to prevent the reaction of NH (g) with LiH
2 3 twenty three
により、未反応の LiHを NH (g)に晒すことが好ましい。  , It is preferable to expose unreacted LiH to NH (g).
3  Three
[0125] 金属水素化物としては、水素発生反応を促進させる触媒を担持しているものを用い ることが好ましレ、。このような触媒としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li , Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru,〇s, Mo, W, Ta, Zr, In, Hf, Agから選ばれた 1種または 2種以上の金属またはその化合物 またはその合金、あるいは水素貯蔵合金が好適に用いられる。  [0125] As the metal hydride, it is preferable to use a metal that supports a catalyst that promotes the hydrogen generation reaction. Such catalysts include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu , Zn, Al, Si, Ru, 〇s, Mo, W, Ta, Zr, In, Hf, Ag One or more metals or their compounds or alloys, or hydrogen storage alloys are preferred Used for
[0126] 触媒の担持量は金属水素化物の 0. 1質量%以上 20質量%以下とすることが好ま しい。触媒担持量が 0. 1質量%未満の場合には、水素発生反応促進の効果が得ら れず、 20質量%を超えると逆に金属水素化物等の反応物質間の反応を阻害したり、 単位質量あたりの水素放出率が目減りすることとなる。  [0126] The amount of the supported catalyst is preferably from 0.1% by mass to 20% by mass of the metal hydride. When the amount of the supported catalyst is less than 0.1% by mass, the effect of accelerating the hydrogen generation reaction is not obtained. When the amount exceeds 20% by mass, the reaction between the reactants such as metal hydride is hindered. The hydrogen release rate per mass will be reduced.
[0127] 金属水素化物と NH (g)との反応による水素発生率を高めるためには、金属水素  [0127] In order to increase the rate of hydrogen generation by the reaction between metal hydride and NH (g), metal hydrogen
3  Three
化物を反応容器内に投入し、固相一気相反応により表面付近に作られた Li NH相が  Into the reaction vessel, and the Li NH phase formed near the surface by the solid-phase gas-phase reaction
2  2
NH (g)と LiHとの反応を阻止するため、例えば、金属水素化物の未反応部分が N  To prevent the reaction between NH (g) and LiH, for example, the unreacted part of the metal hydride
3  Three
H (g)と接触し易くなるように、金属水素化物と NH (g)を反応容器内に封入し、この The metal hydride and NH (g) are sealed in a reaction vessel so that the H (g) can be easily contacted.
3 3 3 3
反応容器内の金属水素化物を攪拌または粉砕しながら、金属水素化物と NH (g)と  While stirring or pulverizing the metal hydride in the reaction vessel, the metal hydride and NH (g)
3 を反応させて水素を発生させる方法を用いることが好ましい。 Three Are preferably used to generate hydrogen.
[0128] (実施例 31— 34)  (Examples 31-34)
表 2に示すように、 LiH (純度 95%、シグマ ·アルドリッチ社製)、または触媒として三 塩化チタン (TiCl ;シグマ'アルドリッチ社製)が添加された LiHを、高純度アルゴン(  As shown in Table 2, LiH (purity 95%, manufactured by Sigma-Aldrich) or LiH to which titanium trichloride (TiCl; manufactured by Sigma-Aldrich) was added as a catalyst was converted to high-purity argon (
3  Three
Ar)グローブボックス中で SUS製のバルブ付き試料容器に、約 0. 3g投入した。ここ で、実施例 31の LiHは試薬瓶から取り出した試薬そのものである。実施例 32の LiH は、遊星型ボールミル装置(Fritsch社製、 P5型)を用いて、試薬瓶から取り出した試 薬 lgを Arグローブボックス中で高クロム鋼製ミル容器(内容積; 250cm3)に入れ、室 温'大気雰囲気下、 250rpmで 2時間ミリング (粉砕)処理したものである。実施例 33 は、試薬瓶から取り出した LiHと TiClとを、 Arグローブボックス中でメノウ乳鉢を用い Ar) In a glove box, about 0.3 g was put into a sample container with a valve made of SUS. Here, LiH in Example 31 is the reagent itself taken out of the reagent bottle. The LiH of Example 32 was prepared by using a planetary ball mill (Fritsch, Model P5) to transfer the reagent lg taken out of the reagent bottle into a high chrome steel mill container (internal volume; 250 cm 3 ) in an Ar glove box. And milled (crushed) at 250 rpm for 2 hours in an atmosphere of room temperature. In Example 33, LiH and TiCl taken out of the reagent bottle were mixed in an Ar glove box using an agate mortar.
3  Three
て短時間混合したものである。実施例 34は、実施例 32と同様に、試薬瓶から取り出 した LiHと TiClとを遊星型ボールミル装置を用いてミリング処理したものである。  For a short time. In Example 34, as in Example 32, LiH and TiCl taken out of the reagent bottle were subjected to milling using a planetary ball mill.
3  Three
[0129] 試料容器を反応装置に取り付け、試料容器内を真空排気した。その後、表 2に示 すモル比となるように、また、試料容器内が 0. 2MPa (絶対圧)となるように、試料容 器内に NH (g)を導入し、その後、試料容器を加熱することにより試料容器内の温度  [0129] The sample container was attached to the reactor, and the inside of the sample container was evacuated. Thereafter, NH (g) is introduced into the sample container so that the molar ratio shown in Table 2 is obtained and the inside of the sample container is set to 0.2 MPa (absolute pressure). The temperature inside the sample container is increased by heating
3  Three
を室温から 5°C/分の昇温速度で 200°Cまで加熱した。所定温度で試料容器内から 反応ガスをサンプリングし、ガスクロマトグラフ(島津製作所、型式: GC9A、 TCD検 出器使用、カラム:モレキュラーシーブ 5A)により、サンプリングガスの組成分析を行 つた。  Was heated from room temperature to 200 ° C. at a rate of 5 ° C./min. The reaction gas was sampled from the inside of the sample container at a predetermined temperature, and the composition of the sampling gas was analyzed by gas chromatography (Shimadzu Corporation, model: GC9A, using TCD detector, column: molecular sieve 5A).
[0130] (実施例 35)  (Example 35)
実施例 35の組成は表 2に示す。試薬瓶から取り出した LiHを、 Arグローブボックス 中で、高クロム鋼製ミル容器 (排気 Z封止を行えるように改造したもの)に入れ、その 後にミル容器内を排気して、ミル容器内に所定量の NH (g)を導入し、ミル容器を封  The composition of Example 35 is shown in Table 2. The LiH taken out of the reagent bottle is placed in a high chrome steel mill container (modified so that exhaust Z sealing can be performed) in the Ar glove box, and then the inside of the mill container is evacuated and placed in the mill container. Introduce a predetermined amount of NH (g) and seal the mill container.
3  Three
止した。これを、 250rpmで 30分間、ミリング(粉砕)処理した。ミリング処理後のミノレ 容器内から反応ガスをサンプリングして、ガスクロマトグラフによる組成分析を行った。 また、ミリング処理後のミル容器内の粉末を粉末 X線回折法 (XRD)により同定した。  Stopped. This was milled (crushed) at 250 rpm for 30 minutes. The reaction gas was sampled from the Minore container after the milling treatment, and the composition was analyzed by gas chromatography. After milling, the powder in the mill container was identified by powder X-ray diffraction (XRD).
[0131] [表 2] 配合モル比 [0131] [Table 2] Compound molar ratio
水素発生反応前 水素発生時  Before hydrogen generation reaction During hydrogen generation
LiH TiCI3 NH3 ミリング処理 ミリング処理 実施例 31 0 無 無 LiH TiCI 3 NH 3 milling processing Milling processing Example 31 0 None None
実施例 32 0 有 無  Example 32 0 Yes No
実施例 33 0.05 無 無  Example 33 0.05 None None
実施例 34 0.05 有 無  Example 34 0.05 Yes No
実施例 35 0 無 有  Example 35 0 No Yes
[0132] 図 10に実施例 31— 34についての、反応温度と水素放出率の関係を示すグラフを 示す。この水素放出率は発生した水素の質量を LiHと NH (g)の初期質量の合計で [0132] Fig. 10 is a graph showing the relationship between the reaction temperature and the hydrogen release rate for Examples 31 to 34. This hydrogen release rate is calculated by adding the mass of generated hydrogen to the sum of the initial masses of LiH and NH (g).
3  Three
除した値であり、理論値は約 8. 05である。実施例 31— 34の全ての試料で、室温で も水素が発生することが確認され、処理温度が高くなるほど水素放出率が多くなるこ とが確認された。 NH (g)との反応前にミリング処理を行った実施例 32, 34はそれぞ  The theoretical value is about 8.05. In all the samples of Examples 31 to 34, it was confirmed that hydrogen was generated even at room temperature, and it was confirmed that the higher the treatment temperature, the higher the hydrogen release rate. Examples 32 and 34 in which milling was performed before the reaction with NH (g)
3  Three
れミリング処理を行わな力 た実施例 31, 33と比較して、水素発生量の増大が認め られた。これは、 LiHの微粉碎によって LiHの表面積 (反応面積)が増大したことによ るものと考えられる。また、実施例 31と実施例 33、実施例 32と実施例 34をそれぞれ 比較すると明らかなように、触媒が添加されている場合に水素発生量の増大が認め られ、触媒添加によって水素発生反応が促進されることが確認された。  An increase in the amount of hydrogen generated was observed as compared with Examples 31 and 33 in which milling was not performed. This is thought to be because the surface area (reaction area) of LiH was increased by fine grinding of LiH. In addition, as is clear from the comparison between Example 31 and Example 33 and between Example 32 and Example 34, when the catalyst was added, an increase in the amount of hydrogen generation was observed. It was confirmed that it was promoted.
[0133] 実施例 35のミリング処理後のミル容器内のガス組成分析の結果、採取したガスの 7 0%が水素であることが確認された。 30分という短い処理時間で多くの水素が得られ たことから、 LiHをミリングしながら LiHと NH (g)とを反応させることにより、水素発生 [0133] As a result of analyzing the gas composition in the mill container after the milling treatment in Example 35, it was confirmed that 70% of the collected gas was hydrogen. Since a large amount of hydrogen was obtained in a short processing time of 30 minutes, hydrogen was generated by reacting LiH with NH (g) while milling LiH.
3  Three
反応を促進させることができることが確認された。図 11に実施例 35の水素発生反応 処理後の試料容器内の粉末の XRD像を示す。図 11より、先に示した式(6)に基づく LiNHが殆どであることが確認された。なお、図 11中に水酸化リチウム(LiOH)が検 It was confirmed that the reaction could be accelerated. FIG. 11 shows an XRD image of the powder in the sample container after the hydrogen generation reaction of Example 35. From FIG. 11, it was confirmed that LiNH based on the formula (6) shown above was almost used. Note that lithium hydroxide (LiOH) was detected in FIG.
2 2
出されてレ、るのは、未反応の LiHが XRD用の測定試料の作成時および測定処理時 に空気中の水分と反応したことにより生成したことや、元の原料中に存在していたこと によるものと考えられる。  The reason for this was that unreacted LiH was formed by reacting with moisture in the air during the preparation of the measurement sample for XRD and during the measurement process, and it was present in the original raw material. This is probably due to the following.
[0134] 次に、金属水素化物と金属アミド化合物の混合物または複合化物または反応物( 以下「混合物等」という)を有し、これらの金属種が少なくとも 2種以上である水素貯蔵 材料について説明する。ここで、「混合物または複合化物または反応物(つまり、混合 物等)を有している」とは、混合物と複合化物と反応物のいずれ力 1つを有しているこ とだけでなぐいずれか 2つを有していることと、これら全てのを有していること、を指す 。このような水素貯蔵材料は、具体的には、(1)金属水素化物を構成する金属と、金 属アミド化合物を構成する金属とが異種であるもの、(2)金属成分の異なる複数種の 金属水素化物を含むもの、(3)金属成分の異なる複数種の金属アミド化合物を含む もの、が挙げられる。 [0134] Next, a mixture or complex or reaction product of a metal hydride and a metal amide compound ( Hereinafter, a hydrogen storage material having a mixture or the like and at least two or more of these metal species will be described. Here, “having a mixture, a complex, or a reactant (that is, a mixture, etc.)” means that the mixture, the complex, and the reactant do not have to have only one of the forces. Or two, and all of these. Such hydrogen storage materials include, specifically, (1) a metal constituting a metal hydride and a metal constituting a metal amide compound are different, and (2) a plurality of kinds of metals having different metal components. One containing a metal hydride and (3) one containing a plurality of metal amide compounds having different metal components.
[0135] 好適な一例は、水素放出温度の低温化のみを考慮すると、金属水素化物が、金属 水素化物の中では分解温度が低いという性質を有する水素化リチウム (LiH)であり、 金属アミド化合物力 少なくとも、 LiHより低温で分解しアンモニアガス(NH (g) )を  [0135] A preferable example is lithium hydride (LiH), which has a property that the decomposition temperature is low among metal hydrides, considering only the reduction of the hydrogen release temperature, and the metal amide compound At least, it decomposes at lower temperature than LiH to produce ammonia gas (NH (g))
3 生成するマグネシウムアミド(Mg (NH ) )、カルシウムアミド(Ca (NH ) )の単体また  3 The magnesium amide (Mg (NH)) and calcium amide (Ca (NH))
2 2 2 2  2 2 2 2
はこれらの混合物を含む、とレ、う組み合わせが好ましレ、。  Include these mixtures, and combinations that are preferred.
[0136] なお、後述する実施例 41と実施例 43を比較するとわかるように、金属アミド化合物 を単独(単成分)で用いる場合、金属アミド化合物を構成する金属元素の原子量が重 くなるにつれて、水素放出率が低下する。そこで、最も軽量であるリチウムアミド (LiN H )と低温化のための Mg (NH ) や Ca (NH ) を組み合わせて使用することが、実 [0136] As can be seen by comparing Example 41 and Example 43 described below, when the metal amide compound is used alone (single component), as the atomic weight of the metal element constituting the metal amide compound increases, Hydrogen release rate decreases. Therefore, the combination of the lightest lithium amide (LiN H) and Mg (NH) or Ca (NH) for lowering the temperature has been used in practice.
2 2 2 2 2 2 2 2 2 2
用的に好ましい。  Preferred for
[0137] LiHと、 LiNHおよび Mg (NH ) とを用いてなる材料の場合において、各物質が  [0137] In the case of a material using LiH, LiNH and Mg (NH), each substance is
2 2 2  2 2 2
当量となるように配合する場合は、下記(9)式のように、各物質を組み合わせて用い ればよい。なお、この式(9)においては、 a = b + 2cとすることが好ましい。また、当量 力 外れたリチウムイミド(例えば、 Li NH)を用いることも差し支えない。  When they are blended so as to be equivalent, each substance may be used in combination as shown in the following formula (9). In the equation (9), it is preferable that a = b + 2c. It is also possible to use lithium imide (for example, Li NH) having an equivalent force.
2. 2  twenty two
aLiH + bLiNH +cMg (NH ) →  aLiH + bLiNH + cMg (NH) →
2 2 2  2 2 2
aH † + (b + c) Li NH + cMgNH〜(9)  aH † + (b + c) Li NH + cMgNH ~ (9)
2 2  twenty two
[0138] このような金属水素化物と金属アミド化合物の混合物等は、 MeM処理によりナノ構 造化 ·組織化されていることが好ましい。この MeM処理は、少量生産の場合には、遊 星型ボールミル等を用いることで行うことができ、大量生産の場合には、後述する種 々の混合 Z粉砕方法、例えば、ローラーミル、内外筒回転型ミル、アトライター、イン ナーピース型ミル、気流粉碎型ミル等を用いて行うことができる。 [0138] Such a mixture of a metal hydride and a metal amide compound is preferably nanostructured and organized by MeM treatment. This MeM treatment can be performed by using a planetary ball mill or the like in the case of small-scale production. In the case of mass production, various mixed Z grinding methods described later, for example, a roller mill, inner and outer cylinders, etc. Rotary mill, attritor, in It can be carried out using a nap-piece type mill, an air current milling type mill or the like.
[0139] 金属水素化物と金属アミド化合物の混合物等を得るための、金属水素化物と金属 アミド化合物の混合/粉碎処理は、不活性ガス(例えば、アルゴン (Ar)、窒素(N ) )  [0139] In order to obtain a mixture or the like of a metal hydride and a metal amide compound, the mixing / crushing treatment of the metal hydride and the metal amide compound is performed using an inert gas (eg, argon (Ar), nitrogen (N)).
2 雰囲気下、もしくは水素(H )雰囲気下、または不活性ガスと水素との混合ガス雰囲  2 Atmosphere, hydrogen (H) atmosphere, or mixed gas atmosphere of inert gas and hydrogen
2  2
気下において行う。このとき、雰囲気圧力(ガス圧力)を大気圧以上とすることが好ま しい。これにより、明確な理由は不明であるが、混合/粉砕処理後の混合物等からの 水素放出量が増加する。  It is performed under insufflation. At this time, it is preferable that the atmospheric pressure (gas pressure) be equal to or higher than the atmospheric pressure. This increases the amount of hydrogen released from the mixture after the mixing / pulverization process, for unknown reasons.
[0140] 金属水素化物と金属アミド化合物の混合物等は、水素吸放出能を高める触媒を含 むこと力 S好ましレヽ。好適な角虫媒としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru,〇s, Mo, W , Ta, Zr, In, Hf, Agから選ばれた 1種もしくは 2種以上の金属またはその化合物ま たはその合金、あるいは水素貯蔵合金が好適に用いられる。  [0140] A mixture of a metal hydride and a metal amide compound or the like may contain a catalyst that enhances the ability to absorb and release hydrogen. Suitable horny media include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, 〇s, Mo, W, Ta, Zr, In, Hf, Ag, or their compounds or alloys, or hydrogen storage Alloys are preferably used.
[0141] このような触媒の担持量は、金属水素化物と金属アミドの混合物等の 0. 1質量% 以上 20質量%以下とすることが好ましい。触媒担持量が 0. 1質量%未満の場合に は、水素発生反応促進の効果が得られず、 20質量%を超えると逆に金属水素化物 等の反応物質どうしの反応を阻害したり、単位質量あたりの水素放出率が目減りする こととなる。  [0141] The amount of such a catalyst carried is preferably 0.1% by mass or more and 20% by mass or less of a mixture of a metal hydride and a metal amide. If the amount of supported catalyst is less than 0.1% by mass, the effect of accelerating the hydrogen generation reaction cannot be obtained. If the amount exceeds 20% by mass, the reaction between the reactants such as metal hydrides is adversely affected, and The rate of hydrogen release per mass will be reduced.
[0142] 金属水素化物と金属アミド化合物の混合物等に、水素吸放出能を有する触媒を担 持させる方法としては、以下の 3つの方法のいずれかが用いられる。すなわち、(a) 金属水素化物と金属アミド化合物を混合、粉砕する際に触媒を加えることにより、被 処理物(つまり、金属水素化物、金属アミド化合物、これらの混合物、またはこれらの 反応物)に担持させる方法、 (b)金属水素化物と金属アミド化合物を混合、粉砕する ことによって得られる被処理物と触媒とを混合することによって被処理物に触媒を担 持させる方法、(c)金属水素化物と金属アミド化合物を混合、粉砕する前に、金属水 素化物と金属アミド化合物の少なくとも一方に水素吸放出能を有する触媒を混合粉 砕処理等により担持させる方法、のいずれかが用いられる。  [0142] One of the following three methods is used as a method for causing a mixture of a metal hydride and a metal amide compound to carry a catalyst having a hydrogen absorbing / releasing ability. That is, (a) by adding a catalyst when mixing and pulverizing a metal hydride and a metal amide compound, an object to be treated (that is, a metal hydride, a metal amide compound, a mixture thereof, or a reaction product thereof) is obtained. (B) a method in which the catalyst is supported on the object by mixing the catalyst with the object obtained by mixing and pulverizing the metal hydride and the metal amide compound, and (c) the metal hydrogen. Before mixing and pulverizing the hydride and the metal amide compound, any one of the methods in which at least one of the metal hydride and the metal amide compound is loaded with a catalyst capable of absorbing and releasing hydrogen by a mixed pulverization treatment or the like is used.
[0143] (各種金属アミドの調製)  (Preparation of Various Metal Amides)
例えば、 Mg (NH ) は、水素化マグネシウム(MgH ) lgを高純度 Arグローブボッ  For example, Mg (NH) converts magnesium hydride (MgH) lg to high-purity Ar glove box.
2 2 2 タス内で高クロム鋼製のミル容器(内容積: 250cm3)に投入し、その後にこのミル容 器内を真空排気し、続いて下記(10)式のモル比以上となるように、かつ、ミル容器内 が 0. 4MPa以下(絶対圧)となるように、ミル容器内に所定量の NH (g)を導入してミ ル容器を封止し、これを室温、大気雰囲気下、 250rpmの回転数で所定時間ミリング 処理することにより、調製した。ミリング処理後のミル容器から反応ガス中の水素量や XRD測定により Mg (NH ) の生成を確認した。 LiNH 2 2 2 In a tas, it is charged into a high chrome steel mill container (internal volume: 250 cm 3 ), then the inside of the mill container is evacuated, and then the molar ratio of the following formula (10) is exceeded, and Then, a predetermined amount of NH (g) was introduced into the mill container so that the inside of the mill container became 0.4 MPa or less (absolute pressure), and the mill container was sealed. It was prepared by milling at a rotational speed of for a predetermined time. From the mill vessel after milling, the generation of Mg (NH 2) was confirmed by the amount of hydrogen in the reaction gas and XRD measurement. LiNH
2 2 2、 Ca (NH ) についても、同  2 2 2, Ca (NH)
2 2  twenty two
様にして調製した。なお、各金属アミドの調製に使用した原料は、表 3に示す通りで ある。  Prepared as described above. The raw materials used for preparing each metal amide are as shown in Table 3.
MgH + 2NH (g)→ Mg (NH ) + 2H ΐ  MgH + 2NH (g) → Mg (NH) + 2H ΐ
3 2 2 2 …(10)  3 2 2 2… (10)
2  2
[0144] [表 3]  [Table 3]
Figure imgf000037_0001
Figure imgf000037_0001
[0145] (実施例 41一 47) (Examples 41 to 47)
表 4に、以下に説明する実施例 41一 47の出発原料の配合組成を示す。 LiH、 Mg H、 LiNH、 Mg (NH )、 Ca (NH ) 力も選ばれた所定の原料を、表 4に示すように Table 4 shows the composition of the starting materials of Examples 41 to 47 described below. Table 4 shows the specified raw materials whose LiH, MgH, LiNH, Mg (NH), and Ca (NH) powers were also selected.
2 2 2 2 2 2 2 2 2 2 2 2
2種類以上の金属元素が含まれる所定の組成となるように、かつ、三塩ィヒチタン (Ti C1 )が出発原料の金属成分の合計モル量の 1 · 0mol%となるように、高純度 Arグロ High-purity Ar gross so that it has a predetermined composition containing two or more metal elements and that the amount of titanium trisalt (Ti C1) is 1.0 mol% of the total molar amount of the metal components of the starting material.
3 Three
ーブボックス中で計量し、高クロム鋼製のバルブ付ミル容器に投入した。続いて、この ミル容器内を真空排気した後、ミル容器内が IMPaとなるようにミル容器内に高純度 水素を導入し、遊星型ボールミル装置 (Fritsch社製, P5)を用いて、室温、大気雰 囲気下、 250rpmの回転数で 2時間、ミリング処理した。ミリング後の試料は、ミル容 器内を真空排気して Arを充填した後、高純度 Arグローブボックス中で取り出した。 [0146] (比較例 41 , 42) It was weighed in a vacuum box and charged into a mill container with a valve made of high chromium steel. Subsequently, after evacuating the inside of the mill container, high-purity hydrogen was introduced into the mill container so that the inside of the mill container became IMPa, and the planetary ball mill device (Fritsch, P5) was used. Milling was performed at 250 rpm for 2 hours in an air atmosphere. After milling, the inside of the mill container was evacuated and filled with Ar, and then removed in a high-purity Ar glove box. [0146] (Comparative Examples 41 and 42)
比較例 41 , 42の出発原料の配合組成を表 4に示す。金属水素化物と金属アミド化 合物とが 1種の金属を含むように、比較例 41では LiHと LiNHとを、比較例 42では Table 4 shows the composition of the starting materials of Comparative Examples 41 and 42. In Comparative Example 41, LiH and LiNH were used, and in Comparative Example 42, LiH and LiNH were contained such that the metal hydride and the metal amide compound contained one metal.
MgHと Mg (NH ) とを、それぞれ表 4に示す所定の組成となるように、かつ、 TiClMgH and Mg (NH 2) were each prepared so as to have a predetermined composition shown in Table 4, and TiCl
2 2 2 3 が出発原料の金属成分の合計モル量の 1. Omol%となるように、高純度 Arグローブ ボックス中で計量し、高クロム鋼製のバルブ付ミル容器に投入した。続いて、このミノレ 容器内を真空排気した後、ミル容器内が IMPaとなるようにミル容器内に高純度水素 を導入し、遊星型ボールミル装置を用いて、室温、大気雰囲気下、 250rpmの回転 数で 2時間、ミリング処理した。ミリング後の試料は、ミル容器内を真空排気して Arを 充填した後、高純度 Arグローブボックス中で取り出した。 It was weighed in a high-purity Ar glove box and charged into a high-chromium steel valve-equipped mill vessel so that 2 2 2 3 was 1. Omol% of the total molar amount of the metal components of the starting material. Then, after evacuating the Minore container, high-purity hydrogen was introduced into the mill container so that the inside of the mill container became IMPa, and the planetary ball mill was used to rotate at 250 rpm at room temperature and in the atmosphere. Milled for 2 hours by number. After milling, the mill container was evacuated and filled with Ar, and then removed in a high-purity Ar glove box.
[0147] [表 4] [Table 4]
Figure imgf000038_0001
Figure imgf000038_0001
[0148] (試料評価) [0148] (Sample evaluation)
上述のようにして作製した試料を、高純度 Arグローブボックス内に設置された TG— The sample prepared as described above was placed in a TG-
MASS装置 (熱重量,質量分析装置)を用い、昇温速度を 5°C/分として昇温し、そ の際の各試料からの脱離ガスを採取して分析を行った。 Using a MASS device (thermogravimetric / mass spectrometer), the temperature was raised at a rate of 5 ° C / min, and the desorbed gas from each sample was sampled and analyzed.
[0149] (結果) [0149] (Result)
図 12に TG— MASS装置による昇温に伴う脱離水素の放出スペクトル、つまり、温 度と水素放出強度と関係を示す説明図を示す。なお、図 12の特性線 aは実施例 41 を、特性線 bは比較例 41を、特性線 cは比較例 42を、それぞれ示している。また、表 4には各試料の理論水素放出率 (mass%)と、水素の放出スペクトル曲線のピーク温 度(°C) (以下「水素放出ピーク温度」とレ、う)を並記する。 Figure 12 shows the emission spectrum of desorbed hydrogen with increasing temperature using the TG-MASS device. FIG. 3 is an explanatory diagram showing the relationship between the degree and the hydrogen release intensity. In FIG. 12, a characteristic line a indicates Example 41, a characteristic line b indicates Comparative Example 41, and a characteristic line c indicates Comparative Example 42. Table 4 shows the theoretical hydrogen release rate (mass%) of each sample and the peak temperature (° C) of the hydrogen emission spectrum curve (hereinafter referred to as “hydrogen release peak temperature”).
[0150] 図 12より、実施例 41の水素放出ピーク温度は 209°Cであり、比較例 41の場合の 2 39°Cや比較例 42の場合の 317°Cと比較して、水素放出ピーク温度が低温化するこ とが確認された。また、表 4に示されるように、実施例 42 47でも、水素放出ピーク温 度は比較例 41より低温化することが確認された。  [0150] From FIG. 12, the hydrogen release peak temperature of Example 41 was 209 ° C, which was lower than that of 239 ° C in Comparative Example 41 and 317 ° C in Comparative Example 42. It was confirmed that the temperature decreased. Also, as shown in Table 4, it was confirmed that the hydrogen release peak temperature in Example 42 47 was lower than that in Comparative Example 41.
[0151] 次に、金属水素化物と金属アミド化合物の混合物または複合化物または反応物( 混合物等)を有し、これらの金属種がリチウム(Li)とマグネシウム(Mg)の 2種類であ る水素貯蔵材料について説明する。この水素貯蔵材料としては、具体的には、(1) 金属水素化物を構成する金属が Liであり、金属アミド化合物を構成する金属が Mg であるもの、 (2)金属水素化物を構成する金属が Liであり、金属アミド化合物を構成 する金属が Mgおよび Liであるもの、(3)金属水素化物を構成する金属が Mgであり、 金属アミド化合物を構成する金属が Liであるもの、 (4)金属水素化物を構成する金 属が Mgであり、金属アミド化合物を構成する金属が Mgおよび Liであるもの、 (5)金 属水素化物を構成する金属が Mgおよび Liであり、金属アミド化合物を構成する金属 が Mgおよび/または Liであるもの、が挙げられる。  [0151] Next, there is a mixture or a complex or a reaction product (mixture or the like) of a metal hydride and a metal amide compound, and these metal species are lithium (Li) and magnesium (Mg). The storage material will be described. As the hydrogen storage material, specifically, (1) a metal constituting the metal hydride is Li and a metal constituting the metal amide compound is Mg, (2) a metal constituting the metal hydride Is Li and the metal constituting the metal amide compound is Mg and Li, (3) the metal constituting the metal hydride is Mg, and the metal constituting the metal amide compound is Li, (4 ) The metal that constitutes the metal hydride is Mg, and the metal that constitutes the metal amide compound is Mg and Li. (5) The metal that constitutes the metal hydride is Mg and Li, and the metal amide compound Wherein the metal constituting Mg is Mg and / or Li.
[0152] 好適な一例は、金属水素化物が水素化リチウム (LiH)であり、金属アミド化合物が マグネシウムアミド(Mg (NH ) )の単体またはこれとリチウムアミド(LiNH )の混合  [0152] A preferred example is that the metal hydride is lithium hydride (LiH) and the metal amide compound is magnesium amide (Mg (NH)) alone or a mixture thereof with lithium amide (LiNH)
2 2 2 物を含む場合である。  2 2 2
[0153] LiHと Mg (NH ) とを用いてなる材料の場合、各物質が当量となるように配合する  [0153] In the case of a material using LiH and Mg (NH), each material is blended so as to be equivalent.
2 2  twenty two
場合は、下記(11)式のように組み合わせればよい。また、水素化マグネシウム(Mg H )と LiNHとを用いてなる材料の場合においては、下記(12)式のように組み合わ In this case, the combination may be made as in the following equation (11). Further, in the case of a material using magnesium hydride (MgH) and LiNH, the combination is as shown in the following equation (12).
2 2 twenty two
せればよレ、。これらの組み合わせによれば、理論水素貯蔵率は、 5. 48質量%となる 2LiH + Mg (NH ) ^Li NH + MgNH + 2H † - - - (11)  I'll do it. According to these combinations, the theoretical hydrogen storage rate becomes 5.48% by mass. 2LiH + Mg (NH) ^ Li NH + MgNH + 2H †---(11)
2 2 2 2  2 2 2 2
MgH + 2LiNH ^Li NH + MgNH + 2H †… (12)  MgH + 2LiNH ^ Li NH + MgNH + 2H † (12)
2 2 2 2 [0154] さらに好ましくは、 LiHと Mg(NH ) とを用いてなる材料の場合は、 1モルの Mg(N 2 2 2 2 More preferably, in the case of a material using LiH and Mg (NH 2), one mole of Mg (N
2 2  twenty two
H ) に対して、 LiHを 1· 5モル以上 4モル以下とすることが好ましい。さらにまた、 It is preferable that LiH be 1.5 mol or more and 4 mol or less with respect to H). Furthermore,
2 2 twenty two
モルの Mg(NH ) に対して、 LiHが 2, 5モル以上 3· 5モル以下であることがより好ま  More preferably, LiH is at least 2.5 mol and not more than 3.5 mol per mol of Mg (NH).
2 2  twenty two
しい。例えば、 1モルの Mg(NH ) に対して LiHが 2· 67モル(8LiH + 3Mg(NH )  That's right. For example, 1 mol of Mg (NH) per 2 · 67 mol of LiH (8LiH + 3Mg (NH)
2 2 2 2 2 2 2 2
)である場合を下記(13)式に示す。下記(13)式の組み合わせによる理論水素貯蔵 率は、 6.85質量%となり、上記(11)式の場合に比べて水素貯蔵率が高くなる。 ) Is shown in the following equation (13). The theoretical hydrogen storage rate by the combination of the following equation (13) is 6.85% by mass, which is higher than that of the above equation (11).
8LiH + 3Mg(NH ) ^4Li NH + Mg N +8H † ---(13)  8LiH + 3Mg (NH) ^ 4Li NH + Mg N + 8H † --- (13)
2 2 2 3 2 2  2 2 2 3 2 2
[0155] 一方、 MgHと LiNHとを用いてなる材料の場合においては、 1モルの LiNHに対  [0155] On the other hand, in the case of a material using MgH and LiNH, one mole of LiNH
2 2 2 して、 MgHの混合比が 0.5モル以上 2モル以下であることが好ましい、さらにまた、  Preferably, the mixing ratio of MgH is 0.5 mol or more and 2 mol or less.
2  2
1モルの LiNHに対して、 MgHの混合比が 0.5モル以上 1モル以下であることがよ  The mixing ratio of MgH to 1 mol of LiNH should be 0.5 mol or more and 1 mol or less.
2 2  twenty two
り好ましい。例えば、下記(14)式のように組み合わせればよい。下記(14)式による 理論水素貯蔵率は、 7.08質量%となり、上記(12)式の場合より水素貯蔵率が大幅 に向上する。  More preferred. For example, they may be combined as in the following equation (14). The theoretical hydrogen storage rate according to the following equation (14) is 7.08% by mass, and the hydrogen storage rate is greatly improved from the case of the above equation (12).
3MgH +4ΠΝΗ Mg N +2Li NH + 6H † ·'·(14)  3MgH + 4ΠΝΗ Mg N + 2Li NH + 6H † '' (14)
2 2 3 2 2 2  2 2 3 2 2 2
[0156] ここで、上記(1)式の逆反応、すなわち水素放出反応においては、窒化リチウム (Li  Here, in the reverse reaction of the above formula (1), that is, in the hydrogen releasing reaction, lithium nitride (Li
N)となることで 9.3質量%の水素放出率が確認されているものの、この水素放出率 N), a hydrogen release rate of 9.3 mass% was confirmed, but this hydrogen release rate
3 Three
を得るためにはリチウムイミド (Li NH)を分解し Li Nとする必要があり、この反応では  In order to obtain, it is necessary to decompose lithium imide (Li NH) to Li N. In this reaction,
2 3  twenty three
、高い水素放出率は得られるものの、 ΔΗがー 148kj/molと大きいため、高温が必 要であり水素放出温度を低温化することは困難である。  Although a high hydrogen release rate can be obtained, ΔΗ is as large as -148 kj / mol, so a high temperature is required and it is difficult to lower the hydrogen release temperature.
[0157] し力 ながら、上記(13)式および上記(14)式のように Liより窒化物化し易い Mgを 組み合わせことで、窒化マグネシウム(Mg N )と Li NHを生成させることにより、比  [0157] However, by combining Mg, which is more likely to be nitrided than Li, as in the above formulas (13) and (14), magnesium nitride (Mg N) and Li NH are generated, whereby the specific ratio is increased.
3 2 2  3 2 2
較的高い水素放出率を維持しながら、水素放出ピークを低温ィ匕できることを見出した  It has been found that the hydrogen release peak can be reduced at a low temperature while maintaining a relatively high hydrogen release rate.
[0158] すなわち、上記(13)式は、下記(15)式、(16)式および(17)式に示されるように、 That is, the above equation (13) is expressed by the following equations (15), (16) and (17):
3段階の水素放出を伴うものと考えられる。  It is thought to involve three stages of hydrogen release.
3Mg(NH ) +3LiH→3MgNH + 3LiNH +3H † ---(15)  3Mg (NH) + 3LiH → 3MgNH + 3LiNH + 3H † --- (15)
2 2 2 2  2 2 2 2
3LiNH +3LiH→3Li NH + 3H † ---(16)  3LiNH + 3LiH → 3Li NH + 3H † --- (16)
2 2 2  2 2 2
3MgNH + 2LiH→Mg N +Li NH + 2H †… (17)  3MgNH + 2LiH → Mg N + Li NH + 2H †… (17)
3 2 2 2 [0159] 上記(13)式における水素放出ピーク温度の低温化は、 Mg (NH ) と LiHとの水素 3 2 2 2 [0159] In the above equation (13), the lowering of the hydrogen release peak temperature is due to the fact that Mg (NH) and LiH
2 2  twenty two
放出反応である上記(15)式力 LiNHと LiHとの組み合わせより、かなり低温から起  From the combination of LiNH and LiH, the release reaction (Eq. (15)) starts at a much lower temperature.
2  2
こることに起因するものと考えられる。また、本発明による水素貯蔵材料が、水素放出 ピーク温度が低いにもかかわらず、比較的高い水素放出率を維持できることは、上記 (15)式で生成したマグネシウムイミド(MgNH)が上記(17)式のように Mg Nまで容  This is thought to be due to this. Further, the fact that the hydrogen storage material according to the present invention can maintain a relatively high hydrogen release rate despite the low hydrogen release peak temperature is based on the fact that the magnesium imide (MgNH) generated by the above formula (15) can Up to Mg N as in the formula
3 2 易に反応が進行することによるものと推察される。  It is presumed that the reaction proceeds easily.
[0160] このような金属水素化物と金属アミド化合物の混合物等は、 MeM処理によりナノ構 造化 '組織化されていることが好ましい。このメカニカルミリング処理は、少量生産の 場合には、遊星型ボールミル等を用いることで行うことができ、大量生産の場合には 、後述する種々の混合/粉砕方法、例えば、ローラーミル、内外筒回転型ミル、ァトラ イタ一、インナーピース型ミル、気流粉砕型ミル等を用いて行うことができる。  [0160] Such a mixture of a metal hydride and a metal amide compound is preferably nano-structured and organized by MeM treatment. This mechanical milling process can be performed by using a planetary ball mill or the like in the case of small-scale production, and in the case of mass production, various mixing / pulverization methods described later, for example, a roller mill, inner and outer cylinder rotation It can be carried out by using a mold mill, an attritor, an inner piece type mill, an airflow pulverizing type mill and the like.
[0161] 金属水素化物と金属アミド化合物の混合物等を得るための、金属水素化物と金属 アミド化合物の混合/粉碎処理は、不活性ガス(例えば、アルゴン (Ar)、窒素(N ) )  [0161] In order to obtain a mixture or the like of a metal hydride and a metal amide compound, the mixing / crushing treatment of the metal hydride and the metal amide compound is performed using an inert gas (eg, argon (Ar), nitrogen (N)).
2 雰囲気下、もしくは水素雰囲気下、または不活性ガスと水素との混合ガス雰囲気下 において行う。このとき、雰囲気圧力(ガス圧力)を大気圧以上とすることが好ましい。 これにより、混合/粉碎処理後の混合物等からの水素放出量が増加する。  The test is performed under two atmospheres, a hydrogen atmosphere, or a mixed gas atmosphere of an inert gas and hydrogen. At this time, it is preferable that the atmospheric pressure (gas pressure) be equal to or higher than the atmospheric pressure. This increases the amount of hydrogen released from the mixture or the like after the mixing / crushing treatment.
[0162] 金属水素化物と金属アミド化合物の混合物等は、水素吸放出能を高める触媒を含 むことが好ましい。好適な触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta , Zr, In, Hf, Agから選ばれた 1種もしくは 2種以上の金属またはその化合物または その合金、あるいは水素貝宁蔵合金である。  [0162] It is preferable that a mixture of a metal hydride and a metal amide compound or the like contains a catalyst that enhances the ability to absorb and release hydrogen. Suitable catalysts are B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn , Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag, at least one metal or a compound or alloy thereof, or a hydrogen storage alloy.
[0163] このような触媒の担持量は、金属水素化物と金属アミドの混合物等の 0. 1質量% 以上 20質量%以下とすることが好ましい。触媒担持量が 0. 1質量%未満の場合に は、水素発生反応促進の効果が得られず、 20質量%を超えると逆に金属水素化物 等の反応物質どうしの反応を阻害したり、単位質量あたりの水素放出率が目減りする こととなる。  [0163] The amount of such a catalyst carried is preferably 0.1% by mass or more and 20% by mass or less based on a mixture of a metal hydride and a metal amide. If the amount of supported catalyst is less than 0.1% by mass, the effect of accelerating the hydrogen generation reaction cannot be obtained. If the amount exceeds 20% by mass, the reaction between the reactants such as metal hydrides is adversely affected, and The rate of hydrogen release per mass will be reduced.
[0164] 金属水素化物と金属アミド化合物の混合物等に、水素吸放出能を高める触媒を担 持させる方法としては、以下の 3つの方法のいずれかが用いられる。すなわち、(a) 金属水素化物と金属アミド化合物を混合、粉砕する際に触媒を加えることにより、被 処理物(つまり、金属水素化物、金属アミド化合物、これらの混合物、これらの反応物 )に担持させる方法、 (b)金属水素化物と金属アミド化合物を混合、粉砕することによ つて得られる被処理物と触媒とを混合することによって被処理物に触媒を担持させる 方法、(C)金属水素化物と金属アミド化合物を混合、粉砕する前に、金属水素化物と 金属アミド化合物の少なくとも一方に水素吸放出能を有する触媒を混合粉砕処理等 により担持させる方法、のいずれかが用いられる。 [0164] One of the following three methods is used as a method for causing a mixture of a metal hydride and a metal amide compound to carry a catalyst that enhances the ability to absorb and release hydrogen. That is, (a) A method in which a catalyst is added when mixing and pulverizing a metal hydride and a metal amide compound, thereby allowing the metal hydride and the metal amide compound to be supported on an object to be processed (that is, a metal hydride, a metal amide compound, a mixture thereof, or a reactant thereof); ) A method in which the catalyst is supported on the workpiece by mixing the catalyst with the workpiece obtained by mixing and pulverizing the metal hydride and the metal amide compound, (C) the metal hydride and the metal amide compound Before mixing and pulverizing, a method having a catalyst capable of absorbing and releasing hydrogen supported on at least one of a metal hydride and a metal amide compound by a mixing and pulverizing treatment or the like is used.
[0165] (Mg (NH ) の調製)  [0165] (Preparation of Mg (NH))
2 2  twenty two
Mg (NH ) は、 lgの MgHを高純度 Arグローブボックス内で高クロム鋼製のミル容  Mg (NH) is a high-purity mill made of chrome Mg in a high-purity Ar glove box.
2 2 2  2 2 2
器(内容積:250cm3)に投入した後、このミル容器内を真空排気し、続いて下記(18 )式に示すモル比以上となるように、ミル容器内に所定量のアンモニアガス (NH (g) )を導入した後にミル容器を封止し、次いでこれを室温、大気雰囲気下、 250rpmの 回転数で所定時間ミリング処理することにより、調製した。ミリング処理後のミル容器 力 反応ガス中の水素量や XRD測定により Mg (NH丄の生成を確認した。なお、本 After being charged into a vessel (internal volume: 250 cm 3 ), the inside of the mill container is evacuated, and then a predetermined amount of ammonia gas (NH After introducing (g)), the mill container was sealed and then milled at room temperature and in an air atmosphere at a rotation speed of 250 rpm for a predetermined period of time to prepare. Mill vessel strength after milling The production of Mg (NH 丄) was confirmed by the amount of hydrogen in the reaction gas and XRD measurement.
2 2  twenty two
発明で使用した原料は、表 5に示す通りである。  The raw materials used in the invention are as shown in Table 5.
MgH + 2NH (g)→Mg (NH ) + 2H  MgH + 2NH (g) → Mg (NH) + 2H
2 3 2 2 2 Τ · · · (18)  2 3 2 2 2 Τ
[0166] [表 5]  [0166] [Table 5]
Figure imgf000042_0001
Figure imgf000042_0001
[0167] (実施例 51— 57) (Examples 51-57)
表表 66にに実実施施例例 5511— 57の出発原料の配合組成を示す。 LiH、 MgH、 LiNH、 Mg ( Table 66 shows the composition of the starting materials of Working Examples 5511-57. LiH, MgH, LiNH, Mg (
NH ) 力 選ばれた所定の原料を、表 6に示すように 2種類の金属元素が含まれるNH) force The selected raw material contains two types of metal elements as shown in Table 6.
2 2 twenty two
所定の組成となるように、かつ、三塩化チタン (TiCl )が出発原料の金属成分の合計 モル量の 1. Omol%となるように、高純度 Arグローブボックス中で計量し、高クロム鋼 製のバルブ付ミル容器に投入した。続いて、このミル容器内を真空排気した後、ミル 容器内が IMPaとなるようにミル容器内に高純度水素を導入し、遊星型ボールミル装 置 (Fritsch社製, P5)を用いて、室温、大気雰囲気下、 250rpmの回転数で 2時間 、ミリング処理した。ミリング後の試料は、ミル容器内を真空排気して Arを充填した後 、高純度 Arグローブボックス中で取り出した。 Titanium trichloride (TiCl) is the total of the metal components of the starting material so that it has the specified composition. It was weighed in a high-purity Ar glove box so as to have a molar amount of 1. Omol%, and was charged into a high-chromium steel mill container with a valve. Subsequently, after evacuation of the inside of the mill container, high-purity hydrogen was introduced into the mill container so that the inside of the mill container became IMPa, and room temperature was set using a planetary ball mill device (Fritsch, P5). Milling was performed at 250 rpm for 2 hours under an air atmosphere. After milling, the mill container was evacuated and filled with Ar, and then taken out in a high-purity Ar glove box.
[0168] [表 6] [0168] [Table 6]
Figure imgf000043_0001
Figure imgf000043_0001
[0169] (比較例 51 , 52) [0169] (Comparative Examples 51 and 52)
表 6に比較例 51, 52の出発原料の配合組成を示す。金属水素化物と金属アミド化 合物とが 1種の金属を含むように、比較例 51では LiHと LiNHとを、比較例 52では  Table 6 shows the composition of the starting materials of Comparative Examples 51 and 52. In Comparative Example 51, LiH and LiNH were used, and in Comparative Example 52, the metal hydride and the metal amide compound contained one kind of metal.
2  2
MgHと Mg (NH ) とを、それぞれ表 6に示す所定の組成となるように、かつ、 TiCl  MgH and Mg (NH 2) were each prepared so as to have a predetermined composition shown in Table 6, and TiCl
2 2 2 3 が出発原料の金属成分の合計モル量の 1. Omol%となるように、高純度 Arグローブ ボックス中で計量し、高クロム鋼製のバルブ付ミル容器に投入した。続いて、このミノレ 容器内を真空排気した後、ミル容器内が IMPaとなるようにミル容器内に高純度水素 を導入し、遊星型ボールミル装置を用いて、室温、大気雰囲気下、 250rpmの回転 数で 2時間、ミリング処理した。ミリング後の試料は、ミル容器内を真空排気して Arを 充填した後、高純度 Arグローブボックス中で取り出した。 [0170] (試料評価) It was weighed in a high-purity Ar glove box and charged into a high-chromium steel valve-equipped mill vessel so that 2 2 2 3 was 1. Omol% of the total molar amount of the metal components of the starting material. Then, after evacuating the Minore container, high-purity hydrogen was introduced into the mill container so that the inside of the mill container became IMPa, and the planetary ball mill was used to rotate at 250 rpm at room temperature and in the atmosphere. Milled for 2 hours by number. After milling, the mill container was evacuated and filled with Ar, and then removed in a high-purity Ar glove box. [0170] (Sample evaluation)
上述のようにして作製した試料を、高純度 Arグローブボックス内に設置された TG— The sample prepared as described above was placed in a TG-
MASS装置 (熱重量 ·質量分析装置)を用い、昇温速度を 5°C/分として昇温し、そ の際の各試料からの脱離ガスを採取して分析を行った。 Using a MASS device (thermogravimetry / mass spectrometer), the temperature was raised at a rate of 5 ° C / min, and the desorbed gas from each sample was sampled and analyzed.
[0171] (結果) [0171] (Result)
図 13に TG— MASS装置による昇温に伴う脱離水素の放出スペクトル、つまり、温 度と水素放出強度と関係を示す説明図を示す。なお、図 13の特性線 aは実施例 51 を、特性線 bは実施例 52を、特性線 cは比較例 51を、特性線 dは比較例 52を、それ ぞれ示している。また、表 6には各試料の水素の放出スペクトル曲線のピーク温度( °C) (以下「水素放出ピーク温度」とレ、う)を並記する。  Fig. 13 shows the emission spectrum of desorbed hydrogen with increasing temperature by the TG-MASS device, that is, an explanatory diagram showing the relationship between temperature and hydrogen emission intensity. Note that the characteristic line a in FIG. 13 shows the example 51, the characteristic line b shows the example 52, the characteristic line c shows the comparative example 51, and the characteristic line d shows the comparative example 52, respectively. Table 6 also shows the peak temperature (° C) of the hydrogen emission spectrum curve of each sample (hereinafter referred to as “hydrogen emission peak temperature”).
[0172] 図 13より、実施例 51の水素放出ピーク温度は 192°C、実施例 52の水素放出ピー ク温度は 209°Cであり、比較例 51の場合の 239°Cや比較例 52の場合の 317°Cと比 較して、水素放出ピーク温度が低温化することが確認された。また、表 6に示されるよ うに、実施例 53— 57でも、水素放出ピーク温度は、比較例 51より低温化することが 確認された。 [0172] As shown in Fig. 13, the hydrogen release peak temperature of Example 51 was 192 ° C, the peak hydrogen release temperature of Example 52 was 209 ° C, and the peak temperature of Comparative Example 51 was 239 ° C and that of Comparative Example 52 was 239 ° C. It was confirmed that the peak temperature of hydrogen release was lower than 317 ° C in this case. Further, as shown in Table 6, it was confirmed that in Examples 53-57, the hydrogen release peak temperature was lower than that in Comparative Example 51.
[0173] また、 LiHと Mg (NH ) とのモル比が 1. 5— 4の範囲にある実施例 51— 55におい  [0173] Further, in Examples 51-55, wherein the molar ratio between LiH and Mg (NH) was in the range of 1.5-4.
2 2  twenty two
ては水素放出ピーク温度が低くなつており、 LiHと Mg (NH ) とのモル比が 2. 5— 3  The hydrogen release peak temperature is lower, and the molar ratio between LiH and Mg (NH) is 2.5- 3
2 2  twenty two
. 5の範囲にある実施例 51および実施例 53においては、水素放出温度がさらに低 温化してレ、ることを確認した。  In Examples 51 and 53 in the range of 0.5, it was confirmed that the hydrogen release temperature was further lowered.
[0174] (実施例 58— 62) (Examples 58-62)
表 7に、以下に説明する実施例 58— 62の出発原料の配合組成を示す。 LiH、 Mg H、 LiNH、 Mg (NH ) から選ばれた所定の原料を、表 7に示すように 2種類の金 Table 7 shows the composition of the starting materials of Examples 58-62 described below. A given raw material selected from LiH, MgH, LiNH, and Mg (NH) is
2 2 2 2 2 2 2 2
属元素が含まれる所定の組成となるように、かつ、 TiClが出発原料の金属成分の合  TiCl is used as a starting material so that it has a predetermined composition containing the elemental elements.
3  Three
計モル量の 1. Omol%となるように、高純度 Arグローブボックス中で計量し、高クロム 鋼製のバルブ付ミル容器に投入した。続いて、このミル容器内を真空排気した後、ミ ル容器内が IMPaとなるようにミル容器内に高純度水素を導入し、遊星型ボールミル 装置(Fritsch社製, P5)を用いて、室温、大気雰囲気下、 250rpmの回転数で 2時 間、ミリング処理した。ミリング後の試料は、ミル容器内を真空排気して Arを充填した 後、高純度 Arグローブボックス中で取り出した The solution was weighed in a high-purity Ar glove box so as to have a total molar amount of 1. Omol%, and charged into a high-chromium steel mill container with a valve. Subsequently, after evacuating the inside of the mill container, high-purity hydrogen was introduced into the mill container so that the inside of the mill container became IMPa, and the room temperature was adjusted using a planetary ball mill (Fritsch, P5). The milling treatment was performed at 250 rpm in an air atmosphere for 2 hours. After milling, the inside of the mill container was evacuated and filled with Ar. Later, it was taken out in a high purity Ar glove box
[0175] [表 7] [0175] [Table 7]
Figure imgf000045_0001
Figure imgf000045_0001
[0176] 表 7より、 MgHと LiNHを用いた実施例 58— 62においても、比較例 51や比較例 [0176] From Table 7, it can be seen that in Examples 58-62 using MgH and LiNH, Comparative Example 51 and Comparative Example
2 2  twenty two
52より水素放出ピーク温度が低温化している。また、 MgHと LiNHとのモル比が 0  The hydrogen release peak temperature is lower than 52. Also, the molar ratio between MgH and LiNH is 0
2 2  twenty two
. 5— 2の範囲にある実施例 58— 61においては、さらに水素放出ピーク温度が低温 化しており、 MgHと LiNHとのモル比が 0. 5— 1の範囲である実施例 58— 60にお  In Example 58-61 in the range of 5-2, the hydrogen release peak temperature was further lowered, and in Example 58-60 in which the molar ratio of MgH to LiNH was in the range of 0.5-1. You
2 2  twenty two
レ、ては顕著に効果が現れることを確認した。  It was confirmed that the effect was remarkable.
[0177] 次に、上述した水素貯蔵材料に好適に用いられる金属アミド化合物の製造方法に ついて説明する。金属アミド化合物は、金属水素化物とアンモニア (NH )とを反応さ  [0177] Next, a method for producing a metal amide compound suitably used for the above-described hydrogen storage material will be described. Metal amide compounds react metal hydrides with ammonia (NH).
3 せて製造する。金属水素化物としては、水素化リチウム (LiH)、水素化ナトリウム(Na H)、水素化カリウム(KH)、水素化ルビジウム(RbH)、水素化セシウム(CsH)、水 素化マグネシウム(MgH )、水素化カルシウム(CaH )、水素化ベリリウム(BeH )、  3 and manufacture. Metal hydrides include lithium hydride (LiH), sodium hydride (NaH), potassium hydride (KH), rubidium hydride (RbH), cesium hydride (CsH), magnesium hydride (MgH), Calcium hydride (CaH), beryllium hydride (BeH),
2 2 2 水素化ストロンチウム(SrH )、水素化バリウム(BaH )、水素化スカンジウム(ScH )  2 2 2 Strontium hydride (SrH), barium hydride (BaH), scandium hydride (ScH)
2 2 2 2 2 2
、水素化ランタン (LaH、 LaH )、水素化チタン (TiH )、水素化バナジウム (VH )、 , Lanthanum hydride (LaH, LaH), titanium hydride (TiH), vanadium hydride (VH),
2 3 2 X 水素化イットリウム(YH, YH )、水素化ジルコニウム(ZrH )、水素化ネオジゥム(N  2 3 2 X Yttrium hydride (YH, YH), zirconium hydride (ZrH), neodymium hydride (N
3 2 2  3 2 2
dH、 NdH )等が挙げられる。また、これらの金属水素化物から選ばれた 2種以上の dH, NdH) and the like. In addition, two or more types selected from these metal hydrides
3 2 3 2
金属水素化物の混合物も好適に用いられる。  Mixtures of metal hydrides are also suitably used.
[0178] 金属水素化物には、特にアルカリ金属またはアルカリ土類金属の水素化物が含ま れていることが好ましい。これは、反応によって得られる金属アミド化合物の水素放出 特性が良好なためである。 [0178] The metal hydride preferably contains a hydride of an alkali metal or an alkaline earth metal. This is the hydrogen release of the metal amide compound obtained by the reaction. This is because the characteristics are good.
[0179] 金属水素化物は所定の機械的粉砕により微細化されていることも好ましぐ NHと [0179] It is also preferable that the metal hydride is finely divided by predetermined mechanical grinding.
3 の反応によって、水素放出特性が良好な金属アミド化合物を得ることができる。金属 水素化物単体の粉砕処理や複数種の金属水素化物の混合粉砕処理においては、 粉砕助剤として、無機質担体、合成品担体、植物担体や有機溶剤等を添加すること 力 効率よく金属水素化物を微細化する上で有効である。  By the reaction of 3, a metal amide compound having good hydrogen releasing characteristics can be obtained. In the pulverization of metal hydrides alone or in the mixed pulverization of multiple types of metal hydrides, inorganic carriers, synthetic products, plant carriers, organic solvents, etc. should be added as grinding aids. This is effective for miniaturization.
[0180] 例えば、 LiHと NHとの反応は下記(19)式で示される。また、 MgHと NHとの反  [0180] For example, the reaction between LiH and NH is represented by the following formula (19). Also, the reaction between MgH and NH
3 2 3 応は下記(20)式で、 CaHと NHとの反応は下記(21)式で、それぞれ示される。  The reaction is represented by the following formula (20), and the reaction between CaH and NH is represented by the following formula (21).
2 3  twenty three
LiH + NH→LiNH +H †ー(19)  LiH + NH → LiNH + H (19)
3 2 2  3 2 2
MgH + 2NH→Mg (NH ) + 2H †…(20)  MgH + 2NH → Mg (NH) + 2H †… (20)
2 3 2 2 2  2 3 2 2 2
CaH + 2NH→Ca (NH ) + 2H ト - (21)  CaH + 2NH → Ca (NH) + 2H G-(21)
2 3 2 2 2  2 3 2 2 2
[0181] NHとしては液体アンモニア(NH (liq) )が好適に用いられる。この場合には当然  [0181] As NH, liquid ammonia (NH (liq)) is suitably used. In this case, of course
3 3  3 3
に、反応温度を NHの沸点(約- 33°C)以下に保つ。反応効率を高めるためには、 N  The reaction temperature is kept below the boiling point of NH (about -33 ° C). To increase reaction efficiency, N
3  Three
H (liq)を十分に攪拌することが好ましい。  Preferably, H (liq) is sufficiently stirred.
3  Three
[0182] 一方、アンモニアガス(NH (g) )を用いる場合には、例えば、ペンタン,へキサン,  [0182] On the other hand, when ammonia gas (NH (g)) is used, for example, pentane, hexane,
3  Three
シクロへキサンなどの飽和脂肪族炭化水素、ベンゼン,トルエンなどの芳香族炭化水 素、クロ口ホルムなどのハロゲン化アルキル類、エーテル類などの各種有機不活性溶 媒中に金属水素化物を分散させ、この溶媒を NH (g)中で攪拌することにより、反応  Metal hydrides are dispersed in various organic inert solvents such as saturated aliphatic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as benzene and toluene, alkyl halides such as chloroform, and ethers. By stirring this solvent in NH (g),
3  Three
を行うことが好ましい。これにより金属水素化物が均等に反応するようになる。なお、こ れらの溶媒は単独で使用してもよぐ二種類以上を混合して使用してもよい。反応後 は溶媒を蒸発させることにより、生成物を単離することができる。  Is preferably performed. This allows the metal hydride to react evenly. These solvents may be used alone or in combination of two or more. After the reaction, the product can be isolated by evaporating the solvent.
[0183] 上記(19)一(21)式に示されるように、 NHは 1モルの金属水素化物に対して化学  [0183] As shown in the above formulas (19) and (21), NH reacts chemically with 1 mole of metal hydride.
3  Three
等量に相応するモル数あればよいが、反応の進行を早めるためには NHを過剰とす  It is sufficient that the number of moles correspond to the equivalent amount, but excess NH is used to accelerate the progress of the reaction.
3 ることが好ましい。  3 is preferred.
[0184] NHと反応する金属単体または合金と金属水素化物を混合することも好ましい。こ  [0184] It is also preferable to mix a metal hydride with a simple metal or alloy that reacts with NH. This
3  Three
のような金属単体または合金としては、 Li、 Na、 K、 Be、 Mg、 Ca等が挙げられ、例え ば、 Liと NHとの反応は下記(22)式で表される。  Examples of such simple metals or alloys include Li, Na, K, Be, Mg, Ca and the like. For example, the reaction between Li and NH is represented by the following formula (22).
3  Three
2Li+ 2NH→2LiNH +H †…(22)  2Li + 2NH → 2LiNH + H †… (22)
3 2 2 [0185] 金属水素化物と金属単体または合金とを混合することによって、合成される金属ァ ミド化合物が不安定化し、合成した金属アミド化合物の分解温度が低温化するという 効果が得られる。なお、これら金属単体または金属合金と NHとを、金属水素化物の 3 2 2 [0185] By mixing a metal hydride and a simple substance or an alloy, the synthesized metal amide compound is destabilized, and the effect of lowering the decomposition temperature of the synthesized metal amide compound is obtained. It should be noted that these metal simple substances or metal alloys are combined with NH to form metal hydrides.
3  Three
存在なしに反応させることは、高温 ·高圧を必要とする場合があり(例えば、金属 Mg の場合)、操作上実用化が困難であり、また、エネルギー効率上好ましくない等の理 由により、好ましいものではない。  It is preferable to perform the reaction in the absence of high temperature because high temperature and high pressure may be required (for example, in the case of metal Mg), which is difficult to operate practically and is not preferable in terms of energy efficiency. Not something.
[0186] 上述した金属アミド化合物の反応は、回分方式,半回分方式,連続方式のいずれ の方式を採用してもよい。こうして合成した金属アミド化合物と所定の金属水素化物と を混合することにより、水素放出特性に優れた水素貯蔵材料を得ることができる。  [0186] The reaction of the metal amide compound described above may be any of a batch system, a semi-batch system, and a continuous system. By mixing the metal amide compound thus synthesized with a predetermined metal hydride, a hydrogen storage material having excellent hydrogen releasing characteristics can be obtained.
[0187] (実施例 71)  (Example 71)
高純度アルゴン(Ar)グローブボックス中で、 400cm3のステンレス製のマイクロリア クタ一に、 10g (0. 24mol)の CaH (アルドリッチ社製、純度: 95%)を仕込み、密閉 In a high-purity argon (Ar) glove box, 10 g (0.24 mol) of CaH (Aldrich, purity: 95%) is charged into a 400 cm 3 stainless steel microreactor and sealed.
2  2
した後、このマイクロリアクターをドライアイス一メタノール寒剤で NHの沸点未満に冷  And then cool the microreactor to below the boiling point of NH with dry ice-methanol cryogen.
3  Three
却し、これに約 10g (約 0. 60mol)の NH (liq)をボンベからマイクロリアクターに供給  About 10 g (about 0.60 mol) of NH (liq) supplied to the microreactor from the cylinder
3  Three
し、 5時間、連続攪拌した。  And stirred continuously for 5 hours.
[0188] その後、マイクロリアクターを室温に戻し、 NH (g)を含む反応ガスの圧力を測定す [0188] Thereafter, the microreactor is returned to room temperature, and the pressure of the reaction gas containing NH (g) is measured.
3  Three
るとともに、一定量をサンプリングし、その組成分析をガスクロマトグラフ(島津製作所 製、 GC9A、 TCD検出器、カラム: Molecular Sieve 5A)を用いて行った。サンプ リングしたガス中の水素量を測定した結果、 Ca (NH ) (固体)の収率は 82%であつ  At the same time, a certain amount was sampled, and the composition was analyzed using a gas chromatograph (GC9A, TCD detector, column: Molecular Sieve 5A, manufactured by Shimadzu Corporation). As a result of measuring the amount of hydrogen in the sampled gas, the yield of Ca (NH) (solid) was 82%.
2 2  twenty two
た。得られた反応物である Ca (NH ) は、高純度 Arグローブボックス中で、マイクロリ  It was. The resulting reaction product, Ca (NH), was placed in a high purity Ar glove box in a microreactor.
2 2  twenty two
アクターから容易に採取することができた。  It could be easily collected from actors.
[0189] (実施例 72) (Example 72)
高純度 Arグローブボックス中で 6g (0. 24mol)の MgH (アルドリッチ社製、純度 9  6 g (0.24 mol) of MgH (Aldrich, purity 9
2  2
5%)を計量し、上記実施例 71と同じ条件で NH (liq)と反応させた。サンプリングガ  5%) and reacted with NH (liq) under the same conditions as in Example 71 above. Sampling gas
3  Three
ス中の水素量の定量により、 Mg (NH ) の収率は 72%であった。  The yield of Mg (NH 2) was 72% by quantitative determination of the amount of hydrogen in the solution.
2 2  twenty two
[0190] (実施例 73)  (Example 73)
高純度 Arグローブボックス中で、 400cm3のステンレス製のマイクロリアクターに、 5 g (0. 12mol)の CaHと 1. 6g (0. 24mol)の金属 Liを仕込み、密閉した後、マイクロ In a high-purity Ar glove box, 5 g (0.12 mol) of CaH and 1.6 g (0.24 mol) of metal Li were charged into a 400 cm 3 stainless steel microreactor, and sealed.
2 リアクターをドライアイス—メタノール寒剤で冷却し、これに約 10g (約 0. 60mol)の N H (liq)をボンベからマイクロリアクターに供給し、 5時間、連続攪拌した。マイクロリア2 The reactor was cooled with dry ice-methanol cryogen, and about 10 g (about 0.60 mol) of NH (liq) was supplied from a bomb to the microreactor, and continuously stirred for 5 hours. Micro rear
3 Three
クタ一を室温に戻し、生成したガスの圧力を測定するとともにサンプリングを行った。 サンプリングした反応ガス中の水素量をガスクロマトグラフィーにより分析した結果、 C a (NH ) と LiNHの混合物(Ca Li (NH ) 相当の固体)の収率は 83%であった。  The container was returned to room temperature, the pressure of the generated gas was measured, and sampling was performed. As a result of analyzing the amount of hydrogen in the sampled reaction gas by gas chromatography, the yield of a mixture of Ca (NH 2) and LiNH (a solid equivalent to Ca Li (NH 2)) was 83%.
2 2 2 0. 5 2 2  2 2 2 0.5 0.5 2 2
[0191] (実施例 74)  (Example 74)
高純度 Arグローブボックス中で 3. lg (0. 12mol)の MgHと 1. 6g (0. 24mol)の  In a high purity Ar glove box, 3.lg (0.12mol) MgH and 1.6g (0.24mol)
2  2
金属 Liを計量し、実施例 73と同じ条件で NH (liq)と反応させた。サンプリングした  The metal Li was weighed and reacted with NH (liq) under the same conditions as in Example 73. Sampled
3  Three
反応ガス中の水素量を分析した結果、得られた Mg (NH ) と LiNHの混合物(Mg  As a result of analyzing the amount of hydrogen in the reaction gas, a mixture of Mg (NH) and LiNH (Mg
2 2 2 0 2 2 2 0
Li (NH ) 相当の固体)の収率は 75%であった。 The yield of Li (NH 3) was 75%.
. 5 2 2  . 5 2 2
[0192] (実施例 75)  (Example 75)
高純度 Arグローブボックス中で 2gの CaHを計量し、高クロム鋼製のバルブ付ミノレ  In a high purity Ar glove box, weigh 2 g of CaH, and
2  2
容器(内容積: 250cm3)に投入した。続いて、このミル容器内を真空排気した後、 Ar を IMPa導入し、遊星型ボールミル装置(Fritsch社製, P5)を用いて、室温、公転 数 250rpmで 30分間ミリング処理を行い原料粉末の微細化を行った。続いて、このミ ル容器内を真空排気後、ミル容器内が IMPaとなるようにミル容器内に Ar_10vol% NH混合ガスを導入し、同じ遊星型ボールミル装置を用いて、室温、公転数 250rp It was put into a container (internal volume: 250 cm 3 ). Subsequently, after evacuation of the inside of the mill container, Ar was introduced into IMPa, and a milling treatment was performed for 30 minutes at room temperature and a revolution number of 250 rpm for 30 minutes using a planetary ball mill (Fritsch, P5). Was performed. Subsequently, after evacuation of the inside of the mill container, an Ar_10vol% NH mixed gas was introduced into the mill container so that the inside of the mill container became IMPa, and the same planetary ball mill device was used at room temperature and a revolution number of 250 rpm.
3  Three
mで 2時間ミリング処理を行い、ミリング後のミル容器内のガスをサンプリングした後、 ミル内を真空排気した。この NH混合ガスによる反応操作は 5回繰り返して行った。  After milling for 2 hours at m, the gas in the mill container after milling was sampled, and then the inside of the mill was evacuated. This reaction operation using the NH mixed gas was repeated five times.
3  Three
各回のミリング後にミル内から採取した反応ガスの水素量を測定することで収率を算 出した結果、最終的な Ca (NH ) の収率は 83%であった。  The yield was calculated by measuring the amount of hydrogen in the reaction gas collected from the inside of the mill after each milling, and the final yield of Ca (NH 3) was 83%.
2 2  twenty two
[0193] (実施例 76)  (Example 76)
高純度 Arグローブボックス中で 2gの MgHを計量し、実施例 75と同様にして、 1M  2 g of MgH was weighed in a high-purity Ar glove box, and 1 M
2  2
Paの Ar中で微粉砕した後、 ΑΓ~10νο1。/。ΝΗ混合ガスと 10時間(2時間 X 5回)反  After pulverization in Ar of Pa, 中 で ~ 10νο1. /.反 10 hours (2 hours x 5 times) with mixed gas
3  Three
応させた。反応ガスをサンプリングし、そのガス中の水素量を定量した結果、 Mg (N H ) の最終収率は 75%であった。  I responded. As a result of sampling the reaction gas and quantifying the amount of hydrogen in the gas, the final yield of Mg (N H) was 75%.
2 2  twenty two
[0194] (実施例 77)  (Example 77)
高純度 Arグローブボックス中で、 1. 5g (0. 036mol)の CaHと 0. 48g (0. 072m  In a high purity Ar glove box, 1.5 g (0.036 mol) of CaH and 0.48 g (0.072 m
2 ol)の金属 Liを秤量し、これらを実施例 75と同様にして、 IMPaの Ar中で微粉碎した 後、 Ar-10vol%NH混合ガスと 10時間(2時間 X 5回)反応させた。反応ガスをサン 2 ol) were weighed and pulverized in Ar of IMPa in the same manner as in Example 75, and then reacted with an Ar-10vol% NH mixed gas for 10 hours (2 hours × 5 times). Reactant gas
3  Three
プリングし、そのガス中の水素量を定量した結果、反応物たる Ca (NH ) と LiNHの  And the amount of hydrogen in the gas was quantified. As a result, the reactants Ca (NH) and LiNH
2 2 混合物(Ca Li (NH ) 相当の固体)の最終収率は 84%であった。  The final yield of the 22 mixture (solid equivalent to Ca Li (NH)) was 84%.
0. 5 2 2  0.5 2
[0195] (実施例 78)  (Example 78)
高純度 Arグローブボックス中で、 1. 32g (0. 051mol)の MgHと 0. 68g (0. 102  In a high-purity Ar glove box, 1.32 g (0.051 mol) of MgH and 0.68 g (0.102 mol)
2  2
mol)の金属 Liを秤量し、これらを実施例 75と同様にして、 IMPaの Arガス中で微粉 砕した後、 Ar~10vol%NH混合ガスと 10時間(2時間 X 5回)反応させた。反応ガス  mol) of metallic Li was weighed and pulverized in Ar gas of IMPa in the same manner as in Example 75, and then reacted with Ar to 10 vol% NH mixed gas for 10 hours (2 hours X 5 times) . Reaction gas
3  Three
をサンプリングし、そのガス中の水素量を定量した結果、反応物たる Mg (NH ) と Li  Was sampled and the amount of hydrogen in the gas was quantified. As a result, the reactants Mg (NH) and Li
2 2 twenty two
NHの混合物(Mg Li (NH ) 相当の固体)の最終収率は 77%であった。 The final yield of the mixture of NH (solid equivalent to Mg Li (NH)) was 77%.
2 0. 5 2 2  2 0.5 2 2
[0196] 次に所定の比表面積とすることで水素放出特性を高めることができる各種の水素貯 蔵材料について説明する。この水素貯蔵材料は、大略的に、 2つの材料系に分けら れる。第 1の材料系には、金属水素化物と金属アミド化合物の混合物または複合化 物または反応物(混合物等)物からなり、所定の機械的粉砕処理により微細化してな る材料が含まれる。また、第 2の材料系には、金属イミド化合物を含む材料を水素化 してなる材料が含まれる。この第 2の材料系に含まれる材料もまた、所定の機械的粉 砕処理により微細化されてレ、ることが好ましレ、。  [0196] Next, various types of hydrogen storage materials capable of improving hydrogen release characteristics by setting a specific specific surface area will be described. This hydrogen storage material is roughly divided into two material systems. The first material system includes a material composed of a mixture or a composite or a reaction product (mixture or the like) of a metal hydride and a metal amide compound, which is finely divided by a predetermined mechanical pulverization treatment. Further, the second material system includes a material obtained by hydrogenating a material containing a metal imide compound. The material contained in the second material system is also preferably finely divided by a predetermined mechanical pulverizing process.
[0197] 最初に第 1の材料系について説明する。この系における金属水素化物と金属アミド 化合物の組み合わせとしては、水素化リチウム(LiH)とリチウムアミド(LiNH )、 LiH  First, the first material system will be described. Lithium hydride (LiH), lithium amide (LiNH), LiH
2 とマグネシウムアミド(Mg (NH ) )、水素化マグネシウム(MgH )と LiNHの各組み  2 each combination of magnesium amide (Mg (NH)), magnesium hydride (MgH) and LiNH
2 2 2 2 合わせが挙げられる。これらは、材料の基本特性として水素放出温度が異なり、水素 放出温度を低下させる比表面積の値にも差がある。  2 2 2 2 combination. These materials have different hydrogen release temperatures as the basic characteristics of the materials, and also have different values of the specific surface area for lowering the hydrogen release temperature.
[0198] 後に詳細に説明するように、 LiHと LiNHの組み合わせの場合には、 BET法によ  [0198] As described in detail later, in the case of a combination of LiH and LiNH, the BET method is used.
2  2
る比表面積が 15m2/g以上になると、急速に水素放出温度が低下する。逆に言え ば、その比表面積を 15m2Zg以上とすることで水素放出温度を大きく低温化させるこ とができる。さらに水素放出率を高める観点から、その比表面積は 30m2/g以上で あること力 より好ましい。ここで、水素放出率としては、 3質量%(111&33 % )以上であ ることを条件としてレ、る。 [0199] LiHと Mg (NH ) の組み合わせの場合には、水素放出温度を低温ィ匕させるために When the specific surface area exceeds 15 m 2 / g, the hydrogen release temperature decreases rapidly. Conversely, by setting the specific surface area to 15 m 2 Zg or more, the hydrogen release temperature can be greatly reduced. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is more preferably 30 m 2 / g or more. Here, the hydrogen release rate must be 3% by mass (111 & 33%) or more. [0199] In the case of a combination of LiH and Mg (NH), the hydrogen release temperature is lowered to lower the temperature.
2 2  twenty two
、 BET法による比表面積を 7. 5m2/g以上とする。さらに水素放出率を高める観点 から、その比表面積は 15m2/g以上であることが好ましい。 The specific surface area by the BET method is 7.5 m 2 / g or more. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is preferably 15 m 2 / g or more.
[0200] LiHと Mg (NH ) との水素放出反応は、下記(23)式および下記(24)式で表され [0200] The hydrogen release reaction between LiH and Mg (NH) is represented by the following equations (23) and (24).
2 2  twenty two
る。  The
2LiH + Mg (NH ) ^Li NH + MgNH + 2H…(23)  2LiH + Mg (NH) ^ Li NH + MgNH + 2H… (23)
2 2 2 2  2 2 2 2
8LiH + 3Mg (NH ) ^4Li NH + Mg N + 8H…(24)  8LiH + 3Mg (NH) ^ 4Li NH + Mg N + 8H… (24)
2 2 2 3 2 2  2 2 2 3 2 2
[0201] 上記(23)式および(24)式を考察すると、上記(23)式では、 1モルの Mg (NH )  [0201] Considering the above formulas (23) and (24), it is found that in the above formula (23), 1 mol of Mg (NH)
2 2 に対して 2モルの LiHが化学等量であり、理論水素貯蔵率は 5. 48質量%となる。一 方、上記(24)式では、 1モルの Mg (NH ) に対して 2. 67モルの LiHが化学等量で  2 moles of LiH with respect to 2 2 is a chemical equivalent, and the theoretical hydrogen storage rate is 5.48% by mass. On the other hand, in the above equation (24), 2.67 moles of LiH are equivalent to 1 mole of Mg (NH) in a chemical equivalent.
2 2  twenty two
あり、理論水素貯蔵率は 6. 85質量%となる。したがって、 Mg (NH ) と LiHの組成  The theoretical hydrogen storage rate is 6.85% by mass. Therefore, the composition of Mg (NH) and LiH
2 2  twenty two
比が変化することで支配的に起こる反応が変わり、また水素貯蔵率も変わってくること になる。  Changing the ratio changes the predominant reactions that occur, and also changes the hydrogen storage rate.
[0202] ここで、上記(24)式を下記(25a)式および(25b)式に分けて考える。  [0202] Here, the above equation (24) is divided into the following equations (25a) and (25b).
6LiH + 3Mg (NH ) 3Li NH + 3MgNH + 6H…(25a)  6LiH + 3Mg (NH) 3Li NH + 3MgNH + 6H… (25a)
2 2 2 2  2 2 2 2
3MgNH + 2LiH Li NH + Mg N + 2H…(25b)  3MgNH + 2LiH Li NH + Mg N + 2H… (25b)
2 3 2 2  2 3 2 2
すると、上記(25a)式は上記(23)式における各物質の係数を 3倍したものであり、 実質的に上記(23)式と同じである。そして、上記(25b)式は上記(25a)式で生成し たマグネシウムイミド(MgNH)と LiHとの反応である。  Then, the above equation (25a) is three times the coefficient of each substance in the above equation (23), and is substantially the same as the above equation (23). The above equation (25b) is a reaction between the magnesium imide (MgNH) generated in the above equation (25a) and LiH.
[0203] つまり上記(24)式は、上記(23)式の反応を起こさせようとして LiHを Mg (NH ) に [0203] That is, the above equation (24) is used to convert LiH to Mg (NH) in an attempt to cause the reaction of the above equation (23).
2 2 対して化学量論比よりも過剰にすると、結果的に、生成した MgNHの一部が過剰に 添加された LiHと反応し、窒化マグネシウム(Mg N )が生成するところまで反応が進  If the stoichiometric ratio is exceeded, a part of the generated MgNH will eventually react with the excessively added LiH, and the reaction will proceed to the point where magnesium nitride (MgN) is formed.
3 2  3 2
行する、ということを示している。  To do.
[0204] これらのこと力ら、 1モルの Mg (NH ) に対する LiHの混合比が 2未満の場合は、  [0204] From these facts, if the mixing ratio of LiH to 1 mol of Mg (NH) is less than 2,
2 2  twenty two
Mg (NH ) 力 SLiHに対して過剰であるから、このときには上記(23)式が支配的に進  At this time, the above equation (23) predominantly progresses because the Mg (NH) force is excessive with respect to SLiH.
2 2  twenty two
行する。また、 1モルの Mg (NH ) に対する LiHの混合比が化学量論比である 2の  Run. Also, the mixing ratio of LiH to 1 mol of Mg (NH) is the stoichiometric ratio.
2 2  twenty two
場合にも、上記(23)式が支配的に進行する。し力、しながら、 Mg (NH ) に対する Li  Also in this case, the above equation (23) predominantly proceeds. Li, against Mg (NH)
2 2  twenty two
Hの混合比を上記(23)式に合わせたとしても、実際には、 MgNHと LiHの混合状態 (分散状態)等に依存して、生成した MgNHと LiHとが反応して上記(24)式の反応 が進行し、一部の Mg (NH ) は反応せずに残存することも起こり得ると考えられる。 Even if the mixing ratio of H is adjusted to the above equation (23), the mixed state of MgNH and LiH is actually Depending on the (dispersion state), etc., the generated MgNH and LiH react with each other, and the reaction of the above formula (24) proceeds, and it is possible that some Mg (NH) may remain without reacting. Conceivable.
2 2  twenty two
[0205] これに対して、 1モルの Mg (NH ) に対する LiHの混合比が 2超 2· 67未満の場合  [0205] On the other hand, when the mixing ratio of LiH to 1 mol of Mg (NH) is more than 2 and less than 2.67
2 2  twenty two
は、上記(23)式からみると Mg (NH ) に対して LiHは過剰である力 S、上記(24)式か  According to the above equation (23), LiH is excessive in relation to Mg (NH).
2 2  twenty two
らみると Mg (NH ) に対して LiHが不足している。この場合には、混合比が 2に近い  Looking at it, there is a shortage of LiH relative to Mg (NH). In this case, the mixing ratio is close to 2
2 2  twenty two
場合には上記(23)式が支配的に進行して、生成した MgNHの一部が Mg Nへ変  In this case, the above equation (23) predominantly proceeds, and part of the generated MgNH is converted to MgN.
3 2 化し、混合比が 2. 67へ上がるにつれて上記(24)式が支配的に進行するようになる 。そして、 1モルの Mg (NH ) に対する LiHの混合比が 2. 67の化学量論比である場  Equation (24) becomes dominant as the mixing ratio increases to 2.67. If the mixing ratio of LiH to 1 mol of Mg (NH) is 2.67 stoichiometric
2 2  twenty two
合と混合比が 2. 67超の場合には、上記(24)式が支配的に進行する。  When the mixing ratio is greater than 2.67, equation (24) predominates.
[0206] これら上記(23)式と上記(24)式のどちらを主体的に利用するかは、例えば、水素 貯蔵率と、水素放出後の生成物に再び水素を吸蔵させる反応のサイクル特性(つま り、上記(23)式と上記(24)式の右辺から左辺への反応の容易さ)等とを考慮して、 決定すること力できる。また、 LiHと Mg (NH ) のいずれか一方を他方に対して過剰  [0206] Which of the above equation (23) and the above equation (24) is mainly used depends on, for example, the hydrogen storage rate and the cycle characteristics of the reaction for absorbing hydrogen again in the product after releasing hydrogen. In other words, the determination can be made in consideration of the equations (23) and (24), and the like. In addition, either LiH or Mg (NH)
2 2  twenty two
とすることにより、その他方の物質の反応確率を上げて、水素放出を促進させること ができると考えられる。しかし、一方の物質が過度に多すぎると、全量に対する水素 貯蔵率を低下させてしまう問題が生ずる。  Thus, it is considered that the reaction probability of the other substance can be increased and hydrogen release can be promoted. However, if one substance is too much, there is a problem that the hydrogen storage rate with respect to the total amount is reduced.
[0207] したがって、このような水素貯蔵率や反応物質の利用率、水素吸放出反応のサイク ル特性等を考慮して、 LiHと Mg (NH ) の各量を定めることが好ましい。具体的には  [0207] Therefore, it is preferable to determine the amounts of LiH and Mg (NH 2) in consideration of the hydrogen storage rate, the utilization rate of the reactant, the cycle characteristics of the hydrogen absorption / desorption reaction, and the like. In particular
2 2  twenty two
、 1モルの Mg (NH ) に対する LiHの混合比を 1 · 5モル以上 4モル以下とすることが  The mixing ratio of LiH to 1 mol of Mg (NH) should be 1.5 mol or more and 4 mol or less.
2 2  twenty two
好ましぐさらに主に上記(24)式が進行するように、 2. 5モル以上 3· 5モル以下とす ることで、水素貯蔵率をそれ以外の範囲よりも高く維持することができる。  It is more preferable that the hydrogen storage rate be maintained higher than the other range by setting the molar ratio to 2.5 mol or more and 3.5 mol or less so that the above-mentioned formula (24) proceeds.
[0208] MgHと LiNHの組み合わせの場合には、水素放出温度を低温ィ匕させるために、  [0208] In the case of a combination of MgH and LiNH, in order to lower the hydrogen release temperature to a low temperature,
2 2  twenty two
BET法による比表面積を 7. 5m2Zg以上とする。さらに水素放出率を高める観点か ら、その比表面積は 15m2/g以上であることが好ましい。 The specific surface area by the BET method is 7.5 m 2 Zg or more. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is preferably 15 m 2 / g or more.
[0209] MgHと LiNHとの反応は、下記(26)式および下記(27)式で示される。  [0209] The reaction between MgH and LiNH is represented by the following formulas (26) and (27).
2 2  twenty two
MgH + 2LiNH ^Li NH + MgNH + 2H - - - (26)  MgH + 2LiNH ^ Li NH + MgNH + 2H---(26)
2 2 2 2  2 2 2 2
3MgH +4LiNH ^Mg N + 2Li NH + 6H - - - (27)  3MgH + 4LiNH ^ Mg N + 2Li NH + 6H---(27)
2 2 3 2 2 2  2 2 3 2 2 2
[0210] 上記(26)式および(27)式を考察すると、上記(26)式では、 1モルの LiNHに対  [0210] Considering the above formulas (26) and (27), in the above formula (26), one mole of LiNH
2 して 0. 5モルの MgHが化学等量であり、理論水素貯蔵率は 5. 48質量%となる。 2 Thus, 0.5 mole of MgH is a chemical equivalent, and the theoretical hydrogen storage rate is 5.48% by mass.
2 一 方、上記(27)式では、 1モルの LiNHに対して 0. 75モルの LiHが化学等量であり、  2 On the other hand, in the above formula (27), 0.75 mol of LiH is a chemical equivalent to 1 mol of LiNH,
2  2
理論水素貯蔵率は 7. 08質量%となる。したがって、 MgHと LiNHの組成比が変  The theoretical hydrogen storage rate is 7.08% by mass. Therefore, the composition ratio of MgH and LiNH changes.
2 2  twenty two
化することで支配的に起こる反応が変わり、また水素貯蔵率も変わってくることになる  Changes dominantly change the reaction, and also change the hydrogen storage rate
[0211] つまり、 MgHと LiNHの組み合わせの場合にも、前述した LiHと Mg (NH ) の組 [0211] In other words, in the case of the combination of MgH and LiNH, the combination of LiH and Mg (NH)
2 2 2 2 み合わせの場合と同様に、水素貯蔵率や反応物質の利用率、水素吸放出反応のサ イタル特性等を考慮して、 MgHと LiNHの各量を定めることが好ましい。具体的に  As in the case of the combination, it is preferable to determine the respective amounts of MgH and LiNH in consideration of the hydrogen storage rate, the utilization rate of the reactants, the vital properties of the hydrogen absorption / desorption reaction, and the like. Specifically
2 2  twenty two
は、 MgHを過剰とすることが好ましぐ 1モルの Mg (NH ) に対する LiHの混合比を  It is preferable to use an excess of MgH, so that the mixing ratio of LiH to 1 mol of Mg (NH) is
2 2 2  2 2 2
0. 5モル以上 2モル以下とすることが好ましい。さらに、さらに主に上記(27)式が進 行するように、 0. 5モル以上 1モル以下とすることで、水素貯蔵率をそれ以外の範囲 よりも高く維持することができる。  It is preferable that the amount be 0.5 mol or more and 2 mol or less. Further, as the above equation (27) progresses, the hydrogen storage rate can be maintained higher than the other range by adjusting the amount to 0.5 mol or more and 1 mol or less.
[0212] 続いて、第 2の材料系について説明する。金属イミド化合物を含む材料を水素化し てなる材料としては、リチウムイミド(Li NH)を水素化してなる材料、 Mg Nと Li NH Next, the second material system will be described. Materials obtained by hydrogenating a material containing a metal imide compound include materials obtained by hydrogenating lithium imide (Li NH), Mg N and Li NH
2 3 2 2 の混合物等を水素化してなる材料、が挙げられる。ここで「物質の水素化」とは、その 物質と水素とを反応させることによって、その物質が水素を取り込んだ状態に変化す ることをレ、うものとする。例えば、水素化した Li NHは、 Li NHを水素と反応させるこ  And a material obtained by hydrogenating a mixture of 232 and the like. Here, "hydrogenation of a substance" means that the substance changes into a state that has taken in hydrogen by reacting the substance with hydrogen. For example, hydrogenated Li NH can react Li NH with hydrogen.
2 2  twenty two
とにより得られ、その構造は明らかでないが、 LiNHやアンモニア(NH )に変化する  And its structure is not clear, but changes to LiNH or ammonia (NH)
2 3  twenty three
ことなぐ水素と反応して水素を何らかの形で取り込んでおり、後に所定温度に加熱 すると取り込まれた水素が放出されて元の Li NHに戻る材料をいう。  It is a material that reacts with hydrogen to capture hydrogen in some way, and when heated to a predetermined temperature, the captured hydrogen is released and returns to the original Li NH.
2  2
[0213] 水素化した Li NHは、水素放出温度を低温ィヒさせるために、 BET法による比表面  [0213] The hydrogenated Li NH has a specific surface determined by the BET method to lower the hydrogen release temperature.
2  2
積を 10m2Zg以上とする。さらに水素放出率を高める観点から、その比表面積は 15 m2/g以上であることが好ましレ、。 The product should be 10m 2 Zg or more. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is preferably 15 m 2 / g or more.
[0214] Li NHとしては、窒化リチウム(Li N)を水素と反応させることによるイミド化または Li [0214] As Li NH, imidation by reacting lithium nitride (Li N) with hydrogen or Li
2 3  twenty three
NHの熱分解により合成されたものが好適に用いられる。これは、従来のように LiH  Those synthesized by thermal decomposition of NH are preferably used. This is the same as LiH
2  2
と LiNHとを反応させて Li NHを合成する場合には、この反応が固相反応であること When LiNH is synthesized by reacting with LiNH, this reaction must be a solid-phase reaction.
2 2 twenty two
から、ミクロな状態で LiHと LiNHを均質に接触させるためには大きな機械的ェネル  In order to make LiH and LiNH contact homogeneously in a micro state, large mechanical energy
2  2
ギ一が必要となり、実際にそのような処理は困難である一方、前記熱分解等では比 表面積の大きな Li NHを合成をすることができ、水素化を促進することができるから In this case, it is difficult to perform such treatment. Li NH with a large surface area can be synthesized and hydrogenation can be promoted.
2  2
である。  It is.
[0215] Mg Nと Li NHの混合物等を水素化してなる材料は、水素放出温度を低温化させ  [0215] Materials obtained by hydrogenating a mixture of MgN and LiNH have a low hydrogen release temperature.
3 2 2  3 2 2
るために、 BET法による比表面積を 5m2Zg以上とする。さらに水素放出率を高める 観点から、その比表面積は 10m2Zg以上であることが好ましい。 Therefore, the specific surface area by the BET method is set to 5 m 2 Zg or more. From the viewpoint of further increasing the hydrogen release rate, the specific surface area is preferably 10 m 2 Zg or more.
[0216] 上述した各種の水素貯蔵材料は、水素吸放出能を高める触媒をさらに含むことが 好ましぐこの触媒としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K , Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru,〇s, Mo, W, Ta, Zr, In , Hf, Agから選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合 金、あるいは水素貯蔵合金が好適に用いられる。  [0216] The various hydrogen storage materials described above preferably further include a catalyst for enhancing the ability to absorb and release hydrogen. Examples of the catalyst include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, 〇s, Mo, W, Ta, Zr, In, Hf, Ag One or more metals selected from the group consisting of a metal, a compound thereof, an alloy thereof, and a hydrogen storage alloy are preferably used.
[0217] このような触媒を水素貯蔵材料に担持させる方法としては、各種水素貯蔵材料の 原料粉末に添加して粉砕混合する方法や、原料粉末を粉砕混合した後に添加して さらに混合ほたは粉砕混合)する方法を用いることができる。  [0217] As a method of supporting such a catalyst on the hydrogen storage material, a method of adding the raw material powder of various hydrogen storage materials to the raw material powder and pulverizing and mixing the raw material powder and then adding the raw material powder after the pulverization and mixing, and further mixing the raw material powder are used. Pulverization and mixing).
[0218] 例えば、金属水素化物と金属アミド化合物の混合物等からなる水素貯蔵材料は、 所定量の金属水素化物粉末と金属アミド化合物粉末と触媒を同時に粉砕混合するこ とにより、または所定量の金属水素化物粉末と金属アミド化合物粉末を粉碎混合し、 得られた被処理物に触媒を添加して混合することにより、製造することができる。そし て、その際の粉砕混合条件を、粉砕混合処理後に所定の比表面積となるように設定 する。  [0218] For example, a hydrogen storage material composed of a mixture of a metal hydride and a metal amide compound is prepared by simultaneously grinding and mixing a predetermined amount of a metal hydride powder, a metal amide compound powder, and a catalyst, or The hydride powder and the metal amide compound powder can be manufactured by pulverizing and mixing, adding a catalyst to the obtained object to be treated, and mixing. Then, the pulverizing and mixing conditions at that time are set so as to have a predetermined specific surface area after the pulverizing and mixing treatment.
[0219] また、例えば、水素化した Li NHからなる水素貯蔵材料は、最初に LiNH粉末と  [0219] Further, for example, a hydrogen storage material composed of hydrogenated Li NH is first combined with LiNH powder.
2 2 水素吸放出能を高める触媒とを機械的に粉砕混合し、次いで前段の粉碎工程によ つて得られた被処理物を熱分解して、この被処理物に含まれる LiNHを Li NHに変  22 2 Mechanically pulverized and mixed with a catalyst that enhances the ability to absorb and release hydrogen, and then thermally decomposes the processed material obtained in the previous pulverization process to convert LiNH contained in this processed material into LiNH. Strange
2 2 化させ、その後に得られた Li NHを水素化することにより製造することができる。  It can be produced by hydrogenating the obtained Li NH 2.
2  2
[0220] または、最初に LiNH粉末を機械的に粉砕し、次いで前段の粉砕処理によって得  [0220] Alternatively, the LiNH powder is first mechanically pulverized and then obtained by the previous pulverization process.
2  2
られた LiNH粉末に水素吸放出能を高める触媒を添加して粉砕混合して触媒を Li  A catalyst to enhance hydrogen absorption / desorption is added to the obtained
2  2
NH粉末に担持させ、続いて触媒を担持した被処理物を熱分解して被処理物に含 The object to be treated supported on NH powder and then the catalyst is thermally decomposed and contained in the object to be treated.
2 2
まれる LiNHを Li NHに変化させ、その後に得られた Li NHを水素化してもよい。  The resulting LiNH may be converted to LiNH, and then the resulting LiNH may be hydrogenated.
2 2 2  2 2 2
水素化した Li NHからなる水素貯蔵材料の製造工程では、 LiNHの粉砕処理条件  In the manufacturing process of hydrogen storage material consisting of hydrogenated Li NH,
2 2 を粉碎処理後に所定の比表面積となるように設定する。 twenty two Is set so as to have a predetermined specific surface area after the pulverization treatment.
[0221] なお、 Mg Nと Li NHの混合物等を水素化してなる材料は、 LiNH粉末と Mg N [0221] The material obtained by hydrogenating a mixture of MgN and LiNH is, for example, LiNH powder and MgN
3 2 2 2 3 2 とを粉砕混合し、その後にイミド化と水素化を行うことにより製造することができる。ま た、 LiNH粉末を粉砕処理した後にこれをイミド化し、得られた Li NHと MgHとを粉  It can be manufactured by pulverizing and mixing 3 2 2 2 3 2 and then performing imidation and hydrogenation. After pulverizing the LiNH powder, it is imidized and the resulting LiNH and MgH are powdered.
2 2 2 砕混合し、その後に水素化を行う方法によっても、製造することができる。  It can also be produced by a method involving crushing and mixing, followed by hydrogenation.
[0222] 上記各材料系に属する水素貯蔵材料の機械的粉砕処理は、原料粉末を、例えば 、ボールミル装置、ローラーミル、内外筒回転型ミル、アトライター、インナーピース型 ミル、気流粉砕型ミル等の公知の種々の粉砕手段を用いて行うことができる。 [0222] The mechanical pulverization of the hydrogen storage material belonging to each of the above-mentioned material systems may be performed, for example, by subjecting the raw material powder to a ball mill, a roller mill, an inner / outer cylinder rotary type mill, an attritor, an inner piece type mill, an airflow type mill, or the like. Can be performed using various known pulverizing means.
[0223] (LiH + LiNH系試料の作製) [0223] (Preparation of LiH + LiNH Sample)
2  2
LiH、 LiNHおよび三塩化チタン (TiCl ) (いずれもアルドリッチ社製、純度 95%)  LiH, LiNH and titanium trichloride (TiCl) (all manufactured by Aldrich, purity 95%)
2 3  twenty three
をモル比で 1 : 1 : 0. 02とし、それらの合計量が 1. 3gとなるように高純度アルゴン (Ar )グローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250cm3)に投入し た。続いて、このミル容器内を真空排気した後、ミル容器内が IMPaとなるようにミル 容器内に高純度 Arを導入し、遊星型ボールミル装置 (Fritsch社製、 P5)を用いて、 室温、 60— 250i"pmで 3— 360分ミリング処理し、比表面積の異なる複数の試料を作 製した。ミル容器内を真空排気して Arを充填した後、高純度 Arグローブボックス中で ミル容器を開き、試料を取り出した。 In a molar ratio of 1: 1: 0.02, and weighed in a high-purity argon (Ar) glove box so that the total amount thereof becomes 1.3 g, and a high-chromium steel mill container with a valve (250 cm 3 ). Subsequently, after evacuation of the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and room temperature was reduced using a planetary ball mill (Fritsch, P5). Milling was performed at 60-250i "pm for 3-360 minutes to produce multiple samples with different specific surface areas. After evacuating the inside of the mill container and filling it with Ar, the mill container was placed in a high-purity Ar glove box. Opened and removed sample.
[0224] (LiH + Mg (NH ) 系試料の作製) [0224] (Preparation of LiH + Mg (NH) based sample)
2 2  twenty two
(a) Mg (NH ) の作製  (a) Preparation of Mg (NH)
2 2  twenty two
MgH (ァヅマックス社製,純度 95%, MgH ) 2gを高純度 Arグローブボックス内で 2 g of MgH (made by ADAMAX, 95% purity, MgH) in a high-purity Ar glove box
2 2 twenty two
高クロム鋼製のミル容器(内容積: 250cm3)に投入した後、このミル容器内を真空排 気し、続いて下記(28)式の反応を生じさせるために、 1モルの MgHに対して 2モル After being charged into a high chrome steel mill container (internal volume: 250 cm 3 ), the inside of the mill container is evacuated, and then, in order to cause the reaction of the following formula (28), 1 mol of MgH 2 moles
2  2
以上となるようにミル容器内にアンモニアガス (NH (g) )を導入した後にミル容器を  After introducing ammonia gas (NH (g)) into the mill container as described above,
3  Three
封止し、次いでこれを室温、大気雰囲気下、 250rpmの回転数で、遊星型ボールミ ル装置を用いて、所定時間ミリング処理した。その後、ミル容器から反応ガス中の水 素量を測定し、また粉砕生成物を XRD測定することにより、 Mg (NH ) の生成を確  This was sealed and then milled at room temperature and in an air atmosphere at a rotation speed of 250 rpm using a planetary ball mill for a predetermined time. After that, the amount of hydrogen in the reaction gas was measured from the mill container, and the XRD measurement of the pulverized product was performed to confirm the production of Mg (NH).
2 2  twenty two
認した。  I accepted.
MgH + 2NH (g)→Mg (NH ) + 2H (g)…(28)  MgH + 2NH (g) → Mg (NH) + 2H (g) ... (28)
2 3 2 2 2 [0225] (b) Mg (NH ) と LiHの混合粉碎 2 3 2 2 2 [0225] (b) Mixed grinding of Mg (NH) and LiH
2 2  twenty two
LiHと上述の通りに作製した Mg (NH ) をモル比で 8 : 3とし、それらの合計量が 1 ·  The molar ratio of LiH and Mg (NH) produced as described above was 8: 3, and their total amount was 1
2 2  twenty two
3gとなるように高純度 Arグローブボックス中で秤量し、高クロム鋼製のバルブ付ミル 容器(250cm3)に投入した。続いて、このミル容器内を真空排気した後、ミル容器内 力 SlMPaとなるようにミル容器内に高純度 Arを導入し、室温、 250rpmで 3 360分 、遊星型ボールミル装置を用いてミリング処理し、比表面積の異なる複数の試料を作 製した。続いて、ミル容器内を真空排気して Arを充填した後、高純度 Arグローブボッ タス中でミル容器を開き、試料を取り出した。 It was weighed to 3 g in a high-purity Ar glove box and charged into a high-chromium steel mill container with a valve (250 cm 3 ). Subsequently, after evacuation of the inside of the mill container, high-purity Ar was introduced into the mill container so that the mill container internal pressure became SlMPa, and milling was performed using a planetary ball mill at room temperature and 250 rpm for 3 360 minutes. Then, several samples having different specific surface areas were prepared. Next, after the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove bot- tom, and a sample was taken out.
[0226] (MgH +LiNH系試料の作製) (Preparation of MgH + LiNH System Sample)
2 2  twenty two
MgHと LiNHをモル比で 3 : 4とし、それらの合計量が 1. 3gとなるように高純度 Ar  MgH and LiNH are in a molar ratio of 3: 4, and high-purity Ar such that their total amount is 1.3 g.
2 2  twenty two
グローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250cm3)に投入し た。続いて、このミル容器内を真空排気した後、ミル容器内が IMPaとなるようにミル 容器内に高純度 Arを導入し、室温、 250i"pmで 3— 360分、遊星型ボールミル装置 を用いてミリング処理し、比表面積の異なる複数の試料を作製した。続いて、ミル容 器内を真空排気して Arを充填した後、高純度 Arグローブボックス中でミル容器を開 き、試料を取り出した。 The sample was weighed in a glove box and placed in a high-chromium steel mill container with a valve (250 cm 3 ). Next, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and the planetary ball mill was used at room temperature and 250i "pm for 3 to 360 minutes. After evacuating the inside of the mill container to fill it with Ar, the mill container was opened in a high-purity Ar glove box, and the samples were taken out. Was.
[0227] (Li NHの作製とその水素化) [0227] (Production of Li NH and its hydrogenation)
2  2
LiNHに TiClをモル比で 1 : 0· 01とし、それらの合計量が 1 · 3gとなるように高純 LiNH to TiCl at a molar ratio of 1: 0.01, and high purity so that their total amount is 1.3g
2 3 twenty three
度 Arグローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250cm3)に投 入した。続いて、このミル容器内を真空排気した後、ミル容器内が IMPaとなるように ミル容器内に高純度 Arを導入し、室温、 250rpmで 3— 720分間、遊星型ボールミ ル装置を用いてミリング処理し、比表面積の異なる複数の試料を作製した。続いて、 ミル容器内を真空排気して Arを充填した後、高純度 Arグローブボックス中でミル容 器を開いて、各試料をステンレス製の反応容器(50cm3)に移し替えた。このステンレ ス容器の内部を真空排気し、 350°C、 6時間熱処理することで LiNHを熱分解させ、 The sample was weighed in an Ar glove box and placed in a high-chromium steel mill container with a valve (250 cm 3 ). Then, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and the planetary ball mill was used at room temperature for 3 to 720 minutes at 250 rpm. Milling was performed to produce a plurality of samples having different specific surface areas. Subsequently, after the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and each sample was transferred to a stainless steel reaction container (50 cm 3 ). The inside of the stainless steel container was evacuated and heat-treated at 350 ° C for 6 hours to thermally decompose LiNH.
2  2
Li NHを合成した。さらに得られた Li NHを水素中、 3MPa、 180°Cで 12時間処理 Li NH was synthesized. Further treatment of the obtained Li NH in hydrogen at 3MPa, 180 ° C for 12 hours
2 2 twenty two
し、水素化した。  And hydrogenated.
[0228] (Mg N +Li NH系試料の作製とその水素化) [0228] (Preparation and hydrogenation of Mg N + Li NH system sample)
3 2 2 上述の通りに作製した Li NHと、 Mg N (アルドリッチ社製、純度 95%)をモル比で 3 2 2 Li NH prepared as above and Mg N (Aldrich, purity 95%) in molar ratio
2 3 2  2 3 2
4 : 1とし、それらの合計量が 1. 3gとなるように高純度 Arグローブボックス中で秤量し 、高クロム鋼製のバルブ付ミル容器(250cm3)に投入した。続いて、このミル容器内 を真空排気した後、ミル容器内が IMPaとなるようにミル容器内に高純度 Arを導入し 、室温、 250ι·ρπιで 3 360分間、遊星型ボールミル装置を用いてミリング処理し、比 表面積の異なる複数の試料を作製した。次いで、ミル容器内を真空排気して Arを充 填した後、高純度 Arグローブボックス中でミル容器を開き、試料を取り出した。高純 度グローブボックス中でミリング後の試料をステンレス製の反応容器(50cm3)に移し 、真空排気した後、高純度水素を導入し、 220°C、 3MPa、 12時間保持し水素化を 行った。 The ratio was set to 4: 1, and they were weighed in a high-purity Ar glove box so that the total amount thereof was 1.3 g, and was put into a high-chromium steel mill container with a valve (250 cm 3 ). Subsequently, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and the planetary ball mill device was used at room temperature and 250 室温 ρπι for 3 360 minutes. Milling was performed to produce a plurality of samples with different specific surface areas. Next, after the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and a sample was taken out. The sample after milling in a high-purity glove box was transferred to a stainless-steel reaction vessel (50 cm 3 ), evacuated, then introduced with high-purity hydrogen, and kept at 220 ° C, 3 MPa, and 12 hours for hydrogenation. Was.
[0229] (BET比表面積測定方法)  [0229] (Method for measuring BET specific surface area)
上述の通りにして作製した各試料の BET比表面積の測定は、窒素ガスによる多点 式 BET測定(Micromeritics社製、 ASAP2400)を用いて行った。  The BET specific surface area of each sample prepared as described above was measured using a multipoint BET measurement (ASAP2400, manufactured by Micromeritics) with nitrogen gas.
[0230] (水素放出による DTA吸熱ピーク温度の測定) [0230] (Measurement of DTA endothermic peak temperature due to hydrogen release)
上述の通りにして作製した各試料を 10mg秤量し、昇温速度を 5°C/分として、高 純度 Ar中に設置した TG/DTA装置(セイコーインスツルメント社製、 TG/DTA30 0)により、 DTA曲線を測定した。そして、得られた DTA曲線より水素放出による吸熱 ピーク温度を測定し、その温度を水素放出温度とした。  10 mg of each sample prepared as described above was weighed, and the temperature was raised at a rate of 5 ° C / min. Using a TG / DTA apparatus (TG / DTA300, manufactured by Seiko Instruments Inc.) installed in high-purity Ar. The DTA curve was measured. Then, the endothermic peak temperature due to hydrogen release was measured from the obtained DTA curve, and the temperature was taken as the hydrogen release temperature.
[0231] (水素放出量の測定) [0231] (Measurement of hydrogen release amount)
上記 TG/DTA装置による室温一 400°Cまでの TG/DTA測定より得られた TG 曲線の 30°C— 250°Cにおける質量減少率を TG曲線より求め、これを水素放出率と した。  From the TG / DTA apparatus, the mass reduction rate between 30 ° C and 250 ° C of the TG curve obtained from the TG / DTA measurement from room temperature to 400 ° C was determined from the TG curve, and this was defined as the hydrogen release rate.
[0232] (LiH + LiNH系試料の試験結果)  [0232] (Test results of LiH + LiNH-based sample)
2  2
図 14に作製した試料の中から選んだ 4つの試料 A— Dの DTA曲線を示す。試料 A は粉砕条件を 250rpmで 3分、試料 Bは粉砕条件を 250rpmで 10分、試料 Cは粉砕 条件を 250rpmで 30分、試料 Dは粉砕条件を 250rpmで 120分、それぞれ行ったも ので、試料 A— Dのそれぞれの比表面積は、 11. 6m2Zg、 19. 9m2/g、 34. 8m2 /g、 40. 5m2/g、である。図 14に示されるように、粉砕時間が長くなると粉砕が進 んで比表面積が大きくなつており、比表面積が大きくなると水素放出温度(図 14中に 黒丸点で示す、吸熱反応の谷の位置の温度)が低温側へシフトしていることがわかる 。なお、試料 Aは本発明の範囲外であり、試料 B— Dは本発明の範囲内である。 Figure 14 shows the DTA curves of four samples A to D selected from the prepared samples. Sample A was crushed at 250 rpm for 3 minutes, Sample B was crushed at 250 rpm for 10 minutes, Sample C was crushed at 250 rpm for 30 minutes, and Sample D was crushed at 250 rpm for 120 minutes. The specific surface areas of Samples A to D are 11.6 m 2 Zg, 19.9 m 2 / g, 34.8 m 2 / g, and 40.5 m 2 / g. As shown in Fig. 14, as the grinding time increases, grinding progresses. As the specific surface area increases, the hydrogen release temperature (the temperature of the valley position of the endothermic reaction indicated by the black dot in FIG. 14) shifts to a lower temperature side as the specific surface area increases. Sample A is outside the scope of the present invention, and Samples BD are within the scope of the present invention.
[0233] 図 15に各試料の比表面積と水素放出温度および水素放出率との関係を示すダラ フを示す。図 15より、 LiH + LiNH系の水素貯蔵材料では、その BET比表面積が 1  [0233] Fig. 15 shows a graph showing the relationship between the specific surface area of each sample, the hydrogen release temperature, and the hydrogen release rate. According to Fig. 15, the BET specific surface area of LiH + LiNH based hydrogen storage material is 1
2  2
5m2/g以上の場合に 15m2Zg未満の場合と比べて、水素放出温度が 320°C付近 より 270°C以下に急激に低温化し、水素放出率も 2質量%以上となることが確認され た。また、水素放出温度は、 BET比表面積が 30m2Zg以上では 260°C以下となり、 さらに低温化することと、水素放出率が 3質量%を超えることが確認された。 Compared to the case of less than 15m 2 Zg at 5m 2 / g or more, it is confirmed that the temperature of hydrogen release drops sharply from around 320 ° C to 270 ° C or less, and the hydrogen release rate becomes 2% by mass or more. Was done. In addition, the hydrogen release temperature was 260 ° C or less when the BET specific surface area was 30 m 2 Zg or more. It was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3% by mass.
[0234] (LiH + Mg (NH ) 系試料の試験結果)  [0234] (Test results of LiH + Mg (NH) based sample)
2 2  twenty two
図 16に各試料の比表面積と水素放出温度および水素放出率との関係を示すダラ フを示す。 LiH + Mg (NH ) 系の水素貯蔵材料では、その BET比表面積が 7. 5m2 Figure 16 shows a graph showing the relationship between the specific surface area of each sample and the hydrogen release temperature and hydrogen release rate. LiH + Mg (NH 2) based hydrogen storage material has a BET specific surface area of 7.5 m 2
2 2  twenty two
/g以上の場合に 7. 5m2/g未満の場合と比べて、水素放出温度が 230°Cを超えて いたものが 230°C以下に低温化することが確認され、水素放出率も 2質量%以上とな つた。また、水素放出温度は、 BET比表面積が 15m2/g以上では 220°C以下となり 、さらに低温化することと、水素放出率が 3質量%を超えることが確認された。 / In the case of more than g 7. Compared to the case of less than 5 m 2 / g, which a hydrogen release temperature exceeds the 230 ° C is confirmed to be low temperature below 230 ° C, also the hydrogen release rate 2 Mass% or more. Further, the hydrogen release temperature was 220 ° C. or less when the BET specific surface area was 15 m 2 / g or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3% by mass.
[0235] (MgH +ΠΝΗ系試料の試験結果)  [0235] (Test results of MgH + ΠΝΗ-based samples)
2 2  twenty two
図 17に各試料の比表面積と水素放出温度および水素放出率との関係を示すダラ フを示す。 MgH +ΠΝΗ系試料では、その BET比表面積が 7. 5m2/g以上の場 Figure 17 shows a graph showing the relationship between the specific surface area of each sample and the hydrogen release temperature and hydrogen release rate. In the case of MgH + ΠΝΗ-based samples, if the BET specific surface area is 7.5 m 2 / g or more,
2 2  twenty two
合に 7. 5m2/g未満の場合と比べて、水素放出温度が 230°Cを超えていたものが 2 30°C以下に低温ィ匕することが確認され、水素放出率も 2質量%以上となった。また、 水素放出温度は、 BET比表面積が 15m2Zg以上では 220°C以下となり、さらに低温 化することと、水素放出率が 3質量%を超えることが確認された。 In comparison with the case of less than 7.5 m 2 / g, it was confirmed that the temperature at which the hydrogen release temperature exceeded 230 ° C decreased to 230 ° C or lower, and the hydrogen release rate also increased to 2% by mass. That's all. In addition, the hydrogen release temperature was 220 ° C or less when the BET specific surface area was 15 m 2 Zg or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3% by mass.
[0236] (水素化された Li NHの試験結果)  [0236] (Test results of hydrogenated Li NH)
2  2
図 18に各試料の比表面積と水素放出温度および水素放出率との関係を示すダラ フを示す。水素化された Li NHでは、その BET比表面積が 10m  Figure 18 shows a graph showing the relationship between the specific surface area of each sample and the hydrogen release temperature and hydrogen release rate. Hydrogenated Li NH has a BET specific surface area of 10m
2 2Zg以上の場合にIn case of 2 2 Zg or more
10m2/g未満の場合と比べて、水素放出温度が 300°C付近より 290°C以下に低温 化することが確認され、水素放出率も 2質量%以上となった。また、水素放出温度は BET比表面積が 15m2/g以上では 280°C以下となり、さらに低温化することと、水素 放出率が 3質量%を超えることが確認された。 Compared with the case of less than 10 m 2 / g, it was confirmed that the temperature of hydrogen release decreased from around 300 ° C to 290 ° C or less, and the hydrogen release rate also became 2% by mass or more. The hydrogen release temperature is When the BET specific surface area was 15 m 2 / g or more, the temperature was 280 ° C or less. It was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3% by mass.
[0237] (水素化された Mg N +Li NH系試料の試験結果) [0237] (Test results of hydrogenated MgN + LiNH-based sample)
3 2 2  3 2 2
図 19に各試料の比表面積と水素放出温度および水素放出率との関係を示すダラ フを示す。 Mg Nと Li NHの粉砕混合物を水素化した水素貯蔵材料では、その BE  Figure 19 shows a graph showing the relationship between the specific surface area of each sample, the hydrogen release temperature and the hydrogen release rate. In hydrogen storage materials obtained by hydrogenating a crushed mixture of MgN and LiNH, the BE
3 2 2  3 2 2
T比表面積が 5m2/g以上の場合に 5m2/g未満の場合と比べて、水素放出温度が 240°Cを超えていたものが 240°C以下に低温化することが確認され、水素放出率も 2 質量%以上となった。また、水素放出温度は、 BET比表面積が 10m2Zg以上では、 230°C以下となり、さらに低温化することと、水素放出率が 3質量%を超えることが確 認された。 It was confirmed that when the specific surface area was 5 m 2 / g or more, the hydrogen release temperature exceeded 240 ° C compared to the case of less than 5 m 2 / g, but the temperature dropped to 240 ° C or less. The release rate was 2% by mass or more. The hydrogen release temperature was 230 ° C or less when the BET specific surface area was 10 m 2 Zg or more, and it was confirmed that the temperature was further lowered and the hydrogen release rate exceeded 3% by mass.
[0238] 次に、ナノオーダーサイズの触媒を添加することで水素放出特性を高めることがで きる各種の水素貯蔵材料について説明する。この水素貯蔵材料は、大略的に、 2つ の材料系に分けられ、係る第 1の材料系には、金属水素化物と金属アミド化合物と水 素吸放出能を高める触媒とを含む混合物または複合化物または反応物 (混合物等) を有する水素貯蔵材料が属し、第 2の材料系には、金属イミド化合物とナノ粒子触媒 を含み、かつ、水素化された水素貯蔵材料が属する。ここで、触媒としてはナノ粒子 からなるもの(以下、「ナノ粒子触媒」という)を用いる。ナノ粒子触媒を水素貯蔵材料 に担持させることにより、水素放出温度を低温化させることができる。  [0238] Next, various types of hydrogen storage materials that can enhance the hydrogen release characteristics by adding a catalyst having a nano-order size will be described. This hydrogen storage material is roughly divided into two material systems, and the first material system includes a mixture or a composite containing a metal hydride, a metal amide compound, and a catalyst that enhances the ability to absorb and release hydrogen. A hydrogen storage material having a compound or a reactant (such as a mixture) belongs to the second material system, and a hydrogenated hydrogen storage material containing a metal imide compound and a nanoparticle catalyst belongs to the second material system. Here, a catalyst composed of nanoparticles (hereinafter referred to as “nanoparticle catalyst”) is used. By loading the nanoparticle catalyst on the hydrogen storage material, the hydrogen release temperature can be lowered.
[0239] 一般的に、ナノ粒子とは粒径が実質的にサブミクロンオーダー未満の粒子を言うが 、本発明におけるナノ粒子触媒とは、この一般的な定義にカ卩えて、所定の水素貯蔵 材料へ添加した場合に、そのナノ粒子触媒と同組成のマイクロ粒子触媒を同添加率 で水素貯蔵材料に添加した場合よりも、水素放出スペクトルのピーク温度(以下「水 素放出温度」という)を 10°C以上低下させる効果を示すものを指すものとする。なお、 マイクロ粒子触媒とは、平均粒子径が 0. 5 111以上30 111以下でぁるカ\または粒 子数の 9割以上が 0. 1 μ m以上 100 μ m以下の範囲にある粒子、または、 BET比表 面積が 1. 0m2Zg超 20m2Zg未満の粒子を指すものとする。 [0239] Generally, nanoparticles refer to particles having a particle size substantially smaller than the submicron order. However, the nanoparticle catalyst according to the present invention has a predetermined hydrogen storage according to this general definition. When added to a material, the peak temperature of the hydrogen release spectrum (hereinafter referred to as “hydrogen release temperature”) is higher than when a microparticle catalyst having the same composition as the nanoparticle catalyst is added to the hydrogen storage material at the same addition rate. It refers to one that shows the effect of lowering by 10 ° C or more. The term “microparticle catalyst” refers to particles having an average particle diameter of 0.5 111 or more and 30 111 or less, or particles in which 90% or more of the particles are in the range of 0.1 μm or more and 100 μm or less. or, the BET specific surface area is intended to refer to 1. 0 m 2 Zg super 20 m 2 Zg particles less than.
[0240] まず、第 1の材料系力 説明する。金属水素化物と金属アミドィ匕合物の金属種とし ては、リチウム(Li)、マグネシウム(Mg)、カルシウム(Ca)のいずれかが好適に用い られ、水素放出温度を低温化させる観点からは、これら金属水素化物と金属アミド化 合物の金属種を 2種類以上とすることが好ましい。 [0240] First, the first material force will be described. Any of lithium (Li), magnesium (Mg), and calcium (Ca) is preferably used as the metal species of the metal hydride and the metal amide compound. From the viewpoint of lowering the hydrogen release temperature, it is preferable to use two or more metal species of these metal hydrides and metal amide compounds.
[0241] 特に好ましレ、組み合わせとして、水素化リチウム (LiH)とマグネシウムアミド(Mg (N [0241] Lithium hydride (LiH) and magnesium amide (Mg (N
H ) )の組み合わせが挙げられる。 LiHと Mg (NH ) との水素放出反応は、先に説H))). The hydrogen release reaction between LiH and Mg (NH) was described earlier.
2 2 2 2 2 2 2 2
明したように、上記(23)式および上記(24)式で表される。 LiHと Mg (NH ) の各量  As described above, it is expressed by the above equation (23) and the above equation (24). LiH and Mg (NH) amounts
2 2 は、上述したように、水素貯蔵率や反応物質の利用率、水素吸放出反応のサイクル 特性等を考慮して定めることが好ましい。具体的には、 1モルの Mg (NH ) に対する  As described above, 22 is preferably determined in consideration of the hydrogen storage rate, the utilization rate of the reactants, the cycle characteristics of the hydrogen absorption / desorption reaction, and the like. Specifically, for 1 mole of Mg (NH)
2 2  twenty two
LiHの混合比を 2モル以上 5モル以下とすることが好ましぐさらに主に上記(24)式 が進行するように、 2. 5モル以上 3. 5モル以下とすることで、水素貯蔵率をそれ以外 の範囲よりも高く維持することができる。  It is preferable that the mixing ratio of LiH be 2 mol or more and 5 mol or less. Furthermore, as the above equation (24) progresses, by setting the mixing ratio of 2.5 mol or more to 3.5 mol or less, the hydrogen storage rate can be increased. Can be maintained higher than the other ranges.
[0242] 別の好ましい組み合わせとしては、水素化マグネシウム(MgH )とリチウムアミド(Li  [0242] Another preferred combination includes magnesium hydride (MgH 2) and lithium amide (Li
2  2
NH )の組み合わせが挙げられる。 MgHと LiNHとの反応は、先に説明したように NH 3). The reaction between MgH and LiNH, as explained earlier,
2 2 2 2 2 2
、上記(26)式および上記(27)式で示される。 MgHと LiNHの各量もまた水素貯  , (26) and (27). MgH and LiNH are also stored in hydrogen.
2 2  twenty two
蔵率や反応物質の利用率、水素吸放出反応のサイクル特性等を考慮して定めること が好ましい。具体的には、 MgHを過剰とすることが好ましぐ 1モルの LiNHに対す  It is preferable to determine in consideration of the storage rate, the utilization rate of the reactants, the cycle characteristics of the hydrogen absorption / release reaction, and the like. Specifically, excess MgH is preferred for 1 mole of LiNH
2 2 る MgHの混合比を 0. 5モル以上 3モル以下とすることが好ましレ、。さらに、さらに主 It is preferable that the mixing ratio of MgH is 0.5 mol or more and 3 mol or less. Furthermore, even more
2 2
に上記(27)式が進行するように、 0. 5モル以上 1モル以下とすることで、水素貯蔵率 をそれ以外の範囲よりも高く維持することができる。  By setting the amount to 0.5 mol or more and 1 mol or less so that the above equation (27) proceeds, the hydrogen storage rate can be maintained higher than the other range.
[0243] ナノ粒子触媒の担持量は、金属水素化物と金属アミド化合物の混合物等の合計量 の 0. 1質量%以上 20質量%以下とすることが好ましい。触媒添加率が 0. 1質量% 未満では触媒としての効果が実質的に得られず、 20質量%超では水素吸放出反応 が逆に阻害され、また全量に対する水素放出率が低下する。  [0243] The loading amount of the nanoparticle catalyst is preferably 0.1% by mass or more and 20% by mass or less based on the total amount of the mixture of the metal hydride and the metal amide compound. If the catalyst addition ratio is less than 0.1% by mass, the effect as a catalyst is not substantially obtained, and if it exceeds 20% by mass, the hydrogen absorption / desorption reaction is adversely inhibited, and the hydrogen release ratio with respect to the total amount decreases.
[02441 このような第 1の材料系に属する水素貯蔵材料の製造方法としては、以下に示す 4 方法のいずれ力、を用いることができる。第 1の製造方法は、金属水素化物と金属アミ ド化合物に、ナノ粒子触媒を添加して、不活性ガス雰囲気下もしくは水素雰囲気下ま たは不活性ガスと水素との混合ガス雰囲気下 (以下「不活性ガス雰囲気下等」という) におレ、て機械的粉砕処理により混合、微細化する方法である。  [02441] As a method for producing such a hydrogen storage material belonging to the first material system, any of the following four methods can be used. In the first production method, a nanoparticle catalyst is added to a metal hydride and a metal amide compound, and the mixture is placed under an inert gas atmosphere or a hydrogen atmosphere, or a mixed gas atmosphere of an inert gas and hydrogen (hereinafter, referred to as a mixed gas atmosphere). This is a method of mixing and miniaturizing by mechanical pulverization treatment.
[0245] 第 2の製造方法は、金属水素化物と金属アミド化合物を不活性ガス雰囲気下等に おいて機械的粉碎処理により混合、微細化し、こうして得られた被処理物にナノ粒子 触媒を添加して、被処理物にナノ粒子触媒を担持させる方法である。 [0245] In the second production method, a metal hydride and a metal amide compound are mixed under an inert gas atmosphere or the like. In this method, the particles are mixed and refined by mechanical pulverization, and a nanoparticle catalyst is added to the object to be treated thus obtained, so that the object to be treated carries the nanoparticle catalyst.
[0246] 第 3の製造方法は、金属水素化物または金属アミド化合物のレ、ずれか一方にナノ 粒子触媒を添加して、不活性ガス雰囲気下等において機械的粉砕処理により混合、 微細化し、こうして得られた被処理物と他方とを、不活性ガス雰囲気下等において混 合粉砕する方法である。  [0246] In the third production method, a nanoparticle catalyst is added to one or the other of the metal hydride and the metal amide compound, and the mixture is refined and mechanically pulverized under an inert gas atmosphere or the like, and thus, This is a method of mixing and pulverizing the obtained object and the other under an inert gas atmosphere or the like.
[0247] 第 4の製造方法は、金属水素化物と金属アミド化合物それぞれにナノ粒子触媒を 添加して、金属水素化物と金属アミド化合物ごとに、不活性ガス雰囲気下等におい て機械的粉砕処理により混合、微細化し、こうして得られた被処理物どうしを、不活性 ガス雰囲気下等において混合粉砕する方法である。後段の混合粉砕処理は、実質 的に粉砕が起こらなレ、条件での混合処理であってもよレ、。  [0247] In the fourth production method, a nanoparticle catalyst is added to each of the metal hydride and the metal amide compound, and each of the metal hydride and the metal amide compound is subjected to mechanical pulverization treatment under an inert gas atmosphere or the like. This is a method of mixing and pulverizing, and mixing and pulverizing the objects to be processed thus obtained under an inert gas atmosphere or the like. In the latter stage of the mixing and pulverizing process, the pulverizing does not substantially occur, or the mixing and pulverizing process under the conditions may be performed.
[0248] 続レ、て第 2の材料系につレ、て説明する。第 2の材料系に属する水素貯蔵材料は、 金属イミド化合物とナノ粒子触媒を含み、かつ、水素化されたものである。 「物質の水 素化」の定義は、先に説明した通りである。  [0248] Next, the second material system will be described. The hydrogen storage material belonging to the second material system includes a metal imide compound and a nanoparticle catalyst, and is hydrogenated. The definition of “hydrogenation of a substance” is as described above.
[0249] この第 2の材料系に属する水素貯蔵材料としては、水素化したリチウムイミド (Li N  [0249] As a hydrogen storage material belonging to the second material system, hydrogenated lithium imide (LiN
2 2
H)が挙げられる。前記水素化の定義によれば、水素化した Li NHは、 Li NHを水 H). According to the definition of hydrogenation, hydrogenated Li NH can be converted from Li NH to water.
2 2 素と反応させることにより得られ、その構造は明らかでないが、 LiNHやアンモニア(  It is obtained by reaction with 22 element, its structure is not clear, but LiNH and ammonia (
2  2
NH )に変化することなぐ水素と反応して水素を何らかの形で取り込んでおり、後に Reacts with hydrogen that does not change to NH 3) to take in some form of hydrogen and later
3 Three
所定温度に加熱すると取り込まれた水素が放出されて元の Li NHに戻る材料をいう  When heated to a certain temperature, the captured hydrogen is released and returns to the original Li NH
2  2
[0250] Li NHの水素化は、 Li NHを所定圧力、所定温度の水素雰囲気下で所定時間保 [0250] In the hydrogenation of Li NH, Li NH is kept under a hydrogen atmosphere at a predetermined pressure and a predetermined temperature for a predetermined time.
2 2  twenty two
持することにより行うことができる。ナノ粒子触媒の担持量は、第 1の材料系の場合と 同様の理由により、金属イミド化合物の全量の 0. 1質量%以上 20質量%以下とする ことが好ましい。  It can be done by holding. For the same reason as in the case of the first material system, the amount of the supported nanoparticle catalyst is preferably 0.1% by mass or more and 20% by mass or less of the total amount of the metal imide compound.
[0251] Li NHは、窒化リチウム(Li N)を水素と反応させ、または LiNHを熱分解すること  [0251] Li NH is the reaction of lithium nitride (Li N) with hydrogen or the thermal decomposition of LiNH.
2 3 2  2 3 2
により合成することが好ましい。これは次のような理由による。すなわち、 Li NHは Li  It is preferable to synthesize by the following. This is for the following reasons. That is, Li NH is Li
2  2
Hと LiNHとを混合して反応させることにより合成することもできるが、この場合には固  It can also be synthesized by mixing and reacting H and LiNH.
2  2
相反応となるために、ミクロな状態で LiHと LiNHを均質に接触させるために大きな  In order to make LiH and LiNH contact homogeneously in a micro state,
2 機械的エネルギーが必要になるという問題がある。これに対して、 Li NHを熱分解等 2 There is a problem that mechanical energy is required. On the other hand, thermal decomposition of Li NH
2  2
により合成すれば、その過程で Li NHの比表面積が大きくなり、水素化が進行し易く  , The specific surface area of Li NH increases in the process, and hydrogenation proceeds easily.
2  2
なるというメリットがある。  There is a merit of becoming.
[0252] また、第 2の材料系には、金属イミド化合物と金属窒化物とナノ粒子触媒を含み、か つ、水素化された水素貯蔵材料が含まれる。具体例としては、 Li NHと窒化マグネシ  [0252] The second material system includes a metal imide compound, a metal nitride, and a nanoparticle catalyst, and also includes a hydrogenated hydrogen storage material. Specific examples include Li NH and magnesium nitride.
2  2
ゥム (Mg N )とナノ粒子触媒を含み、これを水素化したものが挙げられる。この材料  Including hydrogen (Mg N) and nanoparticle catalyst, and hydrogenated one. This material
3 2  3 2
の場合にも、ナノ粒子触媒の担持量は、 Li NHおよび Mg Nの合計量の 0. 1質量  In this case also, the supported amount of the nanoparticle catalyst is 0.1 mass of the total amount of Li NH and Mg N.
2 3 2  2 3 2
%以上 20質量%以下とすることが好ましい。  % To 20% by mass or less.
[0253] 上述した各種の水素貯蔵材料に含まれるナノ粒子触媒としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn , Al, Si, Ru,〇s, Mo, W, Ta, Zr, In, Hf, Agから選ばれた 1種または 2種以上の 金属、またはその化合物またはその合金、あるいは水素貯蔵合金が好適に用いられ る。ナノ粒子触媒の形態としては、ナノ金属粒子、ナノ金属酸化物粒子、ナノ金属塩 化物が好適に用いられる。ナノ粒子触媒のさらに好ましい例としては、 TiO (アナタ  [0253] Examples of the nanoparticle catalyst contained in the various hydrogen storage materials described above include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, and Nb. , La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, 〇s, Mo, W, Ta, Zr, In, Hf, Ag Alternatively, a compound or an alloy thereof, or a hydrogen storage alloy is preferably used. As the form of the nanoparticle catalyst, nanometal particles, nanometal oxide particles, and nanometal chlorides are suitably used. More preferred examples of nanoparticle catalysts include TiO (
2 ーゼ型)ナノ粒子、 Tiナノ粒子が挙げられる。  2-se type) nanoparticles and Ti nanoparticles.
[0254] このような第 2の材料系に属する水素貯蔵材料の製造方法としては、以下の 4方法 が好適に用いられる。第 1の製造方法は、金属イミド化合物にナノ粒子触媒を添加し て、不活性ガス雰囲気下等において所定の機械的粉砕処理により混合、微細化し、 その後に水素化する方法である。  [0254] As a method for producing such a hydrogen storage material belonging to the second material system, the following four methods are preferably used. The first production method is a method in which a nanoparticle catalyst is added to a metal imide compound, mixed and refined by a predetermined mechanical pulverization treatment in an inert gas atmosphere or the like, and then hydrogenated.
[0255] 第 2の製造方法は、金属窒化物と金属イミド化合物を不活性ガス雰囲気下等にお いて所定の機械的粉砕処理により混合、微細化し、こうして得られた被処理物にナノ 粒子触媒を添加して、被処理物にナノ粒子触媒を担持させ、その後に水素化する方 法である。  [0255] In the second production method, a metal nitride and a metal imide compound are mixed and refined by a predetermined mechanical pulverizing treatment under an inert gas atmosphere or the like, and the thus-obtained object is treated with a nanoparticle catalyst. This is a method in which a nanoparticle catalyst is supported on an object to be treated, followed by hydrogenation.
[0256] 第 3の製造方法は、金属窒化物または金属イミド化合物のいずれか一方にナノ粒 子触媒を添加して、不活性ガス雰囲気下等において機械的粉砕処理により混合、微 細化し、こうして得られた被処理物と他方とを不活性ガス雰囲気下等において混合粉 砕し、その後に水素化する方法である。  [0256] In the third production method, a nanoparticle catalyst is added to either the metal nitride or the metal imide compound, and the mixture is pulverized and pulverized by mechanical pulverization in an inert gas atmosphere or the like. This is a method in which the obtained object and the other are mixed and pulverized in an inert gas atmosphere or the like, and then hydrogenated.
[0257] 第 4の製造方法は、金属窒化物と金属イミド化合物それぞれにナノ粒子触媒を添 カロして、金属窒化物と金属イミド化合物ごとに不活性ガス雰囲気下等において機械 的粉砕処理により混合、微細化し、こうして得られた被処理物どうしを不活性ガス雰 囲気下等において混合粉砕し、その後に水素化する方法である。後段の混合粉砕 処理は、実質的に粉砕が起こらなレ、条件での混合処理であってもよレ、。 [0257] In the fourth production method, a nanoparticle catalyst is added to each of a metal nitride and a metal imide compound. The metal nitride and the metal imide compound are mixed and refined by mechanical pulverization in an inert gas atmosphere or the like for each metal nitride and metal imide compound, and the objects to be treated thus obtained are mixed and pulverized in an inert gas atmosphere or the like. , Followed by hydrogenation. In the latter stage of the mixing and pulverizing treatment, substantially no pulverizing occurs, and the mixing and pulverizing treatment may be performed under conditions.
[0258] これらの材料系に属する水素貯蔵材料の機械的粉砕処理は、原料粉末を、例えば 、ボールミル装置、ローラーミル、内外筒回転型ミル、アトライター、インナーピース型 ミル、気流粉砕型ミル等の公知の種々の粉砕手段を用いて行うことができる。このよう な機械的粉砕処理では、粉砕助剤として、無機質担体、合成品担体、植物担体や有 機溶剤などを添加することは、効率よく原料粉末を微細化する上で有効である。  [0258] In the mechanical pulverization of the hydrogen storage material belonging to these material systems, the raw material powder is processed by, for example, a ball mill, a roller mill, an inner / outer cylinder rotary mill, an attritor, an inner piece mill, an airflow mill, or the like. Can be performed using various known pulverizing means. In such a mechanical pulverization treatment, addition of an inorganic carrier, a synthetic product carrier, a plant carrier, an organic solvent, or the like as a pulverization aid is effective in efficiently refining the raw material powder.
[0259] (LiH + LiNH系試料(実施例 81, 82、比較例 81 , 82)の作製)  (Preparation of LiH + LiNH Samples (Examples 81 and 82, Comparative Examples 81 and 82))
2  2
表 8に示すように、 LiHと LiNH (いずれもアルドリッチ社製、純度 95%)と各種触  As shown in Table 8, LiH and LiNH (both manufactured by Aldrich, purity 95%)
2  2
媒とを、モル比が 1 : 1 : 0. 02でその合計量が 1. 3gとなるように、高純度アルゴン (Ar )グローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250cm3)に投入し た。続いて、このミル容器内を真空排気した後、ミル容器内が IMPaとなるようにミル 容器内に高純度 Arを導入し、遊星型ボールミル装置 (Fritsch社製、 P5)を用いて、 室温、 250rpmで 120分ミリング処理した。ミル容器内を真空排気して Arを充填した 後、高純度 Arグローブボックス中でミル容器を開き、試料を取り出した。 The medium was weighed in a high-purity argon (Ar) glove box such that the molar ratio was 1: 1: 0.02 and the total amount was 1.3 g. 250cm 3 ). Subsequently, after evacuation of the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and room temperature was reduced using a planetary ball mill (Fritsch, P5). Milling treatment was performed at 250 rpm for 120 minutes. After the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and a sample was taken out.
[0260] なお、 TiOナノ粒子はミレニアムケミカルズ社製の純度が 82. 8%で BET比表面積 [0260] The TiO nanoparticles had a purity of 82.8% and a BET specific surface area of Millennium Chemicals.
2  2
力 29. 8m2/g、TiOマイクロ粒子はアルドリッチ社製で純度が 99. 9%で BET比 Force 29.8m 2 / g, TiO microparticles made by Aldrich, 99.9% purity and BET ratio
2  2
表面積が 18m2/g、 Tiナノ粒子は平均粒径が lnm、 Tiマイクロ粒子はレアメタル社 製の純度が 99. 9%で粒子径が 10— 100 /i m、である。 The surface area is 18m 2 / g, the average particle size of the Ti nanoparticles is lnm, and the Ti microparticles have a purity of 99.9% and a particle size of 10-100 / im, manufactured by Rare Metals.
[0261] [表 8] 配合(モル比) [0261] [Table 8] Mixing (molar ratio)
触媒 、  Catalyst,
ピーク温度 Peak temperature
LiH LiNH2LiH LiNH 2
Tiマイクロ Ti02ナノ Ti02マイクロ Ti micro Ti0 2 nano Ti0 2 micro
粒子 粒子 粒子  Particles particles particles
実施例 81 1 1 0.02 216 比較例 81 1 1 0.02 247 実施例 82 1 1 0.02 234  Example 81 1 1 0.02 216 Comparative Example 81 1 1 0.02 247 Example 82 1 1 0.02 234
h- 比較例 82 1 1 0.02 247  h- Comparative example 82 1 1 0.02 247
[0262] (Li NH系試料(実施例 83, 84、比較例 83, 84)の作製) (Preparation of Li NH-based Samples (Examples 83 and 84, Comparative Examples 83 and 84))
表 9に示すように最終的に Li NHと各種触媒とがモル比で 1 : 0. 02となるように、原 料たる LiNHと各種触媒とを、モル比が 1 : 0. 01でその合計量が 1. 3gとなるように 高純度 Arグローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250cm3) に投入した。続いて、このミル容器内を真空排気した後、ミル容器内力 SlMPaとなるよ うにミル容器内に高純度 Arを導入し、遊星型ボールミル装置を用いて、室温、 250r pmで 120分ミリング処理を行った。続いて、ミル容器内を真空排気して Arを充填した 後、高純度 Arグローブボックス中でミル容器を開き、試料を取り出してステンレス製の 反応容器(50cm3)に移した。この反応容器内を真空排気した後、 350°Cで 6時間熱 処理することで LiNHを熱分解し、各種触媒を担持した Li NHを合成した。さらに得 られた Li NHを水素中、 3MPa、 180°Cで 12時間処理し、水素化した。 As shown in Table 9, the raw material LiNH and the various catalysts were mixed at a molar ratio of 1: 0.01 so that the final molar ratio of LiNH and the various catalysts was 1: 0.02. It was weighed in a high-purity Ar glove box so as to have a weight of 1.3 g, and charged into a mill container (250 cm 3 ) made of high chromium steel with a valve. Subsequently, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the mill container internal force became SlMPa, and milling was performed at room temperature and 250 rpm for 120 minutes using a planetary ball mill. went. Subsequently, after the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and a sample was taken out and transferred to a stainless steel reaction container (50 cm 3 ). After evacuation of the reactor, LiNH was thermally decomposed by heat treatment at 350 ° C for 6 hours to synthesize LiNH supporting various catalysts. Further, the obtained Li NH was treated in hydrogen at 3 MPa and 180 ° C. for 12 hours to be hydrogenated.
[0263] [表 9] [0263] [Table 9]
配合(モル比) Mixing (molar ratio)
触媒 水素放出  Catalyst Hydrogen release
ピーク温度  Peak temperature
Li2NH Ti02マイクロ Li 2 NH Ti0 2 micro
粒子  Particles
実施例 83 1 0.02 243  Example 83 1 0.02 243
比較例 83 1 0.02 265  Comparative Example 83 1 0.02 265
実施例 84 1 0.02 258  Example 84 1 0.02 258
比較例 84 1 0.02 267  Comparative Example 84 1 0.02 267
Ό- !屮:  Ό-! Sub:
 Subordinate
[0264] (LiH + Mg (NH ) 系試料(実施例 85 86、比較例 85, 86)の作製)  [0264] (Preparation of LiH + Mg (NH) based sample (Example 85 86, Comparative Examples 85 and 86))
2 2  twenty two
最初に MgH (ァヅマックス社製、純度 95%)をアンモニアと反応させて Mg (NH ) を合成した。次いで、表 10に示すように、 LiHと合成した Mg (NH ) と各種触媒とを First, MgH (manufactured by ADAMAX, purity 95%) was reacted with ammonia to synthesize Mg (NH 2). Next, as shown in Table 10, Mg (NH) synthesized with LiH and various catalysts were used.
2 2
、モル比が 8 : 3 : 0. 11でその合計量が 1. 3gとなるように高純度 Arグローブボックス 中で秤量し、高クロム鋼製のバルブ付ミル容器(250cm3)に投入した。続いて、この ミル容器内を真空排気した後、ミル容器内が IMPaとなるようにミル容器内に高純度 Arを導入し、遊星型ボールミル装置を用いて、室温、 250rpmで所定時間ミリング処 理した。ミル容器内を真空排気して Arを充填した後、高純度 Arグローブボックス中で ミル容器を開き、試料を取り出した。 The mixture was weighed in a high-purity Ar glove box so as to have a molar ratio of 8: 3: 0.11 and a total amount of 1.3 g, and charged into a high-chromium steel mill container with a valve (250 cm 3 ). Subsequently, after evacuation of the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and milling was performed at room temperature and 250 rpm for a predetermined time using a planetary ball mill. did. After the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and a sample was taken out.
[0265] [表 10] [Table 10]
配合 (モル比) Mixing (molar ratio)
水素放出 触媒  Hydrogen release catalyst
ピーク温度 Peak temperature
LiH Mg(NH2)2 Tiマイクロ Ti02ナノ Ti02マイクロ (°c) 粒子 粒子 粒子 LiH Mg (NH 2 ) 2 Ti micro Ti0 2 nano Ti0 2 micro (° c) Particle Particle Particle
実施例 85 8 3 0.11 190 比較例 85 8 3 0.11 212 実施例 86 8 3 0.11 197 比較例 86 8 3 0.11 207 [0266] (LiNH +MgH系試料(実施例 87, 88、比較例 87, 88)の作製) Example 85 8 3 0.11 190 Comparative Example 85 8 3 0.11 212 Example 86 8 3 0.11 197 Comparative Example 86 8 3 0.11 207 (Preparation of LiNH + MgH-based Samples (Examples 87 and 88, Comparative Examples 87 and 88))
2 2  twenty two
表 11に示すように、 LiNHと MgHと各種触媒を、モル比が 4 : 3 : 0· 07でその合  As shown in Table 11, LiNH, MgH and various catalysts were mixed at a molar ratio of 4: 3: 0
2 2  twenty two
計量が 1. 3gとなるように高純度 Arグローブボックス中で秤量し、高クロム鋼製のバル ブ付ミル容器(250cmd)に投入した。続いて、このミル容器内を真空排気した後、 ル容器内が IMPaとなるようにミル容器内に高純度 Arを導入し、遊星型ボールミル 装置を用いて、室温、 250rpmで所定時間ミリング処理した。ミル容器内を真空排気 して Arを充填した後、高純度 Arグローブボックス中でミル容器を開き、試料を取り出 した。 It was weighed in a high-purity Ar glove box to a weighing of 1.3 g and placed in a mill container with a valve made of high chromium steel (250 cm d ). Then, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and milled at room temperature and 250 rpm for a predetermined time using a planetary ball mill. . After the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and a sample was taken out.
[0267] [表 11] [0267] [Table 11]
Figure imgf000065_0001
Figure imgf000065_0001
[0268] (Li NH + Mg N系試料(実施例 89, 90、比較例 8, 90)の作製) [0268] (Preparation of Li NH + Mg N based sample (Examples 89 and 90, Comparative Examples 8 and 90))
2 3 2  2 3 2
表 12に示すように、上記方法で合成した Li NHと Mg N (アルドリッチ社製、純度  As shown in Table 12, Li NH and Mg N synthesized by the above method (Aldrich, purity
2 3 2  2 3 2
95%)に各種触媒とを、モル比が 4 : 1 : 0· 05でその合計量が 1 · 3gとなるように高純 度 Arグローブボックス中で秤量し、高クロム鋼製のバルブ付ミル容器(250cm3)に投 入した。続いて、このミル容器内を真空排気した後、ミル容器内が IMPaとなるように ミル容器内に高純度 Arを導入し、遊星型ボールミル装置を用いて、室温、 250rpm で所定時間ミリング処理した。ミル容器内を真空排気して Arを充填した後、高純度 A rグローブボックス中でミル容器を開き、試料を取り出した。さらに得られた被処理物を 水素中、 3MPa、 220°Cで 12時間処理し、水素化した。 (95%) in a high-purity Ar glove box with a molar ratio of 4: 1: 0.05 and a total amount of 1.3 g in a high-chromium steel mill with a valve. It was poured into a container (250 cm 3 ). Subsequently, after evacuating the inside of the mill container, high-purity Ar was introduced into the mill container so that the inside of the mill container became IMPa, and was milled at room temperature and 250 rpm for a predetermined time using a planetary ball mill. . After the inside of the mill container was evacuated and filled with Ar, the mill container was opened in a high-purity Ar glove box, and a sample was taken out. Further, the object to be treated was hydrogenated by treating it in hydrogen at 3 MPa and 220 ° C. for 12 hours.
[0269] [表 12] 配合(モル比) [0269] [Table 12] Mixing (molar ratio)
触媒 水素放出 ピーク温度 Catalyst Hydrogen release Peak temperature
Li2NH Mg3N2 Tiマイクロ Ti02マイクロ (。c) 粒子 粒子 Li 2 NH Mg 3 N 2 Ti micro Ti0 2 micro (.c) Particle Particle
実施例 89 4 1 0.05 221 比較例 89 4 1 0.05 233 実施例 90 4 1 0.05 225 比較例 90 4 1 0.05 236  Example 89 4 1 0.05 221 Comparative example 89 4 1 0.05 233 Example 90 4 1 0.05 225 Comparative example 90 4 1 0.05 236
[0270] (試料評価) [0270] (Sample evaluation)
BET比表面積の測定は、窒素ガスによる多点式 BET測定(Micromeritics社製、 ASAP2400)により行った。また、高純度 Arグロー Oブボックス内に設置された TG— 屮1^ The measurement of the BET specific surface area was performed by multipoint BET measurement (Micromeritics, ASAP2400) using nitrogen gas. Further, installed in a high purity Ar glow O in Bed Box TG-屮1 ^
MASS装置 (熱重量 ·質量分析装置)を用い、昇温速度を 5°C/分として昇温して水 素放出スペクトルを測定し、そのピーク温度を水素放出温度とした。  Using a MASS device (thermogravimetry / mass spectrometer), the temperature was raised at a rate of 5 ° C / min, and the hydrogen emission spectrum was measured. The peak temperature was defined as the hydrogen release temperature.
[0271] (試験結果)  [0271] (Test results)
図 20に実施例 81と比較例 81の水素放出スペクトルを示すグラフを示し、図 21に実 施例 82と比較例 82の水素放出スペクトルを示すグラフを示す。また、実施例 81, 82 および比較例 81 , 82の水素放出温度を表 8に併記する。図 20および図 21ならびに 表 8から、ナノ粒子触媒を用いることによって、水素放出反応が起こる温度範囲が狭 くなつて、水素放出温度が低温側にシフトしていることがわかる。これにより、例えば 2 50°Cで実施例 81と比較例 81とを比べると、 250°Cまでに放出される水素の全量は、 実施例 81の方が比較例 81よりも多くなる。実施例 82と比較例 82についても同様の こと力 s言 る。 FIG. 20 is a graph showing the hydrogen release spectra of Example 81 and Comparative Example 81, and FIG. 21 is a graph showing the hydrogen release spectra of Example 82 and Comparative Example 82. Table 8 also shows the hydrogen release temperatures of Examples 81 and 82 and Comparative Examples 81 and 82. 20 and 21 and Table 8 show that the use of the nanoparticle catalyst narrows the temperature range in which the hydrogen release reaction occurs and shifts the hydrogen release temperature to a lower temperature. Thus, for example, when comparing Example 81 and Comparative Example 81 at 250 ° C., the total amount of hydrogen released up to 250 ° C. is greater in Example 81 than in Comparative Example 81. Ru same this and force s words also Comparative Example 82 Example 82.
[0272] 実施例 83— 90および比較例 83— 90の水素放出温度は表 9一表 12に併記してい る。これらの表力、らも、ナノ粒子触媒を用いた場合に水素放出温度が低温側にシフト していることが確認された。  [0272] The hydrogen release temperatures of Examples 83-90 and Comparative Examples 83-90 are also shown in Table 9 and Table 12. These surface forces also confirmed that the hydrogen release temperature shifted to the lower temperature side when the nanoparticle catalyst was used.
[0273] 次に、金属水素化物と金属アミドの反応により水素を放出し、水素放出反応を促進 させるための所定の触媒を 2種類以上担持してレ、る水素貯蔵材料にっレ、て説明する [0274] 図 22に 2種類以上の触媒を担持させてなる水素貯蔵材料の製造工程を示すフロ 一チャートを示す。図 22に示されるように、最初に、水素貯蔵材料を構成する成分の 1つのである金属水素化物と、水素貯蔵材料の水素放出反応を促進させるための第 1の触媒と、易粉砕性の無機物質と、をそれぞれ所定量秤量し、これらを所定の条件 で粉砕混合処理する(第 1工程)。この第 1工程の処理雰囲気は、水素雰囲気とする ことが好ましい。 [0273] Next, a description will be given of a hydrogen storage material that releases two or more kinds of predetermined catalysts for releasing hydrogen by a reaction between a metal hydride and a metal amide and promoting the hydrogen release reaction. Do [0274] Fig. 22 is a flowchart showing a process for producing a hydrogen storage material having two or more types of catalysts supported thereon. As shown in FIG. 22, first, a metal hydride which is one of the components constituting the hydrogen storage material, a first catalyst for promoting the hydrogen release reaction of the hydrogen storage material, and A predetermined amount of each of the inorganic substance and the inorganic substance is weighed, and these are crushed and mixed under predetermined conditions (first step). The processing atmosphere in the first step is preferably a hydrogen atmosphere.
[0275] 続いて、この第 1工程により得られた被処理物に、水素貯蔵材料を構成する成分の 1つである金属アミドと、第 2の触媒をカ卩えて、さらに所定の条件で、粉砕混合処理す る(第 2工程)。この第 2工程の処理雰囲気もまた、水素雰囲気とすることが好ましい。 この第 2工程においては、この第 1工程により得られた被処理物に、水素貯蔵材料を 構成する成分の 1つである金属アミドと、第 2の触媒を加えるタイミングをずらしても構 わない。つまり、第 1工程により得られた被処理物に、最初に第 2の触媒のみを添カロ して粉砕混合処理した後に金属アミドを添加してさらに粉碎混合処理してもよい。  [0275] Subsequently, a metal amide, which is one of the components constituting the hydrogen storage material, and a second catalyst were added to the object to be treated obtained in the first step, and further, under predetermined conditions, Pulverize and mix (2nd step). The processing atmosphere in the second step is also preferably a hydrogen atmosphere. In the second step, the timing of adding the metal amide, which is one of the components constituting the hydrogen storage material, and the second catalyst to the object to be treated obtained in the first step may be shifted. . In other words, the object to be treated obtained in the first step may be first added with only the second catalyst, pulverized and mixed, and then metal amide may be added and further pulverized and mixed.
[0276] このようにして得られた水素貯蔵材料では、第 1工程で添加された易粉砕性無機物 質が、第 1工程で添加された第 1の触媒と第 2工程で添加された第 2の触媒とを分離 するためのセパレーターとして機能する。こうして第 1および第 2の触媒どうしの直接 接触が抑制されるために、これらの間での直接的な相互作用が抑えられる。これによ つて各触媒が水素貯蔵材料における水素放出反応に対して有効に作用するように なり、水素放出速度を速め、また、水素放出開始温度を低温側にシフトさせることが できるようになる。  [0276] In the hydrogen storage material thus obtained, the easily crushable inorganic substance added in the first step is different from the first catalyst added in the first step and the second catalyst added in the second step. It functions as a separator for separating the catalyst. Thus, the direct contact between the first and second catalysts is suppressed, so that the direct interaction between them is suppressed. As a result, each catalyst effectively acts on the hydrogen release reaction in the hydrogen storage material, so that the hydrogen release rate can be increased, and the hydrogen release start temperature can be shifted to a lower temperature side.
[0277] 図 22では、第 1工程において金属水素化物に第 1の触媒および易粉砕性無機物 質を添加して粉砕混合し、第 2工程において金属アミドと第 2の触媒をさらに添加して 粉砕混合したが、これに限定されず、図 23のフローチャートに示すように、第 1工程 において金属アミドに第 1の触媒および易粉砕性無機物質を添加して粉砕混合し、 第 2工程において金属水素化物と第 2の触媒をさらに添加して粉砕混合してもよい。  [0277] In FIG. 22, in the first step, the first catalyst and the easily crushable inorganic substance are added to the metal hydride and crushed and mixed, and in the second step, the metal amide and the second catalyst are further added and crushed. The mixing is not limited to this. As shown in the flowchart of FIG. 23, the first catalyst and the easily crushable inorganic substance are added to the metal amide in the first step, and the mixture is crushed and mixed. And the second catalyst may be further added and pulverized and mixed.
[0278] 第 3の触媒をさらに添加する場合には、第 2工程において所定量の易粉砕性無機 物質を被処理物に添加し、第 3工程として第 3の触媒を第 2工程で得られた被処理物 に添加、粉碎混合すればよい。但し、易粉砕性無機物質が逆に触媒の機能を阻害し なレ、ように、添加量に注意しなければならなレ、。 [0278] When the third catalyst is further added, a predetermined amount of the easily crushable inorganic substance is added to the object to be treated in the second step, and the third catalyst is obtained in the second step as the third step. Object And milling and mixing. However, care must be taken in the amount of addition, as the easily crushable inorganic substance does not impair the function of the catalyst.
[0279] 続いて、 2種類以上の触媒を担持させてなる水素貯蔵材料の別の製造方法にうに ついて、図 24に示すフローチャートを参照しながら説明する。図 24に示されるように 、金属水素化物と、第 1の触媒と、易粉砕性無機物質をそれぞれ所定量秤量し、これ らを所定の条件で粉砕混合処理する。また、金属アミドと、第 2の触媒をそれぞれ所 定量秤量し、これらを所定の条件で粉砕混合処理する。これら 2つの処理はともに水 素雰囲気で行うことが好ましい。  [0279] Next, another method for producing a hydrogen storage material carrying two or more types of catalysts will be described with reference to the flowchart shown in FIG. As shown in FIG. 24, a predetermined amount of each of the metal hydride, the first catalyst, and the easily crushable inorganic substance is weighed, and these are crushed and mixed under predetermined conditions. Further, the metal amide and the second catalyst are each weighed quantitatively, and they are pulverized and mixed under predetermined conditions. Preferably, these two treatments are both performed in a hydrogen atmosphere.
[0280] 次いで、このように独立に行われた 2つの粉砕混合処理によりそれぞれ得られた 2 つの被処理物どうしを混合して、所定の条件で粉砕混合処理する。このような触媒担 持方法により得られる水素貯蔵材料もまた、先に図 22に示した触媒担持方法により 得られる水素貯蔵材料と同等の水素貯蔵特性、水素放出特性を有する。  [0280] Next, the two workpieces obtained by the two independently performed pulverization / mixing processes are mixed together, and pulverized and mixed under predetermined conditions. The hydrogen storage material obtained by such a catalyst supporting method also has the same hydrogen storage characteristics and hydrogen release characteristics as the hydrogen storage material obtained by the catalyst supporting method shown in FIG.
[0281] なお、金属アミドと第 2の触媒を粉砕混合する際にも易粉砕性無機物質が添加され ていてもよい。また、図 24中の原料欄の括弧書きに示されるように、金属アミドと第 1 の触媒と易粉碎性無機物質を粉砕混合したものと、金属水素化物と第 2の触媒を粉 砕混合したものを、さらに粉碎混合してもよい。  [0281] In addition, when the metal amide and the second catalyst are pulverized and mixed, an easily pulverizable inorganic substance may be added. In addition, as shown in parentheses in the raw material column in FIG. 24, a metal amide, a first catalyst and a pulverizable inorganic substance were pulverized and mixed, and a metal hydride and a second catalyst were pulverized and mixed. The materials may be further ground and mixed.
[0282] 上記水素貯蔵材料への触媒担持方法およびこれにより得られた水素貯蔵材料に おいては、金属水素化物の主成分は水素化リチウム(LiH)であることが好ましい。こ の場合、金属アミドとしては、リチウムアミド (LiNH )が好適である。但し、これに限定  [0282] In the method for supporting a catalyst on the hydrogen storage material and the hydrogen storage material obtained thereby, the main component of the metal hydride is preferably lithium hydride (LiH). In this case, lithium amide (LiNH 4) is preferable as the metal amide. However, limited to this
2  2
されるものではなぐ金属水素化物と金属アミドとを含んでいればよぐ例えば、金属 水素化物としては、水素化ナトリウム(NaH)や水素化マグネシウム(MgH )等が、金  It does not need to include metal hydrides and metal amides. Examples of metal hydrides include sodium hydride (NaH) and magnesium hydride (MgH).
2 属アミドとしては、ナトリウムアミド(NaNH )やマグネシウムアミド(Mg (NH ) )等が  Group 2 amides include sodium amide (NaNH) and magnesium amide (Mg (NH)).
2 2 2 挙げられ、 1種の水素貯蔵材料において金属種は 2種類以上含まれていてもよい。  The hydrogen storage material may include two or more metal species.
[0283] 易粉砕性無機物質としては、塩化ナトリウム (NaCl)もしくは塩ィ匕カリウム (KC1)好 適に用いられる。また、塩化マグネシウム(MgCl )や塩化カルシウム(CaCl )を用い  [0283] As the easily crushable inorganic substance, sodium chloride (NaCl) or potassium chloride (KC1) is suitably used. Also, using magnesium chloride (MgCl) or calcium chloride (CaCl)
2 2 ることも好ましい。さらに、これらから選ばれた 2種以上を用いることも好ましい。このよ うな易粉砕性無機物質の好ましい添加量は、触媒による水素放出反応の改善が現 れる範囲において、適宜、触媒の種類や組み合わせ応じて、例えば実験的に求めら れる。 It is also preferable to use 22. Further, it is also preferable to use two or more selected from these. The preferable addition amount of such an easily crushable inorganic substance is determined experimentally, for example, appropriately according to the type and combination of the catalyst within a range where the hydrogen release reaction by the catalyst is improved. It is.
[0284] 触媒としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力 ら選ばれた金属またはその化合物またはその合金、あるいは水素貯蔵合金が好適に 用いられる。  [0284] As the catalyst, B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, A metal selected from the group consisting of Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf and Ag, or a compound or alloy thereof, or a hydrogen storage alloy is preferably used.
[0285] このような触媒の担持量は、水素貯蔵材料 (金属水素化物と金属アミドの合計量) の 0. 1質量%以上 20質量%以下とすることが好ましい。触媒の担持量が 0. 1質量 %以下であるとその効果は発揮されず、 20質量%を超えると逆に金属水素化物と金 属アミドの反応を阻害したり、質量あたりの水素放出率が目減りすることとなる。  [0285] The amount of such a catalyst carried is preferably from 0.1% by mass to 20% by mass of the hydrogen storage material (total amount of metal hydride and metal amide). If the supported amount of the catalyst is 0.1% by mass or less, the effect is not exhibited. If the amount exceeds 20% by mass, the reaction between the metal hydride and the metal amide is inhibited, and the hydrogen release rate per mass is reduced. You will lose weight.
[0286] 上述した水素貯蔵材料への触媒担持方法における各種被処理物の粉砕混合手段 としては、公知の種々の粉砕手段、例えば、ボールミル装置、ローラーミル、内外筒 回転型ミル、アトライター、インナーピース型ミル、気流粉砕型ミル等を用いることがで きる。  [0286] As a means for pulverizing and mixing various objects to be treated in the above-described method for supporting a catalyst on a hydrogen storage material, various known pulverizing means, for example, a ball mill, a roller mill, an inner and outer cylinder rotary mill, an attritor, an inner A piece mill, an air-flow crushing mill, or the like can be used.
[0287] (実施例 91一 93の試料作製)  [0287] (Sample preparation of Examples 91-93)
表 13に各試料の組成を示す。実施例 91の試料は、表 13に示す量の LiH (純度 95 %)と三塩化チタン (TiCl ;純度 99· 999%)、 NaCl (純度 99. 9%)を秤量し、これら  Table 13 shows the composition of each sample. The sample of Example 91 was weighed using the amounts shown in Table 13 of LiH (purity 95%), titanium trichloride (TiCl; purity 99 · 999%), and NaCl (purity 99.9%).
3  Three
を遊星型ボールミル装置(Fritsch社製、 P5型)を用いて水素雰囲気中で 2時間粉 砕処理し、続いてこれに三塩化クロム(CrCl ;純度 99· 999%)と LiNH (純度 95%  Was ground in a hydrogen atmosphere for 2 hours using a planetary ball mill (Fritsch, P5 type), followed by chromium trichloride (CrCl; purity 99 · 999%) and LiNH (purity 95%).
3 2  3 2
)を添加して、さらに水素雰囲気中で 2時間粉砕処理することにより、作製した。実施 例 92の試料は NaClに代えて KC1純度 99. 99%)を用いている。実施例 93の試料 は、その組成は実施例 91と同じである力 最初に LiNHと TiCl a  ) Was added, and the mixture was further pulverized in a hydrogen atmosphere for 2 hours. The sample of Example 92 uses KCl purity of 99.99%) instead of NaCl. The sample of Example 93 has a composition whose composition is the same as that of Example 91. First, LiNH and TiCl a
2 3、 N Clを粉碎混合 し、こうして得られた被処理物に LiHと CrClとをカ卩えてさらに粉砕混合して、作製し  23, NCl was pulverized and mixed, and LiH and CrCl were added to the object to be treated and pulverized and mixed.
3  Three
た。  It was.
[0288] このような一連の粉砕処理は、高クロム鋼製のミル容器 (容積: 250cm3)と所定量 の高クロム鋼製ボールを用いて、ミル容器内に試料を入れ、その内部を真空排気し た後に、ミル容器内が IMPaとなるようにミル容器内に水素を導入し、室温 20°Cの下 、 250rpmで所定時間行っている。 [0288] A series of such grinding processes, high chromium steel mill vessel (volume: 250 cm 3) and using a high-chrome steel balls of a predetermined amount, the sample was placed in a mill container, vacuum its internal After evacuation, hydrogen was introduced into the mill container so that the inside of the mill container became IMPa, and the operation was performed at 250 rpm at room temperature of 20 ° C for a predetermined time.
[0289] 粉砕混合処理後の試料を、試料の酸化と水分吸着の影響を最小限に抑えるため に、アルゴン(Ar;純度 99· 995%)雰囲気のグローブボックス内で取り出し、後述す る水素吸蔵処理および Ar雰囲気での水素放出実験のための反応容器に移し替え た。 [0289] The sample after the pulverization and mixing treatment was used to minimize the effects of sample oxidation and moisture adsorption. Then, it was taken out in a glove box in an argon (Ar; purity: 99.995%) atmosphere, and transferred to a reaction vessel for a hydrogen storage treatment and a hydrogen release experiment described below in an Ar atmosphere.
[0290] (比較例 91一 93の試料作製)  [0290] (Sample preparation of Comparative Examples 91-93)
比較例 91の試料は、表 13に示す量の LiHと TiCl (実施例 91  The sample of Comparative Example 91 was prepared using the amounts of LiH and TiCl shown in Table 13 (Example 91).
3 一 93と同量)を秤量 し、これらを同上の遊星型ボールミル装置を用レ、て水素雰囲気中で 2時間粉砕混合 処理し、その後、これに CrClと LiNH (実施例 91一 93と同量)を添カ卩して、さらに水  3-93) were weighed and crushed and mixed in a hydrogen atmosphere for 2 hours using a planetary ball mill as described above, and then added to CrCl and LiNH (as in Examples 91-93). Amount) and add water
3 2  3 2
素雰囲気中で 2時間粉砕混合することにより、作製した。  It was produced by grinding and mixing in a raw atmosphere for 2 hours.
[0291] 比較例 92の試料は、表 13に示す量の LiHと TiCl [0291] The sample of Comparative Example 92 contained the amounts of LiH and TiCl shown in Table 13.
3、 CrCl (実施例 91  3, CrCl (Example 91
3 一 93と同量 3 Same as 93
)を秤量し、これらを同上の遊星型ボールミル装置を用いて水素雰囲気中で 2時間粉 砕処理し、その後、これに LiNH (実施例 91一 93と同量)を添カ卩して、水素雰囲気 ) And crush them in a hydrogen atmosphere for 2 hours using a planetary ball mill as described above, then add LiNH (the same amount as in Examples 91-93) Atmosphere
2  2
中でさらに 2時間粉砕混合することにより、作製した。  It was prepared by pulverizing and mixing for 2 hours.
[0292] 比較例 93の試料は、表 13に示す量の LiHと LiNH、 TiCl (実施例 91一 93と同量 [0292] The sample of Comparative Example 93 was prepared using LiH, LiNH, and TiCl in the amounts shown in Table 13 (the same amounts as in Examples 91-93).
2 3  twenty three
)を秤量し、これらを同上の遊星ボールミル装置を用いて水素雰囲気下で 4時間粉砕 処理することにより、作製した。これら比較例 91一 93の調製における遊星ボールミル 装置の運転条件等は実施例 91一 93と同様であり、作製した試料のその後の取り扱 レ、も実施例 91一 93と同様である。  ) Were weighed and crushed under a hydrogen atmosphere for 4 hours using the same planetary ball mill. The operating conditions and the like of the planetary ball mill device in the preparation of these Comparative Examples 91-93 are the same as those in Examples 91-193, and the subsequent handling of the prepared samples is also the same as in Examples 91-193.
[0293] (水素放出量の測定方法)  [0293] (Method of measuring hydrogen release amount)
実施例 91一 93と比較例 91一 93の試料がそれぞれ封入され、真空排気された反 応容器を、電気炉で室温一 300°Cまで昇温速度 5°C/分で加熱した。このとき、各温 度で放出されたガスをガス採取ボンベに採取し、採取したガスを 20°Cに冷却して放 出ガス圧を圧力計で測定するとともに、配管を通じてガスクロマトグラフ(島津製作所 製、 GC9A、 TCD検出器、カラム: Molecular Sieve 5A)に導入し、水素量を測 定した。こうして測定された水素量を加熱前の試料の質量で除した値を水素放出量 とした。  The reaction containers in which the samples of Examples 91-93 and Comparative Examples 91-93 were respectively sealed and evacuated were heated in an electric furnace to a room temperature of 300 ° C at a rate of 5 ° C / min. At this time, the gas released at each temperature is collected in a gas sampling cylinder, the collected gas is cooled to 20 ° C, the released gas pressure is measured with a pressure gauge, and a gas chromatograph (manufactured by Shimadzu Corporation) is connected through a pipe. , GC9A, TCD detector, column: Molecular Sieve 5A), and the amount of hydrogen was measured. The value obtained by dividing the measured amount of hydrogen by the mass of the sample before heating was defined as the amount of released hydrogen.
[0294] [表 13] 配合 ( g ) [0294] [Table 13] Formulation (g)
触媒  Catalyst
LiNH2 LiH NaCI KCI LiNH 2 LiH NaCI KCI
TiCI3 CrCI3 実施例 91 0.9664 0.3346(*1 ) 0.312 0.13 0.13 実施例 92 0.9664 0.3346 0.312 0.13 0.13 実施例 93 0.9664(*2) 0.3346 0.312 0.13 0.13 比較例 91 0.9664 0.3346 0.13 0.13 比較例 92 0.9664 0.3346 0.13 0.13 比較例 93 0.9664 0.3346 0.13 TiCI 3 CrCI 3 Example 91 0.9664 0.3346 (* 1) 0.312 0.13 0.13 Example 92 0.9664 0.3346 0.312 0.13 0.13 Example 93 0.9664 (* 2) 0.3346 0.312 0.13 0.13 Comparative example 91 0.9664 0.3346 0.13 0.13 Comparative example 92 0.9664 0.3346 0.13 0.13 Comparative Example 93 0.9664 0.3346 0.13
*1 : NaCL TiCI 3と混合 * 1: Mixed with NaCL TiCI 3
*2: NaCU TiCI 3と混合 * 2: Mixed with NaCU TiCI 3
[0295] (試験結果) [0295] (Test results)
水素放出量と処理温度との関係を図 25に示す。実施例 91と比較例 91, 92とを比 較すると、実施例 91は比較例 91, 92よりも水素放出量が多いことがわかる。また水 素放出の立ち上がりも実施例 91が比較例 91, 92よりも急になっている。このことから 、実施例 91では、 NaCIによって 2種類の触媒の直接接触が抑制され、これによつて 2種類の触媒間の直接的な相互作用が抑えられて、個々の触媒が反応系に対して 有効に作用したものと考えられる。  Figure 25 shows the relationship between the amount of released hydrogen and the processing temperature. Comparing Example 91 with Comparative Examples 91 and 92, it can be seen that Example 91 emits more hydrogen than Comparative Examples 91 and 92. Also, the rise of hydrogen release is steeper in Example 91 than in Comparative Examples 91 and 92. For this reason, in Example 91, the direct contact between the two catalysts was suppressed by NaCI, whereby the direct interaction between the two catalysts was suppressed, and the individual catalysts were allowed to react with the reaction system. It is considered that it worked effectively.
[0296] また、実施例 91と比較例 93とを比較すると、 2種類の触媒を添加した実施例 91の 方が比較例 93よりも水素の放出量が多ぐ水素放出の立ち上力 Sりも急になっているこ とがわかる。このことから、本発明による触媒担持方法を用いることにより、高い水素 放出能力を有する水素貯蔵材料が得られることがわかる。  [0296] Further, comparing Example 91 with Comparative Example 93, it can be seen that Example 91 to which two types of catalysts are added has a larger hydrogen release amount than Comparative Example 93, and has a rising force of hydrogen release. It can be seen that has also become steep. This indicates that the use of the catalyst loading method according to the present invention can provide a hydrogen storage material having high hydrogen releasing ability.
[0297] 実施例 91と実施例 92とを比較すると、ほぼ同様の水素放出挙動を示していること から、 NaCIと KC1は、複数の触媒を分離するためのセパレーターとして、実質的に同 等の性能を持っていると考えられた。また、実施例 91と実施例 93とを比較すると、ほ ぼ同様の水素放出挙動を示していることから、最初の粉砕処理原料として、金属水 素化物または金属アミドのいずれを用いてもよいことが確認された。  [0297] When Example 91 and Example 92 were compared, they showed almost the same hydrogen release behavior. Therefore, NaCI and KC1 were substantially equivalent as separators for separating a plurality of catalysts. It was thought to have performance. In addition, when Example 91 and Example 93 are compared, they show almost the same hydrogen release behavior. Therefore, either metal hydride or metal amide may be used as the first raw material for pulverization. Was confirmed.
[0298] なお、実施例 91, 93と同じ組成で、 LiHと TiCl、 NaCIをそれぞれ秤量し、遊星型 ボールミル装置を用いて水素雰囲気中で 2時間粉砕処理し、これとは別に LiNHと  [0298] Note that LiH, TiCl, and NaCI were weighed, each having the same composition as in Examples 91 and 93, and pulverized in a hydrogen atmosphere using a planetary ball mill for 2 hours.
2 CrClをそれぞれ秤量し、遊星型ボールミル装置を用いて水素雰囲気中で 2時間粉2 CrCl is weighed and powdered for 2 hours in a hydrogen atmosphere using a planetary ball mill.
3 Three
砕処理し、こうして得られた 2つの被処理物どうしを混合して、さらに遊星型ボールミ ル装置を用いて水素雰囲気中で 2時間粉碎処理して水素貯蔵材料を作製し、その 水素放出特性を測定したところ、実施例 91 , 93と同等の特性を示した。  Crushed, mixed with each other, and then crushed in a hydrogen atmosphere using a planetary ball mill for 2 hours to produce a hydrogen storage material. As a result of the measurement, characteristics equivalent to those of Examples 91 and 93 were shown.
[0299] 次に、水素貯蔵材料の製造装置について説明する。図 26Aに第 1の製造装置の 概略構成を示す水平断面図を示し、図 26Aにその垂直断面図を示す。この水素貯 蔵材料の製造装置は高速遠心ローラーミルタイプのものであり、円筒状の粉砕容器 1 を有しており、その周囲に水冷ジャケット 2が設けられている。水冷ジャケット 2には冷 却水導入口 3と冷却水排出口 4とが設けられている。  [0299] Next, an apparatus for producing a hydrogen storage material will be described. FIG. 26A shows a horizontal sectional view showing a schematic configuration of the first manufacturing apparatus, and FIG. 26A shows a vertical sectional view thereof. This hydrogen storage material manufacturing apparatus is of a high-speed centrifugal roller mill type, has a cylindrical crushing vessel 1, and a water cooling jacket 2 is provided around the vessel. The water cooling jacket 2 is provided with a cooling water inlet 3 and a cooling water outlet 4.
[0300] 粉砕容器 1の内部には 3本の粉砕ローラ 5が、その回転軸の長手方向を粉砕容器 1 の長手方向に一致させるとともに粉砕容器 1の内壁に沿って配置されている。これら 粉碎ローラ 5は、その周面に螺旋状の溝が形成されており、かつ粉砕容器 1の長手 方向に沿って回転軸 5aを有している。これら複数の粉碎ローラ 5の両端は一対のベ ァリングアッセンブリー 6に自転可能に取り付けられている。この一対のベアリングアツ センブリー 6および粉碎容器 1の中央を貫通するように回転軸 7が設けられている。そ して、図示しない駆動機構により、ベアリングアッセンブリー 6を回転させて 3本の粉砕 ローラ 5を一体的に粉碎容器 1の内壁に沿って公転させるとともに、回転軸 5aにより 各粉碎ローラ 5を自転させるようになつている。  [0300] Inside the pulverizing container 1, three pulverizing rollers 5 are arranged along the inner wall of the pulverizing container 1 while the longitudinal direction of the rotation axis thereof coincides with the longitudinal direction of the pulverizing container 1. The crushing roller 5 has a spiral groove formed on the peripheral surface thereof, and has a rotating shaft 5 a along the longitudinal direction of the crushing container 1. Both ends of the plurality of grinding rollers 5 are rotatably attached to a pair of bearing assemblies 6. A rotating shaft 7 is provided so as to pass through the center of the pair of bearing assemblies 6 and the milling vessel 1. Then, the drive mechanism (not shown) rotates the bearing assembly 6 to revolve the three crushing rollers 5 integrally along the inner wall of the crushing vessel 1 and rotate each crushing roller 5 by the rotating shaft 5a. It is like that.
[0301] 粉砕容器 1の一方の端面には、粉砕容器 1内に水素を導入する水素導入口 8およ び水素貯蔵材原料を導入する原料導入口 9が設けられている。また、他方の端面に は、粉碎容器 1から水素貯蔵材原料を粉碎して得られた水素貯蔵材料を排出する材 料排出口 10が設けられてレ、る。  [0301] At one end face of the crushing container 1, a hydrogen inlet 8 for introducing hydrogen into the crushing container 1 and a raw material inlet 9 for introducing a hydrogen storage material are provided. A material discharge port 10 for discharging the hydrogen storage material obtained by pulverizing the hydrogen storage material from the pulverizing vessel 1 is provided on the other end face.
[0302] このように構成される水素貯蔵材料の製造装置においては、まず、水素導入口 8か ら粉砕容器 1内に水素を導入し、粉砕容器 1内を所定の圧力に維持する。この状態 で図示しない開閉機構を開にして原料導入口 9から粉砕容器 1内に所定量の水素貯 蔵材原料を導入する。  [0302] In the hydrogen storage material manufacturing apparatus configured as described above, first, hydrogen is introduced into the crushing container 1 from the hydrogen inlet 8, and the inside of the crushing container 1 is maintained at a predetermined pressure. In this state, the opening / closing mechanism (not shown) is opened to introduce a predetermined amount of the hydrogen storage material raw material into the pulverizing container 1 from the raw material inlet 9.
[0303] この状態で開閉機構を閉にして水素貯蔵材原料の粉砕を開始する。粉砕に際して は図示しない駆動機構によりベアリングアッセンブリー 6に取り付けられた 3本の粉砕 ローラ 5を図 26Aに示す矢印の方向に自転させながら、粉碎容器 1の内壁に沿って 自転の方向と反対方向に公転させる。この際に水冷ジャケット 2に冷却水を流し粉碎 容器 1を冷却する。このように粉砕ローラ 5を自転および公転させることにより、粉碎容 器 1の内壁と粉砕ローラ 5との間の圧縮力および剪断力によって水素貯蔵材原料 11 (図 26Aを参照)を機械的粉砕する。 [0303] In this state, the opening and closing mechanism is closed to start the pulverization of the hydrogen storage material. During grinding, three grinding wheels attached to the bearing assembly 6 by a drive mechanism (not shown) While rotating the roller 5 in the direction of the arrow shown in FIG. 26A, it revolves along the inner wall of the milling vessel 1 in the direction opposite to the direction of rotation. At this time, cooling water is supplied to the water cooling jacket 2 to cool the milling vessel 1. By rotating and revolving the crushing roller 5 in this way, the hydrogen storage material 11 (see FIG. 26A) is mechanically crushed by a compressive force and a shearing force between the inner wall of the crushing container 1 and the crushing roller 5. .
[0304] この場合に、粉砕容器 1内は所定圧力の水素雰囲気となっており、水素貯蔵材原 料 11が水素雰囲気下でこのように機械的粉砕により微細化する過程で、微細化され た水素貯蔵材料に水素が侵入し、微細化された水素貯蔵材料の表面および結晶粒 子間に水素が貯蔵される。このようにして所定の粉砕が終了した後、得られた水素貯 蔵材料は材料排出口 10から排出される。 [0304] In this case, the inside of the pulverizing vessel 1 was in a hydrogen atmosphere at a predetermined pressure, and the hydrogen storage material 11 was refined in the process of being pulverized by the mechanical pulverization under the hydrogen atmosphere. Hydrogen enters the hydrogen storage material, and is stored on the surface of the miniaturized hydrogen storage material and between the crystal grains. After the predetermined pulverization is completed, the obtained hydrogen storage material is discharged from the material discharge port 10.
[0305] ここで、水素貯蔵材料としては、上述した金属水素化物と金属アミド化合物からなる もの等は勿論のこと、グラフアイト、非晶質炭素、活性炭、カーボンナノチューブおよ びフラーレン等の炭素質材料を用いることができる。この場合、水素の侵入の形態は 、炭素水素共有結合をともなうものと、共有結合をともなわないものとがあるが、これら のうち主に共有結合をともなわない水素は可逆的に取り出し可能であり、貯蔵水素と して有効である。上記炭素質材料の中でグラフアイトが水素貯蔵能が大きく好ましレ、 。グラフアイトの結晶は層状構造を有しているため、水素雰囲気中での粉碎過程でそ の表面および層間に多量の水素を貯蔵することができる。  [0305] Here, the hydrogen storage material includes not only the above-mentioned metal hydride and metal amide compound, but also carbonaceous materials such as graphite, amorphous carbon, activated carbon, carbon nanotube, and fullerene. Materials can be used. In this case, there are two types of hydrogen invasion, one with a carbon-hydrogen covalent bond and the other without a covalent bond. Of these, hydrogen mainly without a covalent bond can be reversibly extracted. Effective as stored hydrogen. Among the above carbonaceous materials, graphite is preferred because of its large hydrogen storage capacity. Since the graphite crystals have a layered structure, a large amount of hydrogen can be stored between the surfaces and between layers during the pulverization process in a hydrogen atmosphere.
[0306] この製造装置では、水素貯蔵材原料の粉砕に際して、粉砕ローラ 5を自転および 公転させて、粉砕容器 1の内壁と粉碎ローラ 5との間の圧縮力および剪断力により水 素貯蔵材原料を高工ネルギ一で粉砕することができ、水素貯蔵能力の高い水素貯 蔵材料を得ることができる。しかも粉砕機構上、遊星ボールミルのような粉砕量の制 約がなぐ量産に十分対応可能である。  [0306] In this production apparatus, when pulverizing the hydrogen storage material, the pulverizing roller 5 is rotated and revolved, and the hydrogen storage material is pulverized by the compressive force and the shearing force between the inner wall of the pulverizing container 1 and the pulverizing roller 5. Can be pulverized with high energy, and a hydrogen storage material having a high hydrogen storage capacity can be obtained. In addition, the crushing mechanism is sufficient for mass production where the amount of crushing is not restricted as in a planetary ball mill.
[0307] 第 1の製造装置において、原料導入口 9および材料排出口 10に、それぞれ粉砕容 器 1内の水素圧と同等の水素圧に維持可能な図示しない水素貯蔵材原料導入機構 および水素貯蔵材料排出機構を取り付けることにより、水素貯蔵材原料を連続的に 粉砕容器 1内に導入し、かつ粉砕後の水素貯蔵材料を連続的に粉砕容器 1から排 出するようにすることができる。 [0308] また、水素分子を水素原子へ解離させる機能を有する金属成分を、水素貯蔵材原 料の機械的粉碎の途中に添加することにより、水素貯蔵量を増加させることができる 力 このような金属成分の添加には、例えば粉砕容器 1の原料導入口 9と同じ端面に 金属成分導入口を設け、この導入口にそのような金属成分を貯留し、その中が水素 雰囲気に保持される金属成分容器を連結し、この金属成分容器と粉砕容器 1との間 を開閉する開閉機構を設ければよい。そして、粉砕容器 1内の水素圧力を測定し、金 属成分容器内の水素圧力を粉砕容器 1内の水素圧力と同じ値にした後、開閉機構 を開いてそのような金属成分を粉砕容器 1内に導入することができる。このような機能 を有する金属成分としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K , Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru,〇s, Mo, W, Ta, Zr, In , Hf, Agから選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合 金、あるいは水素貯蔵合金を挙げることができる。 [0307] In the first production apparatus, a raw material introduction port (not shown) and a hydrogen storage material (not shown) capable of maintaining a hydrogen pressure equivalent to the hydrogen pressure in the crushing vessel 1 at a raw material inlet 9 and a material outlet 10 respectively. By attaching the material discharge mechanism, the hydrogen storage material can be continuously introduced into the crushing container 1 and the crushed hydrogen storage material can be continuously discharged from the crushing container 1. [0308] Further, by adding a metal component having a function of dissociating hydrogen molecules into hydrogen atoms during the mechanical pulverization of the hydrogen storage material, the hydrogen storage amount can be increased. For the addition of a metal component, for example, a metal component inlet is provided on the same end face as the raw material inlet 9 of the crushing vessel 1, and such a metal component is stored in the inlet, and the metal is held in a hydrogen atmosphere. What is necessary is just to provide an opening and closing mechanism that connects the component containers and opens and closes between the metal component container and the crushing container 1. Then, the hydrogen pressure in the crushing container 1 is measured, and the hydrogen pressure in the metal component container is set to the same value as the hydrogen pressure in the crushing container 1. Can be introduced within. Metal components having such a function include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti , Cr, Cu, Zn, Al, Si, Ru, 〇s, Mo, W, Ta, Zr, In, Hf, Ag, one or more metals or their compounds or their alloys, or Hydrogen storage alloys can be mentioned.
[0309] なお、第 1の製造装置では、粉碎容器 1自体は固定で、粉砕ローラ 5の自転および 公転により粉碎を行った力 これに加えて粉碎容器 1を回転させるようにすることもで きる。この場合に粉砕容器 1の回転方向を粉砕ローラ 5の公転方向と反対方向するこ とにより、より高いエネルギーで粉砕を行うことができる。また、粉砕ローラ 5は自転す るのみとして、粉砕容器 1を回転させる構成とすることもできる。さらに、粉碎ローラ 5に 形成される溝も螺旋状のものに限らず、円形溝等他の形状であってもよい。  [0309] In the first manufacturing apparatus, the grinding container 1 itself is fixed, and the force of the grinding performed by the rotation and revolution of the grinding roller 5 In addition to this, the grinding container 1 may be rotated. . In this case, by setting the rotation direction of the crushing container 1 to be opposite to the revolving direction of the crushing roller 5, crushing can be performed with higher energy. Further, the crushing roller 5 may be configured to rotate only, and the crushing container 1 may be rotated. Further, the groove formed in the grinding roller 5 is not limited to a spiral shape, and may be another shape such as a circular groove.
[0310] 図 27に第 2の製造装置の概略断面図を示す。この水素貯蔵材料の製造装置は内 外筒回転型ミルタイプのものであり、同軸に設けられた内筒 22と外筒 23とを有し、こ れら内筒 22と外筒 23との間に環状粉碎室 24が形成された粉碎容器 21を有している 。内筒 22の内側には内筒用水冷ジャケット 25が設けられており、外筒 23の外側には 外筒用水冷ジャケット 26が設けられている。内筒用水冷ジャケット 25には冷却水供 給管 25aおよび冷却水排出管 25bが接続されており、外筒用水冷ジャケット 26には 冷却水供給管 26aおよび冷却水排出管 26bが接続されている。  [0310] FIG. 27 shows a schematic cross-sectional view of the second manufacturing apparatus. This hydrogen storage material manufacturing apparatus is of an inner and outer cylinder rotary mill type, and has an inner cylinder 22 and an outer cylinder 23 provided coaxially. It has a grinding vessel 21 in which an annular grinding chamber 24 is formed. A water cooling jacket 25 for the inner cylinder is provided inside the inner cylinder 22, and a water cooling jacket 26 for the outer cylinder is provided outside the outer cylinder 23. A cooling water supply pipe 25a and a cooling water discharge pipe 25b are connected to the water cooling jacket 25 for the inner cylinder, and a cooling water supply pipe 26a and a cooling water discharge pipe 26b are connected to the water cooling jacket 26 for the outer cylinder. .
[0311] 粉砕容器 21の内筒 22には、その外表面から垂直に延びる複数の攪拌翼 27が設 けられており、外筒 23には、その内表面から垂直に延びる複数の攪拌翼 28が設けら れている。これら攪拌翼 27、 28は、環状粉砕室 24内において水素貯蔵材料の攪拌 を行う。 [0311] The inner cylinder 22 of the pulverizing vessel 21 is provided with a plurality of stirring blades 27 extending vertically from the outer surface thereof, and the outer cylinder 23 is provided with a plurality of stirring blades 28 extending vertically from the inner surface thereof. Is provided. These stirring blades 27 and 28 stir the hydrogen storage material in the annular grinding chamber 24. I do.
[0312] 内筒 22の両側には、その長手方向に沿って回転軸 29が固定されており、この回転 軸 29には駆動用スプロケット 30が固定されており、図示しない駆動機構によりこの回 転軸 29を介して内筒 22が図中矢印方向へ回転するようになっている。回転軸 29は ベアリング 32を介して固定台 31に回転可能に支持されている。一方、外筒 23は固 定台 31に固定されており、外筒 23と回転軸との間にはベアリング 33が設けられてい る。  [0312] On both sides of the inner cylinder 22, a rotating shaft 29 is fixed along the longitudinal direction, and a driving sprocket 30 is fixed to the rotating shaft 29. The rotating shaft 29 is rotated by a driving mechanism (not shown). The inner cylinder 22 is rotated via a shaft 29 in the direction of the arrow in the figure. The rotating shaft 29 is rotatably supported on the fixed base 31 via a bearing 32. On the other hand, the outer cylinder 23 is fixed to a fixed base 31, and a bearing 33 is provided between the outer cylinder 23 and the rotating shaft.
[0313] 外筒 23の上部の粉砕容器 21の一方の側端部近傍には、粉砕容器 21内すなわち 環状粉砕室 24に水素を導入する水素導入口 34および水素貯蔵材原料を導入する 原料導入口 35が設けられている。また、外筒 23の下部の粉砕容器 21の他方の側端 部近傍には、粉砕容器 21内の環状粉砕室 24から水素貯蔵材原料を粉砕して得ら れた水素貯蔵材料を排出する材料排出口 36が設けられている。環状粉砕室 24の材 料排出口 36近傍には分級目板 37が配置されてレ、る。  [0313] In the vicinity of one side end of the crushing container 21 at the upper part of the outer cylinder 23, a hydrogen inlet 34 for introducing hydrogen into the crushing container 21, that is, the annular crushing chamber 24, and a hydrogen storage material material are introduced. A mouth 35 is provided. A material for discharging the hydrogen storage material obtained by pulverizing the hydrogen storage material from the annular pulverizing chamber 24 in the pulverization container 21 is provided near the other side end of the pulverization container 21 below the outer cylinder 23. An outlet 36 is provided. A classifying plate 37 is disposed near the material discharge port 36 of the annular crushing chamber 24.
[0314] このように構成される水素貯蔵材料の製造装置においては、まず、粉碎容器 21の 環状粉砕室 24内に図 28に示すように粉碎媒体である粉砕用ボール 38を入れてお き、次いで、水素導入口 34から粉砕容器 21の環状粉碎室 24内に水素を導入し、環 状粉砕室 24内を所定の圧力に維持する。この状態で図示しない開閉機構を開にし て原料導入口 35から環状粉碎室 24内に所定量の水素貯蔵材原料を導入する。  [0314] In the hydrogen storage material manufacturing apparatus configured as described above, first, a grinding ball 38 as a grinding medium is put into the annular grinding chamber 24 of the grinding vessel 21 as shown in FIG. Next, hydrogen is introduced into the annular crushing chamber 24 of the crushing vessel 21 from the hydrogen inlet 34 to maintain the inside of the annular crushing chamber 24 at a predetermined pressure. In this state, the opening / closing mechanism (not shown) is opened to introduce a predetermined amount of the hydrogen storage material raw material into the annular grinding chamber 24 from the raw material introduction port 35.
[0315] この状態で開閉機構を閉にして水素貯蔵材原料の粉砕を開始する。粉碎に際して は図示しない駆動機構により駆動用スプロケット 30および回転軸 29を介して内筒 22 を矢印の方向へ回転させる。この際に水冷ジャケット 25、 26に冷却水を流し、内筒 2 2および外筒 23を冷却する。  In this state, the opening / closing mechanism is closed to start pulverization of the hydrogen storage material. At the time of grinding, the inner cylinder 22 is rotated in the direction of the arrow through the driving sprocket 30 and the rotating shaft 29 by a driving mechanism (not shown). At this time, cooling water flows through the water cooling jackets 25 and 26 to cool the inner cylinder 22 and the outer cylinder 23.
[0316] このように内筒 22を回転させることにより、図 28に示すように、攪拌翼 27、 28により 粉砕用ボール 38が流動し、その際の粉砕用ボールのエネルギーにより水素貯蔵材 原料が機械的に粉砕されつつ、図 27に示すように材料排出口 36側に向けて移動し て、水素貯蔵材料となり、分級用目板 37を通って材料排出口 36から排出される。  [0316] By rotating the inner cylinder 22 in this way, as shown in Fig. 28, the grinding balls 38 flow by the stirring blades 27 and 28, and the energy of the grinding balls at that time causes the hydrogen storage material to be converted into a raw material. While mechanically pulverized, it moves toward the material discharge port 36 side as shown in FIG. 27, becomes a hydrogen storage material, and is discharged from the material discharge port 36 through the classification plate 37.
[0317] この場合に、環状粉砕室 24内は所定圧力の水素雰囲気となっており、水素貯蔵材 原料が水素雰囲気下でこのように機械的粉砕により微細化する過程で、微細化され た水素貯蔵材料に水素が侵入し、微細化された水素貯蔵材料の表面および/また は内部に水素が貯蔵される。ここで内部とは、結晶粒子間、層間、欠陥をいう。 [0317] In this case, the inside of the annular crushing chamber 24 is in a hydrogen atmosphere at a predetermined pressure, and the hydrogen storage material is refined by the mechanical crushing process under the hydrogen atmosphere. Hydrogen enters the hydrogen storage material, and is stored on the surface and / or inside the miniaturized hydrogen storage material. Here, the term “inside” means between crystal grains, between layers, and in defects.
[0318] この第 2の製造装置では、水素貯蔵材原料の粉碎に際して、内筒 22と外筒 23との 間に相対的な回転移動を生じさせて粉砕媒体である粉砕用ボール 38を流動させ、 その際に生じる高レ、エネルギーで水素貯蔵材原料を粉砕することができ、水素貯蔵 能力の高い水素貯蔵材料を得ることができる。しかも粉砕機構上、遊星ボールミルの ような粉砕量の制約がなぐ量産に十分対応可能である。  [0318] In the second production apparatus, during the pulverization of the hydrogen storage material, the relative rotation between the inner cylinder 22 and the outer cylinder 23 is caused to flow the pulverizing balls 38 as pulverization media. However, the hydrogen storage material can be pulverized with high energy and energy generated at that time, and a hydrogen storage material having a high hydrogen storage capacity can be obtained. In addition, the crushing mechanism is sufficiently compatible with mass production where the amount of crushing is not limited as in a planetary ball mill.
[0319] この第 2の製造装置においても、原料導入口 35および材料排出口 36に、それぞれ 環状粉砕室 24内の水素圧と同等の水素圧に維持可能な図示しない水素貯蔵材原 料導入機構および水素貯蔵材料排出機構を取り付けることにより、水素貯蔵材原料 を連続的に環状粉砕室 24内に導入し、かつ粉砕後の水素貯蔵材料を連続的に環 状粉砕室 24から排出するようにすることができる。  [0319] Also in this second production apparatus, a raw material introduction port (not shown) capable of maintaining a hydrogen pressure equivalent to the hydrogen pressure in the annular crushing chamber 24 at the raw material introduction port 35 and the material discharge port 36, respectively. And by installing a hydrogen storage material discharge mechanism, the hydrogen storage material raw material is continuously introduced into the annular grinding chamber 24, and the hydrogen storage material after grinding is continuously discharged from the annular grinding chamber 24. be able to.
[0320] また、水素分子を水素原子へ解離させる機能を有する金属成分を、水素貯蔵材原 料の機械的粉碎の途中に添加する場合には、基本的に先に説明した第 1の製造装 置と同様に行うことができる。  [0320] When a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical pulverization of the hydrogen storage material, the first production equipment described above is basically used. It can be performed in the same way as the installation.
[0321] なお、第 2の製造装置では、内筒 22のみを回転させるようにした力 外筒 23のみを 回転させるようにしてもよい。また、内筒 22および外筒 23の両方を反対方向に回転さ せるようにしてもよレ、。この場合には、攪拌力が増大するのでより高エネルギーで水 素貯蔵材原料を粉碎することができる。  [0321] In the second manufacturing apparatus, only the outer cylinder 23 that rotates only the inner cylinder 22 may be rotated. Alternatively, both the inner cylinder 22 and the outer cylinder 23 may be rotated in opposite directions. In this case, the stirring power is increased, so that the hydrogen storage material can be ground with higher energy.
[0322] 図 29に第 3の製造装置を一部切り欠いて示す斜視図を示す。この水素貯蔵材料の 製造装置はアトライタータイプのものであり、円筒状の粉碎容器 41を有し、その長手 方向を鉛直にして配置されている。粉砕容器 41は、図示しない駆動機構により矢印 の方向に回転可能に構成されており、その両方の開放端を塞ぐ一対の端面部材 42 が固定的に設けられている。粉砕容器 41の周囲には水冷ジャケット 43が設けられて おり、この水冷ジャケット 43には冷却水導入口 44と冷却水排出口 45とが設けられて いる。  [0322] FIG. 29 is a perspective view showing the third manufacturing apparatus with a part cut away. This hydrogen storage material production apparatus is of the attritor type, has a cylindrical grinding vessel 41, and is arranged with its longitudinal direction vertical. The crushing container 41 is configured to be rotatable in the direction of the arrow by a drive mechanism (not shown), and a pair of end surface members 42 for closing both open ends thereof are fixedly provided. A water cooling jacket 43 is provided around the crushing container 41, and the water cooling jacket 43 is provided with a cooling water inlet 44 and a cooling water outlet 45.
[0323] 粉砕容器 41の中央には、粉砕容器 41の長手方向に沿って回転軸 46が揷入され ており、回転軸 46にはそれに直交するように上力、ら順に 3つのインペラ 47a, 47b, 4 7cが設けられている。これらインペラ 47a, 47b, 47cは、隣接するものどうしが直交 するように配置されている。回転軸 46は図示しない駆動機構により矢印で示す粉砕 容器 41とは反対方向に回転するようになっており、それにともなってインペラ 47a, 4 7b, 47cも回転する。なお、符号 48はガスシールであり、 49はベアリングである。 [0323] At the center of the crushing container 41, a rotating shaft 46 is inserted along the longitudinal direction of the crushing container 41. The rotating shaft 46 has three impellers 47a, 47b, 4 7c is provided. These impellers 47a, 47b, 47c are arranged so that adjacent ones are orthogonal to each other. The rotating shaft 46 is configured to rotate in a direction opposite to the crushing container 41 indicated by an arrow by a drive mechanism (not shown), and accordingly, the impellers 47a, 47b, and 47c also rotate. Reference numeral 48 denotes a gas seal, and reference numeral 49 denotes a bearing.
[0324] 上側の端面部材 42には、粉砕容器 41内に水素を導入する水素導入口 50および 水素貯蔵材原料を導入する原料導入口 51が設けられている。また、下側の端面部 材 42には、粉砕容器 41から水素貯蔵材原料を粉砕して得られた水素貯蔵材料を排 出する材料排出口 52が設けられてレ、る。  [0324] The upper end member 42 is provided with a hydrogen inlet 50 for introducing hydrogen into the crushing vessel 41 and a raw material inlet 51 for introducing a hydrogen storage material. The lower end member 42 is provided with a material discharge port 52 for discharging a hydrogen storage material obtained by crushing a hydrogen storage material material from a crushing container 41.
[0325] このように構成される水素貯蔵材料の製造装置においては、まず、図示するように 粉砕媒体である粉砕用ボール 53を粉砕容器 41内に充填し、次いで、水素導入口 5 0から粉砕容器 41内に水素を導入し、粉砕容器 41内を所定の圧力に維持する。こ の状態で図示しない開閉機構を開にして原料導入口 51から粉砕容器 1内に所定量 の水素貯蔵材原料を導入する。  [0325] In the hydrogen storage material manufacturing apparatus configured as described above, first, as shown in the figure, a pulverizing ball 53 serving as a pulverizing medium is filled in a pulverizing container 41, and then pulverized from a hydrogen inlet 50. Hydrogen is introduced into the container 41, and the inside of the crushing container 41 is maintained at a predetermined pressure. In this state, the opening / closing mechanism (not shown) is opened, and a predetermined amount of the hydrogen storage material is introduced into the crushing container 1 from the material introduction port 51.
[0326] この状態で開閉機構を閉にして水素貯蔵材原料の粉砕を開始する。粉碎に際して は図示しない駆動機構により、粉砕容器 41を矢印方向に回転させるとともに、回転 軸 46を介してインペラ 47a, 47b, 47cを粉砕容器 41と反対方向に回転させる。この 際に水冷ジャケット 43に冷却水を流し粉砕容器 41を冷却する。  In this state, the opening / closing mechanism is closed to start pulverization of the hydrogen storage material. During the pulverization, the driving mechanism (not shown) rotates the pulverizing container 41 in the direction of the arrow, and rotates the impellers 47a, 47b, 47c via the rotating shaft 46 in the direction opposite to the pulverizing container 41. At this time, cooling water is supplied to the water cooling jacket 43 to cool the crushing container 41.
[0327] このように粉碎容器 41およびインペラ 47a, 47b, 47cを回転させることにより、粉碎 用ボール 53が流動し、その際の粉碎用ボール 53のエネルギーにより水素貯蔵材原 料が機械的に粉砕される。  [0327] By rotating the grinding container 41 and the impellers 47a, 47b, 47c in this manner, the grinding balls 53 flow, and the energy of the grinding balls 53 at that time causes the hydrogen storage material to be mechanically ground. Is done.
[0328] この場合に、粉砕容器 41内は所定圧力の水素雰囲気となっており、水素貯蔵材原 料が水素雰囲気下でこのように機械的粉砕により微細化する過程で、微細化された 水素貯蔵材料に水素が侵入し、微細化された水素貯蔵材料の表面および結晶粒子 間に水素が貯蔵される。このようにして所定の粉砕が終了した後、得られた水素貯蔵 材料は材料排出口 52から排出される。  [0328] In this case, the inside of the pulverizing container 41 is in a hydrogen atmosphere at a predetermined pressure, and the hydrogen storage material is finely divided by the mechanical pulverization under the hydrogen atmosphere in this way, so that the reduced hydrogen Hydrogen enters the storage material and is stored between the surface of the micronized hydrogen storage material and the crystal grains. After the predetermined pulverization is completed in this way, the obtained hydrogen storage material is discharged from the material discharge port 52.
[0329] この第 3の製造装置では、水素貯蔵材原料の粉砕に際して、粉砕容器 41とインべ ラ 47a, 47b, 47cとを回転させて粉砕媒体である粉砕用ボール 53を流動させ、その 際に生じる高いエネルギーで水素貯蔵材原料を粉砕することができ、水素貯蔵能力 の高い水素貯蔵材料を得ることができる。しかも粉砕機構上、遊星ボールミルのよう な粉砕量の制約がなぐ量産に十分対応可能である。 [0329] In the third manufacturing apparatus, when pulverizing the hydrogen storage material, the pulverizing container 41 is rotated and the impellers 47a, 47b, and 47c are rotated to pulverize the pulverizing balls 53 serving as a pulverizing medium. Hydrogen storage material can be crushed with high energy And a hydrogen storage material having a high hydrogen content. In addition, the crushing mechanism is sufficient for mass production where the crushing amount is not limited as in a planetary ball mill.
[0330] この第 3の製造装置においても、原料導入口 51および材料排出口 52に、それぞれ 粉砕容器 41内の水素圧と同等の水素圧に維持可能な図示しない水素貯蔵材原料 導入機構および水素貯蔵材料排出機構を取り付けることにより、水素貯蔵材原料を 連続的に粉砕容器 41内に導入し、かつ粉砕後の水素貯蔵材料を連続的に粉砕容 器 41から排出するようにすることができる。  [0330] Also in this third manufacturing apparatus, the raw material introduction port 51 and the material discharge port 52 each have a hydrogen storage material raw material introduction mechanism (not shown) capable of maintaining a hydrogen pressure equivalent to the hydrogen pressure in the crushing vessel 41 and a hydrogen storage material. By attaching the storage material discharge mechanism, the hydrogen storage material raw material can be continuously introduced into the crushing container 41, and the crushed hydrogen storage material can be continuously discharged from the crushing container 41.
[0331] また、水素分子を水素原子へ解離させる機能を有する金属成分を、水素貯蔵材原 料の機械的粉砕の途中に添加する場合には、基本的に第 1の製造装置と同様に行 うことができる。  [0331] Further, when a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical pulverization of the hydrogen storage material, it is basically performed in the same manner as in the first production apparatus. I can.
[0332] 図 30は第 4の製造装置の概略断面図である。この製造装置は、水素貯蔵材原料を 粉砕して得られる水素貯蔵材料を外部に排出するための排出口 61aがその側壁下 部に形成された有底円筒状の粉砕容器 61と、粉碎容器 61を収容し、内部を所定の ガス雰囲気に保持することができるハウジング 62を有している。  FIG. 30 is a schematic sectional view of the fourth manufacturing apparatus. This manufacturing apparatus includes a cylindrical grinding vessel 61 having a bottom with a discharge port 61a formed at the bottom of the side wall for discharging a hydrogen storage material obtained by grinding a hydrogen storage material raw material to the outside, and a grinding vessel 61. And a housing 62 capable of holding the inside thereof in a predetermined gas atmosphere.
[0333] このハウジング 62は、下部容器 62aと蓋体 62bから構成されており、下部容器 62a は、製造装置のフレーム等(図示せず)に固定され、蓋体 62bは図示しない昇降機構 により昇降自在となっている。蓋体 62bを下部容器 62aに所定の力で押し当てること により、下部容器 62aと蓋体 62bとは、例えば、図示しない銅シールリングを介して、 気密にシールされるようになっている。なお、例えば、クランプ等を用いて、下部容器 62aと蓋体 62bとを外部から締め付けることによって、これらの接触面を気密シールし てもよい。  [0333] The housing 62 includes a lower container 62a and a lid 62b. The lower container 62a is fixed to a frame or the like (not shown) of the manufacturing apparatus, and the lid 62b is moved up and down by a lifting mechanism (not shown). It is free. By pressing the lid 62b against the lower container 62a with a predetermined force, the lower container 62a and the lid 62b are hermetically sealed, for example, via a copper seal ring (not shown). Note that, for example, the lower container 62a and the lid 62b may be externally tightened with a clamp or the like to hermetically seal their contact surfaces.
[0334] 下部容器 62aと蓋体 62bはそれぞれ冷却水を内部循環することができるジャケット 構造となっている。蓋体 62bには、その内部に水素を導入する水素導入口 63aと、ハ ウジング 62内を水素雰囲気に保持したまま粉砕容器 61内に水素貯蔵材原料を導入 する原料導入口 63bが設けられている。下部容器 62aには、粉砕容器 61から排出口 61aを通って排出された水素貯蔵材料の一部を外部に排出する材料排出口 63cと、 粉砕容器 61から排出口 61aを通って排出された水素貯蔵材料の一部を粉砕容器 6 1内に戻す循環用ブレード 63dが設けられている。 [0335] 粉砕容器 61内には、円柱曲面を有し (後に示す図 31参照)、保持部材 64に保持さ れた 2個のインナーピース 65が、その円柱曲面と粉砕容器 61の側壁内面との間に所 定の間隙ができるように、配置されている。インナーピース 65の数は 2個に限定され ず、 1個であってもよいし、 3個以上設けてもよレ、。この保持部材 64は蓋体 62bに取り 付けられており、蓋体 62bと共に昇降する。 [0334] The lower container 62a and the lid 62b each have a jacket structure in which cooling water can be circulated internally. The lid 62b is provided with a hydrogen inlet 63a for introducing hydrogen therein and a material inlet 63b for introducing a hydrogen storage material into the pulverizing vessel 61 while maintaining the housing 62 in a hydrogen atmosphere. I have. The lower container 62a has a material outlet 63c for discharging a part of the hydrogen storage material discharged from the grinding container 61 through the outlet 61a, and a hydrogen outlet 63c discharged from the grinding container 61 through the outlet 61a. A circulation blade 63d for returning a part of the storage material into the grinding container 61 is provided. [0335] The grinding container 61 has a cylindrical curved surface (see Fig. 31 shown later), and the two inner pieces 65 held by the holding member 64 are provided between the cylindrical curved surface and the inner surface of the side wall of the grinding container 61. They are arranged so that there is a predetermined gap between them. The number of the inner pieces 65 is not limited to two, and may be one or three or more. The holding member 64 is attached to the lid 62b, and moves up and down together with the lid 62b.
[0336] 下部容器 62aの底面を貫通して気密に配置された枢軸 66を介して、粉砕容器 61 はモータ 67に連結されている。モータ 67を駆動することによって、粉砕容器 61とイン ナーピース 65との間の間隙幅が実質的に変わらないように、粉砕容器 61を回転させ ること力 Sできる。なお、保持部材 64を蓋体 62bに固定するのではなぐ蓋体 62bを貫 通させて回転自在な構造としてもよぐその場合には、粉砕容器 61は回転自在でも 回転不可でもよい。  [0336] The pulverizing container 61 is connected to a motor 67 via a pivot 66 that is disposed airtightly through the bottom surface of the lower container 62a. By driving the motor 67, it is possible to rotate the grinding container 61 so that the gap width between the grinding container 61 and the inner piece 65 does not substantially change. In addition, in a case where the holding member 64 is not fixed to the lid 62b but may be configured to penetrate the lid 62b to be rotatable, the crushing container 61 may be rotatable or non-rotatable.
[0337] このように構成される製造装置では、まず水素導入口 63aから水素をハウジング 62 内に導入し、ハウジング 62内を水素で置換し、好ましくは、ハウジング 62内を所定の 陽圧に保持する。そして、モータ 67を所定の回転数で回転させ、好ましくは回転数 が一定となった後に、所定量の水素貯蔵材原料を原料導入口 63bを通して、粉砕容 器 61内に投入する。  [0337] In the manufacturing apparatus configured as described above, first, hydrogen is introduced into the housing 62 from the hydrogen inlet 63a, and the inside of the housing 62 is replaced with hydrogen. Preferably, the inside of the housing 62 is maintained at a predetermined positive pressure. I do. Then, the motor 67 is rotated at a predetermined number of revolutions, and preferably, after the number of revolutions becomes constant, a predetermined amount of the hydrogen storage material is fed into the pulverizing container 61 through the material introduction port 63b.
[0338] 図 31は粉砕容器 61に投入された水素貯蔵材原料の粉砕形態を粉砕容器 61を上 力 見た状態で、模式的に示す説明図である。ハウジング 62内に投入された水素貯 蔵材原料は、粉碎容器 61の回転によつて生ずる気流や粉砕容器の底壁に当たるこ とによつて粉砕容器 61の側壁側へ移動し、粉砕容器 61の側壁とインナーピース 65と の間に挟み込まれる。このとき、水素貯蔵材原料に圧縮力および剪断力が作用して 、水素貯蔵材原料は機械的に微粉砕される。この圧縮力と剪断力の大きさは、粉砕 容器 61の回転数を変えることや、一度に投入する水素貯蔵材原料の量を変えること 等によって変化させることができる。このようなインナーピース型の水素貯蔵材料の製 造装置では、粉砕容器 61を回転させることによって生じる高いエネルギーで、水素 貯蔵材原料を粉砕することができるため、水素貯蔵能力の高い水素貯蔵材料を得る こと力 Sできる。  [0338] FIG. 31 is an explanatory diagram schematically showing a pulverization mode of the hydrogen storage material material charged into the pulverization container 61 when the pulverization container 61 is viewed from above. The hydrogen storage material fed into the housing 62 moves toward the side wall of the crushing vessel 61 due to the air current generated by the rotation of the crushing vessel 61 and the impact on the bottom wall of the crushing vessel 61, and the It is sandwiched between the side wall and the inner piece 65. At this time, a compressive force and a shear force act on the hydrogen storage material, and the hydrogen storage material is mechanically pulverized. The magnitudes of the compressive force and the shearing force can be changed by changing the number of revolutions of the crushing vessel 61, changing the amount of the hydrogen storage material fed at a time, and the like. In such an inner-piece type hydrogen storage material manufacturing apparatus, the hydrogen storage material raw material can be pulverized with high energy generated by rotating the pulverization container 61, so that a hydrogen storage material having a high hydrogen storage capacity can be produced. You can get S.
[0339] 粉砕容器 61の側壁下部には排出口 61aが設けられているために、微粉砕された水 素貯蔵材料 (水素貯蔵材原料を含む)は、徐々にこの排出口 61aから粉砕容器 61外 に排出される。こうして粉碎容器 61から排出された水素貯蔵材料は、ハウジング 62 に設けられた循環用ブレード 63dとハウジング 62内に生じている気流との相互作用 によって舞い上げられて粉砕容器 61に戻されてさらに粉砕処理される力、、または材 料排出口 63cを通してハウジング 62の外部に排出され、図示しない回収容器等に捕 集される。なお、粉砕容器 61の側壁内面に水素貯蔵材料が固着し易い場合には、こ のような固着材料を搔き取る部材を配置してもよい。 [0339] Since a discharge port 61a is provided at the lower part of the side wall of the crushing container 61, finely crushed water is provided. Element storage materials (including hydrogen storage material) are gradually discharged out of the crushing container 61 from the outlet 61a. The hydrogen storage material discharged from the crushing vessel 61 in this manner is sowed up by the interaction between the circulation blade 63d provided in the housing 62 and the airflow generated in the housing 62, returned to the crushing vessel 61, and further crushed. It is discharged to the outside of the housing 62 through the force to be processed or the material discharge port 63c, and collected in a collection container (not shown) or the like. When the hydrogen storage material is easily fixed to the inner surface of the side wall of the crushing container 61, a member for removing such a fixed material may be provided.
[0340] 材料排出口 63cから水素貯蔵材料が排出されなくなったら、再び、所定量の水素 貯蔵材原料を、原料導入口 63bを通して、粉砕容器 61内に投入し、以下、上述した 処理を繰り返すことができる。  [0340] When the hydrogen storage material is no longer discharged from the material discharge port 63c, a predetermined amount of the hydrogen storage material is again charged into the pulverizing vessel 61 through the material inlet 63b, and the above-described processing is repeated. Can be.
[0341] 水素貯蔵材原料の粉砕容器 61への投入は、上述のようにバッチ処理的に行っても よいが、これに限定されるものではなぐこの製造装置においても、原料導入口 63b および材料排出口 63cに、それぞれハウジング 62内の水素圧と同等の水素圧に維 持可能な図示しない水素貯蔵材原料導入機構および水素貯蔵材料排出機構を取り 付けて、粉砕容器 61内に常に一定量の水素貯蔵材料が存在するように、水素貯蔵 材原料を連続的に粉砕容器 61内に導入し、かつ粉砕後の水素貯蔵材料を連続的 にハウジング 62から排出させてもよい。  [0341] The charging of the hydrogen storage material into the pulverizing vessel 61 may be performed in a batch process as described above, but is not limited to this. A hydrogen storage material introduction mechanism and a hydrogen storage material discharge mechanism (not shown) capable of maintaining a hydrogen pressure equivalent to the hydrogen pressure in the housing 62 are attached to the discharge port 63c. The hydrogen storage material may be continuously introduced into the pulverizing vessel 61 and the pulverized hydrogen storage material may be continuously discharged from the housing 62 so that the hydrogen storage material is present.
[0342] このように、第 4の製造装置もまた、その粉碎機構上、遊星ボールミルのような粉碎 量の制約がなぐ量産に十分に対応することができる。なお、水素分子を水素原子へ 解離させる機能を有する金属成分を、水素貯蔵材原料の機械的粉砕の途中に添カロ する場合には、基本的に第 1の製造装置と同様に行うことができる。  [0342] As described above, the fourth manufacturing apparatus can also sufficiently cope with mass production in which the restriction on the amount of pulverization is less than that of a planetary ball mill due to its pulverization mechanism. When a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical pulverization of the hydrogen storage material, it can be performed basically in the same manner as in the first production apparatus. .
[0343] 図 32は第 5の製造装置の概略断面図である。この製造装置は、水素を含む所定の 処理ガスを高圧噴射するジェットノズノレ 72と、その内部にジェットノズル 72から噴射さ れた高圧の処理ガスが導入され、この処理ガスの気流によって水素貯蔵材原料を粉 砕する粉砕容器 71とを有している。処理ガスは水素単体であることが好ましいが、水 素と不活性ガス(窒素やアルゴン等)の混合ガスでもよい。このような混合ガスを用い る場合には、水素と水素貯蔵材料とが接触し易くなるように、水素分圧の高いガスを 用いることが好ましい。 [0344] 粉砕容器 71は、略楕円環状の本体部 71 aと、水素貯蔵材原料を投入するための 枝部 71bとを有している。この枝部 71bには粉碎容器 71内のガス雰囲気を維持した まま粉碎容器 71内に水素貯蔵材原料を導入可能な原料導入口 73と、原料導入口 7 3から枝部 71内に投入された水素貯蔵材原料を本体部 71aへ送り込むための処理 ガスノズル 75が設けられている。また、粉砕容器 71の本体部 71aには、水素貯蔵材 料 (つまり水素貯蔵材原料が粉砕処理されたもの)を排出する材料排出口 74と、衝 突板 76が設けられている。 FIG. 32 is a schematic sectional view of a fifth manufacturing apparatus. In this manufacturing apparatus, a jet nozzle 72 for injecting a predetermined processing gas containing hydrogen at a high pressure and a high-pressure processing gas injected from a jet nozzle 72 are introduced into the inside thereof. A crushing container 71 for crushing the raw material. The processing gas is preferably simple hydrogen, but may be a mixed gas of hydrogen and an inert gas (such as nitrogen or argon). When such a mixed gas is used, it is preferable to use a gas having a high hydrogen partial pressure so that the hydrogen and the hydrogen storage material are easily brought into contact with each other. [0344] The pulverizing container 71 has a substantially elliptical annular main body 71a and a branch 71b for charging a hydrogen storage material. The branch 71b was fed into the branch 71 from the material inlet 73 through which the hydrogen storage material could be introduced into the milling vessel 71 while maintaining the gas atmosphere in the milling vessel 71, and from the material inlet 73. A processing gas nozzle 75 for feeding the hydrogen storage material into the main body 71a is provided. The main body 71a of the pulverizing container 71 is provided with a material discharge port 74 for discharging a hydrogen storage material (that is, a material obtained by pulverizing the hydrogen storage material) and a collision plate 76.
[0345] このように構成される気流粉砕型の製造装置では、ジェットノズル 72から粉砕容器 7 1内に処理ガスを導入して、粉砕容器 71内を水素を含む雰囲気とした後に、処理ガ スノズル 75から粉砕容器 71内に一定量の処理ガスを導入しながら、原料導入口 73 力 水素貯蔵材原料を粉砕容器 71の枝部 71bに導入する。これにより水素貯蔵材 原料は粉砕容器 71の本体部 71aに送られ、ジェットノズル 72から噴射された高圧処 理ガスの気流に乗って、本体部 71a内を循環する。このとき、処理ガスの気流に乗つ た水素貯蔵材原料は、水素貯蔵材原料どうしの衝突もしくは磨砕、本体部 71aの容 器壁部や衝突板 76との衝突、高圧処理ガスの気流から与えられる剪断力等によって 、機械的に粉砕される。こうして所定の粒径にまで粉砕されて製造された水素貯蔵材 料は、材料排出口 74から排出される。  [0345] In the air-flow crushing type manufacturing apparatus configured as described above, the processing gas is introduced from the jet nozzle 72 into the crushing vessel 71, and the inside of the crushing vessel 71 is set to an atmosphere containing hydrogen. The raw material introduction port 73 introduces the hydrogen storage material into the branch 71b of the pulverizing container 71 while introducing a certain amount of processing gas into the pulverizing container 71 from 75. As a result, the hydrogen storage material is sent to the main body 71a of the crushing container 71, and circulates in the main body 71a on the airflow of the high-pressure processing gas injected from the jet nozzle 72. At this time, the hydrogen storage material raw material riding on the gas flow of the processing gas is generated by the collision or grinding of the hydrogen storage material raw materials, the collision with the container wall of the main body 71a and the collision plate 76, and the gas flow of the high-pressure processing gas. It is pulverized mechanically by the applied shearing force or the like. The hydrogen storage material thus produced by being pulverized to a predetermined particle size is discharged from the material discharge port 74.
[0346] このような気流粉碎型の水素貯蔵材料の製造装置では、粉砕容器 71内を流れる 高圧処理ガスによって水素貯蔵材原料を流動させるために、水素貯蔵材原料に大き なエネルギーを与えることができ、水素貯蔵材原料を高エネルギーで粉碎することが できるため、水素貯蔵能力の高い水素貯蔵材料を得ることができる。  [0346] In such an airflow-pulverized type hydrogen storage material manufacturing apparatus, large energy is given to the hydrogen storage material raw material in order to flow the hydrogen storage material raw material by the high-pressure processing gas flowing in the pulverizing vessel 71. Since the raw material for hydrogen storage can be pulverized with high energy, a hydrogen storage material having a high hydrogen storage capacity can be obtained.
[0347] 水素貯蔵材原料の粉砕容器 71への投入は、上述のようにバッチ処理的に行っても よいが、これに限定されるものではなぐこの製造装置においても、原料導入口 73お よび材料排出口 74に、それぞれ粉砕容器 71内の処理ガス圧と同等のガス圧に維持 可能な図示しない水素貯蔵材原料導入機構および水素貯蔵材料排出機構を取り付 けて、粉砕容器 71内に常に一定量の水素貯蔵材料が存在するように、水素貯蔵材 原料を連続的に粉砕容器 71内に導入し、かつ粉砕後の水素貯蔵材料を連続的に 粉砕容器 71力 排出させてもよい。 [0348] この第 5の製造装置もまた、その粉碎機構上、遊星ボールミルのような粉砕量の制 約がなぐ量産に十分に対応することができる。なお、水素分子を水素原子へ解離さ せる機能を有する金属成分を、水素貯蔵材原料の機械的粉砕の途中に添加する場 合には、基本的に第 1の製造装置と同様に行うことができる。 [0347] The charging of the hydrogen storage material into the pulverizing container 71 may be performed in a batch process as described above, but is not limited to this. The material discharge port 74 is equipped with a hydrogen storage material introduction mechanism (not shown) and a hydrogen storage material discharge mechanism (not shown) that can maintain the same gas pressure as the processing gas pressure in the crushing vessel 71. The raw material of the hydrogen storage material may be continuously introduced into the pulverizing vessel 71 so that a certain amount of the hydrogen storage material may be present, and the pulverized hydrogen storage material may be continuously discharged into the pulverizing vessel 71. [0348] The fifth manufacturing apparatus can sufficiently cope with mass production in which the amount of pulverization is not restricted by a planetary ball mill due to its pulverizing mechanism. In addition, when a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical pulverization of the hydrogen storage material, it is basically performed in the same manner as in the first production apparatus. it can.
[0349] 続レ、て、上述した各種の製造装置を用いて作製した水素貯蔵材料にっレ、て説明 する。ここでは水素貯蔵材料としてグラフアイトを用いた結果(実施例 101 104およ び比較例 101)と、水素化リチウムと金属アミド化合物の混合物を用いた結果(実施 例 105— 109および比較例 102)について説明する。  [0349] Next, a description will be given of a hydrogen storage material manufactured using the above-described various manufacturing apparatuses. Here, the results using graphite as a hydrogen storage material (Examples 101 and 104 and Comparative Example 101) and the results using a mixture of lithium hydride and a metal amide compound (Examples 105 to 109 and Comparative Example 102) Will be described.
[0350] (実施例 101)  (Example 101)
実施例 101では、水素貯蔵材料の製造装置として基本的に図 26A, 26Bに示した ような高速遠心ローラーミルタイプのものを用いた。但し、粉砕ローラのみならず、粉 砕容器も回転するものを用いた。粉砕容器の内容積は 5L、内壁およびローターはジ ルコニァ製とした。容器とローターは同回転もしくは逆回転が可能で、本実施例では 逆回転で用いた。粉砕容器の回転速度は 250rpm、粉碎ロールの回転速度は 2000 rpm、グラフアイト粉末の投入量は 50gとした。  In Example 101, a high-speed centrifugal roller mill type as shown in FIGS. 26A and 26B was basically used as an apparatus for producing a hydrogen storage material. However, not only the crushing roller but also the crushing container that rotates were used. The inner volume of the crushing vessel was 5 L, and the inner wall and rotor were made of zirconia. The container and the rotor can be rotated in the same or opposite directions, and in this example, they were used in the opposite direction. The rotation speed of the grinding container was 250 rpm, the rotation speed of the grinding roll was 2000 rpm, and the amount of the graphite powder was 50 g.
[0351] (実施例 102)  (Example 102)
実施例 102では、水素貯蔵材料の製造装置として基本的に図 27に示したような内 外筒回転型ミルタイプのものを用いた。但し、内筒のみならず外筒も回転するものを 用いた。内筒および外筒は水平に設置され、回転軸を共有し、内筒の外径は φ 152 mm、外筒の内径は φ 254mmとし、内筒と外筒との間の環状粉砕室の長さを 510m mとした。環状粉砕室に見かけ充填率 80%でジルコニァ製粉碎ボール(直径 10mm )を充填した。内筒外表面や外筒内表面に板状の複数の攪拌翼を配置した。内筒と 外筒の回転方向は逆向きとし、各々の回転速度を 120rpm付近とし、グラフアイト粉 末の投入量を 530gとした。  In Example 102, an inner / outer cylinder rotary mill type as shown in FIG. 27 was basically used as an apparatus for producing a hydrogen storage material. However, the one that rotates not only the inner cylinder but also the outer cylinder was used. The inner and outer cylinders are installed horizontally, share a rotation axis, the outer diameter of the inner cylinder is φ152 mm, the inner diameter of the outer cylinder is φ254 mm, and the length of the annular crushing chamber between the inner and outer cylinders The height was 510 mm. The annular grinding chamber was filled with zirconia milling balls (diameter 10 mm) at an apparent filling rate of 80%. A plurality of plate-like stirring blades were arranged on the outer surface of the inner cylinder and the inner surface of the outer cylinder. The rotation directions of the inner and outer cylinders were reversed, the rotation speed of each was around 120 rpm, and the amount of graphite powder charged was 530 g.
[0352] (実施例 103)  (Example 103)
実施例 103では、水素貯蔵材料の製造装置として基本的に図 29に示したようなァ トライタータイプのものを用いた。粉砕容器の容量は 5. 4L、粉砕ボールとして直径 5 mmのジノレコニァ製のものを用いた。インペラと粉砕容器の回転方向は逆向きとし、ィ ンペラ回転数を 250rpm、粉碎容器を 60i"pmで回転させた。また、グラフアイト粉末 の投入量を 500gとした。 In Example 103, an apparatus of a lighter type as shown in FIG. 29 was basically used as an apparatus for producing a hydrogen storage material. The capacity of the crushing container was 5.4 L, and a crushing ball made of Zinoreconia having a diameter of 5 mm was used. The rotation directions of the impeller and the crushing vessel are opposite. The impeller rotation speed was 250 rpm, and the milling vessel was rotated at 60 i "pm. The amount of the graphite powder was 500 g.
[0353] (実施例 104)  (Example 104)
実施例 104では、水素貯蔵材料の製造装置として基本的に図 30に示したようなィ ンナーピース型のミルを用いた。粉砕容器の容積は 10L、インナーピースはジルコ二 ァ製のものを 2個配置した。ハウジング内を IMPaの水素雰囲気に保持しながら、 粉砕容器の回転数を 1500i"pmとして、グラフアイト粉末の投入量を 500gとした。  In Example 104, an inner piece type mill as shown in FIG. 30 was basically used as a hydrogen storage material manufacturing apparatus. The volume of the crushing container was 10 L, and two inner pieces were made of zirconium. While maintaining the inside of the housing in the hydrogen atmosphere of IMPa, the number of revolutions of the pulverizing container was set to 1500 i "pm, and the amount of the supplied graphite powder was set to 500 g.
[0354] (比較例 101)  [0354] (Comparative Example 101)
比較例 101では、グラフアイト粉末 2gを内容積 250cm3のジノレコニァ製ミル容器に 入れ、ミル容器内を真空排気した後、ミル容器内が IMPaとなるようにミル容器内に 水素を導入した。機械的粉砕は、遊星型ボールミル装置 (Fritsch社製、 P5)を用い て、 20°Cの室温で、公転数 250rpmで所定時間を行った。なお、粉砕ボールには容 器とほぼ同等の組成および硬度を有するジルコニァ製ボール( φ 10mm)を 60個使 用した。このミル容器としては、水素導入用や真空排気用のコネクションバルブと水 素分子を水素原子へ解離させる機能を有した金属もしくはそれらの合金の添加する ための試料導入バルブが備え付けられたものを用いた。 In Comparative Example 101, 2 g of graphite powder was placed in a mill container made of Zinoreconia having an internal volume of 250 cm 3 , and the inside of the mill container was evacuated, and then hydrogen was introduced into the mill container so that the inside of the mill container became IMPa. The mechanical pulverization was performed for a predetermined time at a room temperature of 20 ° C. and a number of revolutions of 250 rpm using a planetary ball mill (P5, manufactured by Fritsch). The crushed balls used were 60 zirconia balls (φ10 mm) having almost the same composition and hardness as the container. This mill vessel is equipped with a connection valve for introducing and evacuating hydrogen and a sample introduction valve for adding metals or their alloys having the function of dissociating hydrogen molecules into hydrogen atoms. Was.
[0355] (実施例 101— 104および比較例 101に共通の項目)  (Items Common to Examples 101—104 and Comparative Example 101)
(試料および機械的粉碎の前後処理)  (Pre- and post-treatment of sample and mechanical grinding)
グラフアイト粉末 (キシダ化学社製人造グラフアイト、平均粒径 36 μ m)を上記各粉 砕容器に入れ、粉碎容器内(実施例 104の場合はハウジング内)を真空排気した後 、粉砕容器内力 SlMPaとなるように粉碎容器内に水素を導入した。各製造装置を用 いて、 20°Cの室温で、所定の時間ミリングを行レ、、グラフアイト粉末を機械的粉砕した 。なお、水素としては「G1 7N」を用いた。  Graphite powder (manufactured by Kishida Chemical Co., Ltd., synthetic graphite, average particle size: 36 μm) is placed in each of the above-mentioned pulverizing containers, and the inside of the pulverizing container (in the case of Example 104, the housing) is evacuated. Hydrogen was introduced into the milling vessel so as to obtain SlMPa. Milling was performed for a predetermined time at a room temperature of 20 ° C. using each manufacturing apparatus, and the graphite powder was mechanically pulverized. Note that "G17N" was used as hydrogen.
[0356] (試料の取り出し)  [0356] (Removal of Sample)
各ミリング後の試料は、水素貯蔵材料の各製造装置の排出部に取り付けられてい るバルブ付の容器中に水素雰囲気のまま移し替えた後、この容器を真空排気し、高 純度アルゴン (Ar)を導入した。なお、 Arとしては「ひ 2 6N」を用いた。  The sample after each milling was transferred under a hydrogen atmosphere into a container equipped with a valve attached to the discharge unit of each hydrogen storage material manufacturing device, and then the container was evacuated to high purity argon (Ar). Was introduced. Note that "Ar 26N" was used as Ar.
[0357] (水素放出量の測定) 真空排気した加熱容器中のグラフアイトを電気炉で室温一 900°Cまで昇温速度 10 °C /分で加熱し、グラフアイトから放出されたガスを 20°Cに冷却し、ガス圧を圧力計 で測定するとともにガスボンベに採取した。この放出ガスは配管を通じてガスクロマト グラフ(島津製作所製、 GC9A、 TCD検出器、カラム: Molecular Sieve 5A)に導 入し、水素量を測定した。水素貯蔵量としては、この水素量を加熱前のグラフアイト量 で除した値とした。 [0357] (Measurement of hydrogen release amount) The graphite in the evacuated heating vessel is heated in an electric furnace to room temperature-900 ° C at a heating rate of 10 ° C / min, the gas released from the graphite is cooled to 20 ° C, and the gas pressure is reduced. It was measured with a gas meter and collected in a gas cylinder. The released gas was introduced into a gas chromatograph (manufactured by Shimadzu Corporation, GC9A, TCD detector, column: Molecular Sieve 5A) through a pipe, and the amount of hydrogen was measured. The amount of hydrogen storage was determined by dividing the amount of hydrogen by the amount of graphite before heating.
[0358] (平均粒子径の測定)  [0358] (Measurement of average particle size)
ミリング前後の試料の平均粒子径は、エタノール中で分散し、 HORIBA社製 LA— 920により測定を行った。  The average particle size of the sample before and after milling was dispersed in ethanol and measured using LA-920 manufactured by HORIBA.
[0359] (試験結果)  [Test results]
各製造装置のミリング時間と得られた水素貯蔵材料の平均粒子径との関係を図 33 に示す。また、図 34に図 33の拡大図を示す。これらに示すように、比較例 101の遊 星ボールミルでは、ミリング時間 30時間以降でメカノケミカル現象の平均粒子径の増 カロ(凝集)が認められる。一方、実施例 101であるローラーミル、実施例 102である内 外筒回転型ミル、実施例 103であるアトライターおよび実施例 104のインナーピース 型ミルにおいては、圧縮力や剪断力による効果のため、比較例 101の遊星型ボール ミルより短時間の 10時間以降で平均粒子径の増加が認められた。  FIG. 33 shows the relationship between the milling time of each production apparatus and the average particle diameter of the obtained hydrogen storage material. FIG. 34 is an enlarged view of FIG. As shown in these figures, in the planetary ball mill of Comparative Example 101, an increase in the average particle size due to the mechanochemical phenomenon (agglomeration) is observed after the milling time of 30 hours. On the other hand, in the roller mill of Example 101, the inner and outer cylinder rotary type mill of Example 102, the attritor of Example 103, and the inner piece type mill of Example 104, because of the effect of the compressive force and the shear force, An increase in the average particle diameter was observed after 10 hours, which was shorter than that of the planetary ball mill of Comparative Example 101.
[0360] 得られた水素貯蔵材料の水素放出量を求めた結果を図 35に示す。この図に示す ように、比較例 101の遊星型ボールミルより平均粒子径の増加時間が短かった実施 例 101— 104のローラーミル、内外筒回転型ミル、アトライターおよびインナーピース 型ミルにおいては、遊星型ボールミルよりも水素貯蔵量が大きくなり、高い水素貯蔵 量が得られることが確認された。また、遊星型ボールミルでは、スケールアップが困難 で工業化できないが、これらの装置においては、工業化が可能であり、水素貯蔵財 の大量生産が可能となることが認められた。  [0360] FIG. 35 shows the result of determining the amount of hydrogen released from the obtained hydrogen storage material. As shown in this figure, in the roller mills, inner and outer cylinder rotary mills, attritors and inner piece mills of Examples 101 to 104 in which the average particle diameter increase time was shorter than that of the planetary ball mill of Comparative Example 101, It was confirmed that the hydrogen storage capacity was higher than that of the ball mill, and that a higher hydrogen storage capacity could be obtained. In addition, although it is difficult to scale up planetary ball mills and cannot industrialize them, it was recognized that these devices can be industrialized and mass production of hydrogen storage goods becomes possible.
[0361] (実施例 105— 109および比較例 102)  (Examples 105-109 and Comparative Example 102)
(原料調製と粉砕処理 (水素吸蔵処理) )  (Raw material preparation and crushing treatment (hydrogen storage treatment))
高純度 Ar雰囲気のグローブボックス中で、出発原料たるリチウムアミド(LiNH ;純  In a glove box with high purity Ar atmosphere, lithium amide (LiNH; pure
2 度 95。んシグマ'アルドリッチ社製)と水素化リチウム(LiH ;純度 95%,シグマ'アル ドリツチ社製)がモル比で 1: 1となるように、かつ、触媒たる塩化クロム(CrCl ;シグマ 2 degrees 95. Sigma Aldrich) and lithium hydride (LiH; purity 95%, Sigma Al) So that the molar ratio is 1: 1 and chromium chloride (CrCl; Sigma) is used as a catalyst.
3 Three
•アルドリッチ社製)と Li全量が原子比で 0. 05 : 1となるように、全量で 100gを秤量し た。この原料を密閉できる原料容器中に移し、空気に暴露しないように、内部が高純 度 Ar雰囲気に保持された各水素貯蔵材料の製造装置 (実施例 105;ローラーミル、 実施例 106 ;内外筒回転型ミル、実施例 107 ;アトライター、実施例 108 ;インナーピ ース型ミル、実施例 109 ;気流粉砕型ミル、比較例 102 ;遊星型ボールミル)に投入し た。各装置について、処理時間を変えて所定時間の粉砕混合を行った後に、得られ た水素貯蔵材料を真空雰囲気としてある試料容器に空気に暴露しないように移し替 えた。 • Aldrich) and 100 g of Li were weighed so that the total amount of Li was 0.05: 1 in atomic ratio. This raw material is transferred into a sealable raw material container, and each hydrogen storage material manufacturing device is maintained in a highly pure Ar atmosphere so that it is not exposed to air (Example 105; roller mill, Example 106; inner and outer cylinders). A rotary mill, Example 107; an attritor, Example 108; an inner piece mill, Example 109; an airflow mill, Comparative Example 102; a planetary ball mill). After performing pulverization and mixing for a predetermined time with a different processing time for each apparatus, the obtained hydrogen storage material was transferred to a certain sample container in a vacuum atmosphere so as not to be exposed to air.
[0362] (水素放出量の測定)  [0362] (Measurement of hydrogen release amount)
真空排気した反応容器中の水素貯蔵材料を電気炉で室温から 250°Cまで昇温速 度 10°C/分で加熱し、 250°Cで 90分間保持した。 250°C保持中は、放出ガス圧が 2 OkPa以下となるようにバッファ容器を用いてガス圧を調整するとともに、 250°Cでの 保持開始から所定時間経過時に放出ガスをガスボンベに採取した。こうして採取した ガスを 20°Cに冷却して放出ガス圧を圧力計で測定するとともに、採取したガスを配管 を通じてガスクロマトグラフ(島津製作所製、 GC9A、 TCD検出器、カラム: Molecul ar Sieve 5A)に導入し、水素量を測定した。測定された水素量を加熱前の水素貯 蔵材料の質量で除した値を水素貯蔵率とした。  The evacuated hydrogen storage material in the reaction vessel was heated in an electric furnace from room temperature to 250 ° C at a heating rate of 10 ° C / min, and kept at 250 ° C for 90 minutes. While maintaining the temperature at 250 ° C, the gas pressure was adjusted using a buffer container so that the released gas pressure was 2 OkPa or less, and the released gas was collected in a gas cylinder when a predetermined time had elapsed from the start of the maintenance at 250 ° C. The gas collected in this way was cooled to 20 ° C, the released gas pressure was measured with a pressure gauge, and the collected gas was passed through a pipe to a gas chromatograph (manufactured by Shimadzu Corporation, GC9A, TCD detector, column: Molecular Sieve 5A). And the amount of hydrogen was measured. The value obtained by dividing the measured amount of hydrogen by the mass of the hydrogen storage material before heating was defined as the hydrogen storage rate.
[0363] (試験結果)  [0363] (Test results)
図 36に水素貯蔵材料の 250°Cでの保持時間と水素貯蔵率との関係を示すグラフ を示す。図 36において、水素貯蔵率は累積値で示されている。また、水素貯蔵材料 力 は 250°Cに達するまでに水素が放出される力 その量は 250°Cでの保持開始か ら放出される水素量と比べると極めて少ないために、図 36の水素貯蔵率に積算して いない。図 36力ら、実施例 105 109のローラーミル、内外筒回転型ミル、アトライタ 一、インナーピース型ミル、気流粉砕型ミルのような量産可能な製造装置を用いて製 造した水素貯蔵材料は、量産が困難な比較例 102の遊星型ボールミルを用いて製 造した水素貯蔵材料と同等またはそれ以上の水素貯蔵率を有することが確認された [0364] 次に、さらに別の製造装置について説明する。図 37に第 6の製造装置 110の概略 構成を示す断面図を示す。この製造装置 110は、その中で水素貯蔵材料用原料 (以 下「原料」という)を粉碎するための円筒状の粉碎容器 111と、原料と所定の溶剤から なるスラリーを粉砕容器 111内に導入するためのスラリー供給口 112と、粉砕容器 11 1内のスラリーを排出するための第 1スラリー排出口 113a、第 2スラリー排出口 113b と、粉砕容器 111に所定量充填された粉砕ボール 114と、粉砕ボール 114を粉砕容 器 111内で搔き回す攪拌装置 115と、粉砕容器 111内のスラリーを循環させるため の循環ポンプ 116と、粉砕容器 111内のガス置換を行うための吸排気口 117と、を備 えている。 Figure 36 shows a graph showing the relationship between the retention time of the hydrogen storage material at 250 ° C and the hydrogen storage rate. In FIG. 36, the hydrogen storage rate is shown as a cumulative value. In addition, the hydrogen storage material power is the force with which hydrogen is released before it reaches 250 ° C. The amount of hydrogen is extremely small compared to the amount of hydrogen released from the start of holding at 250 ° C. Not calculated in rate. Fig. 36 The hydrogen storage material manufactured using a mass-producible manufacturing apparatus such as a roller mill, an inner and outer cylinder rotary mill, an attritor, an inner piece mill, and an air current mill of Example 105 109 is as follows. It was confirmed that the hydrogen storage rate was equal to or higher than the hydrogen storage material manufactured using the planetary ball mill of Comparative Example 102, which is difficult to mass-produce. Next, still another manufacturing apparatus will be described. FIG. 37 is a sectional view showing a schematic configuration of the sixth manufacturing apparatus 110. The manufacturing apparatus 110 introduces a cylindrical grinding vessel 111 for grinding a raw material for a hydrogen storage material (hereinafter referred to as “raw material”) therein, and a slurry composed of the raw material and a predetermined solvent into the grinding vessel 111. A slurry supply port 112, a first slurry discharge port 113a, a second slurry discharge port 113b for discharging the slurry in the grinding container 111, a grinding ball 114 filled in a predetermined amount in the grinding container 111, A stirrer 115 for rotating the crushing ball 114 in the crushing container 111, a circulation pump 116 for circulating the slurry in the crushing container 111, and a suction / exhaust port 117 for performing gas replacement in the crushing container 111. , Are provided.
[0365] 原料はスラリーの形態で粉砕容器 111に供給される。この原料としては、グラフアイ トゃカーボンナノチューブ等の炭素質材料や、無機系ハイドライド(LiBH NaBH  [0365] The raw material is supplied to the grinding container 111 in the form of a slurry. The raw materials include carbonaceous materials such as graphite and carbon nanotubes, and inorganic hydrides (LiBH NaBH
4 等のボロハイドライドおよび NaAlH Na A1Hおよび Li A1H等のァラネート)、金  Borohydrides such as 4 and aranates such as NaAlH Na A1H and Li A1H), gold
4 3 6 3 6  4 3 6 3 6
属水素化物(Li Be Na K Ca等の水素化物)と金属アミド化合物(Li Be Na K Ca等のアミド化合物)の混合物、金属水素化物と炭素質材料の混合物等が挙げ られる。水素吸蔵処理が必要な材料では、原料に水素を貯蔵させておいてもよいが 、粉砕処理して得られた粉体に対して、さらに水素吸蔵処理を行うことが好ましい。  A mixture of a genus hydride (a hydride such as Li Be Na K Ca) and a metal amide compound (an amide compound such as Li Be Na K Ca), and a mixture of a metal hydride and a carbonaceous material are exemplified. For a material that requires a hydrogen storage treatment, hydrogen may be stored in the raw material, but it is preferable to further perform a hydrogen storage treatment on the powder obtained by the pulverization treatment.
[0366] 原料には、水素発生反応を促進させる触媒を添加することも好ましい。このような触 媒としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru,〇s, Mo, W, Ta, Zr, In, Hf, Agから 選ばれた 1種または 2種以上の金属またはその化合物またはその合金、あるいは水 素貯蔵合金が挙げられる。  [0366] It is also preferable to add a catalyst for promoting the hydrogen generation reaction to the raw materials. Such catalysts include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, 〇s, Mo, W, Ta, Zr, In, Hf, Ag, their compounds or alloys, or hydrogen storage alloys Is mentioned.
[0367] スラリーを作製するために用いられる溶剤としては、ジクロロペンタフルォロプロパン  [0367] Dichloropentafluoropropane was used as a solvent for preparing the slurry.
(比重 1. 55、融点 _112°C、沸点 54°C)、 n キサン(比重 0. 66、融点— 95. 3°C 沸点 68. 7°C)、ペンタン(比重 0. 63、融点— 129. 7°C、沸点 36. 1 C)、IPA (イソプ 口ピルアルコール:比重 0. 79、融点— 90°C、沸点 83°C)、 MEK (メチルェチルケトン ;比重 0. 81、融点— 83°C、沸点 80°C)、トルエン(比重 0. 87、融点— 95°C、沸点 11 1°C)等が挙げられる。また、シリコーンオイルを用いることもできる。  (Specific gravity 1.55, melting point _112 ° C, boiling point 54 ° C), n-xane (specific gravity 0.66, melting point-95.3 ° C, boiling point 68.7 ° C), pentane (specific gravity 0.63, melting point-129) 7 ° C, Boiling point 36.1 C), IPA (Isopyl pill alcohol: specific gravity 0.79, melting point—90 ° C, Boiling point 83 ° C), MEK (methyl ethyl ketone; Specific gravity 0.81, melting point— 83 ° C, boiling point 80 ° C), toluene (specific gravity 0.87, melting point-95 ° C, boiling point 111 ° C) and the like. Also, silicone oil can be used.
[0368] 円筒状の粉砕容器 111は、その長手方向を水平にして配置されており、その一方 の端面側にスラリー供給口 112が設けられ、他端側の上部に第 1スラリー排出部 113 aが、他端側の下部に第 2スラリー排出口 113bがそれぞれ設けられている。スラリー 供給口 112に設けられた配管にはバルブ 125が設けられている。また、第 1スラリー 排出口 113aに設けられた配管には逆流防止弁 126が設けられており、第 1スラリー 排出口 113aから粉砕容器 111内に空気が流れ込まなレ、ようになってレ、る。 [0368] The cylindrical crushing container 111 is disposed with its longitudinal direction being horizontal. A slurry supply port 112 is provided on the end face side, a first slurry discharge section 113a is provided on an upper portion on the other end side, and a second slurry discharge port 113b is provided on a lower portion on the other end side. A valve 125 is provided in a pipe provided at the slurry supply port 112. In addition, a check valve 126 is provided in the pipe provided at the first slurry discharge port 113a so that air does not flow into the pulverizing container 111 from the first slurry discharge port 113a. .
[0369] 製造装置 110では、後述するように、連続的に水素貯蔵材料を製造することができ る。第 1スラリー排出口 113aは、このような連続処理の際のスラリー排出に用いられる  [0369] In the production apparatus 110, as described later, a hydrogen storage material can be produced continuously. The first slurry discharge port 113a is used for slurry discharge during such a continuous process.
[0370] 第 2スラリー排出口 113bに取り付けられた配管には切替バルブ 118が取り付けら れている。この切替バルブ 118を操作することにより、粉砕容器 111に一定量のスラリ 一を導入して所定時間の粉砕処理を行った後、処理されたスラリーを採取することが できるようになつている。また、切替バルブ 118を操作することにより、第 2スラリー排 出口 113bから排出されたスラリーを循環ポンプ 1 16へ送ることができるようになって いる。 [0370] A switching valve 118 is attached to the pipe attached to the second slurry outlet 113b. By operating the switching valve 118, after a certain amount of slurry is introduced into the crushing container 111 and crushing treatment is performed for a predetermined time, the processed slurry can be collected. Further, by operating the switching valve 118, the slurry discharged from the second slurry discharge outlet 113b can be sent to the circulation pump 116.
[0371] 粉碎ボーノレ 114は、粉砕容器 111の一端に設けられた密閉可能なボール投入口 1 [0371] The milling Benore 114 is a sealable ball inlet 1 provided at one end of the milling vessel 111.
28を通して、粉砕容器 111内に所定量が充填される。粉碎ボール 114としては、粉 砕時の摩耗によりスラリー中に混在することとなる成分が水素貯蔵材料の水素貯蔵Through 28, a predetermined amount is filled in the crushing container 111. As the milling balls 114, the components that will be mixed in the slurry due to wear during the milling are used as the hydrogen storage material.
/放出特性に悪影響を与えない材料からなるものが好適に用いられ、例えば、ジル コユアが好適である。 Materials made of a material that does not adversely affect the release characteristics are preferably used, and for example, zirconia is preferable.
[0372] 攪拌装置 115は、粉砕容器 111の一端に粉砕容器 111の長手方向に一致するよう に配置された枢軸 121と、枢軸 121の長手方向に垂直に所定間隔で複数設けられ たインペラ 122と、ネ区車由 121を回転させるモータ 123と、を備えてレ、る。モータ 123に より枢軸 121を回転させると、インペラ 122により粉砕ボール 114が粉砕容器 111内 で搔き回され、このときの粉砕ボール 114どうしの衝突、摩擦によりスラリー中の原料 が粉砕される。  [0372] The stirring device 115 includes a pivot 121 disposed at one end of the crushing container 111 so as to coincide with the longitudinal direction of the crushing container 111, and a plurality of impellers 122 provided at predetermined intervals perpendicular to the longitudinal direction of the pivot 121. And a motor 123 for rotating the vehicle 121. When the pivot 121 is rotated by the motor 123, the grinding balls 114 are rotated by the impeller 122 in the grinding container 111, and the raw material in the slurry is ground by the collision and friction between the grinding balls 114 at this time.
[0373] 循環ポンプ 116は、切替バルブ 118を通して第 2スラリー排出口 113bからスラリー を一定流量で取り出し、スラリー供給口 112へ送る。このようにスラリーの一部を循環 させながら粉砕処理を行うことにより、原料を均一に粉砕することができる。 [0374] 吸排気口 117に設けられた配管には切替バルブ 119が設けられており、この切替 バルブ 119を操作することにより、粉砕容器 111内を減圧することができ、また、粉碎 容器 111内を所定のガス(例えば、窒素(N )やアルゴン (Ar)等の不活性ガス)で満 The circulation pump 116 takes out the slurry at a constant flow rate from the second slurry discharge port 113 b through the switching valve 118 and sends the slurry to the slurry supply port 112. By performing the pulverizing process while circulating a part of the slurry in this manner, the raw material can be pulverized uniformly. [0374] A switching valve 119 is provided in a pipe provided at the intake / exhaust port 117. By operating the switching valve 119, the pressure inside the crushing vessel 111 can be reduced, and the inside of the crushing vessel 111 can be reduced. Is filled with a predetermined gas (for example, an inert gas such as nitrogen (N) or argon (Ar)).
2  2
たすことができるようになつている。なお、第 2スラリー排出口 113bからスラリーを回収 するために排出する際に、粉砕容器 111内に不活性ガスを供給することにより、スラリ 一の排出を容易に行うことができる。  You can do it. When the slurry is discharged from the second slurry discharge port 113b for recovery, the slurry can be easily discharged by supplying an inert gas into the crushing container 111.
[0375] 続いて、製造装置 110によるバッチ式処理での水素貯蔵材料の製造工程について 説明する。最初に、粉砕容器 111内のガス(空気)を除去するために、吸排気口 117 および切替バルブ 119を通して粉砕容器 111内を減圧する。この状態で、粉砕容器 111内にスラリー供給口 112を通して予め調製された一定量のスラリーを供給しても ょレ、し、または、粉砕容器 111内に吸排気口 117および切替バルブ 119を通して不 活性ガスを供給した後に、スラリー供給口 112を通して一定量のスラリーを供給しても よい。後者の場合、粉碎容器 111内の不活性ガスは、粉砕容器 111内にスラリーが 供給されるにしたがって第 1スラリー排出口 113aから排出される。  Next, a description will be given of a manufacturing process of the hydrogen storage material in the batch processing by the manufacturing apparatus 110. First, in order to remove gas (air) in the crushing container 111, the pressure in the crushing container 111 is reduced through the suction / exhaust port 117 and the switching valve 119. In this state, a predetermined amount of slurry prepared in advance may be supplied into the grinding container 111 through the slurry supply port 112, or the slurry may be inertized into the grinding container 111 through the intake / exhaust port 117 and the switching valve 119. After supplying the gas, a certain amount of slurry may be supplied through the slurry supply port 112. In the latter case, the inert gas in the crushing vessel 111 is discharged from the first slurry discharge port 113a as the slurry is supplied into the crushing vessel 111.
[0376] 次いで、攪拌装置 115を駆動して、原料の粉碎処理を所定時間行う。このとき、循 環ポンプ 116を動作させて、粉砕容器 111内のスラリーを一定の流量で循環させる。 所定時間の粉碎処理が終了したら、第 2スラリー排出口 113bを通してスラリーを空気 に触れないように、例えば窒素ガスが充填された容器、真空減圧された容器等に回 収する。スラリーを粉砕容器 111から排出する際には、吸排気口 117を通して粉砕容 器 111内に不活性ガスを供給する。これによりスラリーの排出をスムーズに行うことが でき、し力も、次のバッチ処理を行うための準備も整えられる。  [0376] Next, the stirring device 115 is driven, and the raw material is ground for a predetermined time. At this time, the circulation pump 116 is operated to circulate the slurry in the grinding container 111 at a constant flow rate. After the pulverization process for a predetermined time is completed, the slurry is recovered through a second slurry discharge port 113b into a container filled with, for example, nitrogen gas, a container reduced in vacuum, or the like so as not to come into contact with air. When the slurry is discharged from the crushing container 111, an inert gas is supplied into the crushing container 111 through the suction / exhaust port 117. As a result, the slurry can be discharged smoothly, and the preparation force for preparing the next batch process is prepared.
[0377] 容器に回収したスラリーは、例えば、不活性ガス気流中で、スラリーを構成する溶剤 の沸点以上、水素貯蔵材料が実質的に水素を多く放出し始める温度以下、で熱処 理する。これによつてスラリーから溶剤が蒸発し、乾燥した水素貯蔵材料が得られる。 なお、不活性ガス気流を水冷トラップにフローさせることにより溶媒を回収するとともに 、これにより乾燥した不活性ガスを再びスラリーの熱処理に供することができる。  [0377] The slurry recovered in the container is heat-treated in an inert gas stream at a temperature equal to or higher than the boiling point of the solvent constituting the slurry and equal to or lower than the temperature at which the hydrogen storage material starts to release a substantial amount of hydrogen. As a result, the solvent evaporates from the slurry, and a dry hydrogen storage material is obtained. The solvent can be recovered by flowing the inert gas stream through the water-cooled trap, and the dried inert gas can be again subjected to the heat treatment of the slurry.
[0378] スラリーに用いられている溶剤の沸点が高いために、このような熱処理を行うことが できない場合には、フィルタや遠心分離器等を用いて、スラリーを溶剤と水素貯蔵材 料に分離し、その後、水素貯蔵材料を沸点の低い溶剤で洗浄処理し、さらにこの低 沸点溶剤を蒸発させる。これにより、乾燥した水素貯蔵材料を得ることができる。 [0378] If such a heat treatment cannot be performed because the boiling point of the solvent used in the slurry is high, the slurry and the hydrogen storage material are separated using a filter or a centrifuge. After that, the hydrogen storage material is washed with a low-boiling solvent, and the low-boiling solvent is evaporated. Thereby, a dry hydrogen storage material can be obtained.
[0379] 次に、水素貯蔵材料を連続処理により製造する装置について説明する。図 38は、 製造装置 130の概略構成を示す断面図である。この製造装置 130は、先に説明した 製造装置 110を中心に、これに、原料と所定の溶剤からなるスラリーを調製するスラリ 一調製装置 131と、スラリー調製装置 131におレ、て調製されたスラリーをスラリー供 給口 112を通して粉砕容器 111内に連続的に供給するスラリー供給ポンプ 132と、 第 1スラリー排出口 113aから排出されるスラリーを加熱してスラリーに含まれる溶剤を 蒸発させるスラリー乾燥装置 133と、スラリー乾燥装置 133により乾燥処理された水 素貯蔵材料を充填する充填容器 134と、が加えられた構成を有する。  [0379] Next, an apparatus for producing a hydrogen storage material by continuous processing will be described. FIG. 38 is a cross-sectional view illustrating a schematic configuration of the manufacturing apparatus 130. This production apparatus 130 is prepared mainly by the production apparatus 110 described above, and further by a slurry preparation apparatus 131 for preparing a slurry composed of raw materials and a predetermined solvent, and a slurry preparation apparatus 131. A slurry supply pump 132 for continuously supplying the slurry through the slurry supply port 112 into the crushing vessel 111, and a slurry drying apparatus for heating the slurry discharged from the first slurry discharge port 113a to evaporate a solvent contained in the slurry. 133, and a filling container 134 for filling the hydrogen storage material dried by the slurry drying device 133.
[0380] 製造装置 110の構成については先に説明した通りであるから、ここでの説明は省略 する。スラリー調製装置 131は、原料と所定の溶剤とを、大まかに均一に混合させる ことができればよぐ例えば、回転羽根を用いたミキサー等が好適に用いられる。これ は、粉碎容器 111内での粉砕処理によってスラリーが十分に攪拌されるためである。 スラリー調製装置 131においてスラリーを調製する容器の部分は、スラリーが空気に 触れないように、不活性ガス雰囲気に保持される。スラリー調製装置 131には、連続 的に一定量の原料および溶剤が追加投入される構成とすることも好ましい。  [0380] The configuration of manufacturing apparatus 110 is as described above, and description thereof will not be repeated. As the slurry preparation device 131, for example, a mixer using a rotary blade is preferably used as long as the raw material and the predetermined solvent can be roughly and uniformly mixed. This is because the slurry is sufficiently stirred by the pulverizing process in the pulverizing vessel 111. The part of the container for preparing the slurry in the slurry preparation device 131 is maintained in an inert gas atmosphere so that the slurry does not come into contact with air. It is also preferable that the slurry preparation device 131 be configured to continuously add a fixed amount of raw materials and a solvent.
[0381] 粉砕容器 111内がスラリーで満たされた状態で、さらにスラリー供給ポンプ 132によ りスラリー調製装置 131から粉砕容器 11 1にスラリーを一定流量で供給すると、その 供給圧力に応じて、一定量の粉砕処理済みのスラリーが第 1スラリー排出口 113aか ら排出される。  [0381] When the slurry in the grinding container 111 is filled with the slurry and the slurry is further supplied from the slurry preparation device 131 to the grinding container 111 by the slurry supply pump 132 at a constant flow rate, the slurry is supplied at a constant rate according to the supply pressure. An amount of the crushed slurry is discharged from the first slurry discharge port 113a.
[0382] スラリー乾燥装置 133としては、例えば、粉砕容器 111から第 1スラリー排出口 113 aを通して排出されたスラリーを、不活性ガス雰囲気で所定の温度に加熱保持された ゾーン内に滴下または噴霧することにより、スラリーの溶剤を蒸発させるとともに乾燥 した水素貯蔵材料を採集させる構造のものを用いることができる。  [0382] As the slurry drying device 133, for example, the slurry discharged from the crushing container 111 through the first slurry discharge port 113a is dropped or sprayed into a zone heated and maintained at a predetermined temperature in an inert gas atmosphere. Accordingly, it is possible to use a structure that evaporates the solvent of the slurry and collects the dried hydrogen storage material.
[0383] 充填容器 134は不活性ガス雰囲気に保持されており、スラリー乾燥装置 133によつ て乾燥処理された水素貯蔵材料を回収する。スラリー乾燥装置 133と充填容器 134 とは、図示しない脱着機構により、それぞれに空気が入り込まないように脱着自在で あり、水素貯蔵材料の移送は充填容器 134の運搬により行うことができるようになって いる。 [0383] The filling container 134 is maintained in an inert gas atmosphere, and collects the hydrogen storage material dried by the slurry drying device 133. The slurry drying device 133 and the filling container 134 are detachable by an unillustrated detachment mechanism so that air does not enter each. Yes, the transfer of the hydrogen storage material can be performed by transporting the filling container 134.
[0384] 次に、製造装置 130による連続処理での水素貯蔵材料の製造工程について説明 する。最初に、スラリー調製装置 131に原料および溶剤を投入し、スラリーを調製す る。また先に説明したように、粉砕容器 111内のガス(空気)を除去するために粉砕容 器 111内を減圧した後に、粉砕容器 111内に不活性ガスを供給する。続いて、スラリ 一供給ポンプ 132を動作させて、スラリー調製装置 131から粉砕容器 111にスラリー を供給する。例えば、粉砕容器 111内に所定量のスラリーが供給された時点で、一 旦、スラリーの供給を停止した後、攪拌装置 115を駆動して、原料の粉砕処理を開始 する。このとき、循環ポンプ 116を動作させて、粉砕容器 111内のスラリーを一定の流 量で循環させる。  [0384] Next, a description will be given of a manufacturing process of the hydrogen storage material in the continuous processing by the manufacturing apparatus 130. First, a raw material and a solvent are charged into the slurry preparation device 131 to prepare a slurry. Further, as described above, after the pressure in the crushing container 111 is reduced in order to remove the gas (air) in the crushing container 111, an inert gas is supplied into the crushing container 111. Subsequently, the slurry supply pump 132 is operated to supply the slurry from the slurry preparation device 131 to the grinding container 111. For example, when a predetermined amount of slurry is supplied into the crushing container 111, the supply of the slurry is stopped once, and then the stirring device 115 is driven to start the crushing process of the raw material. At this time, the circulation pump 116 is operated to circulate the slurry in the crushing container 111 at a constant flow rate.
[0385] 所定時間経過後、スラリー調製装置 131からスラリーを一定流量で粉砕容器 111へ 連続して供給する。このスラリーの連続供給によって粉碎容器 111から第 1スラリー排 出口 113aを通して粉碎処理を終えたスラリー力 スラリー乾燥装置 133に向けて一 定流量で排出される。スラリー乾燥装置 133では、粉砕容器 111から送られてきたス ラリーから溶剤を蒸発させる。こうして、得られる乾燥した水素貯蔵材料は、充填容器 134に回収される。  [0385] After a lapse of a predetermined time, the slurry is continuously supplied from the slurry preparation device 131 to the grinding container 111 at a constant flow rate. By the continuous supply of the slurry, the slurry is discharged from the grinding container 111 at a constant flow rate through the first slurry discharge outlet 113a to the slurry force slurry drying device 133 after the grinding process. In the slurry drying device 133, the solvent is evaporated from the slurry sent from the grinding container 111. The dried hydrogen storage material thus obtained is collected in the filling container 134.
[0386] 所定量の水素貯蔵材料が得られたら、または、所定量のスラリーを粉砕容器 111に 供給し終えたら、粉碎容器 111へのスラリー供給を停止するとともに、攪拌装置 115 および循環ポンプ 116の動作を停止させる。粉碎容器 111内に残ったスラリーは、第 2スラリー排出口 113bを通してスラリーを空気に触れないように、所定の容器に回収 してもょレ、し、製造装置 130の運転を再開するまでの時間間隔が短い場合には、そ のまま粉砕容器 111内に滞留させてぉレ、てもよレ、。  [0386] When a predetermined amount of the hydrogen storage material is obtained, or when a predetermined amount of the slurry is supplied to the crushing container 111, the supply of the slurry to the crushing container 111 is stopped, and the stirring device 115 and the circulation pump 116 are turned off. Stop the operation. The slurry remaining in the milling vessel 111 is collected in a predetermined vessel through the second slurry discharge port 113b so that the slurry does not come into contact with air, and the time until the operation of the manufacturing apparatus 130 is resumed. If the interval is short, it is retained in the crushing container 111 as it is.
[0387] 製造装置 130における水素貯蔵材料の回収方法は図 38に示した形態に限定され るものではない。図 39に別の製造装置 13(Τ の概略構成を示す断面図を示す。製 造装置 13(Τ では、粉砕容器 111から排出される粉砕処理済みのスラリーの取り扱 い方法が、先に説明した製造装置 130と異なるので、以下、この点について説明す る。 [0388] 製造装置 130' では、粉砕容器 111から第 1スラリー排出口 113aを通して排出さ れるスラリーを回収するスラリー充填容器 135を備えている。このスラリー充填容器 13 5の内部にはヒータ 136が設けられている。また、スラリー充填容器 135の上部にはガ ス排出口 139が設けられ、ガス排出口 139に設けられた配管には開閉バルブ 138が 取り付けられている。 [0387] The method of recovering the hydrogen storage material in production apparatus 130 is not limited to the mode shown in FIG. FIG. 39 is a cross-sectional view showing a schematic configuration of another manufacturing apparatus 13 (Τ). In the manufacturing apparatus 13 (Τ), a method for handling the pulverized slurry discharged from the grinding container 111 is described above. Since this is different from the manufacturing apparatus 130 described above, this point will be described below. [0388] The manufacturing apparatus 130 'is provided with a slurry filling container 135 for collecting the slurry discharged from the pulverizing container 111 through the first slurry discharge port 113a. A heater 136 is provided inside the slurry filling container 135. Further, a gas discharge port 139 is provided at an upper portion of the slurry filling container 135, and an open / close valve 138 is attached to a pipe provided at the gas discharge port 139.
[0389] このスラリー充填容器 135は、粉砕容器 111とスラリー充填容器 135とを結ぶ配管 に対して、図示しない脱着機構により脱着自在となっている。スラリー充填容器 135 へのスラリーの導入は、スラリー充填容器 135内に空気が入らないように、開閉バル ブ 138を開いてスラリー充填容器 135内の不活性ガスを排出しながら行うことができ る。  [0389] The slurry filling container 135 is detachable from a pipe connecting the crushing container 111 and the slurry filling container 135 by a detachment mechanism (not shown). The introduction of the slurry into the slurry filling container 135 can be performed while opening the opening / closing valve 138 and discharging the inert gas in the slurry filling container 135 so that air does not enter the slurry filling container 135.
[0390] ヒータ 136は、スラリー充填容器 135に貯蔵されたスラリーを加熱してスラリーに用 レ、られている溶剤を蒸発させるために用いられる。スラリー充填容器 135は、スラリー を導入するために設けられた開口部とガス排出口 139の 2つの開口部を備えている ので、貯蔵されたスラリーを加熱する際に、スラリーを導入するために設けられた開口 部を通してスラリー充填容器 135の底部に不活性ガスを導入し、ガス排出口 139から 排出させることで、乾燥処理を促進させることができる。  [0390] The heater 136 is used to heat the slurry stored in the slurry filling container 135 and evaporate the solvent used for the slurry. The slurry filling container 135 has two openings, an opening provided for introducing the slurry and a gas outlet 139, so that it is provided for introducing the slurry when heating the stored slurry. By introducing an inert gas into the bottom of the slurry filling container 135 through the opening and discharging the gas through the gas outlet 139, the drying process can be promoted.
[0391] なお、ヒータ 136は、水素貯蔵材料から水素を放出させるための加熱処理に用いる こともできる。一方、水素貯蔵材料からの水素放出は、スラリー充填容器 135を所定 の加熱装置 137 (例えば、電気炉)内に配置し、カロ熱することによって行ってもよレ、。 また、ヒータ 136が設けられていなレ、スラリー貯蔵容器にスラリーを回収して、スラリー 貯蔵容器全体を、恒温乾燥器等を用いて加熱することによって、スラリーの溶媒を蒸 発させ、水素貯蔵材料を乾燥させることも可能である。  [0391] The heater 136 can also be used for heat treatment for releasing hydrogen from the hydrogen storage material. On the other hand, the release of hydrogen from the hydrogen storage material may be performed by disposing the slurry filling container 135 in a predetermined heating device 137 (for example, an electric furnace) and heating with calo. In addition, the slurry is collected in a slurry storage container where the heater 136 is not provided, and the entire slurry storage container is heated using a constant temperature drier or the like, so that the solvent of the slurry is evaporated, and the hydrogen storage material is removed. Can also be dried.
[0392] スラリーの溶剤蒸発処理が終了した後には、スラリー充填容器 135には乾燥した水 素貯蔵材料が充填されるため、水素貯蔵材料の移送はスラリー充填容器 135を運搬 することによって行うことができる。  [0392] After the solvent evaporation treatment of the slurry is completed, since the dried hydrogen storage material is filled in the slurry filling container 135, the transfer of the hydrogen storage material can be performed by transporting the slurry filling container 135. it can.
[0393] (実施例 111)  [0393] (Example 111)
溶剤として IPA (イソプロピルアルコール) 3Lを混合機 (タンクミキサー)に加え、固 形分濃度が 60%となるように、水素化リチウム(LiH ;純度 95%、シグマ'アルドリッチ 社製)とリチウムアミド(LiNH ;純度 95%、シグマ'アルドリッチ社製)をモル比で 1: 1 Add 3 L of IPA (isopropyl alcohol) as a solvent to a mixer (tank mixer) and adjust the solid content concentration to 60% with lithium hydride (LiH; purity 95%, Sigma-Aldrich). And Lithium amide (LiNH; 95% purity, Sigma-Aldrich) in a molar ratio of 1: 1.
2  2
、これに三塩ィ匕チタン (TiCl ;純度 99· 999%、シグマ'アルドリッチ社製)を全リチウ  Then, all of the salt was mixed with Sanshio Dani Titanium (TiCl; purity 99/999%, manufactured by Sigma-Aldrich).
3  Three
ム量の lmol%となるように計り取り、 10分間混合を行レ、スラリーを調製した。  The mixture was weighed so as to be 1 mol% of the total volume, and mixed for 10 minutes to prepare a slurry.
[0394] 次いで、このスラリーを Ar雰囲気中でビーズミル (製品名:ァシザワネ土製スターミノレ を使用,ビーズ径: 2mm以下,ビーズ材質:ジルコユア,ビーズ充填量: 80%,回転 速度:周速 10mZ秒)に移し、ビーズミル中で 60分間混合した。なお、実施例 111で 使用したビーズミルには、循環タンクミキサーが併設されており、スラリーはビーズミル と循環タンクとの間を循環する。  [0394] Next, this slurry was put into a bead mill (product name: using ashizawane earthen star minole, bead diameter: 2 mm or less, bead material: zircon, bead filling amount: 80%, rotation speed: peripheral speed 10 mZ seconds) in an Ar atmosphere. Transfer and mix in bead mill for 60 minutes. The bead mill used in Example 111 was provided with a circulation tank mixer, and the slurry circulated between the bead mill and the circulation tank.
[0395] この粉砕 ·混合後のスラリーを大気に触れさせないように Ar雰囲気の容器に取り出 し、 Ar気流中(グレード GAA (露点:— 88. 8°C、 O : 0. 4ppm)、 90°Cで乾燥を行つ  [0395] The crushed and mixed slurry was taken out of a container in an Ar atmosphere so as not to be exposed to the air, and was placed in an Ar gas stream (grade GAA (dew point:-88.8 ° C, O: 0.4 ppm), 90 Dry at ° C
2  2
た。なお、 Ar気流を水冷トラップにフローさせることで、溶媒を回収した。乾燥した水 素貯蔵材料は、 Arグローブボックス中で取り出し、後述する水素放出率の測定方法 に基づレ、て水素放出率を測定した。  It was. The solvent was recovered by flowing an Ar gas stream through a water-cooled trap. The dried hydrogen storage material was taken out in an Ar glove box, and the hydrogen release rate was measured based on the hydrogen release rate measurement method described later.
[0396] (比較例 111)  [0396] (Comparative Example 111)
LiHと LiNHをモル比で 1 : 1、これに TiClを全リチウム量の lmol%となるように配  LiH and LiNH are in a molar ratio of 1: 1 and TiCl is added so as to be 1 mol% of the total lithium amount.
2 3  twenty three
合し、全量で 50gになるように計り取り、内容積 500cm3の高クロム鋼製ミル容器 (真 空排気バルブおよびガス導入バルブ付)に入れ、ミル容器内を真空排気した後、ミル 容器内が IMPaとなるようにミル容器内に Ar ( a 2、 6N (露点く— 80°C,〇 : < 0. lp After weighing the mixture to a total volume of 50 g, place it in a 500 cm 3 high chrome steel mill container (with a vacuum exhaust valve and gas introduction valve), evacuate the mill container, and then evacuate the mill container. Ar (a2, 6N (dew point — 80 ° C, 〇: <0. lp)
2 pm)を導入した。粉碎'混合は、遊星型ボールミル装置(Fritsch社製、 P5)を用いて 、公転数 250rpmで 60分間ミリングを行った。なお、粉砕ボールにはジルコ二ァ製ボ ール(Φ 10mm)を 120個使用した。  2 pm). For the crushing and mixing, milling was carried out at a revolution number of 250 rpm for 60 minutes using a planetary ball mill (Fritsch, P5). In addition, 120 balls (Φ10 mm) made of Zirconia were used for the grinding balls.
[0397] (水素放出量の測定)  [0397] (Measurement of hydrogen release amount)
高純度 Arグローブボックス内で、実施例 111および比較例 111の試料をそれぞれ 500mg計り取り、試料容器に移し替えた。真空排気した試料容器中の水素貯蔵材 料を電気炉で室温一 250°Cまで昇温速度 10°C/分で加熱し、 250°Cで 90分間保 持した。なお、 250°C保持中は、放出ガス圧が 20kPa以下となるようにバッファ容器 を用いてガス圧を調整した。各温度および 250°Cで採取したガスを 20°Cに冷却し、こ の放出ガスを配管を通じてガスクロマトグラフ(島津製作所製、 GC9A、 TCD検出器 、カラム: Molecular Sieve 5A)に導入し、水素量を測定した。水素放出量として は、この水素量を加熱前の水素貯蔵材料の質量で除した値とした。 In a high-purity Ar glove box, 500 mg of each of the samples of Example 111 and Comparative Example 111 was measured and transferred to a sample container. The hydrogen storage material in the evacuated sample container was heated in an electric furnace to room temperature-250 ° C at a heating rate of 10 ° C / min and kept at 250 ° C for 90 minutes. During the 250 ° C hold, the gas pressure was adjusted using a buffer container so that the released gas pressure was 20 kPa or less. The gas collected at each temperature and 250 ° C is cooled to 20 ° C, and this released gas is passed through a pipe to a gas chromatograph (Shimadzu Corporation, GC9A, TCD detector). Column: Molecular Sieve 5A), and the amount of hydrogen was measured. The amount of released hydrogen was a value obtained by dividing the amount of hydrogen by the mass of the hydrogen storage material before heating.
[0398] (試験結果)  [0398] (Test results)
40に水素貯蔵材料の昇温時間および温度と水素貯蔵率との関係を示す。図 40 において、水素貯蔵率は累積値で示されており、製造装置 110を用いて製造した実 施例 111の水素貯蔵材料は、比較例 111の遊星型ミルを用レ、て製造した水素貯蔵 材料よりも高い水素貯蔵率を有することが確認された。 FIG. 40 shows the relationship between the heating time and temperature of the hydrogen storage material and the hydrogen storage rate. In FIG. 40, the hydrogen storage rate is shown as a cumulative value, and the hydrogen storage material of Example 111 manufactured using the manufacturing apparatus 110 is the hydrogen storage material manufactured using the planetary mill of Comparative Example 111. It has been found that it has a higher hydrogen storage rate than the material.
[0399] 以上に説明した各種の水素貯蔵材料では、水素貯蔵材料前駆体 (つまり、水素を 吸蔵することにより水素貯蔵材料となるもの)が高い水素吸蔵能力を有していることは 重要であり、このことは水素貯蔵材料の水素級放出反応のサイクル特性を向上させ ることにも寄与する。そこで、次に水素貯蔵材料前駆体とその製造方法について説 明する。  [0399] In the various types of hydrogen storage materials described above, it is important that the hydrogen storage material precursor (that is, a hydrogen storage material by storing hydrogen) has a high hydrogen storage capacity. This also contributes to improving the cycle characteristics of the hydrogen-grade release reaction of the hydrogen storage material. Therefore, the hydrogen storage material precursor and its production method will be described next.
[0400] まず、水素貯蔵材料前駆体としてリチウムイミド (Li NH)を例に挙げて説明する。 L  [0400] First, lithium imide (Li NH) will be described as an example of a hydrogen storage material precursor. L
2  2
i NHは、下記(29)式に示されるように、水素と反応することによって、水素貯蔵材料 i NH is a hydrogen storage material that reacts with hydrogen as shown in equation (29) below.
2 2
であるリチウムアミド (LiNH )と水素化リチウム(LiH)との複合体に変化する。こうして  To a complex of lithium amide (LiNH 4) and lithium hydride (LiH). In this way
2  2
得られた LiNHと LiHの複合体は、所定温度に加熱することによって水素(H )を放  The resulting complex of LiNH and LiH releases hydrogen (H) by heating to a predetermined temperature.
2 2 出し、 Li NHへと変化する。つまり下記(29)式で示される化学反応は、異なる物質 2 2 changes to Li NH. In other words, the chemical reaction expressed by the following equation (29)
2 2
間で反応が可逆的に進行する、所謂、可逆的不均化反応であり、このような反応サイ クルが繰り返される。  This is a so-called reversible disproportionation reaction in which the reaction proceeds reversibly, and such a reaction cycle is repeated.
LiNH +LiH Li NH + H…(29)  LiNH + LiH Li NH + H… (29)
2 2 2  2 2 2
[0401] 上記(29)式によれば、 Li NHの合成は、 LiNHと LiHとを混合し、これを所定の  [0401] According to the above formula (29), in the synthesis of LiNH, LiNH and LiH are mixed, and
2 2  twenty two
温度に加熱する方法によって行うことができる。しかし、固体材料どうしを混合させる 方法では、 LiNHと LiHとの微細複合化には限度があり、また粉砕混合時間が長く  This can be done by heating to a temperature. However, in the method of mixing solid materials, there is a limit to the fine composite of LiNH and LiH, and the mixing time for grinding is long.
2  2
掛かるという問題がある。そこで、本発明においては、 Li NHを LiNHと LiHとの反  There is a problem of hanging. Therefore, in the present invention, LiNH is converted into a reaction between LiNH and LiH.
2 2  twenty two
応を経ることなく合成する。  Synthesize without any response.
[0402] このような Li NHの具体的な製造方法として、下記(30)式に示されるような LiNH  [0402] As a specific method for producing such LiNH, LiNH represented by the following formula (30) is used.
2 2 を熱分解する方法がある。  There is a method to thermally decompose 2 2.
2LiNH→Li NH + NH…(30)  2LiNH → Li NH + NH… (30)
2 2 3 [0403] このような方法によって合成された Li NHは、組成と組織の均一性に優れるために 2 2 3 [0403] Li NH synthesized by such a method has excellent composition and texture uniformity.
2  2
、このような Li NHと水素とを反応させることによって、 LiNHと LiHとが均一に微細  By reacting such LiNH and hydrogen, LiNH and LiH are uniformly finely divided.
2 2 複合化された水素貯蔵材料を得ることができる。  22 2 A composite hydrogen storage material can be obtained.
[0404] このようにして合成された Li NHには、水素の吸蔵  [0404] Li NH synthesized in this manner has an occlusion of hydrogen.
2 Z放出を促進する触媒を担持さ せることが好ましレ、。この触媒としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru,〇s, Mo, W It is preferable to support a catalyst that promotes 2Z release. The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn , Al, Si, Ru, 〇s, Mo, W
, Ta, Zr, In, Hf, Agから選ばれた 1種または 2種以上の金属またはその化合物ま たはその合金、あるいは水素貯蔵合金が挙げられる。これら金属の化合物としては、 例えば、塩素化物等のハロゲン化物や酸化物、窒化物、その他の化合物等が挙げら れる。 , Ta, Zr, In, Hf, Ag, one or more metals, their compounds or their alloys, or hydrogen storage alloys. Examples of compounds of these metals include halides such as chlorides, oxides, nitrides, and other compounds.
[0405] Li NHへの触媒の担持方法としては、 Li NHの合成雰囲気に触媒を添カ卩しておく  [0405] As a method for supporting the catalyst on LiNH, the catalyst is added to the synthesis atmosphere of LiNH beforehand.
2 2  twenty two
方法や、合成された Li NHを触媒の試薬雰囲気 (液体または蒸気)に晒して表面に  Exposing the synthesized Li NH to the catalyst reagent atmosphere (liquid or vapor) on the surface
2  2
触媒を吸着させる方法、合成された Li NHに触媒微粉末を添加して混合する方法  Method of adsorbing catalyst, method of adding and mixing catalyst fine powder to synthesized Li NH
2  2
等が挙げられる。このような触媒の担持量は、 Li NHの 0. 1質量%以上 20質量%以  And the like. The loading amount of such a catalyst is not less than 0.1% by mass and not more than 20% by mass of Li NH.
2  2
下とすることが好ましい。触媒の担持量が 0. 1質量%以下であるとその効果は発揮さ れず、 20質量%を超えると逆に Li NH等の反応物質間の反応を阻害したり、質量あ  It is preferred to be below. If the supported amount of the catalyst is 0.1% by mass or less, the effect is not exhibited. If the amount exceeds 20% by mass, the reaction between the reactants such as Li NH is adversely affected, and
2  2
たりの水素放出率が目減りすることとなる。  This will reduce the rate of hydrogen release.
[0406] 金属イミド化合物は Li NHに限定されるものではなぐ別の金属イミド化合物、例え  [0406] The metal imide compound is not limited to Li NH, but may be another metal imide compound, for example,
2  2
ば、ナトリウムイミド(Na NH)、マグネシウムイミド(MgNH)、カルシウムイミド(CaN  For example, sodium imide (Na NH), magnesium imide (MgNH), calcium imide (CaN
2  2
H)であってもよい。これらの各種金属イミド化合物は 1種だけの単独組成で用いても よぐ 2種以上を含んだ混合物として用いてもよい。なお、 Na NHの製造方法は、上  H). These various metal imide compounds may be used alone or as a mixture containing two or more kinds. The production method of Na NH is described above.
2  2
記(30)式に準ずる。また、 MgNHの製造方法は、下記(31)式で示され、 CaNHの 製造方法はこの(31)式に準ずる。  According to the formula (30). The method for producing MgNH is represented by the following equation (31), and the method for producing CaNH conforms to the equation (31).
Mg (NH ) →MgNH + NH - - - (31)  Mg (NH) → MgNH + NH---(31)
2 2 3  2 2 3
[0407] (実施例 121— 123の試料作製)  (Sample Preparation of Examples 121 to 123)
出発原料として、 LiNH (純度 95%)、 LiH (純度 95%)、三塩ィ匕チタン (TiCl )、  Starting materials include LiNH (purity 95%), LiH (purity 95%), Sanshio Titanium (TiCl),
2 3 三塩化クロム(CrCl ) (以上、いずれもシグマ'アルドリッチ社製)を用いた。なお、こ  23 3 Chromium trichloride (CrCl 2) (both manufactured by Sigma-Aldrich) was used. In addition, this
3  Three
れらの原料は比較例 121 123にも用いた。 [0408] 出発原料の LiNHを真空中 450°Cで加熱処理することにより、 Li NHを作製した。 These raw materials were also used in Comparative Examples 121 and 123. [0408] LiNH as a starting material was subjected to heat treatment at 450 ° C in vacuo to produce LiNH.
2 2  twenty two
この Li NHを遊星型ボールミル装置(Fritsch社製、 P5型)を用いて粉砕処理するこ This Li NH is pulverized using a planetary ball mill (Fritsch, P5 type).
2 2
とにより、実施例 121の試料を作製した。この粉碎処理は、 Li NHの粉末 lgと所定量  Thus, the sample of Example 121 was produced. This crushing process is performed by mixing Li NH powder lg and a predetermined amount.
2  2
の高クロム鋼製ボールを高クロム鋼製のミル容器 (容積:250cm3)に入れ、このミル 容器内を真空排気した後、ミル容器内が IMPaとなるようにミル容器内にアルゴン (A r;グレード:ひ 2)を導入し、室温 20°Cの下、 250i"pmで 15分間行った。実施例 122 の試料は Li NHと TiClとが質量比で 100 : 5で配合された組成を有し、実施例 123 The high chrome steel balls of the above were put into a high chrome steel mill container (volume: 250 cm 3 ), and the inside of the mill container was evacuated. Then, argon (Ar) was introduced into the mill container so that the inside of the mill container became IMPa. Grade: Hi 2) was introduced, and the reaction was carried out at 250i "pm for 15 minutes at room temperature of 20 ° C. The sample of Example 122 had a composition in which Li NH and TiCl were mixed at a mass ratio of 100: 5. Example 123
2 3  twenty three
はこの Li NHと TiClと CrClとが質量比で 100 : 4 : 1で配合された組成を有する。実 Has a composition in which Li NH, TiCl, and CrCl are blended at a mass ratio of 100: 4: 1. Fruit
2 3 3 2 3 3
施例 122, 123の試料もまた実施例 121と同様に遊星型ボールミル装置による粉砕 混合処理により調製した。なお、粉砕混合処理後の試料は、酸化と水分吸着の影響 を最小限とするために、 Ar (純度 99. 995%)雰囲気のグローブボックス内で取り出さ れ、後述する水素吸蔵処理および Ar雰囲気での水素放出実験のための反応容器 に移し替えた。実施例 121— 123の作製条件を表 1に示す。  The samples of Examples 122 and 123 were also prepared by pulverization and mixing using a planetary ball mill in the same manner as in Example 121. The sample after the grinding and mixing treatment was taken out in a glove box in an Ar (purity 99.995%) atmosphere in order to minimize the effects of oxidation and moisture adsorption, and then subjected to hydrogen absorption treatment and Ar atmosphere described later. Was transferred to a reaction vessel for the hydrogen release experiment. Table 1 shows the manufacturing conditions of Examples 121 to 123.
[0409] (比較例 121— 123の試料作製方法) [0409] (Sample preparation method for Comparative Examples 121 to 123)
LiNHと LiHとが等モルになるようにして合計 lgを秤量し、これを、実施例 121— 1 The total lg was weighed so that LiNH and LiH became equimolar, and this was weighed in Example 121-1.
2 2
23の作製に使用したものと同じ遊星型ボールミル装置を用レ、て粉碎混合処理した。 その際のミル容器内の雰囲気は、ミル容器内を真空排気した後、ミル容器内が IMP aとなるようにミル容器内に水素(純度 99· 995%)を導入して調整した。比較例 121 は触媒を含まず、その粉砕混合処理時間を 120分とした。比較例 122は LiNHと Li  The same planetary ball mill as used in the preparation of No. 23 was used, and the mixture was ground and mixed. At that time, the atmosphere in the mill container was adjusted by evacuating the inside of the mill container and then introducing hydrogen (purity 99.995%) into the mill container so that the inside of the mill container became IMPa. Comparative Example 121 did not contain a catalyst, and the pulverization / mixing treatment time was 120 minutes. Comparative Example 122 is LiNH and Li
2 2
Hの合計量と TiClとが質量比で 100 : 5となるように配合され、その粉碎混合処理時 The total amount of H and TiCl are blended so that the mass ratio is 100: 5.
3  Three
間は 120分とした。比較例 123は比較例 122と同じ組成である力 その粉碎混合処 理時間を 15分とした。なお、粉砕混合処理後の試料は、酸化と水分吸着の影響を最 小限とするために、 Ar (純度 99. 995%)雰囲気のグローブボックス内で取り出され、 後述する Ar雰囲気での水素放出実験のための反応容器に移し替えた。比較例 121 一 123の作製条件を表 14に並記する。  The interval was 120 minutes. Comparative Example 123 had the same composition as Comparative Example 122. The milling and mixing treatment time was 15 minutes. The sample after the pulverization and mixing process was taken out of the glove box in an Ar (purity 99.995%) atmosphere to minimize the effects of oxidation and moisture adsorption. Transferred to reaction vessel for experiment. Table 14 shows the production conditions of Comparative Examples 121 and 123.
[0410] [表 14] 配合 (質量比) [0410] [Table 14] Mixing (mass ratio)
混合時間 触媒  Mixing time Catalyst
LiNH2 Li2NH LiH (分) LiNH 2 Li 2 NH LiH (min)
TiCI3 CrCI3 TiCI 3 CrCI 3
実施例 121 100 15 実施例 122 100 5 15 実施例 123 100 4 1 15 比較例 121 74.28 25.72 120 比較例 122 74.28 25.72 5 120 比較例 123 74.28 25.72 5 15  Example 121 100 15 Example 122 100 5 15 Example 123 100 4 1 15 Comparative example 121 74.28 25.72 120 Comparative example 122 74.28 25.72 5 120 Comparative example 123 74.28 25.72 5 15
[0411] (実施例 121— 123の水素吸蔵処理) (Examples 121-123 hydrogen storage treatment)
反応容器内を真空排気した後に、反応容器内を 3MPaの水素雰囲気とし、この反 応容器を 180°Cで 8時間保持することにより、実施例 121— 123の水素吸蔵処理、つ まり LiNHと LiHからなる水素貯蔵材料への変換処理を行った。さらにその後、反応  After evacuation of the inside of the reaction vessel, the inside of the reaction vessel was set to a hydrogen atmosphere of 3 MPa, and this reaction vessel was kept at 180 ° C for 8 hours, whereby the hydrogen absorbing treatment of Examples 121 to 123, that is, LiNH and LiH Was converted to a hydrogen storage material consisting of And then the reaction
2  2
容器内を真空排気した。  The inside of the container was evacuated.
[0412] (実施例 121— 123および比較例 121 123の水素放出量測定) [0412] (Measurement of hydrogen release amount in Examples 121-123 and Comparative Example 121 123)
実施例 121— 123から作製した水素貯蔵材料および比較例 121— 123の試料が それぞれ封入され、真空排気された反応容器を電気炉で室温一 250°Cまで昇温速 度 5°C/分で加熱し、 250°Cで 90分間保持した。 250°C保持中は、反応容器からの 放出ガス圧が 20kPa以下となるようにバッファ容器を用いてガス圧を調整した。各温 度および 250°Cで放出されたガスをガス採取ボンベに貯め、採取したガスを 20°Cに 冷却し、放出ガス圧を圧力計で測定するとともに、配管を通じてガスクロマトグラフ(島 津製作所製、 GC9A、 TCD検出器、カラム: Molecular Sieve 5A)に導入し、水 素量を測定した。水素放出量はこうして測定された水素量を加熱前の試料の質量で 除した ί直とした。  The hydrogen storage material prepared from Examples 121-123 and the samples of Comparative Examples 121-123 were respectively sealed, and the reaction vessel evacuated and evacuated was heated in an electric furnace from room temperature to 250 ° C. at a heating rate of 5 ° C./min. Heated and held at 250 ° C for 90 minutes. While maintaining the temperature at 250 ° C, the gas pressure was adjusted using a buffer container so that the pressure of the gas released from the reaction container was 20 kPa or less. The gas released at each temperature and 250 ° C is stored in a gas sampling cylinder, the collected gas is cooled to 20 ° C, the released gas pressure is measured with a pressure gauge, and a gas chromatograph (manufactured by Shimadzu Corporation) is connected through a pipe. , GC9A, TCD detector, column: Molecular Sieve 5A), and the amount of hydrogen was measured. The amount of released hydrogen was calculated by dividing the measured amount of hydrogen by the mass of the sample before heating.
[0413] 水素放出量と処理温度、時間との関係を図 41および図 42に示す。触媒を含まない 実施例 121と比較例 121とを比較すると、図 41に示されるように、実施例 121の方が 比較例 121よりも水素放出量が多いことがわかる。また、水素放出の立ち上がり勾配 は比較例 121よりも実施例 121で急となっていることから、実施例 121では水素放出 速度が速いことがわかる。このこと力 、固体混合により得られた LiNHと LiHとの複 合体よりも、 LiNHの熱分解により得られた Li NHを用いて作製された LiNHと LiH [0413] FIGS. 41 and 42 show the relationship between the amount of released hydrogen and the processing temperature and time. When Example 121 containing no catalyst is compared with Comparative Example 121, as shown in FIG. 41, it can be seen that Example 121 emits more hydrogen than Comparative Example 121. In addition, since the rising gradient of hydrogen release was steeper in Example 121 than in Comparative Example 121, the hydrogen release in Example 121 was steeper. It turns out that the speed is fast. This fact indicates that LiNH and LiH produced using LiNH obtained by thermal decomposition of LiNH are better than the complex of LiNH and LiH obtained by solid mixing.
2 2 2 との複合体の方が、水素放出特性が良好となることが確認された。また、実施例 121 では粉砕時間が 15分であるのに対し、比較例 121は 120分の粉砕混合処理を行つ ていることから、実施例 121の試料作製方法によれば、粉粉砕混合処理時間を短縮 すること力 Sできる。  It was confirmed that the complex with 222 had better hydrogen release characteristics. Further, while the pulverization time was 15 minutes in Example 121, the pulverization / mixing process was performed according to the sample preparation method of Example 121 since the pulverization / mixing process was performed in Comparative Example 121 for 120 minutes. Ability to reduce time S
[0414] 図 42に示されるように、組成が同じである実施例 122と比較例 122とを比較すると、 実施例 122の方が比較例 122よりも水素放出量が多いことがわかる。また、水素放出 の立ち上がりは比較例 122よりも実施例 122の方が早ぐこれは実施例 122では比 較例 122よりも低温で水素放出が始まっていることを示している。つまり、 LiNHの熱 分解により得られた Li NHを用いて作製された LiNHと LiHとの複合体では水素放  As shown in FIG. 42, comparing Example 122 and Comparative Example 122, which have the same composition, shows that Example 122 emits more hydrogen than Comparative Example 122. In addition, the onset of hydrogen release is earlier in Example 122 than in Comparative Example 122. This indicates that hydrogen release is started at a lower temperature in Example 122 than in Comparative Example 122. In other words, the complex of LiNH and LiH produced using LiNH obtained by thermal decomposition of LiNH releases hydrogen.
2 2  twenty two
出特性が良好となることがわかる。実施例 121よりも実施例 122, 123で水素放出特 性が良好であるのは、触媒の効果と考えられる。実施例 122と実施例 123の水素放 出特性のわずかな差は、触媒の組成の違いに起因するものと考えられる。比較例 12 2と比較例 123とを比較してわかるように、固体材料どうしを粉砕混合する方法では、 この粉砕混合処理時間の長短が水素放出特性に大きな影響を及ぼしていることがわ かる。  It can be seen that the output characteristics are good. The better hydrogen release characteristics in Examples 122 and 123 than in Example 121 may be due to the effect of the catalyst. The slight difference in the hydrogen release characteristics between Example 122 and Example 123 is considered to be due to the difference in the composition of the catalyst. As can be seen from a comparison between Comparative Example 122 and Comparative Example 123, in the method of pulverizing and mixing the solid materials, the length of the pulverizing and mixing treatment time has a great influence on the hydrogen release characteristics.
[0415] 次に、粉体系の水素貯蔵材料を充填 (貯蔵)するための充填容器および充填容器 に充填された水素貯蔵材料力 の水素放出方法、水素を放出した後の水素貯蔵材 料前駆体への水素吸蔵方法について説明する。すなわち、ここでの「充填容器」は、 水素貯蔵材料をただ単に充填するだけではなぐ充填された水素貯蔵材料の水素 吸放出を行う機能を有するものを指す。  [0415] Next, a filling container for filling (storing) the powder-type hydrogen storage material, a method of releasing hydrogen from the hydrogen storage material filled in the filling container, and a hydrogen storage material precursor after releasing hydrogen A method for storing hydrogen in the gas will be described. That is, the “filled container” here refers to one having a function of absorbing and releasing hydrogen from the filled hydrogen storage material, rather than merely filling the hydrogen storage material.
[0416] 図 43に充填容器 201の概略構造を示す断面図を示す。充填容器 201は、タンク 2 03と、内咅流通管 204と、安全ノ ノレブ 205と、ヒータ 206と、外咅流通管 207と、フィ ノレタ 208を備えており、水素貯蔵材料 202はタンク 203内に充填される。  FIG. 43 is a sectional view showing a schematic structure of the filling container 201. The filling container 201 includes a tank 203, an internal circulation pipe 204, a safety knob 205, a heater 206, an external circulation pipe 207, and a finoleta 208. The hydrogen storage material 202 is stored in the tank 203. Is filled.
[0417] タンク 203は、水素貯蔵材料 202を収容し、水素を流通させる開口部を除いて気密 な構造を有している。タンク 203は、水素貯蔵材料 202に水素を吸蔵させる際の数 M Pa程度の圧力に耐える材料および形状であれば、特に限定はされないが、好ましく は、 lOMPaまでの圧力に耐えうる材料および形状が選ばれる。これにより、水素放 出の際に急激な放出による圧力上昇を伴う場合であっても、強度は十分であり、安全 を維持できる。図 43では、タンク 203としてエッジを丸くした円筒形状のものを示して いるが、 自動車に搭載する場合には、無駄なスペースを無くすために、例えば、リア シートに合わせた形状としてもよい。 [0417] The tank 203 stores the hydrogen storage material 202 and has an airtight structure except for an opening through which hydrogen flows. The tank 203 is not particularly limited as long as it is a material and a shape that can withstand a pressure of about several MPa at the time of storing hydrogen in the hydrogen storage material 202. Is selected from materials and shapes that can withstand pressures up to lOMPa. As a result, the strength is sufficient and safety can be maintained even when the pressure of hydrogen is released due to rapid release. In FIG. 43, a cylindrical shape having rounded edges is shown as the tank 203. However, when the tank 203 is mounted on an automobile, it may be shaped, for example, in accordance with a rear seat to eliminate unnecessary space.
[0418] タンク 203には所定の圧力(タンク 203の耐圧未満の圧力)で開放するように設定さ れた安全バノレブ 205が設置されている。このような安全バルブ 205は、必ずしも必要 なものではないが、安全性の観点から設けることが好ましい。タンク 203には、水素貯 蔵材料 202を出し入れすることのできる開閉可能な出入口等の出入機構を設けても よレ、。その場合には、水素貯蔵材料 202をカートリッジ式でタンク 203に出し入れす ること力 Sできるような機構としてもよレ、。  [0418] The tank 203 is provided with a safety vanoleb 205 set to open at a predetermined pressure (pressure less than the pressure resistance of the tank 203). Such a safety valve 205 is not always necessary, but is preferably provided from the viewpoint of safety. The tank 203 may be provided with an entrance / exit mechanism such as an openable / closable entrance / exit through which the hydrogen storage material 202 can be taken in and out. In this case, a mechanism that can force the hydrogen storage material 202 into and out of the tank 203 in the form of a cartridge may be used.
[0419] 内部流通管 204は、水素貯蔵材料 202に水素を送り込み、水素貯蔵材料 202から 放出された水素をタンク 203の外部に放出するための流路を形成する部材である。 内部流通管 204は、水素を透過する多孔質の管壁により円筒形状に構成される流通 管であって、管の一端はタンク 203の開口部を通してタンク 203の外部に連通し、他 端は閉じられている。このように、内部流通管 204は水素貯蔵材料 202に挿通されて いる。挿通された内部流通管 204の管壁全体から水素が一様に透過するため、効率 よく水素を吸蔵または放出することができる。  [0419] The internal flow pipe 204 is a member that forms a flow path for sending hydrogen into the hydrogen storage material 202 and discharging the hydrogen released from the hydrogen storage material 202 to the outside of the tank 203. The internal flow pipe 204 is a flow pipe formed in a cylindrical shape by a porous pipe wall through which hydrogen is permeable. One end of the pipe communicates with the outside of the tank 203 through the opening of the tank 203, and the other end is closed. Have been. Thus, the internal flow pipe 204 is inserted through the hydrogen storage material 202. Since hydrogen uniformly penetrates from the entire wall of the inserted internal flow tube 204, hydrogen can be efficiently absorbed or released.
[0420] カロ熱手段としてのヒータ 206は、電熱式でタンク 203の外部に設けられており、タン ク 203を介して間接的に水素貯蔵材料 202を 80°C以上の温度に加熱できるようにな つている。なお、ヒータ 206は直接に水素貯蔵材料 202を加熱できるように配設され ていてもよい。ヒータ 206は、 250°Cまで加熱可能であることが好ましレ、。ヒータ 206 には電源(図示せず)が接続されている。また、この電源には水素放出量がフィード バックされる制御システム(図示せず)が併設されている。これにより、水素放出量をコ ントローノレすること力 Sできる。  [0420] The heater 206 as a calorie heating means is provided outside the tank 203 by an electric heating method so that the hydrogen storage material 202 can be indirectly heated to a temperature of 80 ° C or more via the tank 203. It is. Note that the heater 206 may be provided so as to directly heat the hydrogen storage material 202. Preferably, the heater 206 is capable of heating up to 250 ° C. A power supply (not shown) is connected to the heater 206. In addition, a control system (not shown) for feeding back the amount of released hydrogen is provided in the power supply. As a result, it is possible to control the amount of hydrogen release.
[0421] 充填容器 201ではヒータ 206が設けられていることにより、ヒータ 206で水素貯蔵材 料 202が加熱された場合には、水素貯蔵材料 202の水素を吸蔵または放出する機 能が活性化するため、速やかに水素の吸蔵 ·放出を行うことができる。 [0422] 外部流通管 207は水素を透過させない材料で構成されている。外部流通管 207の 内部には、酸素や水蒸気等の水素以外の反応性ガスが進入することができない機能 をもつフィルタ 208が設けられている。これにより、水素貯蔵材料が酸素や水蒸気等 と反応して劣化するのを防止し、その吸蔵性能を維持することができる。 [0421] Since the heater 206 is provided in the filling container 201, when the hydrogen storage material 202 is heated by the heater 206, the function of storing or releasing hydrogen of the hydrogen storage material 202 is activated. Therefore, it is possible to quickly store and release hydrogen. [0422] The external circulation pipe 207 is made of a material that does not allow hydrogen to pass therethrough. A filter 208 having a function of preventing a reactive gas other than hydrogen, such as oxygen or water vapor, from entering the outer circulation pipe 207 is provided. Thereby, the hydrogen storage material is prevented from deteriorating by reacting with oxygen, water vapor, or the like, and its storage performance can be maintained.
[0423] フィルタ 208の材料としては、例えばパラジウム合金(Au : 5%、 Ag : 20%、 Pd : 70 %)などの水素透過物質が好適である。なお、フィルタ 208は内部流通管 204の内部 に設けてもよい。また、フィルタ 208の代わりに、内部流通管 204の内側または外側 の表面に水素透過物質の膜を設ける力 \あるいは内部流通管 204の管壁の材料に 水素透過物質を用いてもょレ、。このようなフィルタ 208を設けなくてもよレ、場合もある。  [0423] As a material of the filter 208, for example, a hydrogen permeable substance such as a palladium alloy (Au: 5%, Ag: 20%, Pd: 70%) is suitable. The filter 208 may be provided inside the internal circulation pipe 204. Further, instead of the filter 208, a force for forming a film of a hydrogen permeable substance on the inner or outer surface of the internal flow pipe 204 or a hydrogen permeable substance may be used as a material of the pipe wall of the internal flow pipe 204. In some cases, such a filter 208 need not be provided.
[0424] 水素貯蔵材料 202としては、リチウムアミド(LiNH )および水素化リチウム(LiH)、  [0424] Examples of the hydrogen storage material 202 include lithium amide (LiNH4) and lithium hydride (LiH),
2  2
またはリチウムイミド(Li NH)が挙げられる。この場合、 LiNHと LiHを適量配合し、  Or lithium imide (Li NH). In this case, mix appropriate amount of LiNH and LiH,
2 2  twenty two
水素または不活性ガスの雰囲気においてミリングによりメカノケミカルに混合粉砕し、 後述する触媒材料を適量加える方法により、水素貯蔵材料を調製することができる。 但し、必ずしもこの方法に限定されるものではない。  A hydrogen storage material can be prepared by mixing and pulverizing mechanochemically by milling in an atmosphere of hydrogen or an inert gas and adding an appropriate amount of a catalyst material described later. However, it is not necessarily limited to this method.
[0425] その他の水素貯蔵材料であっても、 80°C以上で水素を吸蔵または放出する機能 が活性化するものであればよレ、。例えば、リチウム系以外の金属アミドおよび金属アミ ド化合物、金属水素化物、 NaAlH等のァラネート系材料やカーボンナノチューブな  [0425] Other hydrogen storage materials may be used as long as the function of absorbing or releasing hydrogen is activated at 80 ° C or higher. For example, non-lithium metal amides and metal amide compounds, metal hydrides, arylate materials such as NaAlH, and carbon nanotubes
4  Four
どのカーボン系材料を用いてもよい。水素貯蔵材料 202は、例えば粉体、顆粒体、ま たは成形体の形態を有する。  Any carbon-based material may be used. The hydrogen storage material 202 has a form of, for example, a powder, a granule, or a molded body.
[0426] 水素貯蔵材料 202は、水素の吸蔵と放出を促進する触媒成分を含むことが好まし レヽ。触媒成分としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru,〇s, Mo, W, Ta, Zr, In, Hf , Agから選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合金、あ るいは水素貯蔵合金があげられる。  [0426] The hydrogen storage material 202 preferably contains a catalyst component that promotes the storage and release of hydrogen. The catalyst components include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn , Al, Si, Ru, 〇s, Mo, W, Ta, Zr, In, Hf, Ag, one or more metals or their compounds or alloys, or hydrogen storage alloys. Can be
[0427] 次に、充填容器 201を用いた水素吸放出操作について、水素貯蔵材料 202として LiNHと LiHを主成分とする材料を用いた場合を例にして説明する。水素貯蔵材料 [0427] Next, the hydrogen absorption / desorption operation using the filling container 201 will be described using a case where a material containing LiNH and LiH as main components is used as the hydrogen storage material 202 as an example. Hydrogen storage material
2 2
202としてリチウム系の貯蔵材料を主とする材料を用いる場合には、効率よく水素の 吸蔵および放出を行うために、水素貯蔵材料 202を 100 250°Cの温度に調整する のが好適である。 When using a lithium-based storage material as the main material for 202, adjust the temperature of the hydrogen storage material 202 to 100 250 ° C in order to efficiently absorb and release hydrogen. Is preferred.
[0428] すなわち、水素貯蔵材料 202に水素を吸蔵させる場合には、まずヒータ 206により 水素貯蔵材料 202を加熱し、水素貯蔵材料 202が十分に水素の吸蔵機能を発揮す る温度、例えば 120°Cに維持する。外部流通管 207に連結されるコンプレッサ(図示 せず)により、水素を所定の圧力で圧送し、内部流通管 204を通して水素貯蔵材料 2 02に吸蔵させる。この吸蔵処理の際には、水素貯蔵材料 202に下記(32)式の反応 が生ずる。  [0428] That is, when hydrogen is to be stored in the hydrogen storage material 202, the hydrogen storage material 202 is first heated by the heater 206, and the temperature at which the hydrogen storage material 202 sufficiently exhibits a hydrogen storage function, for example, 120 ° C Keep at C. Hydrogen is pumped at a predetermined pressure by a compressor (not shown) connected to the external circulation pipe 207, and is stored in the hydrogen storage material 202 through the internal circulation pipe 204. At the time of this occlusion treatment, a reaction represented by the following formula (32) occurs in the hydrogen storage material 202.
Li NH + H→LiNH +LiH- - - (32)  Li NH + H → LiNH + LiH---(32)
2 2 2  2 2 2
[0429] 一方、充填容器 201から水素を放出する場合には、まずヒータ 206により水素貯蔵 材料 202を加熱し、十分に水素の放出機能を発揮する温度、例えば 200°Cに維持 する。加熱により水素貯蔵材料 202から水素が放出され、内部流通管 204を通して、 外部流通管 207へ水素が送られる。放出の際には、水素貯蔵材料 202に下記(33) 式の反応が生ずる。  On the other hand, when hydrogen is released from the filling container 201, first, the hydrogen storage material 202 is heated by the heater 206, and is maintained at a temperature at which a sufficient hydrogen releasing function is exhibited, for example, 200 ° C. The heating releases hydrogen from the hydrogen storage material 202, and the hydrogen is sent to the external circulation pipe 207 through the internal circulation pipe 204. Upon release, the hydrogen storage material 202 undergoes a reaction represented by the following formula (33).
LiNH +LiH→Li NH + H…(33)  LiNH + LiH → Li NH + H… (33)
2 2 2  2 2 2
[0430] このように充填容器 201では、水素貯蔵材料 202を加熱することにより、水素放出 処理のみならず吸蔵処理も極めて短い時間で行うことができる。また、水素吸蔵合金 等に比べ、リチウム系材料は単位重量あたりの水素吸蔵量が大きいため、充填容器 201の質量あたりの水素貯蔵量を増加させることができる。このような特徴を活力 て 、充填容器 201は、燃料電池自動車などに搭載される水素供給装置、定置式燃料 電池用のバッファタンクや水素ステーションの貯蔵システムにも利用することができ、 今後期待される水素エネルギー社会における水素貯蔵装置全般に、応用することが できる。  [0430] As described above, in the filling container 201, by heating the hydrogen storage material 202, not only the hydrogen release treatment but also the occlusion treatment can be performed in an extremely short time. Further, since the lithium-based material has a larger hydrogen storage amount per unit weight than a hydrogen storage alloy or the like, the hydrogen storage amount per mass of the filling container 201 can be increased. By virtue of these features, the filling container 201 can be used for hydrogen supply devices mounted on fuel cell vehicles, etc., buffer tanks for stationary fuel cells, and storage systems for hydrogen stations. It can be applied to all hydrogen storage devices in the hydrogen energy society.
[0431] 次に第 2の充填容器について説明する。図 44に第 2の充填容器 201aの概略構造 を示す断面図を示す。先に示した充填容器 201ではヒータ 206がタンク 203の外部 に設けられていたが、第 2の充填容器 201aは、タンク 203の内部にヒータ 210が設け られた構造を有し、その他の部分は充填容器 201と同様である。このため、重複部分 については説明を割愛する。  [0431] Next, the second filling container will be described. FIG. 44 is a cross-sectional view showing a schematic structure of the second filling container 201a. In the above-described filling container 201, the heater 206 is provided outside the tank 203. However, the second filling container 201a has a structure in which the heater 210 is provided inside the tank 203, and the other parts are The same as the filling container 201. For this reason, the description of the overlapping part is omitted.
[0432] ヒータ 210は電熱式であって、その機能はヒータ 206と同様である。タンク 203の内 部にヒータ 210を設けることにより、水素貯蔵材料 202の温度を制御し易くし、水素の 吸蔵および放出の効率を上げることができる。ヒータ 210には熱伝導性を向上させる ために周囲に伝熱フィンを設けてもよレ、。なお、充填容器 201 aでも、ヒータ 210に電 源(図示せず)が接続されている。水素放出量をコントロールする必要性から、この電 源には水素放出量がフィードバックされる制御システム(図示せず)が併設される。 [0432] The heater 210 is an electrothermal type, and its function is the same as that of the heater 206. Of tank 203 By providing the heater 210 in the section, the temperature of the hydrogen storage material 202 can be easily controlled, and the efficiency of hydrogen storage and release can be increased. Heater fins may be provided around heater 210 to improve its thermal conductivity. In the filling container 201a, a power source (not shown) is connected to the heater 210. Due to the need to control the amount of released hydrogen, this power supply is equipped with a control system (not shown) that feeds back the amount of released hydrogen.
[0433] 次に第 3の充填容器について説明する。図 45に第 3の充填容器 201bの概略構造 を示す断面図を示す。充填容器 201ではタンク 203の外部にヒータ 206を設けた構 造としたが、充填容器 201bは、ヒータ 206に代えて、少なくとも 100°C以上の沸点を 有する熱媒体(図示せず)をタンク 203の外部と内部との間で循環させるための循環 パイプ 220と、熱媒体を加熱するヒータ 221と、熱媒体を循環パイプ 220内に圧送す る循環ポンプ 222備えた構造を有している。  Next, the third filling container will be described. FIG. 45 is a cross-sectional view showing a schematic structure of the third filling container 201b. The filling container 201 has a structure in which a heater 206 is provided outside the tank 203. However, the filling container 201b uses a heating medium (not shown) having a boiling point of at least 100 ° C. instead of the heater 206. It has a structure including a circulation pipe 220 for circulating between the outside and the inside of the vessel, a heater 221 for heating the heat medium, and a circulation pump 222 for pumping the heat medium into the circulation pipe 220.
[0434] ヒータ 221は電熱式であり、外部システムとして電源(図示せず)がヒータ 221に接 続されている。水素放出量をコントロールする必要性から、電源には水素放出量をフ イードバックされた制御システム(図示せず)が併設されている。これにより、効率よく 水素貯蔵材料 202を加熱することができ、水素の吸蔵および放出を短時間で行うこと ができる。なお、この加熱手段を用いる場合には、熱媒体の温度は沸点以下に維持 しておく。また、循環パイプ 220には熱伝導性を向上させるために周囲に伝熱フィン を設けてもよい。  [0434] The heater 221 is of an electrothermal type, and a power supply (not shown) is connected to the heater 221 as an external system. Due to the need to control the amount of hydrogen released, the power supply is equipped with a control system (not shown) that feeds back the amount of hydrogen released. Thereby, the hydrogen storage material 202 can be efficiently heated, and the storage and release of hydrogen can be performed in a short time. When this heating means is used, the temperature of the heat medium is kept below the boiling point. Further, the circulation pipe 220 may be provided with heat transfer fins around the circulation pipe 220 in order to improve thermal conductivity.
[0435] 次に第 4の充填容器について説明する。図 46に第 4の充填容器 201cの概略構造 を示す断面図を示す。充填容器 201は円筒形状の内部流通管 204を有していたが 、この充填容器 210cでは、これに代えて、螺旋状の内部流通管 230が設けられた構 造を有している。この場合、内部流通管 230の表面積を大きくし、水素貯蔵材料が水 素を吸蔵または放出する効率を上げることができる。  Next, the fourth filling container will be described. FIG. 46 is a sectional view showing a schematic structure of the fourth filling container 201c. The filling container 201 has a cylindrical internal circulation pipe 204, but this filling container 210c has a structure in which a spiral internal circulation pipe 230 is provided instead. In this case, the surface area of the internal circulation pipe 230 can be increased, and the efficiency with which the hydrogen storage material absorbs or releases hydrogen can be increased.
[0436] これらの充填容器 201等は移動体としての燃料電池自動車に搭載することができる 。これにより、軽くて、 1回の補給で走れる走行距離の長い燃料電池自動車を実現す ること力 Sできる。図 47に充填容器 201を搭載した自動車 240の概略構成を示す説明 図を示す。  [0436] These filling containers 201 and the like can be mounted on a fuel cell vehicle as a moving body. As a result, it is possible to realize a light-weight, long-distance fuel-cell vehicle that can run with one refueling. FIG. 47 is an explanatory diagram showing a schematic configuration of an automobile 240 on which the filling container 201 is mounted.
[0437] 充填容器 201は温度が高くなるため、その周囲を断熱材で覆うことが好ましい。充 填容器 201のタンク 203に水素貯蔵材料 202を出し入れすることのできる出入機構 を設ける場合には、充填容器 201を自動車 240に搭載したまま出し入れ可能な機構 としてもよいし、充填容器 201を取り外し別の場所で出し入れする機構としてもよい。 [0437] Since the temperature of the filling container 201 increases, it is preferable to cover the periphery with a heat insulating material. Filling When an access mechanism that allows the hydrogen storage material 202 to be put in and out of the tank 203 of the filling container 201 is provided, a mechanism that allows the filling container 201 to be loaded and unloaded while mounted on the automobile 240 may be used, or the filling container 201 may be removed and removed. It is good also as a mechanism which puts in and out at the place of.
[0438] 充填容器 201の外部流通管 207は、水素吸蔵用の外部流通管 207aと水素放出 用の外部流通管 207bに分岐している。水素吸蔵用の外部流通管 207aと水素放出 用の外部流通管 207bは、それぞれの管を閉じることができる蓋またはバルブ等(図 示せず)を備えている。水素放出用の外部流通管 207bは、後部タイヤ 250に連結さ れている後部シャフト 251の上を跨ぐように配置され、燃料電池 260に連結されてい る。 [0438] The external circulation pipe 207 of the filling container 201 is branched into an external circulation pipe 207a for storing hydrogen and an external circulation pipe 207b for releasing hydrogen. The external circulation pipe 207a for storing hydrogen and the external circulation pipe 207b for releasing hydrogen are provided with a lid or a valve (not shown) capable of closing the respective pipes. An external circulation pipe 207b for releasing hydrogen is disposed so as to straddle a rear shaft 251 connected to the rear tire 250, and is connected to the fuel cell 260.
[0439] 充填容器 201の反対側には、酸素吸入管 261がコンプレッサ 262に連結されて設 けられている。酸素吸入管 261の反対側には、圧送管 263が燃料電池 260とコンプ レッサ 262を連結するように設けられている。燃料電池 260には水放出管 264が設け られている。  [0439] On the opposite side of the filling container 201, an oxygen suction pipe 261 is provided so as to be connected to the compressor 262. On the opposite side of the oxygen suction pipe 261, a pressure feeding pipe 263 is provided so as to connect the fuel cell 260 and the compressor 262. The fuel cell 260 is provided with a water discharge pipe 264.
[0440] 燃料電池 260には、発生した電力を導通する導線 270が接続され、導線 270の他 端はバッテリ 271に接続されている。ノくッテリ 271には導線 272が接続され、その他 端はモータ 280に接続されている。モータ 280には、モータ 280の動力を前部タイヤ 281に伝える前部シャフト 282が回転可能に取り付けられている。図 47では、簡単の ために、前部シャフト 282はモータ 280に直接取り付けられているように表現している 力 実際にはモータ 280の動力をプーリやクラッチ機構を用いて、前部タイヤ 281に 動力を伝える。  [0440] The fuel cell 260 is connected to a conductor 270 that conducts the generated power, and the other end of the conductor 270 is connected to the battery 271. The lead 272 is connected to the battery 271, and the other end is connected to the motor 280. A front shaft 282 that transmits the power of the motor 280 to the front tire 281 is rotatably attached to the motor 280. In FIG. 47, for the sake of simplicity, the front shaft 282 is shown as being directly attached to the motor 280. Force Actually, the power of the motor 280 is applied to the front tire 281 using a pulley or a clutch mechanism. Convey power.
[0441] 次に自動車 240の動作を説明する。まず、自動車 240に水素を補充する場合には 、水素補充のシステムが整備されている水素ステーション等で、充填容器 201を最適 な温度に加熱し、図 47に示す矢印 Aの方向に外部流通管 207aから水素を圧送する 。このとき外部流通管 207bは閉じられている。このようにして、水素は充填容器 201 内の水素貯蔵材料 (つまり、水素貯蔵材料前駆体)に吸蔵される。  [0441] Next, the operation of the automobile 240 will be described. First, when refilling the automobile 240 with hydrogen, the filling vessel 201 is heated to an optimum temperature at a hydrogen station or the like provided with a hydrogen replenishment system, and the external circulation pipe is moved in the direction of arrow A shown in FIG. Pump hydrogen from 207a. At this time, the external circulation pipe 207b is closed. In this way, hydrogen is stored in the hydrogen storage material (that is, the hydrogen storage material precursor) in the filling container 201.
[0442] 自動車 240を駆動する際には、まず外部流通管 207aを閉じた状態で、充填容器 2 01の加熱手段により内部の水素貯蔵材料を最適な温度に加熱し、充填容器 201か ら放出される水素を外部流通管 207bを通して燃料電池 260に送り込む。一方、コン プレッサ 262を始動させ、図 47に示す矢印 B方向に酸素(空気)を酸素吸入管 261 から、圧送管 263を通して燃料電池 260に送り込む。こうして燃料電池 260を動作さ せて、得られた電力をバッテリ 271に蓄える。このとき、反応により生じた水は水放出 管 264から外部に放出される。バッテリ 271に蓄えられた電力でモータ 280を駆動さ せて、前部シャフト 282および前部タイヤ 281を回転させる。このようにして、自動車 2 40を駆動させる。 [0442] When driving the automobile 240, first, with the external circulation pipe 207a closed, the hydrogen storage material inside is heated to an optimum temperature by the heating means of the filling container 201 and discharged from the filling container 201. The supplied hydrogen is sent to the fuel cell 260 through the external flow pipe 207b. On the other hand, The presser 262 is started, and oxygen (air) is fed from the oxygen suction pipe 261 to the fuel cell 260 through the pressure feed pipe 263 in the direction of arrow B shown in FIG. By operating the fuel cell 260 in this manner, the obtained electric power is stored in the battery 271. At this time, the water generated by the reaction is discharged from the water discharge pipe 264 to the outside. The motor 280 is driven by the electric power stored in the battery 271 to rotate the front shaft 282 and the front tire 281. In this way, the vehicle 240 is driven.
[0443] なお、充填容器 201等を搭載する移動体は燃料電池自動車に限られず、水素ェン ジン自動車であってもよい。また、移動体は自動車に限定されるものではなぐバイク 等の車両、船および飛行機であってもよい。  [0443] The moving body on which the filling container 201 and the like are mounted is not limited to a fuel cell vehicle, but may be a hydrogen engine vehicle. The moving object is not limited to an automobile, but may be a vehicle such as a motorcycle, a ship, and an airplane.
[0444] 次に第 4の充填容器について説明する。図 48に第 4の充填容器 301の概略構造を 示す斜視図を示す。この充填容器 301は略円筒形で、横にした状態 (底面を側面に した状態)において水素充填を行う。  [0444] Next, the fourth filling container will be described. FIG. 48 is a perspective view showing a schematic structure of the fourth filling container 301. The filling container 301 has a substantially cylindrical shape and is filled with hydrogen in a horizontal state (a state in which a bottom surface is a side surface).
[0445] この充填容器 301は、温度 200°C、圧力 5MPaの条件下にも耐えうる高温高圧容 器である。このため、充填容器 301にはステンレスやアルミニウム合金等が好適に用 レ、られる。充填容器 301の寸法や容積は特に限定されず、 目的に応じて設計される 。例えば、燃料電池自動車へ適用した場合は、約 100Lとすることが好ましい。  [0445] The filling container 301 is a high-temperature, high-pressure container that can withstand the conditions of a temperature of 200 ° C and a pressure of 5 MPa. For this reason, stainless steel, an aluminum alloy, or the like is preferably used for the filling container 301. The dimensions and volume of the filling container 301 are not particularly limited, and are designed according to the purpose. For example, when applied to a fuel cell vehicle, the volume is preferably about 100L.
[0446] 充填容器 301の内部は床板 304によって仕切られており、下部の空間が水素導入 ライン 303として用いられ、一方、上部の空間は水素貯蔵材料前駆体 310を充填す るために用いられ、仕切り壁 302により独立した 3つの部屋(以下「材料充填室」とレ、う )にさらに分割されている。なお、材料充填室は 3室に限定されるものではないが、 2 一 4室とすることが好ましい。また、仕切り壁 302には充填容器 301と同じ材質が好適 に用いられる。  [0446] The interior of the filling container 301 is partitioned by a floor plate 304, and the lower space is used as a hydrogen introduction line 303, while the upper space is used to fill a hydrogen storage material precursor 310, The partition 302 further divides the room into three independent rooms (hereinafter referred to as “material filling room”). The material filling chamber is not limited to three chambers, but is preferably two to four chambers. Further, the same material as the filling container 301 is suitably used for the partition wall 302.
[0447] 床板 304は、アルミニウム、ステンレスなどの多孔質金属焼結体からなる。この多孔 質金属焼結体には、三次元的に構成された、例えば 0. 5— 2 z m径の連通孔があり 、この連通孔を介して、材料充填室と水素導入ライン 303とが連通している。図 43で は模式的にこの連通孔の表面露出部分 (以下「噴出し口」とレ、う)を符号 305で示して いる。多孔質金属焼結体としては、例えば、マイクロフィルタ社の焼結金属フィルタエ レメントが挙げられる。 [0448] 後述するように、充填容器 301では、水素導入ライン 303から床板 304の連通孔を 介して材料充填室へ水素をブローイングさせることにより、材料充填室に水素を供給 する。このため、床板 304の板厚は 5— 30mmが好ましレ、。 5mmより薄いと圧力に耐 えうる十分な強度が得られず、 30mmより厚いと水素の噴出に対しての圧損が大きく なってしまう。なお、連通孔の孔径は、数 z m—数十 z mの範囲であればよい。水素 導入ライン 303の容積は、充填容器 301の全容積の 1Z5程度とすることができる。水 素導入ライン 303の端部(側面)には外部から水素を導入するための水素導入口 30 6が設けられている。 [0447] Floor plate 304 is made of a porous metal sintered body such as aluminum or stainless steel. The porous metal sintered body has a three-dimensionally formed communication hole having a diameter of, for example, 0.5 to 2 zm. Through this communication hole, the material filling chamber and the hydrogen introduction line 303 communicate with each other. are doing. In FIG. 43, the surface exposed portion of the communication hole (hereinafter, referred to as “ejection port”) is schematically indicated by reference numeral 305. Examples of the porous metal sintered body include a sintered metal filter element manufactured by Micro Filter Corporation. [0448] As described later, in the filling container 301, hydrogen is supplied to the material filling chamber by blowing hydrogen from the hydrogen introduction line 303 into the material filling chamber through the communication hole of the floor plate 304. For this reason, the thickness of the floorboard 304 is preferably 5-30 mm. If the thickness is less than 5 mm, sufficient strength to withstand the pressure will not be obtained, and if the thickness is more than 30 mm, the pressure loss against hydrogen injection will increase. The diameter of the communication hole may be in the range of several zm to several tens zm. The volume of the hydrogen introduction line 303 can be about 1Z5 of the total volume of the filling container 301. At the end (side surface) of the hydrogen introduction line 303, a hydrogen introduction port 306 for introducing hydrogen from outside is provided.
[0449] 充填容器 301の上部の材料充填室には水素貯蔵材料前駆体 310が充填されてい る。水素貯蔵材料前駆体 310の充填量は材料充填室の床板 304からの水素噴出に よるブローイングにより、各材料充填室の気中にそれぞれ十分に飛散できる量とする ことが好ましぐ材料充填室の容積の 1Z4 1Z2程度とすることが好ましぐ残りの 容積部が空間部 311となる。  [0449] The material filling chamber at the top of the filling container 301 is filled with the hydrogen storage material precursor 310. The filling amount of the hydrogen storage material precursor 310 is preferably set such that the hydrogen storage material precursor 310 can be sufficiently scattered into the air of each material filling chamber by blowing by blowing hydrogen from the floor plate 304 of the material filling chamber. The remaining volume that is preferably set to about 1Z4 1Z2 of the volume is the space 311.
[0450] 各材料充填室の天井面には水素を放出するための水素放出口 307が設けられて いる。この水素放出口 307に接続される水素輸送管が、飛散した水素貯蔵材料前駆 体 310で詰まらないようにするために、水素放出口 307には詰まり防止フィルタ 308 が備えられている。この詰まり防止用フィルタ 308は上記床板 304と同様なアルミニゥ ム、ステンレスなどの多孔質金属焼結体からなり、水素と水素貯蔵材料前駆体 310の 飛散微粉末とをほぼ分離する。また、同天井面には、水素貯蔵材料前駆体 310を出 し入れするための粉体充填口 309が設けられてレ、る。この粉体充填口 309の大きさ や形状は特に限定されない。  [0450] A hydrogen discharge port 307 for releasing hydrogen is provided on the ceiling surface of each material filling chamber. In order to prevent the hydrogen transport pipe connected to the hydrogen outlet 307 from being clogged by the scattered hydrogen storage material precursor 310, the hydrogen outlet 307 is provided with a clogging prevention filter 308. The clogging prevention filter 308 is made of a porous metal sintered body such as aluminum or stainless steel similar to the floor plate 304, and substantially separates hydrogen from the scattered fine powder of the hydrogen storage material precursor 310. In addition, a powder filling port 309 for taking in and out the hydrogen storage material precursor 310 is provided on the ceiling surface. The size and shape of the powder filling port 309 are not particularly limited.
[0451] 水素貯蔵材料前駆体 310の好適なものとしてリチウムイミド (Li NH)がある。この Li  [0451] A suitable example of the hydrogen storage material precursor 310 is lithium imide (Li NH). This Li
2  2
NHはリチウムアミド(LiNH )と水素化リチウム(LiH)との反応により生成されるもの NH is produced by the reaction of lithium amide (LiNH) and lithium hydride (LiH)
2 2 twenty two
である。水素貯蔵材料前駆体 310としては、その他に、 Li NHにリチウム以外のアル  It is. Other examples of the hydrogen storage material precursor 310 include Li NH, other than lithium.
2  2
カリ金属またはアルカリ土類金属を有する金属イミド化合物が混合されたものや、水 素貯蔵合金などの金属系水素貯蔵材料、ナノグラフアイトなどのグラフアイト系水素貯 蔵材料が挙げられる。  Examples thereof include a mixture of a metal imide compound having a potassium metal or an alkaline earth metal, a metal-based hydrogen storage material such as a hydrogen storage alloy, and a graphite-based hydrogen storage material such as nanographite.
[0452] 次に、充填容器 301の各材料充填室に充填されている水素貯蔵材料前駆体 310 への水素充填方法について、水素貯蔵材料前駆体 310として Li NHを用いた場合 Next, the hydrogen storage material precursor 310 filled in each material filling chamber of the filling container 301 Hydrogen filling method using Li NH as hydrogen storage material precursor 310
2  2
について説明する。充填する水素は水素導入口 306から水素導入ライン 303に導入 される。この水素は所定圧力の高圧ガスとなっている。この水素を床板 304に設けら れている噴出し口 305から噴出させることにより各材料充填室に充填してある水素貯 蔵材料前駆体 310を各材料充填室の空間部 311に飛散させる。  Will be described. The hydrogen to be charged is introduced from a hydrogen inlet 306 to a hydrogen inlet line 303. This hydrogen is a high-pressure gas of a predetermined pressure. This hydrogen is ejected from an ejection port 305 provided in the floor plate 304 to scatter the hydrogen storage material precursor 310 filled in each material filling chamber into the space 311 of each material filling chamber.
[0453] このとき各材料充填室を、温度は室温一 180°C、圧力は 0. 1 lMPa、好ましくは 温度 120— 150°C、圧力 0. 2-0. 3MPaとなるように調整する。材料充填室の温度 調整は、例えば、所定温度に調節された熱媒が流れるジャケットで充填容器 301を 覆うことで行うことができる。また、材料充填室の加圧は、導入する水素の水素導入ラ イン 303での圧力調節により行われ、水素導入ライン 303に導入される水素の圧力を 材料充填室の保持圧力よりも高くする。例えば、各材料充填室を 0. 2-0. 3MPaで 保持するためには、 0. 4MPa程度の高圧水素を用いればよい。  [0453] At this time, each material charging chamber is adjusted so that the temperature is between room temperature and 180 ° C, the pressure is 0.1 lMPa, preferably the temperature is 120 to 150 ° C, and the pressure is 0.2 to 0.3MPa. The temperature of the material filling chamber can be adjusted, for example, by covering the filling container 301 with a jacket through which a heat medium adjusted to a predetermined temperature flows. The pressurization of the material filling chamber is performed by adjusting the pressure of hydrogen to be introduced at the hydrogen introduction line 303, and the pressure of hydrogen introduced to the hydrogen introduction line 303 is made higher than the holding pressure of the material filling chamber. For example, in order to hold each material filling chamber at 0.2-0.3 MPa, high-pressure hydrogen of about 0.4 MPa may be used.
[0454] なお、水素貯蔵材料前駆体 310の飛散を促進するために、適宜、充填容器 301の 壁面や仕切り壁 302や床板 304に軽く振動を与えたり、超音波振動を加えたり、充填 容器 301自体を振ったり回転させるなどの補助的手段を付加してもよい。  [0454] In order to promote the scattering of the hydrogen storage material precursor 310, the wall surface, the partition wall 302, and the floor plate 304 of the filling container 301 may be appropriately lightly vibrated, ultrasonic vibration may be applied, or the filling container 301 may be used. Auxiliary means such as shaking or rotating itself may be added.
[0455] 水素充填時間は、材料充填室の水素圧力や保持温度によって、適宜、設定される [0455] The hydrogen filling time is appropriately set depending on the hydrogen pressure and the holding temperature of the material filling chamber.
。 Li NHの場合、上記温度、圧力条件下では、 Li NHに水素を充填させるには 10. In the case of Li NH, under the above temperature and pressure conditions, to fill Li NH with hydrogen 10
2 2 twenty two
分間程度は、 Li NHの各粒子を水素中に滞留させることが好ましい。そこで、例えば  It is preferable to keep each particle of Li NH in hydrogen for about a minute. So, for example,
2  2
、水素貯蔵材料前駆体 310の各粒子が、合計約 30分間、水素中に滞留させる。そ の間に、水素は水素貯蔵材料前駆体 310に充填される。なお、水素導入ライン 303 力 材料充填室への水素のブローリングは、連続的でも間欠的でもよい。  Each particle of the hydrogen storage material precursor 310 is kept in hydrogen for a total of about 30 minutes. In the meantime, hydrogen is charged into the hydrogen storage material precursor 310. The blowing of hydrogen into the hydrogen introduction line 303 may be continuous or intermittent.
[0456] 充填容器 301を用いた上述の水素充填方法によれば、水素貯蔵材料前駆体 310 が Li NHである場合の水素充填量は 4一 5mass%となり、従来の方法(すなわち、材 [0456] According to the above-described hydrogen filling method using the filling container 301, when the hydrogen storage material precursor 310 is LiNH, the hydrogen filling amount is 45 mass%, and the conventional method (that is, the material filling method)
2 2
料充填室が 1つの充填容器において、水素貯蔵材料前駆体を沈積させたまま水素と 接触させ、水素を充填する方法)で行った場合の 2 3masS%に比べて高くなる。 In charge filling chamber one filled container is brought into contact with hydrogen while keeping deposited hydrogen storage material precursor, higher than the 2 3MAS S% in the case of performing hydrogen method of filling).
[0457] 水素が充填された水素貯蔵材料前駆体 310 (すなわち、水素貯蔵材料)は、粉体 充填口 309より取り出して別の充填容器に入れ用いてもよいし、充填容器 301ごと例 えば燃料電池自動車に搭載し水素放出口 307から水素を放出させるなどして用いて あよい。 [0457] The hydrogen storage material precursor 310 filled with hydrogen (that is, the hydrogen storage material) may be taken out from the powder filling port 309 and put into another filling container, or may be used as the filling container 301, for example, as a fuel. Installed in a battery-powered vehicle and used to release hydrogen from the hydrogen outlet 307 Oh good.
[0458] 前者の場合、例えば、上記充填容器 301の大型のものが水素供給ステーションに 配備され、そこで、水素貯蔵材料前駆体に水素が充填されて、水素貯蔵材料が製造 される。こうして製造された水素貯蔵材料は、燃料電池自動車に搭載可能な小型容 器に入れられ、燃料電池自動車に搭載される。例えば、このような小型容器はカート リッジ式で自動車に容易に着脱可能になっており、水素供給ステーションで小型容 器ごと交換される。  [0458] In the former case, for example, a large-sized filling container 301 is provided in a hydrogen supply station, where the hydrogen storage material precursor is filled with hydrogen to produce a hydrogen storage material. The hydrogen storage material thus produced is put into a small container that can be mounted on a fuel cell vehicle, and mounted on the fuel cell vehicle. For example, such small containers are of a cartridge type that can be easily attached to and detached from automobiles, and are replaced together at the hydrogen supply station.
[0459] 一方、後者の場合、充填容器 301の小型のものが燃料電池自動車に搭載される。  [0459] On the other hand, in the latter case, a small-sized filling container 301 is mounted on a fuel cell vehicle.
燃料電池自動車は、水素が貯蔵されている水素供給ステーションで水素の供給を受 ける。水素供給ステーションはガソリンスタンドと同様になつており、水素供給ステー シヨンからの水素供給ホースを水素導入口 306に接続することにより、上述の水素充 填方法で、充填容器 301の各材料充填室にある水素貯蔵材料前駆体 310に水素が 充填される。この場合、燃料電池自動車に搭載されている充填容器 (および水素貯 蔵材料)は自動車に搭載されたままで、水素供給ステーションで水素の供給だけを 受ける。  Fuel cell vehicles receive hydrogen at hydrogen storage stations where hydrogen is stored. The hydrogen supply station is the same as a gas station. By connecting a hydrogen supply hose from the hydrogen supply station to the hydrogen inlet 306, the hydrogen filling method is used to fill each material filling chamber of the filling container 301 with the above-described hydrogen filling method. A certain hydrogen storage material precursor 310 is filled with hydrogen. In this case, the filling container (and the hydrogen storage material) mounted on the fuel cell vehicle receives only the supply of hydrogen at the hydrogen supply station while it is mounted on the vehicle.
[0460] 次に、上述した充填容器 201等から放出される水素および充填容器 201等に供給 される水素を精製するための気体精製装置について説明する。この気体精製装置は 、概略、アンモニア (NH (g) )および/または水(水蒸気; H 0 (g) )を含む水素ガス  [0460] Next, a gas purification device for purifying hydrogen released from the above-described filling container 201 and the like and hydrogen supplied to the filling container 201 and the like will be described. This gas purification device generally includes a hydrogen gas containing ammonia (NH (g)) and / or water (steam; H 0 (g)).
3 2  3 2
(H )またはこれらとヘリウム(He)、ネオン (Ne)、アルゴン (Ar)、窒素(N )の不活性 (H) or their inertness with helium (He), neon (Ne), argon (Ar), nitrogen (N)
2 2 ガスから選ばれた 1または 2以上からなる混合気体の流路にアルカリ金属水素化物お よび/またはアルカリ土類金属水素化物からなるフィルタが設置された構造を有する It has a structure in which a filter made of alkali metal hydride and / or alkaline earth metal hydride is installed in the flow path of one or more gas mixtures selected from 22 gases
[0461] アルカリ金属水素化物やアルカリ土類金属水素化物としては、水素化リチウム(LiH )、水素化マグネシウム(MgH )、水素化カルシウム(CaH )、またはこれらの混合物 [0461] As the alkali metal hydride or alkaline earth metal hydride, lithium hydride (LiH), magnesium hydride (MgH), calcium hydride (CaH), or a mixture thereof
2 2  twenty two
が好適に用いられる。  Is preferably used.
[0462] 例えば、 LiHからなるフィルタを設置すると、 H O (g)は下記(34)式の反応により除  [0462] For example, if a filter made of LiH is installed, H 2 O (g) is removed by the reaction of the following equation (34).
2  2
去され、生成した水酸化物は、さらに下記(35)式の反応により Hを発生させると思  The resulting hydroxide is considered to generate H by the reaction of the following formula (35).
2  2
われる。この反応はごく微量の H O (g)とも高い反応率で進行することから、不純物と  Is called. This reaction proceeds at a high reaction rate even with a very small amount of H 2 O (g).
2 して微量に存在する H O (g)の除去に好適である c 2 C is suitable for the removal of HO (g) present in trace amounts in
LiH + H〇→Li〇H + H · ' · (34)  LiH + H〇 → Li〇H + H
2 2  twenty two
LiH + Li〇H→Li Ο + Η - - - (35)  LiH + Li〇H → Li Ο + Η---(35)
2 2  twenty two
[0463] 不純物である ΝΗ (g)は、フィルタを通過する際に、下記(36)式で示されるように、  [0463] When passing through the filter, the impurity ΝΗ (g), as shown by the following equation (36),
3  Three
フィルタ成分の LiHと反応し、リチウムアミド(LiNH )と11になる。つまり、 NH (g)を  Reacts with LiH in the filter component to form 11 with lithium amide (LiNH). In other words, NH (g)
2 2 3 除去し、燃料電池への流入を防いで、燃料電池の NH (g)による被毒を妨げる効果  2 2 3 Removed to prevent flow into the fuel cell and prevent fuel cell poisoning by NH (g)
3  Three
がある。この反応は 20°C程度の室温でも十分進行することから、例えば、充填容器 2 01等の余熱で十分に反応を促進させることができる。反応物の LiNHは、 LiHと置  There is. Since this reaction proceeds sufficiently even at room temperature of about 20 ° C., for example, the reaction can be sufficiently promoted by the residual heat of the filling container 201 or the like. The reactant LiNH is replaced with LiH.
2  2
換する形でフィルタ中に残存し、フィルタ外に排出されないようにすることができる。 Li Hに代えて、別のアルカリ金属水素化物やアルカリ土類金属水素化物を用いた場合 も同様の効果が認められ、特に、 CaH、 MgHで良好な効果が得られる。  It can remain in the filter in the form of being replaced and be prevented from being discharged out of the filter. Similar effects are observed when other alkali metal hydrides or alkaline earth metal hydrides are used in place of LiH, and particularly good effects are obtained with CaH and MgH.
2 2  twenty two
LiH + NH (g)→LiNH +H · ' · (36)  LiH + NH (g) → LiNH + H
3 2 2  3 2 2
[0464] また、 NH (g)を除去して生成した LiNH等は、下記(37)式の反応等により、再び  [0464] Further, LiNH or the like generated by removing NH (g) is re-formed by the reaction of the following formula (37) and the like.
3 2  3 2
NH (g)を発生させる可能性がある。これを防止するために、フィルタの温度は 70°C  May generate NH (g). To prevent this, the filter temperature should be 70 ° C
3  Three
以下に保つことが望ましい。酸化リチウム(Li〇)は安定な物質であり,フィルタが 70  It is desirable to keep below. Lithium oxide (Li〇) is a stable substance, and filters
2  2
°C以下に保たれていれば他のガスが放出されることはない。  Other gases will not be released if kept below ° C.
2LiNH→Li NH + NH - - - (37)  2LiNH → Li NH + NH---(37)
2 2 3  2 2 3
[0465] LiHが LiNHに変換されると NH (g)との反応が起こり難くなるため、フィルタは、  [0465] When LiH is converted to LiNH, the reaction with NH (g) is unlikely to occur.
2 3  twenty three
適宜新たな LiHを有するものに交換することが望ましい。この方法の 1つとして、流路 に所定周期で代替可能な状態でフィルタを設置する方法が挙げられる。例えば、フィ ルタをレボルバー等の回転形式や抜き差しを行う着脱方式等で交換することができ る。  It is desirable to replace it with new LiH as appropriate. As one of the methods, there is a method of installing a filter in a flow path in a state where it can be replaced at a predetermined cycle. For example, the filter can be replaced by a rotating method such as a revolver or a detachable method of inserting and removing the filter.
[0466] He等の不活性ガスは水素化リチウムと不活性であり、 H〇(g)を選択的に除去し、  [0466] An inert gas such as He is inert with lithium hydride, and selectively removes H〇 (g),
2  2
他の不純物成分を生起させなレ、メリットがある。こうして、 H O (g)の燃料電池への流  There is a merit of not causing other impurity components. Thus, the flow of H 2 O (g) to the fuel cell
2  2
入を防いで、燃料電池の被毒を妨げる効果がある。このような気体精製装置を用いる ことにより、燃料電池および水素貯蔵材料を長寿命化させることができる。  This has the effect of preventing fuel cell poisoning and preventing poisoning of the fuel cell. By using such a gas purification device, the life of the fuel cell and the hydrogen storage material can be extended.
[0467] フィルタに充填されるアルカリ金属水素化物やアルカリ土類金属水素化物には、触 媒として、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La , Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力ら選 ばれた 1種または 2種以上の金属もしくはその化合物もしくはその合金が添加されて レ、ることが好ましい。 [0467] Alkali metal hydride and alkaline earth metal hydride filled in the filter include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La , Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag Alternatively, it is preferable to add an alloy thereof.
[0468] 触媒の担持量は、アルカリ金属水素化物および/またはアルカリ土類金属水素化 物の 0. 1質量%以上 20質量%以下とすることが好ましい。このような触媒がアルカリ 金属水素化物等に担持されることで、 NH (g)等の吸収が促進され、燃料電池の被  [0468] The amount of the supported catalyst is preferably from 0.1% by mass to 20% by mass of the alkali metal hydride and / or the alkaline earth metal hydride. By supporting such a catalyst on an alkali metal hydride or the like, the absorption of NH (g) and the like is promoted, and the fuel cell
3  Three
毒を妨ぐことができる。  Poison can be prevented.
[0469] フィルタとしては、円筒形状のカラムに 3mm以下の径の顆粒状の LiH、 CaH、 Mg  [0469] As a filter, granular LiH, CaH, Mg with a diameter of 3 mm or less
2 2
Hを充填したものが好適に用いられる。直径が 3mm超では気体との接触面積が不Those filled with H are preferably used. If the diameter is more than 3 mm, the contact area with gas is not
2 2
十分となる。カラムに対する LiH等の充填率が 60%以下では、気体の流速が大きい ときに十分な精製が実現されないが、気体流速が小さいときは十分な効果が得られ る。なお、カラムへの LiH等の粒状固形物の充填率とは、その排除体積を含めてカラ ム容積を占有する体積をいう。  Will be enough. If the packing ratio of LiH, etc. to the column is less than 60%, sufficient purification cannot be realized when the gas flow rate is high, but sufficient effect can be obtained when the gas flow rate is low. The packing ratio of granular solids such as LiH in the column refers to the volume occupying the column volume including the excluded volume.
[0470] H O (g)および NH (g)との反応を促進するために、フィルタとしては、モレキュラー  [0470] In order to promote the reaction with H 2 O (g) and NH (g), a molecular filter was used as the filter.
2 3  twenty three
シーブス、活性炭、活性アルミナ、シリカゲル、表面積の大きな粘土鉱物から選ばれ た 1以上のもの(担体)に LiH、 CaH、 MgH等を浸漬、混合、付着して、担持させた  LiH, CaH, MgH, etc. were immersed, mixed, adhered, and supported on at least one (carrier) selected from sieves, activated carbon, activated alumina, silica gel, and clay mineral with a large surface area
2 2  twenty two
ものも好適に用いられる。粘土鉱物の中では、特にハロイサイト系粘土鉱物(ァタパ ルガイト、セピオライト)を用いることが好ましい。これらの担体は単独でも H O (g)お  Those are also preferably used. Among the clay minerals, it is particularly preferable to use halloysite-based clay minerals (atapalgite, sepiolite). These carriers can be used alone or in H 2 O (g)
2 よび NH (g)の吸着性能が認められるので、特に好適に用いられる。担体への LiH  It is particularly preferably used because its adsorption performance of 2 and NH (g) is recognized. LiH on carrier
3  Three
等の担持処理は、例えば、 LiHを所定の液に分散させて、その溶液を担体に浸漬さ せ、乾燥させることにより行うことができる。カラムへは、担体と前述した顆粒状 LiHを 混合して充填してもよい。  The supporting treatment such as the above can be performed, for example, by dispersing LiH in a predetermined liquid, immersing the solution in a carrier, and drying. The column may be packed by mixing the carrier and the granular LiH described above.
[0471] このような気体精製装置と組み合わせて使用される充填容器に充填される水素貯 蔵材料としては、金属水素化物と金属アミド化合物を含むものが挙げられる。この場 合、水素貯蔵材料前駆体である金属イミド化合物は、最初は金属水素化物と金属ァ ミドとの反応を経ることなく合成されたものであることが好ましぐ例えば、金属アミドィ匕 合物の熱分解により生成した金属イミド化合物が好適に用いられる。  [0471] Examples of the hydrogen storage material filled in a filling container used in combination with such a gas purification device include those containing a metal hydride and a metal amide compound. In this case, the metal imide compound as the hydrogen storage material precursor is preferably synthesized at first without undergoing a reaction between the metal hydride and the metal amide. A metal imide compound generated by thermal decomposition of is preferably used.
[0472] このような気体精製装置によれば、 NH (g)による燃料電池の被毒を防止すること  According to such a gas purification device, it is possible to prevent poisoning of the fuel cell by NH (g).
3 ができるのみならず、高圧ボンベによる水素圧縮貯蔵や液体水素化させる冷却貯蔵 において、その処理やハンドリング中に H〇(g)が混入し、これが燃料電池を被毒さ Three Not only is it possible, but also in the compressed storage of hydrogen using a high-pressure cylinder and the cooling and storage of liquid hydrogen, H 液体 (g) is mixed in during processing and handling, which poisons the fuel cell.
2  2
せるという問題も解決できる。なお、気体精製装置は、定置式燃料電池用水素発生 装置、燃料電池車両用水素発生装置に好適に設けられ、水素発生装置と気体精製 装置の一体設計も可能である。これにより気体精製装置の性能を一層向上させること ができる。  Can solve the problem. The gas purifier is suitably provided in a hydrogen generator for stationary fuel cells and a hydrogen generator for fuel cell vehicles, and the hydrogen generator and the gas purifier can be integrally designed. Thereby, the performance of the gas purification device can be further improved.
[0473] 次に、気体精製装置についてさらに詳しぐ NH (g)を発生させるおそれのある水  [0473] Next, the gas purification apparatus will be described in more detail. Water that may generate NH (g)
3  Three
素貯蔵材料前駆体である Li NHが充填された充填容器と組み合わせた場合にっレヽ  When combined with a container filled with Li NH
2  2
て説明する。  Will be explained.
[0474] 図 49に充填容器 201に気体精製装置 402を組み合わせた構成の一例を示す。気 体精製装置 402は、枢軸 411を中心に回転自在に配置された複数の筒状のフィルタ 421と、フィルタ 421を保持し、枢軸 411と連結された連結部材 423を備えている。フ ィルタ 421には、例えば、モレキュラーシーブス 412と LiH顆粒 413とが所定量充填 されている。また、フィルタ 421の両端には、内部のモレキュラーシーブス 412等が飛 散しなレ、ように、多孔質材カ なる飛散防止部材 422が取り付けられてレ、る。  [0474] Fig. 49 shows an example of a configuration in which a gas purifier 402 is combined with a filling container 201. The gas purification device 402 includes a plurality of cylindrical filters 421 rotatably arranged around a pivot 411, and a connecting member 423 holding the filter 421 and connected to the pivot 411. The filter 421 is filled with a predetermined amount of, for example, molecular sieves 412 and LiH granules 413. At both ends of the filter 421, a scattering prevention member 422 made of a porous material is attached so that the internal molecular sieves 412 and the like are not scattered.
[0475] フィルタ 421は、より具体的には、 0. 6cm直径で 300cm長さのカラムに、直径 30m eshの粒度に調製された LiH顆粒 413とモレキュラーシーブス 412とが混合され、充 填されている。このような長いカラムは一定の径で蜷局卷きにされた状態で使用され る。  [0475] More specifically, the filter 421 is filled with a mixture of LiH granules 413 and molecular sieves 412 prepared to a particle size of 30 mesh in a column of 0.6 cm in diameter and 300 cm in length. I have. Such a long column is used in a fixed diameter and in a wound state.
[0476] 充填容器 201の外部流通管 207と 1個のフィルタ 421の一端とが気密に接続可能 である。また、図示しないフレーム等に保持されたガス導入管 404とガス排出管 403 に分岐しているガス管 425と、このフィルタ 421が気密に接続可能となっている。枢軸 411回りに連結部材 432を回転させることで、フィルタ 421の別のものに交換すること ができる。  [0476] The external circulation pipe 207 of the filling container 201 and one end of one filter 421 can be air-tightly connected. Further, the filter 421 and a gas pipe 425 branched to a gas introduction pipe 404 and a gas discharge pipe 403 held by a frame or the like (not shown) can be air-tightly connected. By rotating the connecting member 432 about the pivot 411, the filter 421 can be replaced with another one.
[0477] 充填容器 201に充填される Li NHは下記(38)式に示されるように、 Hと反応する  [0477] LiNH filled in the filling container 201 reacts with H as shown in the following formula (38).
2 2 ことによって、水素貯蔵材料である LiNHと LiHの複合体に変化する。こうして得られ  2 2 changes into a composite of the hydrogen storage materials LiNH and LiH. Thus obtained
2  2
た LiNHと LiHの複合体は、所定温度に加熱することによって Hを放出し、 Li NH  The complex of LiNH and LiH releases H by heating to a predetermined temperature,
2 2 2 へと変化する。つまり下記(38)式で示される化学反応は、異なる物質間で反応が可 逆的に進行する、所謂、可逆的不均化反応であり、このような反応サイクルが繰り返 される。 It changes to 2 2 2. In other words, the chemical reaction expressed by the following equation (38) can be performed between different substances. This is a so-called reversible disproportionation reaction that proceeds in reverse, and such a reaction cycle is repeated.
Li NH十 H LiNH十 LiH〜(38)  Li NH10H LiNH10 LiH〜 (38)
2 2 2  2 2 2
[0478] 上記(38)式によれば、 Li NHの合成は、 LiNHと LiHとを混合し、これを所定の  According to the above formula (38), in the synthesis of Li NH, LiNH is mixed with LiH, and
2 2  twenty two
温度に加熱する方法によって行うことができる。しかし、固体材料どうしを混合させる 方法では、 LiNHと LiHとの微細複合化には限度があり、また粉砕混合時間が長く  This can be done by heating to a temperature. However, in the method of mixing solid materials, there is a limit to the fine composite of LiNH and LiH, and the mixing time for grinding is long.
2  2
掛かるという問題がある。そこで、 Li NHを LiNHと LiHとの反応を経ることなく合成  There is a problem of hanging. Therefore, LiNH is synthesized without going through the reaction between LiNH and LiH.
2 2  twenty two
することが好ましい。その具体的な製造方法は、下記(39)式に示されるような LiNH  Is preferred. The specific production method is LiNH as shown in the following formula (39).
2 を熱分解する方法である。  2 is a method of thermal decomposition.
2LiNH→Li NH十 NH (g)…(39)  2LiNH → Li NH10 NH (g)… (39)
2 2 3  2 2 3
[0479] このような方法によって合成された Li NHは、組成と組織の均一性に優れるために  [0479] Li NH synthesized by such a method has excellent composition and structure uniformity.
2  2
、このような Li NHと水素とを反応させることによって、 LiNHと LiHとが均一に微細  By reacting such LiNH and hydrogen, LiNH and LiH are uniformly finely divided.
2 2  twenty two
複合化された水素貯蔵材料を得ることができる。  A composite hydrogen storage material can be obtained.
[0480] このようにして合成された Li NHには、水素の吸蔵/放出を促進する触媒を担持さ [0480] The LiNH synthesized in this manner carries a catalyst that promotes the storage / release of hydrogen.
2  2
せることが好ましレ、。この触媒としては、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W , Ta, Zr, In, Hf, Agから選ばれた 1種または 2種以上の金属またはその化合物ま たはその合金、あるいは水素貯蔵合金が挙げられる。これら金属の化合物としては、 例えば、塩素化物等のハロゲン化物や酸化物、窒化物、その他の化合物等が挙げら れる。  It is preferable to let. The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn , Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag, one or more metals or their compounds or alloys, or hydrogen storage alloys . Examples of compounds of these metals include halides such as chlorides, oxides, nitrides, and other compounds.
[0481] Li NHへの触媒の担持方法としては、 Li NHの合成雰囲気に触媒を添加しておく  [0481] As a method of supporting the catalyst on Li NH, the catalyst is added to the synthesis atmosphere of Li NH.
2 2  twenty two
方法や、合成された Li NHを触媒の試薬雰囲気 (液体または蒸気)に晒して表面に  Exposing the synthesized Li NH to the catalyst reagent atmosphere (liquid or vapor) on the surface
2  2
触媒を吸着させる方法、合成された Li NHに触媒微粉末を添加して混合する方法  Method of adsorbing catalyst, method of adding and mixing catalyst fine powder to synthesized Li NH
2  2
等が挙げられる。このような触媒の担持量は、 Li NHの 0. 1質量%以上 20質量%以  And the like. The loading amount of such a catalyst is not less than 0.1% by mass and not more than 20% by mass of Li NH.
2  2
下とすることが好ましい。触媒の担持量が 0. 1質量%以下であるとその効果は発揮さ れず、 20質量%を超えると逆に Li NH等の反応物質間の反応を阻害し、質量あたり  It is preferred to be below. If the supported amount of the catalyst is less than 0.1% by mass, the effect is not exhibited. If the amount exceeds 20% by mass, the reaction between the reactants such as LiNH is hindered.
2  2
の水素放出率が目減りすることとなる。  The hydrogen release rate is reduced.
[0482] Li NHは Hを吸蔵して LiNHと LiHの複合体に変換されるが、副反応として NH ( [0482] Li NH absorbs H and is converted to a complex of LiNH and LiH, but NH (
2 2 2 3 g)を発生させ、その NH (g)は、そのまま燃料電池に導入されると燃料電池を被毒さ 2 2 2 3 g), and the NH (g) poisons the fuel cell when introduced directly into the fuel cell.
3  Three
せ、電池寿命を短縮させる。また、 Li NHが水分を含んでいると、 Li NHと H〇(g)  Battery life. If Li NH contains moisture, Li NH and H〇 (g)
2 2 2 との反応により発生した NH (g)が燃料電池に導入され、これを被毒させることもある  NH (g) generated by the reaction with 222 may be introduced into the fuel cell and poison it
3  Three
。さらに Li NHまたは LiNHと LiHの複合体に水分が吸蔵されると、これらの水素吸  . Further, when moisture is absorbed by LiNH or a complex of LiNH and LiH, these hydrogen absorption
2 2  twenty two
蔵/放出能を低下させることもある。  May reduce storage / release capacity.
[0483] 図 49に示すように、充填容器 201に気体精製装置 402を取り付けることで、フィル タ 421に充填されたモレキュラーシーブス 412と LiH顆粒 413に H O (g)と NH (g) [0483] As shown in Fig. 49, by attaching a gas purification device 402 to the filling container 201, H O (g) and NH (g) can be added to the molecular sieves 412 and the LiH granules 413 filled in the filter 421.
2 3 を吸収させることができ、その際にフィルタ 421を室温 (例えば、 20°C)に保持するこ とで、 H〇(g)と NH (g)を放出する反応の進行を抑制することができる。  2 3 can be absorbed, and at this time, by keeping the filter 421 at room temperature (for example, 20 ° C), it is possible to suppress the progress of the reaction that releases H NH (g) and NH (g). Can be.
2 3  twenty three
[0484] LiH顆粒 413が Li NHになると NH (g)との反応が起こり難くなるので、フイノレタ 42  [0484] When LiH granules 413 become Li NH, the reaction with NH (g) becomes difficult to occur.
2 3  twenty three
1を新たな LiH顆粒 413が充填された別のフィルタに、所定時間(例えば、 180分)ご とに連結部材 423を回転させることで自動交換されるように構成することも好ましい。 フィルタ 421には、 LiH顆粒 413等に代えて、 CaH  It is also preferable that 1 is automatically replaced by rotating the connecting member 423 to another filter filled with new LiH granules 413 every predetermined time (for example, 180 minutes). Filter 421 contains CaH instead of LiH granules 413, etc.
2、 MgHを充填してもよレヽ。  2, May be filled with MgH.
2  2
[0485] 以下に、フィルタ 421の構成を一定とし、このフィルタ 421に供給するガスを発生す るための水素貯蔵材料やガス種を変えることにより、フィルタ 421の特性を評価した 結果について説明する。  [0485] Hereinafter, the results of evaluating the characteristics of the filter 421 by keeping the configuration of the filter 421 constant and changing the hydrogen storage material and gas type for generating the gas to be supplied to the filter 421 will be described.
[0486] (水素発生源 1一 3)  [0486] (Hydrogen generation source 1-3)
水素発生源 1一 3の作製条件を表 15に示す。 LiNH (純度 95%、シグマ.アルドリ  Table 15 shows the fabrication conditions for the hydrogen sources 13. LiNH (95% pure, Sigma Aldrich
2  2
ツチ社製)を真空中 450°Cで加熱処理することにより、 Li NHを作製した。この Li N  Li NH) was prepared by heat-treating (Tsuchi Corporation) at 450 ° C in a vacuum. This Li N
2 2 twenty two
Hを遊星型ボールミル装置(Fritsch社製、 P5型)を用いて粉砕処理することにより、 水素発生源 1の試料を作製した。この粉碎処理は、 lgの Li NH粉末と所定量の高ク H was pulverized using a planetary ball mill (Fritsch, P5 type) to prepare a sample of the hydrogen generation source 1. This milling process is performed by combining lg Li NH powder with a predetermined amount of high
2  2
ロム鋼製ボールを高クロム鋼製のミル容器 (容積: 250ml)に入れ、このミル容器内を 真空排気した後、ミル容器内が IMPaとなるようにミル容器内に Ar (グレード:ひ 2)を 導入し、室温 20°Cの下、 250rpmで 15分間行った。  The chrome steel balls are placed in a high chrome steel mill container (volume: 250 ml), and after evacuating the inside of the mill container, Ar is placed in the mill container so that the inside of the mill container becomes IMPa (grade: Hi 2). , And the reaction was performed at 250 rpm at room temperature of 20 ° C. for 15 minutes.
[0487] 水素発生源 2の試料は作製した Li NHと三塩化チタン (TiCl、シグマ.アルドリツ [0487] The sample of hydrogen source 2 was prepared LiNH and titanium trichloride (TiCl, Sigma-Aldrich).
2 3  twenty three
チ社製)とが質量比で 100 : 5で配合された組成を有し、水素発生源 3はこの Li NHと  And 100% by mass in a mass ratio.
2 2
TiClと三塩ィ匕クロム(CrCl 、シグマ.アルドリッチ社製)とが質量比で 100 : 4 : 1でTiCl and Sanshio-Dani Chromium (CrCl, manufactured by Sigma-Aldrich) are 100: 4: 1 in mass ratio.
3 3 3 3
配合された組成を有する。水素発生源 2, 3もまた水素発生源 1と同様に遊星型ボー ノレミル装置による粉碎混合処理により調製されている。なお、粉砕混合処理後の試 料は、酸化と水分吸着の影響を最小限とするために、 Ar (純度 99. 995%)雰囲気 のグローブボックス内で取り出され、後述する水素吸蔵処理および Ar雰囲気での水 素放出実験のための反応容器に移し替えた。 Has a formulated composition. Hydrogen sources 2 and 3 are also planetary-type It is prepared by a pulverizing and mixing process using a nore mill device. The sample after pulverization and mixing was taken out of a glove box with an Ar (purity of 99.995%) atmosphere to minimize the effects of oxidation and moisture adsorption. Transferred to a reaction vessel for hydrogen release experiments at
[0488] 反応容器内を真空排気した後に、反応容器内を 3MPaの水素雰囲気とし、この反 応容器を 180°Cで 8時間保持することにより、水素発生源 1一 3の水素吸蔵処理、つ まり LiNHと LiHからなる水素貯蔵材料への変換処理を行った。さらにその後、反応 [0488] After evacuation of the inside of the reaction vessel, the inside of the reaction vessel was set to a hydrogen atmosphere of 3MPa, and the reaction vessel was held at 180 ° C for 8 hours, so that the hydrogen absorbing treatment of the hydrogen source 13 was performed. Mari Conversion treatment to a hydrogen storage material consisting of LiNH and LiH was performed. And then the reaction
2  2
容器内を真空排気した。  The inside of the container was evacuated.
[0489] [表 15] [0489] [Table 15]
Figure imgf000112_0001
Figure imgf000112_0001
[0490] (水素発生源 4一 7) [0490] (Hydrogen generation source 4-7)
水素発生源 4は、水素貯蔵材料に代えて、ボンベに、 Hを 10vol%  Hydrogen generation source 4 uses 10vol% of H in a cylinder instead of hydrogen storage material.
2 、 NH (g)を lv  2, NH (g) to lv
3 ol%、 H〇(g)を lvol。/0、 Arを 88vol%を含有する水素混合気体を、充填圧力 2at 3 ol%, H〇 (g) lvol. / 0 , hydrogen mixed gas containing 88vol% Ar, filling pressure 2at
2  2
mで充填したものを水素発生装置として用いた。また、水素発生源 4の Arを同体積の He、 Ne、 Nに置き換えたものを水素発生源 5 7とした。  What was filled with m was used as a hydrogen generator. The hydrogen source 57 was obtained by replacing Ar in the hydrogen source 4 with He, Ne, and N of the same volume.
2  2
[0491] (実施例 1ョ1のフィルタの作製)  [0491] (Production of filter of Example 1)
LiH (純度 95%、シグマ'アルドリッチ社製)を直径 30meshの粒度に調製したもの 12cm3と、直径 30meshのモレキュラーシーブス(和光純薬工業社製) 5cm3とを混合 したものを、直径 6mm、長さ 300cmのステンレス製のカラム(GLサイエンス社製)に 充填し、フィルタを形成した。このフィルタは複数作製した。フィルタは試験環境下に おいて室温付近の 20°C程度に保持されていたため、温度制御は不要であった。 HA mixture of 12 cm 3 of LiH (purity 95%, manufactured by Sigma's Aldrich) with a particle size of 30 mesh and 5 cm 3 of molecular sieves (manufactured by Wako Pure Chemical Industries, Ltd.) with a diameter of 30 mesh has a diameter of 6 mm. A 300 cm long stainless steel column (GL Science) was packed to form a filter. A plurality of such filters were manufactured. Temperature control was unnecessary because the filter was maintained at around 20 ° C near room temperature in the test environment. H
O (g)や NH (g)の除去性能を維持するため、図 49に示す気体精製装置 402を用 レ、、フィルタは、新たな LiH顆粒を含むものに 180分ごとに自動交換されるようにした In order to maintain the removal performance of O (g) and NH (g), use the gas purifier 402 shown in Fig. 49. The filter is automatically replaced every 180 minutes with new LiH granules.
[0492] (フィルタ性能の評価) [0492] (Evaluation of filter performance)
上述した水素発生源 1一 7と上述の通りに作製したフィルタとを接続し、水素発生源 1一 3を加熱することにより発生するガスおよび水素発生源 4一 7のボンベから排出さ れるガスをフィルタに供給し、フィルタを通過したガスの組成を分析することにより、フ ィルタの性能を評価した。  The gas generated by heating the hydrogen generation source 113 and the gas discharged from the cylinder of the hydrogen generation source 417 are connected by connecting the hydrogen generation source 117 described above to the filter manufactured as described above. The performance of the filter was evaluated by analyzing the composition of the gas supplied to the filter and passing through the filter.
[0493] 具体的には、水素発生源 1一 3の水素貯蔵材料がそれぞれ封入され、真空排気さ れた反応容器を電気炉で室温一 250°Cまで昇温速度 5°CZ分で加熱して、 250°C で 90分間保持した。ここで、 250°C保持中は反応容器からの放出ガス圧が 20kPa以 下となるようにバッファ容器を用いてガス圧を調整して、各温度および 250°Cで放出 されたガスをガス採取ボンベに貯め、採取したガスを 20°Cに冷却し、放出ガス圧を圧 力計で測定するとともに、配管を通じてガスクロマトグラフ(島津製作所製、 GC9A、 T CD検出器、カラム: Molecular Sieve 5A)に導入し、 H量を測定した。水素放出  [0493] Specifically, the hydrogen storage materials of the hydrogen generating sources 13 to 13 were respectively sealed, and the evacuated reaction vessel was heated in an electric furnace to room temperature-250 ° C at a heating rate of 5 ° CZ for 5 minutes. And kept at 250 ° C for 90 minutes. Here, while maintaining the temperature at 250 ° C, the gas pressure was adjusted using a buffer container so that the gas pressure released from the reaction vessel was 20 kPa or less, and the gas released at each temperature and 250 ° C was sampled. The collected gas is stored in a cylinder, the collected gas is cooled to 20 ° C, the released gas pressure is measured with a pressure gauge, and the gas is connected to a gas chromatograph (Shimadzu Corporation, GC9A, TCD detector, column: Molecular Sieve 5A) through piping. And the amount of H was measured. Hydrogen release
2  2
量はこうして測定された H量を加熱前の水素貯蔵材料の質量で除した値とした。ま  The amount was the value obtained by dividing the measured amount of H by the mass of the hydrogen storage material before heating. Ma
2  2
た、サンプリングガス中の NH (g)量は、 FIA (フローインジェクション分析)法で測定  In addition, the amount of NH (g) in the sampling gas is measured by FIA (flow injection analysis).
3  Three
した。また、サンプリングガス中の H〇(g)量の測定は、カールフィッシャー式微量水  did. In addition, the measurement of H〇 (g) amount in the sampling gas is based on Karl Fischer
2  2
分測定計を用いて行った。  This was performed using a minute meter.
[0494] (比較例 131) [0494] (Comparative Example 131)
比較例 131は、水素発生源 1一 7に対応する水素発生源に上記フィルタを設置しな い構成とした。この場合において、各水素発生源から放出されるガスを直接に採取し て、その H量、 NH (g)量、 H O (g)量を測定した。  Comparative Example 131 has a configuration in which the above-described filter is not provided in the hydrogen generation source corresponding to the hydrogen generation sources 17. In this case, the gas released from each hydrogen source was directly sampled, and the H amount, NH (g) amount, and H 2 O (g) amount were measured.
2 3 2  2 3 2
[0495] 表 16に、水素発生源 1一 7から放出されたガスをフィルタに通した場合 (実施例 13 1)、フィルタに通さない場合(比較例 131)のサンプリングガス中の NH (g)量を示す  [0495] Table 16 shows that NH (g) in the sampling gas when the gas released from the hydrogen generation source 17 was passed through the filter (Example 131) and when it was not passed through the filter (Comparative Example 131). Indicate quantity
3  Three
。なお、 H〇(g)量については、カールフィッシャー法の検出限界が 5ppm程度であ  . Regarding the amount of H〇 (g), the detection limit of the Karl Fischer method is about 5 ppm.
2  2
るために、実施例 131のフィルタを用いた場合には水素発生源 1一 7から放出された 全てのガスについて、比較例 131のフィルタを用いた場合には水素発生源 1一 3から 放出されたガスについて、それぞれ検出限界以下であった。しかし、比較例 131のフ ィルタを用いた場合には、水素発生源 4一 7から放出されたガスに対して、 5000ppm の H〇(g)量が測定された。実施例 131と比較例 131を比べてわかるように、水素発Therefore, when the filter of Example 131 was used, all the gases released from the hydrogen generating source 117 were released from the hydrogen generating source 113 when the filter of Comparative Example 131 was used. Each of the gases was below the detection limit. However, the comparative example 131 When a filter was used, 5000 ppm of H〇 (g) was measured for the gas released from the hydrogen source 417. As can be seen by comparing Example 131 and Comparative Example 131, hydrogen generation
2 2
生源が同じ場合に、実施例 131では比較例 131よりも NH (g)量が格段に減少して  When the source is the same, the amount of NH (g) is significantly reduced in Example 131 as compared with Comparative Example 131.
3  Three
レ、ることが確認された。  Re, it was confirmed that.
[0496] [表 16] [0496] [Table 16]
Figure imgf000114_0001
Figure imgf000114_0001
[0497] (実施例 132, 133) (Examples 132, 133)
実施例 1のフィルタに充填されたモレキュラーシーブスに代えて、同メッシュの活性 アルミナ (住友化学工業社製)、同メッシュのセピオライト粘土鉱物(トルコ産セピオラ イトで太平洋セメント社製)を用いたフィルタをそれぞれ作製し、上記各水素発生源か ら放出されるガスの精製を行った結果、活性アルミナを用いた場合(実施例 132)で は、 NH (g)量が 50ppm、セピオライト粘土鉱物を用いた場合 (実施例 131)では N  Instead of the molecular sieves filled in the filter of Example 1, a filter using activated alumina of the same mesh (manufactured by Sumitomo Chemical Co., Ltd.) and sepiolite clay mineral of the same mesh (Sepiolite from Turkey manufactured by Taiheiyo Cement Corporation) was used. As a result of purifying the gas released from each of the above hydrogen generation sources, when activated alumina was used (Example 132), the amount of NH (g) was 50 ppm, and sepiolite clay mineral was used. In case (Example 131), N
3  Three
H (g)量が lppm程度以下となることが確認された。  It was confirmed that the H (g) amount was about lppm or less.
3  Three
[0498] (実施例 134)  (Example 134)
さらに実施例 131のフィルタに充填された LiHに対して TiCl粉末を LiH重量の 3。 相当量混合したものをカラムに充填したフィルタ(実施例 134)を作製し、上記と同様 の試験を行ったところ、 NH (g)量と H O (g)量の両方が検出限度以下に抑えられる Furthermore, the TiCl powder was added to the LiH filled in the filter of Example 131 in an amount of 3% by weight of LiH. A filter (Example 134) was prepared by filling a column with a mixture of a considerable amount and the same test was performed. As a result, both the NH (g) and HO (g) amounts were suppressed below the detection limit.
3 2  3 2
ことが確認された。  It was confirmed that.
[0499] 以上説明した実施の形態は、あくまでも本発明の技術的内容を明らかにすることを 意図するものであって、本発明はこのような具体例にのみ限定して解釈されるもので はなぐ本発明の精神とクレームに述べる範囲で、種々に変更して実施することがで きるものである。  [0499] The embodiments described above are intended only to clarify the technical contents of the present invention, and the present invention should not be construed as being limited to such specific examples only. Various modifications can be made within the spirit and scope of the present invention.
産業上の利用可能性  Industrial applicability
[0500] 本発明は、水素、酸素を燃料として発電する燃料電池に好適に利用することができ る。具体的には、 自動車、家庭内発電、自動販売機、携帯電話、ノートパソコンをは じめとするコードレス家電製品、あるいは自立型ロボット、マイクロマシン等の動力源と して、幅広い技術分野において利用することが可能である。 [0500] The present invention can be suitably used for a fuel cell that generates power using hydrogen and oxygen as fuel. Specifically, it can be used in a wide range of technical fields as a power source for automobiles, home power generation, vending machines, mobile phones, cordless home appliances such as laptop computers, or as a power source for autonomous robots and micromachines. It is possible.

Claims

請求の範囲 The scope of the claims
[1] ナノ構造化'組織化されたリチウムイミド化合物前駆複合体を少なくとも含有する水 素貯蔵材料であって、  [1] A hydrogen storage material containing at least a nanostructured 'organized lithium imide compound precursor complex,
前記リチウムイミド化合物前駆複合体は、出発原料として微粉末リチウムアミドに微 粉末水素化リチウムを所定の割合で添加した混合物を所定の複合化処理法で処理 することによりナノ構造化'組織化されたものである水素貯蔵材料。  The lithium imide compound precursor composite was nano-structured by treating a mixture obtained by adding a fine powder of lithium hydride as a starting material to a fine powder of lithium hydride in a predetermined ratio by a predetermined compounding method. A hydrogen storage material.
[2] 前記リチウムイミド化合物前駆複合体は、水素吸放出能を高める触媒として、 B, C , Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, C r, Cu, Zn, Al, Si, Ru,〇s, Mo, W, Ta, Zr, In, Hf, Agからなる群より選択され る 1種または 2種以上の金属単体、合金または化合物をさらに含み、かつ、前記微粉 末水素化リチウムと前記微粉末リチウムアミドと前記触媒の混合物を、不活性ガス, 水素ガス,窒素ガスのいずれかの雰囲気またはこれらの混合雰囲気中で所定の粉 砕媒体に対して微視的な衝突を繰り返させるメカニカルミリング処理することにより得 られたものである請求項 1に記載の水素貯蔵材料。  [2] The lithium imide compound precursor complex is used as a catalyst for enhancing the ability to absorb and release hydrogen, as B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd. , Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, 〇s, Mo, W, Ta, Zr, In, Hf, Ag A mixture of the finely divided lithium hydride, the finely divided lithium amide, and the catalyst, further comprising at least one of an inert gas, a hydrogen gas, and a nitrogen gas; 2. The hydrogen storage material according to claim 1, wherein the hydrogen storage material is obtained by a mechanical milling process in which a predetermined grinding medium is repeatedly subjected to microscopic collision in a mixed atmosphere.
[3] 微粉末リチウムアミドと微粉末水素化リチウムとを所定の割合で混合した混合物を 所定の複合化処理法で処理することにより、ナノ構造化'組織化されたリチウムイミド 化合物前駆複合体を得る水素貯蔵材料の製造方法。  [3] A mixture of finely powdered lithium amide and finely powdered lithium hydride in a predetermined ratio is treated by a predetermined complexing method to form a nanostructured and organized lithium imide compound precursor composite. Method for producing the obtained hydrogen storage material.
[4] 前記混合物に水素吸放出能を高める触媒として B, C, Mn, Fe, Co, Ni, Pt, Pd , Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, O s, Mo, W, Ta, Zr, In, Hf, Agからなる群より選択される 1種または 2種以上の金属 単体、合金または化合物を添加し、かつ、前記複合化処理法として、不活性ガス,水 素ガス,窒素ガスのいずれかの雰囲気またはこれらの混合雰囲気中で所定の粉砕 媒体に対して微視的な衝突を繰り返させるメカニカルミリング処理を用いる請求項 3 に記載の水素貯蔵材料の製造方法。  [4] B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, One or more metals selected from the group consisting of V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag. Alternatively, a compound is added, and as the complexing method, microscopic collision with a predetermined grinding medium is performed in an atmosphere of an inert gas, a hydrogen gas, a nitrogen gas, or a mixed atmosphere thereof. 4. The method for producing a hydrogen storage material according to claim 3, wherein the mechanical milling process is repeated.
[5] 金属水素化物とアンモニアを含み、これらの反応により水素を発生させる水素貯蔵 材料。  [5] A hydrogen storage material that contains metal hydrides and ammonia and generates hydrogen by the reaction between them.
[6] 前記金属水素化物は、所定のメカニカルミリング処理により微細化されている請求 項 5に記載の水素貯蔵材料。 [6] The hydrogen storage material according to [5], wherein the metal hydride is refined by a predetermined mechanical milling treatment.
[7] 前記金属水素化物は、前記金属水素化物とアンモニアによる水素発生反応を促進 させる触媒を担持している請求項 5に記載の水素貯蔵材料。 7. The hydrogen storage material according to claim 5, wherein the metal hydride carries a catalyst that promotes a hydrogen generation reaction between the metal hydride and ammonia.
[8] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力、 ら選ばれた 1種または 2種以上の金属またはその化合物またはその合金、あるいは水 素貯蔵合金である請求項 7に記載の水素貯蔵材料。 [8] The catalyst comprises B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag forces, or their compounds or alloys, or hydrogen storage 8. The hydrogen storage material according to claim 7, which is an alloy.
[9] 前記触媒の担持量は、前記金属水素化物の 0. 1質量%以上 20質量%以下である 請求項 7に記載の水素貯蔵材料。 [9] The hydrogen storage material according to claim 7, wherein the supported amount of the catalyst is 0.1% by mass or more and 20% by mass or less of the metal hydride.
[10] 金属水素化物とアンモニアとを反応させることにより水素を発生させる水素発生方 法。 [10] A hydrogen generation method in which hydrogen is generated by reacting a metal hydride with ammonia.
[11] 前記金属水素化物として所定の触媒を担持したものを用いる請求項 10に記載の 水素発生方法。  11. The hydrogen generation method according to claim 10, wherein a metal hydride carrying a predetermined catalyst is used.
[12] 金属水素化物と金属アミド化合物の混合物または複合化物または反応物を有し、 これらの金属種が少なくとも 2種以上である水素貯蔵材料。  [12] A hydrogen storage material having a mixture, a complex, or a reactant of a metal hydride and a metal amide compound, wherein at least two of these metal species are used.
[13] 水素吸放出能を高める触媒をさらに含む請求項 12に記載の水素貯蔵材料。 13. The hydrogen storage material according to claim 12, further comprising a catalyst that enhances the ability to absorb and release hydrogen.
[14] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力 ら選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合金、あるいは 水素貯蔵合金である請求項 13に記載の水素貯蔵材料。 [14] The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from the group consisting of Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag or their compounds or alloys, or hydrogen storage alloys 14. The hydrogen storage material according to claim 13.
[15] 前記触媒の担持量が、前記金属水素化物と金属アミド化合物の混合物または複合 化物または反応物の 0. 1質量%以上 20質量%以下である請求項 13に記載の水素 貯蔵材料。 15. The hydrogen storage material according to claim 13, wherein the supported amount of the catalyst is 0.1% by mass or more and 20% by mass or less of the mixture, the complex, or the reaction product of the metal hydride and the metal amide compound.
[16] 前記金属水素化物は水素化リチウムであり、前記金属アミド化合物は少なくともマ グネシゥムアミド、カルシウムアミドの単体またはこれらの混合物を含む請求項 12に 記載の水素貯蔵材料。  16. The hydrogen storage material according to claim 12, wherein the metal hydride is lithium hydride, and the metal amide compound contains at least magnesium amide, calcium amide alone or a mixture thereof.
[17] 前記混合物または複合化物または反応物がメカニカルミリング処理によりナノ構造 化 ·組織化されてレ、る請求項 12に記載の水素貯蔵材料。  17. The hydrogen storage material according to claim 12, wherein the mixture, the composite, or the reactant is nanostructured and organized by a mechanical milling process.
[18] 金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを、不活性ガス雰 囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気 下において、前記触媒が前記金属水素化物と金属アミド化合物に担持されるように 混合する工程を有し、 [18] A metal hydride, a metal amide compound, and a catalyst for enhancing the ability to absorb and release hydrogen are mixed with an inert gas atmosphere. A step of mixing the catalyst so as to be supported on the metal hydride and the metal amide compound under an atmosphere or a hydrogen gas atmosphere or a mixed gas atmosphere of an inert gas and a hydrogen gas,
前記金属水素化物と金属アミド化合物を構成する金属成分は 2種類以上である水 素貯蔵材料の製造方法。  A method for producing a hydrogen storage material, wherein the metal hydride and the metal amide compound have two or more metal components.
[19] 請求項 18の水素貯蔵材料の製造方法により製造された水素貯蔵材料。 [19] A hydrogen storage material produced by the method for producing a hydrogen storage material according to claim 18.
[20] 金属水素化物と金属アミド化合物とを、不活性ガス雰囲気下もしくは水素ガス雰囲 気下または不活性ガスと水素ガスとの混合ガス雰囲気下において混合する工程と、 前記混合工程後に得られる被処理物に水素吸放出能を高める触媒を担持させる 工程と、 [20] a step of mixing the metal hydride and the metal amide compound under an inert gas atmosphere, a hydrogen gas atmosphere, or a mixed gas atmosphere of an inert gas and a hydrogen gas; A step of supporting a catalyst for enhancing the ability to absorb and release hydrogen on the object to be treated;
を有し、  Has,
前記金属水素化物と金属アミド化合物を構成する金属成分は 2種類以上である水 素貯蔵材料の製造方法。  A method for producing a hydrogen storage material, wherein the metal hydride and the metal amide compound have two or more metal components.
[21] 請求項 20の水素貯蔵材料の製造方法により製造された水素貯蔵材料。 [21] A hydrogen storage material produced by the method for producing a hydrogen storage material according to claim 20.
[22] 金属水素化物と金属アミド化合物の少なくとも一方に水素吸放出能を高める触媒を 担持する工程と、 [22] a step of supporting at least one of a metal hydride and a metal amide compound with a catalyst that enhances the ability to absorb and release hydrogen;
前記触媒がそれぞれ担持された金属水素化物と金属アミド化合物とを、または前記 触媒が担持された金属水素化物と前記触媒が担持されてレ、なレ、金属アミド化合物と を、または前記触媒が担持された金属アミド化合物と前記触媒が担持されていない 金属水素化物とを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガ スと水素ガスとの混合ガス雰囲気下において混合する工程と、  A metal hydride and a metal amide compound each carrying the catalyst, or a metal hydride carrying the catalyst and a metal amide compound carrying the catalyst; or the catalyst carries a metal hydride and a metal amide compound. Mixing the metal amide compound and the metal hydride on which the catalyst is not supported under an inert gas atmosphere, a hydrogen gas atmosphere, or a mixed gas atmosphere of an inert gas and a hydrogen gas,
を有し、  Has,
前記金属水素化物と金属アミド化合物を構成する金属成分が 2種類以上である水 素貯蔵材料の製造方法。  A method for producing a hydrogen storage material, wherein the metal hydride and the metal amide compound have two or more metal components.
貯蔵材料。  Storage material.
[23] 請求項 22の水素貯蔵材料の製造方法により製造された水素貯蔵材料。  [23] A hydrogen storage material produced by the method for producing a hydrogen storage material according to claim 22.
[24] 金属水素化物と金属アミド化合物の混合物または複合化物または反応物を有し、 これらの金属種力 Sリチウムとマグネシウムの 2種類である水素貯蔵材料。 [24] A hydrogen storage material that has a mixture, complex, or reaction product of a metal hydride and a metal amide compound, and has two kinds of metal species, lithium and magnesium.
[25] 前記金属水素化物は水素化リチウムであり、前記金属アミド化合物はマグネシウム アミドである請求項 24に記載の水素貯蔵材料。 25. The hydrogen storage material according to claim 24, wherein the metal hydride is lithium hydride, and the metal amide compound is magnesium amide.
[26] マグネシウムアミド 1モルに対して、水素化リチウムの混合比が 1. 5モル以上 4モル 以下である請求項 25に記載の水素貯蔵材料。 26. The hydrogen storage material according to claim 25, wherein a mixing ratio of lithium hydride is 1.5 mol or more and 4 mol or less with respect to 1 mol of magnesium amide.
[27] 前記金属水素化物は水素化マグネシウムであり、前記金属アミド化合物がリチウム アミドである請求項 24に記載の水素貯蔵材料。 27. The hydrogen storage material according to claim 24, wherein the metal hydride is magnesium hydride, and the metal amide compound is lithium amide.
[28] 前記リチウムアミド 1モルに対する前記水素化マグネシウムの混合比が 0. 5モル以 上 2モル以下である請求項 27に記載の水素貯蔵材料。 28. The hydrogen storage material according to claim 27, wherein a mixing ratio of the magnesium hydride to 1 mol of the lithium amide is 0.5 mol or more and 2 mol or less.
[29] 水素吸放出能を高める触媒をさらに含む請求項 24に記載の水素貯蔵材料。 29. The hydrogen storage material according to claim 24, further comprising a catalyst that enhances the ability to absorb and release hydrogen.
[30] 前記触媒が、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力、 ら選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合金、あるいは 水素貯蔵合金である請求項 29に記載の水素貯蔵材料。 [30] The catalyst comprises B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from the group consisting of Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf and Ag forces, or their compounds or alloys, or hydrogen storage alloys 30. The hydrogen storage material according to claim 29, wherein
[31] 前記触媒の担持量が、前記金属水素化物と金属アミド化合物の混合物または複合 化物または反応物の 0. 1質量%以上 20質量%以下である請求項 29に記載の水素 貯蔵材料。 31. The hydrogen storage material according to claim 29, wherein the supported amount of the catalyst is 0.1% by mass or more and 20% by mass or less of the mixture, the complex, or the reaction product of the metal hydride and the metal amide compound.
[32] 金属水素化物と金属アミド化合物とを含み、これらの反応により水素を発生する水 素貯蔵材料の製造方法であって、  [32] A method for producing a hydrogen storage material that includes a metal hydride and a metal amide compound, and generates hydrogen by a reaction between the two,
金属水素化物とアンモニアとを反応させて、金属アミド化合物を合成する工程と、 金属水素化物と前記合成工程により得られた金属アミド化合物とを混合する工程と を有する水素貯蔵材料の製造方法。  A method for producing a hydrogen storage material, comprising: reacting a metal hydride with ammonia to synthesize a metal amide compound; and mixing the metal hydride with the metal amide compound obtained in the synthesis step.
[33] 前記金属水素化物にさらに所定の金属単体または合金を加えて、前記アンモニア と反応させる請求項 32に記載の水素貯蔵材料の製造方法。 33. The method for producing a hydrogen storage material according to claim 32, wherein a predetermined elemental metal or an alloy is further added to the metal hydride to react with the ammonia.
[34] 水素化リチウムとリチウムアミドの混合物または複合化物または反応物を所定の機 械的粉砕処理により微細化してなる水素貯蔵材料であって、 [34] A hydrogen storage material obtained by pulverizing a mixture, complex, or reaction product of lithium hydride and lithium amide by a predetermined mechanical pulverization process,
BET法による比表面積が 15m2Zg以上である水素貯蔵材料。 Hydrogen storage material whose specific surface area by BET method is 15m 2 Zg or more.
[35] 水素吸放出能を高める触媒をさらに含む請求項 34に記載の水素貯蔵材料。 35. The hydrogen storage material according to claim 34, further comprising a catalyst that enhances the ability to absorb and release hydrogen.
[36] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力 ら選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合金、あるいは 水素貯蔵合金である請求項 35に記載の水素貯蔵材料。 [36] The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from the group consisting of Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag or their compounds or alloys, or hydrogen storage alloys 36. The hydrogen storage material according to claim 35.
[37] 水素化リチウムとマグネシウムアミドの混合物または複合化物または反応物を所定 の機械的粉砕処理により微細化してなる水素貯蔵材料であって、  [37] A hydrogen storage material obtained by refining a mixture, complex, or reaction product of lithium hydride and magnesium amide by a predetermined mechanical pulverization treatment,
BET法による比表面積が 7. 5m2Zg以上である水素貯蔵材料。 Hydrogen storage material with a specific surface area of 7.5 m 2 Zg or more by BET method.
[38] 水素吸放出能を高める触媒をさらに含む請求項 37に記載の水素貯蔵材料。  38. The hydrogen storage material according to claim 37, further comprising a catalyst that enhances the ability to absorb and release hydrogen.
[39] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力、 ら選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合金、あるいは 水素貯蔵合金である請求項 38に記載の水素貯蔵材料。 [39] The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf and Ag forces, or their compounds or alloys, or hydrogen storage alloys 39. The hydrogen storage material according to claim 38, wherein
[40] 水素化マグネシウムとリチウムアミドの混合物または複合化物または反応物を所定 の機械的粉碎処理により微細化してなる水素貯蔵材料であって、  [40] A hydrogen storage material obtained by refining a mixture, complex, or reaction product of magnesium hydride and lithium amide by a predetermined mechanical pulverization treatment,
BET法による比表面積が 7. 5m2/g以上である水素貯蔵材料。 Hydrogen storage material whose specific surface area by BET method is 7.5 m 2 / g or more.
[41] 水素吸放出能を高める触媒をさらに含む請求項 40に記載の水素貯蔵材料。  41. The hydrogen storage material according to claim 40, further comprising a catalyst that enhances the ability to absorb and release hydrogen.
[42] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力 ら選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合金、あるいは 水素貯蔵合金である請求項 41に記載の水素貯蔵材料。 [42] The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from the group consisting of Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag or their compounds or alloys, or hydrogen storage alloys 42. The hydrogen storage material according to claim 41.
[43] 水素化したリチウムイミドを有する水素貯蔵材料であって、  [43] A hydrogen storage material having hydrogenated lithium imide,
BET法による比表面積が 10m2Zg以上である水素貯蔵材料。 Hydrogen storage material whose specific surface area by BET method is 10m 2 Zg or more.
[44] 水素吸放出能を高める触媒をさらに含む請求項 43に記載の水素貯蔵材料。  44. The hydrogen storage material according to claim 43, further comprising a catalyst that enhances the ability to absorb and release hydrogen.
[45] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力、 ら選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合金、あるいは 水素貯蔵合金である請求項 44に記載の水素貯蔵材料。 [45] The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag forces, or compounds or alloys thereof, or hydrogen storage alloys The hydrogen storage material according to claim 44, wherein the hydrogen storage material is:
[46] 'Πキ んノミドの混合物または複合化物または反応物を水素化 した水素貯蔵材料であって、 [46] Hydrogenate a mixture or complex or reactant of Πquinomide Hydrogen storage material,
BET法による比表面積が 5m2/g以上である水素貯蔵材料。 Hydrogen storage material whose specific surface area by BET method is 5m 2 / g or more.
[47] 水素吸放出能を高める触媒をさらに含む請求項 46に記載の水素貯蔵材料。 47. The hydrogen storage material according to claim 46, further comprising a catalyst that enhances the ability to absorb and release hydrogen.
[48] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力、 ら選ばれた 1種もしくは 2種以上の金属またはその化合物またはその合金、あるいは 水素貯蔵合金である請求項 47に記載の水素貯蔵材料。 [48] The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, and Ag forces, or compounds or alloys thereof, or hydrogen storage alloys 48. The hydrogen storage material according to claim 47, wherein
[49] 金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物ま たは複合化物または反応物を有する水素貯蔵材料であって、 [49] A hydrogen storage material having a mixture, a complex, or a reactant containing a metal hydride, a metal amide compound, and a catalyst for enhancing the ability to absorb and release hydrogen,
前記触媒はナノ粒子からなる水素貯蔵材料。  The catalyst is a hydrogen storage material comprising nanoparticles.
[50] 前記金属水素化物と金属アミド化合物を構成する金属種カ^チゥム、マグネシウム[50] The metal species comprising the metal hydride and the metal amide compound, such as potassium and magnesium
、カルシウムのレ、ずれかである請求項 49に記載の水素貯蔵材料。 50. The hydrogen storage material according to claim 49, wherein the amount of calcium is less than the amount of calcium.
[51] 前記金属水素化物は水素化リチウムであり、前記金属アミド化合物はマグネシウム アミドである請求項 49に記載の水素貯蔵材料。 51. The hydrogen storage material according to claim 49, wherein the metal hydride is lithium hydride, and the metal amide compound is magnesium amide.
[52] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力 ら選ばれた 1種または 2種以上の金属、またはその化合物またはその合金、あるいは 水素貯蔵合金である請求項 49に記載の水素貯蔵材料。 [52] The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf and Ag forces, or their compounds or alloys, or hydrogen storage alloys 50. The hydrogen storage material according to claim 49, wherein
[53] 前記触媒は、ナノ金属粒子、ナノ金属酸化物粒子、ナノ金属塩化物のレ、ずれかで ある請求項 49に記載の水素貯蔵材料。 53. The hydrogen storage material according to claim 49, wherein the catalyst is selected from nano metal particles, nano metal oxide particles, and nano metal chlorides.
[54] 金属イミド化合物と水素吸放出能を高める触媒を含み、かつ、水素化された水素貯 蔵材料であって、 [54] A hydrogenated hydrogen storage material containing a metal imide compound and a catalyst for enhancing the ability to absorb and release hydrogen, and
前記触媒はナノ粒子からなる水素貯蔵材料。  The catalyst is a hydrogen storage material comprising nanoparticles.
[55] 前記金属イミド化合物はリチウムイミドであり、さらに窒化マグネシウムを含む請求項 [55] The metal imide compound is lithium imide, further comprising magnesium nitride.
54に記載の水素貯蔵材料。  54. The hydrogen storage material according to 54.
[56] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力、 ら選ばれた 1種または 2種以上の金属、またはその化合物またはその合金、あるいは 水素貯蔵合金である請求項 54に記載の水素貯蔵材料。 [56] The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag forces, or compounds or alloys thereof, or The hydrogen storage material according to claim 54, which is a hydrogen storage alloy.
[57] 前記触媒は、ナノ金属粒子、ナノ金属酸化物粒子、ナノ金属塩化物のレ、ずれかで ある請求項 54に記載の水素貯蔵材料。 57. The hydrogen storage material according to claim 54, wherein the catalyst is nano metal particles, nano metal oxide particles, or nano metal chloride.
[58] 金属水素化物と金属アミド化合物との反応により水素を放出し、その水素放出反応 を促進させる触媒を 2種類以上含有する水素貯蔵材料の製造方法であって、 金属水素化物と金属アミド化合物のいずれか一方に、 1種類の触媒と、所定の易粉 砕性の無機物質と、を加えて粉砕混合する工程と、 [58] A method for producing a hydrogen storage material comprising two or more types of catalysts which release hydrogen by a reaction between a metal hydride and a metal amide compound and promote the hydrogen release reaction, comprising: a metal hydride and a metal amide compound Adding one kind of catalyst and a predetermined easily crushable inorganic substance to one of the two, and crushing and mixing;
前記粉砕混合工程により得られた被処理物に、前記金属水素化物と金属アミド化 合物の残る一方と、水素放出反応を促進させる別の 1種類の触媒と、を加えて粉砕 混合する工程と、  Pulverizing and mixing by adding one of the remaining metal hydride and the metal amide compound to the object to be treated obtained in the pulverizing and mixing step, and another type of catalyst that promotes a hydrogen releasing reaction; ,
を有する水素貯蔵材料の製造方法。  A method for producing a hydrogen storage material having:
[59] 金属水素化物と金属アミド化合物との反応により水素を放出し、その水素放出反応 を促進させる触媒を 2種類以上含有する水素貯蔵材料の製造方法であって、 金属水素化物と金属アミド化合物のいずれか一方に、 1種類の触媒と、所定の易粉 砕性の無機物質と、を加えて粉碎混合する工程と、 [59] A method for producing a hydrogen storage material comprising two or more types of catalysts that release hydrogen by the reaction between a metal hydride and a metal amide compound and promote the hydrogen release reaction, comprising: Adding one kind of catalyst and a predetermined easily crushable inorganic substance to one of the two, followed by crushing and mixing,
前記金属水素化物と金属アミド化合物の残る一方に別の 1種類の触媒を加えて粉 砕混合する工程と、  A step of adding another catalyst to one of the remaining metal hydride and the metal amide compound and pulverizing and mixing,
前記 2つの混合工程により得られた被処理物どうしを粉碎混合する工程と、 を有する水素貯蔵材料の製造方法。  A method of pulverizing and mixing the objects to be processed obtained by the two mixing steps, and a method of producing a hydrogen storage material.
[60] その中で水素貯蔵材原料を粉碎する円筒状の粉碎容器と、 [60] A cylindrical grinding vessel for grinding the hydrogen storage material therein,
前記粉砕容器内を水素雰囲気に保つことが可能なように前記粉砕容器内に水素 ガスを導入する水素ガス導入部と、  A hydrogen gas introduction unit that introduces hydrogen gas into the pulverization container so that the inside of the pulverization container can be maintained in a hydrogen atmosphere;
前記粉砕容器内の水素ガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材 原料を導入可能な水素貯蔵材原料導入部と、  A hydrogen storage material introduction unit capable of introducing a hydrogen storage material into the grinding container while maintaining the hydrogen gas atmosphere in the grinding container;
前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、 回転軸の長手方向を前記粉砕容器の長手方向に一致させるとともに前記粉砕容 器の内壁に沿って配置された複数の粉砕ローラと、  A hydrogen storage material discharge section for discharging the hydrogen storage material in the pulverizing container; and a plurality of pulverizing rollers arranged along the inner wall of the pulverizing container, with a longitudinal direction of a rotating shaft coinciding with a longitudinal direction of the pulverizing container. When,
前記粉砕容器と前記複数の粉砕ローラとの間の相対的な回転移動および前記複 数の粉砕ローラの自転を生じさせる駆動機構と、 Relative rotational movement between the crushing container and the plurality of crushing rollers; A drive mechanism for causing a number of grinding rollers to rotate,
を具備し、  With
前記粉砕容器内を水素雰囲気にして水素貯蔵材原料を前記粉砕容器内に導入し 、前記粉砕容器の内壁と前記粉砕ローラとの間の圧縮力および剪断力によって水素 貯蔵材原料を機械的粉砕して水素貯蔵材料を製造する水素貯蔵材料の製造装置。  Making the inside of the pulverizing container a hydrogen atmosphere, introducing a hydrogen storage material into the pulverizing container, mechanically pulverizing the hydrogen storage material by a compressive force and a shearing force between an inner wall of the pulverizing container and the pulverizing roller. For producing hydrogen storage material.
[61] 同軸に設けられた内筒と外筒とを有し、これら内筒と外筒との間に環状粉砕室が形 成される粉砕容器と、  [61] A grinding container having an inner cylinder and an outer cylinder provided coaxially, and an annular grinding chamber being formed between the inner cylinder and the outer cylinder;
前記環状粉砕室内を水素雰囲気に保つことが可能なように前記環状粉砕室内に 水素ガスを導入する水素ガス導入部と、  A hydrogen gas introduction unit for introducing hydrogen gas into the annular grinding chamber so that the annular grinding chamber can be maintained in a hydrogen atmosphere;
前記環状粉砕室内の水素ガス雰囲気を維持したまま前記環状粉砕室内に水素貯 蔵材原料を導入可能な水素貯蔵材原料導入部と、  A hydrogen storage material source introduction unit capable of introducing a hydrogen storage material into the annular grinding chamber while maintaining a hydrogen gas atmosphere in the annular grinding chamber;
前記環状粉砕室内の水素貯蔵材料を排出する水素貯蔵材料排出部と、 前記内筒と前記外筒との間に相対的な回転移動を生じさせる駆動機構と、 を具備し、  A hydrogen storage material discharge unit that discharges the hydrogen storage material in the annular crushing chamber, and a drive mechanism that causes a relative rotational movement between the inner cylinder and the outer cylinder,
前記環状粉砕室内を水素雰囲気にして、水素貯蔵材原料および粉碎媒体を前記 環状粉砕室内に導入し、前記内筒と外筒との間の相対的な回転移動を生じさせて水 素貯蔵材原料を機械的粉碎して水素貯蔵材料を製造する水素貯蔵材料の製造装  By making the annular grinding chamber a hydrogen atmosphere, a hydrogen storage material and a grinding medium are introduced into the annular grinding chamber, and a relative rotation between the inner cylinder and the outer cylinder is caused to occur, so that a hydrogen storage material is produced. Hydrogen storage material production equipment
[62] その中で水素貯蔵材原料を粉碎する回転可能な円筒状の粉碎容器と、 [62] A rotatable cylindrical grinding vessel for grinding the hydrogen storage material therein,
前記粉砕容器内を水素雰囲気に保つことが可能なように前記粉砕容器内に水素 ガスを導入する水素ガス導入部と、  A hydrogen gas introduction unit that introduces hydrogen gas into the pulverization container so that the inside of the pulverization container can be maintained in a hydrogen atmosphere;
前記粉砕容器内の水素ガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材 原料を導入可能な水素貯蔵材原料導入部と、  A hydrogen storage material introduction unit capable of introducing a hydrogen storage material into the grinding container while maintaining the hydrogen gas atmosphere in the grinding container;
前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、 回転軸の長手方向を前記粉砕容器の長手方向に一致させて前記粉砕容器の中に 設けられたインペラと、  A hydrogen storage material discharge unit that discharges the hydrogen storage material in the pulverization container; and an impeller provided in the pulverization container with a longitudinal direction of a rotating shaft coinciding with a longitudinal direction of the pulverization container.
前記粉砕容器と前記インペラとを互いに反対方向に回転させる駆動機構と、 を具備し、 前記粉砕容器内を水素雰囲気にして、水素貯蔵材原料および粉碎媒体を前記粉 砕容器内に充填させ、前記粉砕容器と前記インペラとを互いに反対方向に回転させ ることにより、水素貯蔵材原料を機械的粉砕して水素貯蔵材料を製造する水素貯蔵 材料の製造装置。 A drive mechanism for rotating the crushing container and the impeller in directions opposite to each other, By setting the inside of the pulverizing container to a hydrogen atmosphere, filling the raw material for hydrogen storage material and the pulverizing medium into the pulverizing container, and rotating the pulverizing container and the impeller in directions opposite to each other, the hydrogen storage material raw material is obtained. Hydrogen storage material manufacturing equipment that mechanically pulverizes the hydrogen storage material.
[63] その中で水素貯蔵材原料を粉砕し、粉砕されてなる水素貯蔵材料を外部に排出す るための水素貯蔵材料排出口を側壁下部に有する有底円筒状の粉砕容器と、 前記粉砕容器を収容し、内部を所定のガス雰囲気に保持することができるハウジン グと、  [63] A bottomed cylindrical pulverizing container having a hydrogen storage material discharge port at the lower side wall for pulverizing the hydrogen storage material material therein and discharging the pulverized hydrogen storage material to the outside, A housing capable of accommodating the container and maintaining the inside at a predetermined gas atmosphere;
円柱曲面を有し、その曲面と前記粉砕容器の側壁内面との間に所定の間隙ができ るように配置された 1または複数のインナーピースと、  One or more inner pieces having a cylindrical curved surface and arranged so as to form a predetermined gap between the curved surface and the inner surface of the side wall of the crushing container;
前記インナーピースを保持する保持部材と、  A holding member for holding the inner piece,
前記粉砕容器と前記インナーピースとの間の間隙幅が実質的に変わらないように 前記粉砕容器および/または前記保持部材を回転させる容器回転機構と、 を具備し、  A container rotating mechanism that rotates the crushing container and / or the holding member so that a gap width between the crushing container and the inner piece does not substantially change,
前記ハウジングは、その内部に水素ガスを導入するガス導入部と、その内部を水素 ガス雰囲気に保持したまま前記粉砕容器内に水素貯蔵材原料を導入する水素貯蔵 材原料導入部と、前記粉砕容器力 前記水素貯蔵材料排出口を通って排出された 水素貯蔵材料の一部をその内部からその外部に排出する水素貯蔵材料排出部と、 前記粉砕容器から前記水素貯蔵材料排出口を通って排出された水素貯蔵材料の一 部を前記粉碎容器内に戻す水素貯蔵材循環部と、を有し、  A housing for introducing a hydrogen gas into the housing, a hydrogen storage material introduction unit for introducing a hydrogen storage material into the pulverization container while maintaining the inside of the housing in a hydrogen gas atmosphere; A hydrogen storage material discharge portion for discharging a part of the hydrogen storage material discharged through the hydrogen storage material discharge port from the inside to the outside, and a hydrogen storage material discharge portion discharged from the grinding container through the hydrogen storage material discharge port. A hydrogen storage material circulating unit for returning a part of the hydrogen storage material to the grinding container,
前記ハウジング内を水素雰囲気にして水素貯蔵材原料を前記粉砕容器内に導入 し、前記粉砕容器の側壁と前記インナーピースとの間の圧縮力および剪断力によつ て水素貯蔵材原料を機械的粉砕して水素貯蔵材料を製造する水素貯蔵材料の製  A hydrogen atmosphere is introduced into the housing to introduce a hydrogen storage material into the pulverizing container, and the hydrogen storage material is mechanically converted by a compressive force and a shearing force between a side wall of the pulverizing container and the inner piece. Manufacture of hydrogen storage material that is crushed to produce hydrogen storage material
[64] 水素を含む所定の処理ガスを高圧噴射するジェットノズルと、 [64] a jet nozzle for injecting a predetermined processing gas containing hydrogen at a high pressure,
その内部に前記ジェットノズルから噴射された高圧処理ガスが導入され、前記高圧 処理ガスの気流によって水素貯蔵材原料を粉砕する所定形状の粉砕容器と、 前記粉砕容器内のガス雰囲気を維持したまま前記粉砕容器内に水素貯蔵材原料 を導入可能な水素貯蔵材原料導入部と、 A high-pressure processing gas injected from the jet nozzle is introduced into the inside thereof, and a pulverizing container having a predetermined shape for pulverizing the hydrogen storage material by an air current of the high-pressure processing gas; Hydrogen storage material raw material in the grinding container A hydrogen storage material introduction unit capable of introducing
前記粉砕容器内の水素貯蔵材料を排出する水素貯蔵材料排出部と、 を具備し、  A hydrogen storage material discharge unit that discharges the hydrogen storage material in the grinding container,
前記粉砕容器内を水素ガスを含む雰囲気にして水素貯蔵材原料を前記粉砕容器 内に導入し、前記ジェットノズルから噴射された高圧処理ガスの気流に乗った水素貯 蔵材原料どうしの衝突もしくは磨砕または前記高圧処理ガスの気流から与えられる剪 断力によって、水素貯蔵材原料を機械的粉砕して水素貯蔵材料を製造する水素貯 蔵材料の製造装置。  The inside of the pulverizing container is set to an atmosphere containing hydrogen gas, and a hydrogen storage material is introduced into the pulverization container. The collision or polishing of the hydrogen storage material is carried by the high-pressure processing gas injected from the jet nozzle. An apparatus for producing a hydrogen storage material for producing a hydrogen storage material by mechanically pulverizing a hydrogen storage material raw material by crushing or shearing force given from an air flow of the high-pressure processing gas.
[65] 円筒状の粉砕容器内を水素雰囲気にしつつ、前記粉砕容器内に水素貯蔵材原料 を導入し、前記粉砕容器と前記粉砕容器の内壁に沿って設けられた複数の粉砕ロー ラとの間の相対的な回転移動および前記複数の粉砕ローラの自転により前記粉砕容 器の内壁と前記粉砕ローラとの間に生じる圧縮力および剪断力によって、水素貯蔵 材原料を機械的粉碎して水素貯蔵材料を製造する水素貯蔵材料の製造方法。  [65] A hydrogen storage material is introduced into the pulverizing container while the inside of the cylindrical pulverizing container is kept in a hydrogen atmosphere. The hydrogen storage material is mechanically pulverized by a compressive force and a shear force generated between the inner wall of the pulverizing container and the pulverizing roller due to relative rotational movement between the pulverizing rollers and rotation of the plurality of pulverizing rollers. A method for producing a hydrogen storage material for producing a material.
[66] 請求項 65記載の製造方法により得られた水素貯蔵材料。  [66] A hydrogen storage material obtained by the production method according to claim 65.
[67] 同軸に設けられた内筒と外筒とを有する粉碎容器の前記内筒と外筒との間に形成 された環状粉砕室内を水素雰囲気にしつつ、前記環状粉砕室内に粉碎媒体および 水素貯蔵材原料を導入し、前記内筒と外筒との間の相対的な回転移動を生じさせて 水素貯蔵材原料を機械的粉碎して水素貯蔵材料を製造する水素貯蔵材料の製造 方法。  [67] In a grinding vessel having an inner cylinder and an outer cylinder provided coaxially, while the annular grinding chamber formed between the inner cylinder and the outer cylinder is in a hydrogen atmosphere, a grinding medium and hydrogen are introduced into the annular grinding chamber. A method for producing a hydrogen storage material, comprising: introducing a storage material and causing relative rotation between the inner cylinder and the outer cylinder to mechanically pulverize the hydrogen storage material to produce a hydrogen storage material.
[68] 請求項 67記載の製造方法により得られた水素貯蔵材料。  [68] A hydrogen storage material obtained by the production method according to claim 67.
[69] 円筒状の粉碎容器内を水素雰囲気にしつつ、前記粉碎容器内に粉砕媒体および 水素貯蔵材原料を充填させ、前記粉砕容器内と前記粉砕容器内に設けられたイン ペラとを互いに反対方向に回転させることにより水素貯蔵材原料を機械的粉砕して 水素貯蔵材料を製造する水素貯蔵材料の製造方法。  [69] A grinding medium and a hydrogen storage material are filled in the grinding container while the inside of the cylindrical grinding container is kept in a hydrogen atmosphere, and the impeller provided in the grinding container and the inside of the grinding container are opposed to each other. A method for producing a hydrogen storage material in which a hydrogen storage material is mechanically pulverized by rotating in a direction to produce a hydrogen storage material.
[70] 請求項 69記載の製造方法により得られた水素貯蔵材料。  [70] A hydrogen storage material obtained by the production method according to claim 69.
[71] 有底円筒状の粉砕容器内を水素雰囲気にしつつ、水素貯蔵材原料を前記粉砕容 器内に導入し、前記粉砕容器内に設けられた円柱曲面を有するインナーピースの該 円柱曲面と前記粉砕容器の側壁との間隙幅が実質的に変化しないように前記インナ 一ピースを回動させる力または前記粉砕容器を回転させることにより前記インナーピ ースと前記粉砕容器の側壁との間に生ずる圧縮力および剪断力によって、水素貯蔵 材原料を機械的粉碎して水素貯蔵材料を製造する水素貯蔵材料の製造方法。 [71] A hydrogen storage material was introduced into the pulverizing container while the inside of the pulverized cylindrical pulverizing container was set to a hydrogen atmosphere, and the inner curved piece of the inner piece having a cylindrical curved surface provided in the pulverizing container was removed. In order to prevent the gap width with the side wall of the crushing container from substantially changing, The hydrogen storage material is mechanically pulverized by a force for rotating one piece or a compressive force and a shearing force generated between the inner piece and the side wall of the pulverization container by rotating the pulverization container. A method for producing a hydrogen storage material for producing a material.
[72] 請求項 71記載の製造方法により得られた水素貯蔵材料。 [72] A hydrogen storage material obtained by the production method according to claim 71.
[73] 粉砕容器に水素を含む所定の処理ガスを高圧噴射しつつ、前記粉砕容器内に生 ずる前記処理ガスの気流に乗るように水素貯蔵材原料を前記粉砕容器に導入するこ とにより、前記気流に乗った水素貯蔵材原料どうしの衝突もしくは磨砕または前記気 流から与えられる剪断力によって、水素貯蔵材原料を機械的粉砕して水素貯蔵材料 を製造する水素貯蔵材料の製造方法。  [73] By injecting a predetermined processing gas containing hydrogen into the pulverizing container at a high pressure and introducing a hydrogen storage material material into the pulverizing container so as to ride on the gas flow of the processing gas generated in the pulverizing container, A method for producing a hydrogen storage material, wherein the hydrogen storage material is produced by mechanically pulverizing the hydrogen storage material by collision or grinding of the hydrogen storage material on the gas stream or by shearing force applied from the gas stream.
[74] 請求項 73記載の製造方法により得られた水素貯蔵材料。  [74] A hydrogen storage material obtained by the production method according to claim 73.
[75] その中で水素貯蔵材原料を粉砕するための円筒状の粉砕容器と、  [75] a cylindrical grinding container for grinding the hydrogen storage material therein;
水素貯蔵材原料と所定の溶剤からなるスラリーを前記粉砕容器内に導入するスラリ 一供給部と、  A slurry supply unit for introducing a slurry composed of a hydrogen storage material and a predetermined solvent into the pulverizing vessel;
前記粉砕容器内のスラリーを排出するスラリー排出部と、  A slurry discharging unit for discharging the slurry in the grinding container,
前記粉砕容器に所定量充填された粉碎ボールと、  A grinding ball filled in a predetermined amount in the grinding container,
前記粉砕ボールを前記粉砕容器内で搔き回す攪拌装置と、  A stirrer that spins the crushing ball in the crushing container,
を具備する水素貯蔵材料の製造装置。  An apparatus for producing a hydrogen storage material comprising:
[76] 前記スラリーを調製するスラリー調製装置と、  [76] a slurry preparation apparatus for preparing the slurry,
前記スラリー調製装置において調製されたスラリーを前記スラリー供給部を通して 前記粉砕容器内に連続的に供給するスラリー供給機構と、  A slurry supply mechanism for continuously supplying the slurry prepared in the slurry preparation device into the pulverizing container through the slurry supply unit,
前記スラリー排出部から排出されるスラリーを加熱して前記スラリーに含まれる溶剤 を蒸発させることにより連続的に乾燥した水素貯蔵材料を製造するスラリー乾燥装置 と、  A slurry drying device for heating the slurry discharged from the slurry discharge portion to evaporate a solvent contained in the slurry to produce a continuously dried hydrogen storage material,
前記スラリー乾燥装置により乾燥処理された水素貯蔵材料を充填する水素貯蔵材 料充填容器と、  A hydrogen storage material filling container for filling the hydrogen storage material dried by the slurry drying device;
をさらに具備する請求項 75に記載の水素貯蔵材料の製造装置。  The apparatus for producing a hydrogen storage material according to claim 75, further comprising:
[77] 液密に保持される粉砕容器内に、粉砕ボールと、水素貯蔵材原料と溶剤とからなる スラリーと、を充填し、前記粉砕容器内に設けられたインペラを回転させることによる 前記粉砕ボールどうしの衝突により前記水素貯蔵材原料を機械的に粉砕して水素貯 蔵材料を製造する水素貯蔵材料の製造方法。 [77] A grinding container, which is maintained in a liquid-tight manner, is filled with grinding balls, a slurry containing a hydrogen storage material and a solvent, and the impeller provided in the grinding container is rotated. A method for producing a hydrogen storage material, wherein the hydrogen storage material is mechanically pulverized by collision of the pulverized balls to produce a hydrogen storage material.
[78] 前記粉砕容器力 排出されるスラリーを加熱して前記スラリーに含まれる溶剤を蒸 発させることにより連続的に水素貯蔵材料を乾燥させ、乾燥処理された水素貯蔵材 料を所定の充填容器に充填する請求項 77に記載の水素貯蔵材料の製造方法。 [78] The power of the crushing container The heated slurry is evaporated to evaporate the solvent contained in the slurry, thereby continuously drying the hydrogen storage material. The dried hydrogen storage material is filled in a predetermined filling container. 78. The method for producing a hydrogen storage material according to claim 77, wherein the hydrogen storage material is charged.
[79] 水素と反応することによって金属水素化物と金属アミド化合物とを同時に含む水素 貯蔵材料に変化する金属イミド化合物を有する水素貯蔵材料前駆体であって、 前記金属イミド化合物は、前記金属水素化物と前記金属アミド化合物との反応を経 ることなく合成されたものである水素貯蔵材料前駆体。 [79] A hydrogen storage material precursor having a metal imide compound which changes to a hydrogen storage material containing a metal hydride and a metal amide compound simultaneously by reacting with hydrogen, wherein the metal imide compound is a metal hydride A hydrogen storage material precursor synthesized without undergoing a reaction between the hydrogen storage material and the metal amide compound.
[80] 前記金属イミド化合物は、リチウムイミド、ナトリウムイミド、マグネシウムイミド、カルシ ゥムイミドのいずれ力、 1種または 2種以上を含む請求項 79に記載の水素貯蔵材料前 駆体。 80. The precursor of the hydrogen storage material according to claim 79, wherein the metal imide compound includes one or more of lithium imide, sodium imide, magnesium imide, and carbimide.
[81] 前記金属イミド化合物は所定の触媒を担持している請求項 79に記載の水素貯蔵 材料前駆体。  [81] The hydrogen storage material precursor according to [79], wherein the metal imide compound supports a predetermined catalyst.
[82] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力 ら選ばれた 1種または 2種以上の金属またはその化合物またはその合金、あるいは水 素貯蔵合金である請求項 81に記載の水素貯蔵材料前駆体。  [82] The catalyst includes B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf and Ag forces, their compounds or alloys, or hydrogen storage alloys 83. The hydrogen storage material precursor according to claim 81, wherein
[83] 前記触媒の担持量は、前記金属イミド化合物の 0. 1質量%以上 20質量%以下で ある請求項 81に記載の水素貯蔵材料前駆体。 83. The hydrogen storage material precursor according to claim 81, wherein an amount of the catalyst carried is 0.1% by mass or more and 20% by mass or less of the metal imide compound.
[84] 水素と反応することによって水素を放出可能となる水素貯蔵材料に可逆的に変化 する水素貯蔵材料前駆体であって、 [84] A hydrogen storage material precursor that reversibly changes into a hydrogen storage material capable of releasing hydrogen by reacting with hydrogen,
金属アミド化合物の熱分解により生成した金属イミド化合物を有する水素貯蔵材料 前馬区体。  A hydrogen storage material having a metal imide compound generated by thermal decomposition of a metal amide compound.
[85] 前記金属イミド化合物は、リチウムイミド、ナトリウムイミド、マグネシウムイミド、カルシ ゥムイミドのいずれ力、 1種または 2種以上を含む請求項 84に記載の水素貯蔵材料前 駆体。  [85] The precursor of the hydrogen storage material according to [84], wherein the metal imide compound includes one or more of lithium imide, sodium imide, magnesium imide, and calcium imide.
[86] 前記金属イミド化合物は所定の触媒を担持している請求項 84に記載の水素貯蔵 材料前駆体。 86. The hydrogen storage according to claim 84, wherein the metal imide compound supports a predetermined catalyst. Material precursor.
[87] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力 ら選ばれた 1種または 2種以上の金属またはその化合物またはその合金、あるいは水 素貯蔵合金である請求項 86に記載の水素貯蔵材料前駆体。  [87] The catalyst comprises B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf and Ag forces, their compounds or alloys, or hydrogen storage alloys 89. The hydrogen storage material precursor according to claim 86, wherein
[88] 前記触媒の担持量は、前記金属イミド化合物の 0. 1質量%以上 20質量%以下で ある請求項 86に記載の水素貯蔵材料前駆体。 88. The hydrogen storage material precursor according to claim 86, wherein the supported amount of the catalyst is 0.1% by mass or more and 20% by mass or less of the metal imide compound.
[89] 水素と反応することによって水素を放出可能となる水素貯蔵材料に可逆的に変化 する金属イミド化合物を有する水素貯蔵材料前駆体の製造方法であって、 [89] A method for producing a hydrogen storage material precursor having a metal imide compound which reversibly changes to a hydrogen storage material capable of releasing hydrogen by reacting with hydrogen,
金属アミド化合物を熱分解することにより前記金属イミド化合物を得る水素貯蔵材 料前駆体の製造方法。  A method for producing a hydrogen storage material precursor, wherein the metal amide compound is obtained by thermally decomposing a metal amide compound.
[90] 前記金属アミド化合物はリチウムアミドを主成分とする請求項 89に記載の水素貯蔵 材料前駆体の製造方法。  [90] The method for producing a hydrogen storage material precursor according to [89], wherein the metal amide compound is mainly composed of lithium amide.
[91] 前記金属イミド化合物に所定の触媒を担持させる請求項 89に記載の水素貯蔵材 料前駆体の製造方法。 [91] The method for producing a hydrogen storage material precursor according to [89], wherein a predetermined catalyst is supported on the metal imide compound.
[92] 前記触媒は、 B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, N b, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf, Ag力 ら選ばれた 1種または 2種以上の金属またはその化合物またはその合金、あるいは水 素貯蔵合金である請求項 91に記載の水素貯蔵材料前駆体の製造方法。  [92] The catalyst comprises B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, Nb, La, Ca, V, Ti, Cr, One or more metals selected from Cu, Zn, Al, Si, Ru, Os, Mo, W, Ta, Zr, In, Hf and Ag forces, their compounds or alloys, or hydrogen storage alloys 92. The method for producing a hydrogen storage material precursor according to claim 91, wherein
[93] 前記触媒の担持量を、前記金属イミド化合物の 0. 1質量%以上 20質量%以下と する請求項 91に記載の水素貯蔵材料前駆体の製造方法。 93. The method for producing a hydrogen storage material precursor according to claim 91, wherein the supported amount of the catalyst is 0.1% by mass or more and 20% by mass or less of the metal imide compound.
[94] 80°C以上の温度で水素を吸蔵または放出する機能が活性化される水素吸蔵材料 と前記水素吸蔵材料の水素の吸蔵および放出を高める触媒とを含む固体の水素貯 蔵材料を充填するための水素貯蔵材料充填容器であって、 [94] A solid hydrogen storage material containing a hydrogen storage material that activates the function of storing or releasing hydrogen at a temperature of 80 ° C. or higher and a catalyst that enhances the storage and release of hydrogen of the hydrogen storage material is filled A hydrogen storage material-filled container for
前記水素貯蔵材料を封入する容器と、  A container for enclosing the hydrogen storage material,
外部に連通するとともに、前記容器の内部において水素ガスの流路を形成する流 路形成部材と、  A flow path forming member communicating with the outside and forming a flow path of hydrogen gas inside the container;
前記水素貯蔵材料を 80°C以上の温度に加熱する加熱手段と、 を具備する水素貯蔵材料充填容器。 Heating means for heating the hydrogen storage material to a temperature of 80 ° C. or higher; A hydrogen storage material-filled container comprising:
[95] 前記水素吸蔵材料は、リチウムイミド、またはリチウムアミドと水素化リチウムとの組 み合わせ、またはリチウムイミドとリチウムアミドと水素化リチウムとの組み合わせのい ずれかである請求項 94に記載の水素貯蔵材料充填容器。  95. The hydrogen storage material according to claim 94, wherein the hydrogen storage material is any of lithium imide, a combination of lithium amide and lithium hydride, or a combination of lithium imide, lithium amide and lithium hydride. Hydrogen storage material filled container.
[96] 請求項 94に記載の水素貯蔵材料充填容器を搭載した移動体。  [96] A moving object equipped with the hydrogen storage material-filled container according to [94].
[97] 粉体系の水素貯蔵材料が充填される複数の独立した貯蔵室と、 [97] a plurality of independent storage chambers filled with a powdered hydrogen storage material,
前記複数の貯蔵室の各床面に設けられた開口部と、  Openings provided on each floor of the plurality of storage rooms,
前記開口部を介して前記複数の貯蔵室と連通する水素ガス導入ラインと、 を有する水素貯蔵材料充填容器であって、  A hydrogen gas introduction line that communicates with the plurality of storage chambers through the opening,
前記水素貯蔵材料が水素ガスを吸蔵してレ、なレ、状態で、水素ガスを前記水素ガス 導入ラインを通して外部から導入し、前記開口部から前記複数の貯蔵室に噴出させ ることにより前記水素貯蔵材料を各貯蔵室内で飛散させて前記水素貯蔵材料と前記 水素ガスとを接触させ、前記水素貯蔵材料に前記水素ガスを吸蔵させる水素貯蔵材 料充填容器。  In a state where the hydrogen storage material occludes hydrogen gas, the hydrogen gas is introduced from the outside through the hydrogen gas introduction line, and is ejected from the opening into the plurality of storage chambers. A hydrogen storage material-filled container that scatters a storage material in each storage chamber to bring the hydrogen storage material into contact with the hydrogen gas, and cause the hydrogen storage material to absorb the hydrogen gas.
[98] 前記水素貯蔵材料は水素を吸蔵していない状態では、アルカリ金属またはアルカリ 土類金属を成分として有する金属アミド化合物と水素化リチウムとの反応により生成 するリチウムイミド、またはリチウム以外のアルカリ金属またはアルカリ土類金属を成分 として有する金属イミド化合物とリチウムイミドの混合物である請求項 97に記載の水 素貯蔵材料充填容器。  [98] In a state where the hydrogen storage material does not absorb hydrogen, lithium imide produced by the reaction of a metal amide compound having an alkali metal or an alkaline earth metal as a component with lithium hydride, or an alkali metal other than lithium 100. The hydrogen storage material-filled container according to claim 97, wherein the container is a mixture of a metal imide compound having an alkaline earth metal as a component and lithium imide.
[99] アンモニアおよび/または水蒸気を含む水素ガス、または、前記水素ガスと He、 N e、 Ar、 N力 選ばれた 1または 2以上からなる混合気体の流路に、アルカリ金属水  [99] Alkali metal water is passed through a flow path of hydrogen gas containing ammonia and / or water vapor, or a mixed gas of the hydrogen gas and one or more selected from He, Ne, Ar, and N forces.
2  2
素化物および/またはアルカリ土類金属水素化物を含むフィルタが設置されている 特徴とする気体精製装置。  A gas purification apparatus, wherein a filter containing a hydride and / or an alkaline earth metal hydride is installed.
[100] 前記アルカリ金属水素化物および/またはアルカリ土類金属水素化物は、水素化 リチウム、水素化マグネシウム、水素化カルシウムのいずれかである請求項 99に記載  100. The method according to claim 99, wherein the alkali metal hydride and / or alkaline earth metal hydride is any of lithium hydride, magnesium hydride, and calcium hydride.
[101] 前記フィルタは、モレキュラーシーブス、活性アルミナ、セピオライト粘度鉱物から選 ばれた 1または 2以上に、水素化リチウム、水素化マグネシウム、水素化カルシウムか ら選ばれた 1または 2以上を担持させたものである請求項 99に記載の気体精製装置 [101] The filter may include one or more selected from molecular sieves, activated alumina, and sepiolite viscous mineral, and may include lithium hydride, magnesium hydride, or calcium hydride. The gas purification apparatus according to claim 99, wherein one or more selected from the group are supported.
[102] 金属水素化物と金属アミド化合物を有する水素貯蔵材料が充填された充填容器を さらに具備し、 [102] The apparatus further comprises a filling container filled with a hydrogen storage material having a metal hydride and a metal amide compound,
前記アンモニアおよび/または水蒸気を含む水素ガスは、前記フィルタを通して前 記充填容器に送られ、また前記フィルタを通して前記充填容器から放出される請求 項 99に記載の気体精製装置。  100. The gas purification apparatus according to claim 99, wherein the hydrogen gas containing ammonia and / or water vapor is sent to the filling container through the filter, and is discharged from the filling container through the filter.
[103] 前記フィルタは、定置式燃料電池用水素発生装置、燃料電池車両用水素発生装 置に設置される請求項 99に記載の気体精製装置。 [103] The gas purification device according to claim 99, wherein the filter is installed in a hydrogen generator for stationary fuel cells and a hydrogen generator for fuel cell vehicles.
PCT/JP2004/009538 2003-08-11 2004-07-05 Material for storing hydrogen and method and apparatus for production thereof WO2005014165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/351,244 US7537748B2 (en) 2003-08-11 2006-02-09 Hydrogen storage matter and manufacturing method and apparatus for the same

Applications Claiming Priority (28)

Application Number Priority Date Filing Date Title
JP2003-291672 2003-08-11
JP2003291672 2003-08-11
JP2003-362943 2003-10-23
JP2003362943A JP2005126273A (en) 2003-10-23 2003-10-23 Hydrogen storage material precursor and its manufacturing method
JP2003398542A JP4500534B2 (en) 2003-11-28 2003-11-28 Hydrogen storage material and hydrogen generation method
JP2003-398542 2003-11-28
JP2004036967A JP4754174B2 (en) 2003-03-26 2004-02-13 Hydrogen storage body manufacturing apparatus, hydrogen storage body manufacturing method, and hydrogen storage body
JP2004-036967 2004-02-13
JP2004086925 2004-03-24
JP2004-086925 2004-03-24
JP2004-096074 2004-03-29
JP2004096074A JP4545469B2 (en) 2004-03-29 2004-03-29 Method for supporting catalyst on hydrogen storage material and hydrogen storage material
JP2004-096075 2004-03-29
JP2004096075A JP4703126B2 (en) 2004-03-29 2004-03-29 Hydrogen storage material manufacturing apparatus and hydrogen storage material manufacturing method
JP2004102773A JP2005291227A (en) 2004-03-31 2004-03-31 Method of filling hydrogen in powder type hydrogen storage material precursor
JP2004101759A JP4729674B2 (en) 2004-03-31 2004-03-31 Hydrogen storage tank and mobile body equipped with the same
JP2004-102773 2004-03-31
JP2004-101948 2004-03-31
JP2004-101759 2004-03-31
JP2004101948A JP4615240B2 (en) 2004-03-31 2004-03-31 Gas purification device
JP2004-144850 2004-05-14
JP2004144850 2004-05-14
JP2004186449A JP4711644B2 (en) 2004-06-24 2004-06-24 Metal amide compound and method for producing the same
JP2004186451A JP4793900B2 (en) 2004-06-24 2004-06-24 Hydrogen storage material and method for producing the same
JP2004-186450 2004-06-24
JP2004186450A JP4615908B2 (en) 2004-06-24 2004-06-24 Hydrogen storage material and method for producing the same
JP2004-186451 2004-06-24
JP2004-186449 2004-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/351,244 Continuation US7537748B2 (en) 2003-08-11 2006-02-09 Hydrogen storage matter and manufacturing method and apparatus for the same

Publications (1)

Publication Number Publication Date
WO2005014165A1 true WO2005014165A1 (en) 2005-02-17

Family

ID=34140030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009538 WO2005014165A1 (en) 2003-08-11 2004-07-05 Material for storing hydrogen and method and apparatus for production thereof

Country Status (1)

Country Link
WO (1) WO2005014165A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224021A (en) * 2005-02-18 2006-08-31 Taiheiyo Cement Corp Hydrogen storage material, its production method, and hydrogen storage material precursor
JP2006247513A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Method for producing hydrogen storage material
JP2006247511A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Hydrogen storage material, method for producing the same and method for releasing/absorbing hydrogen from/in the same
JP2006247512A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Hydrogen storage material, method for producing the same and method for releasing/absorbing hydrogen from/in the same
JP2006305486A (en) * 2004-05-14 2006-11-09 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method
WO2007066218A2 (en) * 2005-12-09 2007-06-14 Agency For Science, Technology And Research HALOGEN DOPED Li3N COMPOSITIONS CAPABLE OF ABSORPTION AND DESORPTION OF HYDROGEN
WO2007066219A2 (en) * 2005-12-09 2007-06-14 Agency For Science, Technology And Research METAL COMPOUND DOPED Li3N COMPOSITIONS CAPABLE OF ABSORPTION AND DESORPTION OF HYDROGEN
CN102089237A (en) * 2008-03-18 2011-06-08 丰田自动车株式会社 Hydrogen generator, ammonia combustion internal combustion engine, and fuel cell
WO2011086288A1 (en) 2009-12-22 2011-07-21 Centre National De La Recherche Scientifique Lithium and tin amides for reversible hydrogen storage
TWI768648B (en) * 2020-11-13 2022-06-21 台灣積體電路製造股份有限公司 Gas curtain device, conduit system and method for transporting a gas
CN114952203A (en) * 2022-06-28 2022-08-30 重庆大学 Magnesium-based alloy-molecular sieve composite hydrogen storage material and preparation method thereof
US11971057B2 (en) 2020-11-13 2024-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Gas transport system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510133A (en) * 1995-07-19 1999-09-07 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Method for reversible hydrogen storage
JP2002522209A (en) * 1998-08-06 2002-07-23 ユニヴァーシティー オブ ハワイ Novel hydrogen storage material and production method by dry homogenization
JP2003520130A (en) * 2000-01-20 2003-07-02 ゲーカーエスエス フオルシユングスツエントルーム ゲーエストハフト ゲーエムベーハー Hydrogen storage materials
JP2003230832A (en) * 2002-02-08 2003-08-19 Mitsubishi Heavy Ind Ltd Method for manufacturing hydrogen-storage body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510133A (en) * 1995-07-19 1999-09-07 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Method for reversible hydrogen storage
JP2002522209A (en) * 1998-08-06 2002-07-23 ユニヴァーシティー オブ ハワイ Novel hydrogen storage material and production method by dry homogenization
JP2003520130A (en) * 2000-01-20 2003-07-02 ゲーカーエスエス フオルシユングスツエントルーム ゲーエストハフト ゲーエムベーハー Hydrogen storage materials
JP2003230832A (en) * 2002-02-08 2003-08-19 Mitsubishi Heavy Ind Ltd Method for manufacturing hydrogen-storage body

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305486A (en) * 2004-05-14 2006-11-09 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method
JP2006224021A (en) * 2005-02-18 2006-08-31 Taiheiyo Cement Corp Hydrogen storage material, its production method, and hydrogen storage material precursor
JP2006247513A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Method for producing hydrogen storage material
JP2006247511A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Hydrogen storage material, method for producing the same and method for releasing/absorbing hydrogen from/in the same
JP2006247512A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Hydrogen storage material, method for producing the same and method for releasing/absorbing hydrogen from/in the same
WO2007066219A2 (en) * 2005-12-09 2007-06-14 Agency For Science, Technology And Research METAL COMPOUND DOPED Li3N COMPOSITIONS CAPABLE OF ABSORPTION AND DESORPTION OF HYDROGEN
WO2007066218A2 (en) * 2005-12-09 2007-06-14 Agency For Science, Technology And Research HALOGEN DOPED Li3N COMPOSITIONS CAPABLE OF ABSORPTION AND DESORPTION OF HYDROGEN
WO2007066219A3 (en) * 2005-12-09 2007-10-04 Agency Science Tech & Res METAL COMPOUND DOPED Li3N COMPOSITIONS CAPABLE OF ABSORPTION AND DESORPTION OF HYDROGEN
WO2007066218A3 (en) * 2005-12-09 2007-10-04 Agency Science Tech & Res HALOGEN DOPED Li3N COMPOSITIONS CAPABLE OF ABSORPTION AND DESORPTION OF HYDROGEN
CN102089237A (en) * 2008-03-18 2011-06-08 丰田自动车株式会社 Hydrogen generator, ammonia combustion internal combustion engine, and fuel cell
WO2011086288A1 (en) 2009-12-22 2011-07-21 Centre National De La Recherche Scientifique Lithium and tin amides for reversible hydrogen storage
TWI768648B (en) * 2020-11-13 2022-06-21 台灣積體電路製造股份有限公司 Gas curtain device, conduit system and method for transporting a gas
US11971057B2 (en) 2020-11-13 2024-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Gas transport system
CN114952203A (en) * 2022-06-28 2022-08-30 重庆大学 Magnesium-based alloy-molecular sieve composite hydrogen storage material and preparation method thereof
CN114952203B (en) * 2022-06-28 2024-02-20 重庆大学 Magnesium-based alloy-molecular sieve composite hydrogen storage material and preparation method thereof

Similar Documents

Publication Publication Date Title
US7537748B2 (en) Hydrogen storage matter and manufacturing method and apparatus for the same
Yartys et al. Magnesium based materials for hydrogen based energy storage: Past, present and future
Fichtner Nanotechnological aspects in materials for hydrogen storage
Xie et al. Formation of multiple-phase catalysts for the hydrogen storage of Mg nanoparticles by adding flowerlike NiS
Rusman et al. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications
Sakintuna et al. Metal hydride materials for solid hydrogen storage: a review
Seayad et al. Recent advances in hydrogen storage in metal‐containing inorganic nanostructures and related materials
Wu et al. Effects of carbon on hydrogen storage performances of hydrides
US6773692B2 (en) Method of production of pure hydrogen near room temperature from aluminum-based hydride materials
Luo et al. Improved hydrogen storage of LiBH 4 and NH 3 BH 3 by catalysts
Duan et al. Synthesis of core-shell α-AlH3@ Al (OH) 3 nanocomposite with improved low-temperature dehydriding properties by mechanochemical mixing and ionic liquid treatment
Wang et al. Direct and reversible hydrogen storage of lithium hydride (LiH) nanoconfined in high surface area graphite
US20010051130A1 (en) Novel hydrogen storage materials and method of making by dry homogenation
Ichikawa et al. Composite materials based on light elements for hydrogen storage
CN101351568B (en) Li-B-Mg-X system for reversible hydrogen storage
WO2005014165A1 (en) Material for storing hydrogen and method and apparatus for production thereof
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
WO2000007930A1 (en) Novel hydrogen storage materials and method of making by dry homogenation
CN113908818A (en) Transition metal monoatomic catalyst and preparation method and application thereof
Liu et al. Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance
Sazelee et al. Enhancing hydrogen storage performance of MgH2 through the addition of BaMnO3 synthesized via solid-state method
Li et al. Effects of adding nano-CeO2 powder on microstructure and hydrogen storage performances of mechanical alloyed Mg90Al10 alloy
Congwen et al. Mechanochemical synthesis of the α-AlH3/LiCl nano-composites by reaction of LiH and AlCl3: Kinetics modeling and reaction mechanism
CN113148956B (en) Preparation method of graphene-loaded nano flaky transition metal hydride and hydrogen storage material
Kumar et al. Hydrogen generation from metal chloride doped sodium-borohydride by thermolysis at low temperature: The effect of material preparation methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11351244

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11351244

Country of ref document: US

122 Ep: pct application non-entry in european phase