JP4729674B2 - Hydrogen storage tank and mobile body equipped with the same - Google Patents

Hydrogen storage tank and mobile body equipped with the same Download PDF

Info

Publication number
JP4729674B2
JP4729674B2 JP2004101759A JP2004101759A JP4729674B2 JP 4729674 B2 JP4729674 B2 JP 4729674B2 JP 2004101759 A JP2004101759 A JP 2004101759A JP 2004101759 A JP2004101759 A JP 2004101759A JP 4729674 B2 JP4729674 B2 JP 4729674B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
storage tank
lithium
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004101759A
Other languages
Japanese (ja)
Other versions
JP2005282828A (en
Inventor
博信 藤井
貴之 市川
茂 松浦
賢治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Taiheiyo Cement Corp
Original Assignee
Hiroshima University NUC
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Taiheiyo Cement Corp filed Critical Hiroshima University NUC
Priority to JP2004101759A priority Critical patent/JP4729674B2/en
Priority to PCT/JP2004/009538 priority patent/WO2005014165A1/en
Publication of JP2005282828A publication Critical patent/JP2005282828A/en
Priority to US11/351,244 priority patent/US7537748B2/en
Application granted granted Critical
Publication of JP4729674B2 publication Critical patent/JP4729674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素を吸蔵放出する水素貯蔵体を含む水素貯蔵タンクならびにその水素貯蔵タンクを搭載した移動体に関する。   The present invention relates to a hydrogen storage tank including a hydrogen storage body that absorbs and releases hydrogen, and a mobile body equipped with the hydrogen storage tank.

従来から、水素ボンベに代わって、小さい容積で多量の水素を貯蔵できる水素貯蔵タンクが研究開発されてきた。そのような水素貯蔵タンクに用いられる水素貯蔵材料としては水素吸蔵合金の開発が進められおり、水素吸蔵合金を使用した水素貯蔵タンクについて提案がなされている(特許文献1〜4)。一方、近年、新たな水素貯蔵材料として、NaAlHなどアラネート系材料や、カーボンナノチューブなどのカーボン系材料も研究開発されている。特に、リチウム系材料が発明者らにより最近見出され、提案がなされている。
特開2000−120996号公報 特開2002−122294号公報 特開2002−221297号公報 特開2002−340430号公報
Conventionally, hydrogen storage tanks capable of storing a large amount of hydrogen in a small volume have been researched and developed in place of hydrogen cylinders. As a hydrogen storage material used for such a hydrogen storage tank, a hydrogen storage alloy has been developed, and hydrogen storage tanks using the hydrogen storage alloy have been proposed (Patent Documents 1 to 4). On the other hand, recently, as new hydrogen storage materials, alanate materials such as NaAlH 4 and carbon materials such as carbon nanotubes have been researched and developed. In particular, lithium-based materials have recently been discovered and proposed by the inventors.
JP 2000-120996 A JP 2002-122294 A Japanese Patent Laid-Open No. 2002-221297 JP 2002-340430 A

しかしながら、水素吸蔵合金は単位重量あたりの水素吸蔵率が低く、水素吸蔵合金を使用した水素貯蔵タンクは実用化には至っていない。また、リチウム系材料等の新たな水素貯蔵材料は、従来の吸蔵合金とは異なる粉体特性や水素吸蔵放出特性を示すことから、それらを用いた貯蔵タンクは、その特性にあった構造にしなければ、単位体積あたりの水素ガス貯蔵量を十分に確保することができない。上記のような新たな水素貯蔵材料を用いた貯蔵タンクに関する開発は十分になされていない。   However, hydrogen storage alloys have a low hydrogen storage rate per unit weight, and hydrogen storage tanks using hydrogen storage alloys have not been put into practical use. In addition, new hydrogen storage materials such as lithium-based materials exhibit powder characteristics and hydrogen storage / release characteristics that are different from those of conventional storage alloys. Therefore, storage tanks using these materials must have a structure that matches those characteristics. Thus, it is not possible to secure a sufficient amount of hydrogen gas storage per unit volume. There has not been sufficient development of storage tanks using the new hydrogen storage materials as described above.

本発明は、単位重量または単位体積あたりの水素貯蔵量を増加させる水素貯蔵タンクを提供することを目的とする。   An object of this invention is to provide the hydrogen storage tank which increases the hydrogen storage amount per unit weight or unit volume.

上記の目的を達成するため、本発明に係る水素貯蔵タンクは、80℃以上の温度で水素を吸蔵または放出する機能が活性化される水素吸蔵材料と前記水素吸蔵材料の水素の吸蔵および放出を促進する触媒とを含む固体の水素貯蔵体と、前記水素貯蔵体を封入する容器と、外部に連通するとともに、前記容器の内部において水素ガスの流路を形成する流路形成部材と、前記水素貯蔵体を80℃以上の温度に加熱する加熱手段と、を備えることを特徴としている。   In order to achieve the above object, a hydrogen storage tank according to the present invention has a hydrogen storage material whose function of storing or releasing hydrogen is activated at a temperature of 80 ° C. or higher, and storage and release of hydrogen in the hydrogen storage material. A solid hydrogen storage body including a catalyst to be promoted, a container enclosing the hydrogen storage body, a flow path forming member communicating with the outside and forming a flow path of hydrogen gas inside the container, and the hydrogen Heating means for heating the storage body to a temperature of 80 ° C. or higher.

これにより、加熱手段で水素貯蔵体が加熱された場合には、水素貯蔵体の水素を吸蔵または放出する機能が活性化するため、速やかに水素の吸蔵・放出を行なうことができる。その結果、本発明の水素貯蔵タンクを燃料電池自動車などに搭載される水素供給装置、定置式燃料電池用のバッファータンクや水素ステーションの貯蔵容器システムにも利用することができ、今後期待される水素エネルギー社会における水素貯蔵装置全般に、応用することができる。   Thereby, when the hydrogen storage body is heated by the heating means, the function of occluding or releasing hydrogen of the hydrogen storage body is activated, so that hydrogen can be stored and released promptly. As a result, the hydrogen storage tank of the present invention can be used for a hydrogen supply device mounted on a fuel cell vehicle, a buffer tank for a stationary fuel cell, and a storage container system for a hydrogen station. It can be applied to all hydrogen storage devices in the energy society.

また、水素貯蔵タンクは、リチウムイミド、リチウムアミドと水素化リチウムとの組み合わせ、またはリチウムイミドとリチウムアミドと水素化リチウムとの組み合わせからなるリチウム系水素吸蔵材料と前記リチウム系水素吸蔵材料の水素の吸蔵および放出を促進する触媒とを含む固体の水素貯蔵体と、前記水素貯蔵体を封入する容器と、外部に連通するとともに、前記容器の内部において水素ガスの流路を形成する流路形成部材と、前記水素貯蔵体を80℃以上の温度に加熱する加熱手段と、を備えることを特徴としている。   Further, the hydrogen storage tank includes a lithium-based hydrogen storage material composed of lithium imide, a combination of lithium amide and lithium hydride, or a combination of lithium imide, lithium amide and lithium hydride, and hydrogen of the lithium-based hydrogen storage material. A solid hydrogen storage body including a catalyst that promotes occlusion and release, a container that encloses the hydrogen storage body, and a flow path forming member that communicates with the outside and forms a flow path for hydrogen gas inside the container. And a heating means for heating the hydrogen storage body to a temperature of 80 ° C. or higher.

これにより、加熱手段で水素貯蔵体が加熱された場合には、水素貯蔵体の水素を吸蔵または放出する機能が活性化するため、速やかに水素の吸蔵・放出を行なうことができる。その結果、リチウム系材料に最適な水素貯蔵タンクを提供することができる。また、水素吸蔵合金等に比べ、リチウム系材料は単位重量あたりの水素吸蔵量が大きいため、タンクの質量あたりの水素貯蔵量を増加させることができる。その結果、本発明の水素貯蔵タンクを燃料電池自動車などに搭載される水素供給装置、定置式燃料電池用のバッファータンクや水素ステーションの貯蔵容器システムにも利用することができ、今後期待される水素エネルギー社会における水素貯蔵装置全般に、応用することができる。   Thereby, when the hydrogen storage body is heated by the heating means, the function of occluding or releasing hydrogen of the hydrogen storage body is activated, so that hydrogen can be stored and released promptly. As a result, it is possible to provide an optimal hydrogen storage tank for a lithium-based material. Further, since the lithium-based material has a larger amount of hydrogen storage per unit weight than a hydrogen storage alloy or the like, the amount of hydrogen stored per mass of the tank can be increased. As a result, the hydrogen storage tank of the present invention can be used for a hydrogen supply device mounted on a fuel cell vehicle, a buffer tank for a stationary fuel cell, and a storage container system for a hydrogen station. It can be applied to all hydrogen storage devices in the energy society.

また、水素貯蔵タンクは、前記加熱手段は、100℃以上の沸点を有する熱媒体と、前記容器の外部と内部との間で循環路を形成する循環パイプと、前記熱媒体を加熱するヒータと、前記熱媒体を前記循環パイプ内で圧送する循環ポンプと、を備えることが好適である。これにより、効率よく水素貯蔵体を加熱することができ、水素の吸蔵および放出を短時間で行なうことができる。   In the hydrogen storage tank, the heating means includes a heat medium having a boiling point of 100 ° C. or higher, a circulation pipe that forms a circulation path between the outside and the inside of the container, and a heater that heats the heat medium. And a circulation pump that pumps the heat medium in the circulation pipe. Thereby, a hydrogen storage body can be heated efficiently and hydrogen can be occluded and released in a short time.

また、水素貯蔵タンクは、前記内部流路形成部材は、水素ガスを透過する多孔質の管壁を有するらせん状のガス流通管であることが好適である。これにより、ガス流通管の表面積を大きくし、水素貯蔵体が水素を吸蔵または放出する効率を上げることができる。   In the hydrogen storage tank, it is preferable that the internal flow path forming member is a spiral gas flow pipe having a porous pipe wall that transmits hydrogen gas. Thereby, the surface area of a gas distribution pipe can be enlarged and the efficiency with which a hydrogen storage body occludes or discharges hydrogen can be increased.

また、移動体は、上記の水素貯蔵タンクを搭載することが好適である。これにより、たとえば軽くて、一回の補給で走れる走行距離の長い燃料電池自動車または水素エンジン自動車を実現することができる。   In addition, it is preferable that the mobile body is equipped with the hydrogen storage tank. Thereby, it is possible to realize a fuel cell vehicle or a hydrogen engine vehicle that is light and has a long traveling distance that can be driven by one replenishment.

本発明に係る水素貯蔵タンクによれば、加熱手段で水素貯蔵体が加熱された場合には、水素貯蔵体の水素を吸蔵または放出する機能が活性化するため、速やかに水素の吸蔵・放出を行なうことができる。   According to the hydrogen storage tank of the present invention, when the hydrogen storage body is heated by the heating means, the function of occluding or releasing hydrogen in the hydrogen storage body is activated. Can be done.

その結果、特にリチウム系材料に最適な水素貯蔵タンクを提供することができる。また、水素吸蔵合金等に比べ、リチウム系材料は単位重量あたりの水素吸蔵量が大きいため、タンクの質量あたりの水素貯蔵量を増加させることができる。その結果、本発明の水素貯蔵タンクを貯蔵燃料電池自動車などに搭載される水素供給装置、定置式燃料電池用のバッファータンクや水素ステーションの貯蔵容器システムにも利用することができ、今後期待される水素エネルギー社会における水素貯蔵装置全般に、応用することができる。   As a result, it is possible to provide a hydrogen storage tank that is particularly suitable for lithium-based materials. Further, since the lithium-based material has a larger amount of hydrogen storage per unit weight than a hydrogen storage alloy or the like, the amount of hydrogen stored per mass of the tank can be increased. As a result, the hydrogen storage tank of the present invention can be used for a hydrogen supply device mounted in a storage fuel cell vehicle, a buffer tank for a stationary fuel cell, and a storage container system for a hydrogen station, which is expected in the future. It can be applied to all hydrogen storage devices in the hydrogen energy society.

また、本発明に係る水素貯蔵タンクによれば、効率よく水素貯蔵体を加熱することができ、水素の吸蔵および放出を短時間で行なうことができる。   Further, according to the hydrogen storage tank of the present invention, the hydrogen storage body can be efficiently heated, and hydrogen can be occluded and released in a short time.

また、本発明に係るに水素貯蔵タンクよれば、ガス流通管の表面積を大きくし、水素貯蔵体が水素を吸蔵または放出する効率を上げることができる。   Further, according to the hydrogen storage tank according to the present invention, the surface area of the gas flow pipe can be increased, and the efficiency with which the hydrogen storage body absorbs or releases hydrogen can be increased.

また、本発明に係るに移動体よれば、たとえば軽くて、一回の補給で走れる走行距離が長い燃料電池自動車または水素エンジン自動車を実現することができる。   Further, according to the moving body according to the present invention, it is possible to realize a fuel cell vehicle or a hydrogen engine vehicle that is light and has a long traveling distance that can be driven by one replenishment.

以下、本発明の実施形態を、図面に基づいて説明する。また、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を附し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

[実施形態1]
図1は、本発明に係る水素貯蔵タンクの断面図である。図1に示すように、水素貯蔵タンク1は、水素貯蔵体2、容器3、内部流通管4、安全バルブ5、ヒータ6、外部流通管7、フィルタ8により構成されている。水素貯蔵体2の主な材料としては、リチウムアミド(LiNH)および水素化リチウム(LiH)、またはリチウムイミド(LiNH)が使用される。なお、材料としては、リチウム系貯蔵材料以外であっても80℃以上で水素を吸蔵または放出する機能が活性化するものであればよい。たとえば、リチウム系以外の金属アミドおよび金属アミド化合物、金属水素化物、NaAlHなどアラネート系材料や、カーボンナノチューブなどのカーボン系材料を用いてもよい。
[Embodiment 1]
FIG. 1 is a cross-sectional view of a hydrogen storage tank according to the present invention. As shown in FIG. 1, the hydrogen storage tank 1 includes a hydrogen storage body 2, a container 3, an internal circulation pipe 4, a safety valve 5, a heater 6, an external circulation pipe 7, and a filter 8. As main materials of the hydrogen storage body 2, lithium amide (LiNH 2 ) and lithium hydride (LiH), or lithium imide (Li 2 NH) are used. As materials, materials other than lithium-based storage materials may be used as long as the function of occluding or releasing hydrogen at 80 ° C. or higher is activated. For example, non-lithium metal amides and metal amide compounds, metal hydrides, alanate materials such as NaAlH 4 , and carbon materials such as carbon nanotubes may be used.

さらに、水素貯蔵体2は、水素の吸蔵および放出を促進する触媒成分を含む。触媒成分としては、B、C、Mn、Fe、Co、Ni、Pt、Pd、Rh、Li、B、Na、Mg、K、In、Nd、La、Ca、V、Ti、Cr、Cu、Zn、Al、Si、Ru、Mo、W、Ta、Zr、HfおよびAgから選ばれた1種または2種以上の化合物があげられる。これら、リチウム系貯蔵材料と触媒成分から構成された固体が、水素貯蔵体2である。水素貯蔵体2は、たとえば粉体、顆粒体、または成形体として形成される。水素貯蔵体2の作製手法としては、リチウムアミドと水素化リチウムを適量配合し、水素ガスまたは不活性ガスの雰囲気においてミリングによりメカノケミカルに混合粉砕し、触媒材料を適量加える方法が好適であるが、必ずしもこの方法に限定されるものではない。   Furthermore, the hydrogen storage body 2 includes a catalyst component that promotes the storage and release of hydrogen. Catalyst components include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, B, Na, Mg, K, In, Nd, La, Ca, V, Ti, Cr, Cu, Zn One, or two or more compounds selected from Al, Si, Ru, Mo, W, Ta, Zr, Hf and Ag. The solid composed of the lithium-based storage material and the catalyst component is the hydrogen storage body 2. The hydrogen storage body 2 is formed as a powder, a granule, or a molded body, for example. As a method for producing the hydrogen storage body 2, a method in which an appropriate amount of lithium amide and lithium hydride are mixed, mechanochemically mixed and ground by milling in an atmosphere of hydrogen gas or an inert gas, and an appropriate amount of catalyst material is added is preferable. However, it is not necessarily limited to this method.

容器3は、水素貯蔵体2を収容し、水素ガスを流通させる開口部を除いて気密な構造を有している。容器3は、たとえば10MPaまでの圧力に耐えうる材料および形状が選ばれる。水素貯蔵体2に水素を吸蔵させる際の数MPa程度の圧力に耐える材料および形状であれば、特に限定はされない。これにより、水素放出の際に急激な放出による圧力上昇を伴う場合であっても、容器の強度としては十分であり、安全を維持できる。図1に示すように、容器3の形状はエッジを丸くした円筒形である。たとえば、自動車に搭載する場合には、無駄なスペースを無くすためリアシートに合わせた形状としてもよい。さらに、容器には10MPa未満の一定圧力で開放するように設定された安全バルブ5が設置されている。このような安全バルブ5は、必要により設けることがあるが、設けなくてもよい。なお、容器3には水素貯蔵体2を出し入れすることのできる開閉可能な出入口等の出入機構を設けてもよい。その場合には、水素貯蔵体2をカートリッジ式で容器3に出し入れすることができるような機構としてもよい。   The container 3 accommodates the hydrogen storage body 2 and has an airtight structure except for an opening through which hydrogen gas is circulated. For the container 3, for example, a material and a shape capable of withstanding a pressure of up to 10 MPa are selected. There is no particular limitation as long as the material and shape can withstand a pressure of about several MPa when hydrogen is stored in the hydrogen storage body 2. Thereby, even if it is a case where the pressure rise by rapid discharge | release is accompanied at the time of hydrogen discharge | release, it is sufficient as intensity | strength of a container and can maintain safety | security. As shown in FIG. 1, the container 3 has a cylindrical shape with rounded edges. For example, when it is mounted on an automobile, it may have a shape matched to the rear seat in order to eliminate useless space. Furthermore, a safety valve 5 set to open at a constant pressure of less than 10 MPa is installed in the container. Such a safety valve 5 may be provided if necessary, but may not be provided. The container 3 may be provided with an entrance / exit mechanism such as an openable / closable entrance / exit through which the hydrogen storage body 2 can be taken in / out. In that case, it is good also as a mechanism in which the hydrogen storage body 2 can be taken in / out by the cartridge type.

流路形成部材としての内部流通管4は、水素貯蔵体2に水素を送り込み、水素貯蔵体2から放出された水素を容器3の外部に放出する流通経路を形成する。流路形成部材とは、吸蔵または放出のための水素ガスの流路を形成する部材である。内部流通管4は、水素ガスを透過する多孔質の管壁により円筒形状に構成される流通管であって、管の一端は容器3の開口部を通して容器外部に連通し、他端は閉じられている。このように、内部流通管4は水素貯蔵体2に挿通されている。挿通された内部流通管4の管壁全体から水素ガスが一様に透過するため、効率よく水素ガスを吸蔵または放出することができる。   The internal flow pipe 4 as a flow path forming member forms a flow path for sending hydrogen to the hydrogen storage body 2 and releasing the hydrogen released from the hydrogen storage body 2 to the outside of the container 3. The flow path forming member is a member that forms a flow path of hydrogen gas for occlusion or release. The internal flow pipe 4 is a flow pipe configured in a cylindrical shape by a porous pipe wall that allows hydrogen gas to pass through. One end of the pipe communicates with the outside of the container through the opening of the container 3 and the other end is closed. ing. Thus, the internal flow pipe 4 is inserted through the hydrogen storage body 2. Since hydrogen gas permeate | transmits uniformly from the whole pipe wall of the internal flow pipe 4 penetrated, hydrogen gas can be occluded or discharged | emitted efficiently.

加熱手段としてのヒータ6は、容器3の外部に設けられた電熱式のヒータである。加熱手段とは、直接、または容器3を介して間接に水素貯蔵体2を80℃以上の温度に加熱する手段をいう。ヒータ6は、80℃以上の温度に加熱可能な機能を有しており、250℃まで加熱可能であることが好ましい。   The heater 6 as a heating means is an electrothermal heater provided outside the container 3. The heating means refers to means for heating the hydrogen storage body 2 to a temperature of 80 ° C. or higher directly or indirectly via the container 3. The heater 6 has a function capable of being heated to a temperature of 80 ° C. or higher, and is preferably capable of being heated to 250 ° C.

このようにヒータ6が設けられていることにより、ヒータ6で水素貯蔵体2が加熱された場合には、水素貯蔵体2の水素を吸蔵または放出する機能が活性化するため、速やかに水素の吸蔵・放出を行なうことができる。その結果、リチウム系材料に最適な水素貯蔵タンク1を提供することができる。また、水素吸蔵合金等に比べ、リチウム系材料は単位重量あたりの水素吸蔵量が大きいため、タンクの質量あたりの水素貯蔵量を増加させることができる。その結果、水素貯蔵タンク1を燃料電池自動車などに搭載される水素供給装置、定置式燃料電池用のバッファータンクや水素ステーションの貯蔵容器システムにも利用することができ、今後期待される水素エネルギー社会における水素貯蔵装置全般に、応用することができる。   Since the heater 6 is provided in this way, when the hydrogen storage body 2 is heated by the heater 6, the function of occluding or releasing hydrogen of the hydrogen storage body 2 is activated, so that the hydrogen Occlusion and release can be performed. As a result, it is possible to provide the hydrogen storage tank 1 that is optimal for lithium-based materials. Further, since the lithium-based material has a larger amount of hydrogen storage per unit weight than a hydrogen storage alloy or the like, the amount of hydrogen stored per mass of the tank can be increased. As a result, the hydrogen storage tank 1 can be used for a hydrogen supply device mounted on a fuel cell vehicle, a buffer tank for a stationary fuel cell, and a storage container system for a hydrogen station. It can be applied to all hydrogen storage devices.

このように、水素貯蔵体2として、リチウム系の貯蔵材料を主とする材料を用いる場合には、効率よく水素の吸蔵および放出を行なうのに100〜250℃の温度に調整するのが好適である。水素貯蔵体2を加熱することにより放出時のみならず吸蔵時にも極めて短い時間で吸蔵処理が可能となる。ヒータ6には電源(図示せず)が接続されている。また、電源には水素放出量をフィードバックされた制御システム(図示せず)が併設されている。これにより、水素放出量をコントロールすることができる。   Thus, when a material mainly composed of a lithium-based storage material is used as the hydrogen storage body 2, it is preferable to adjust the temperature to 100 to 250 ° C. in order to efficiently store and release hydrogen. is there. By heating the hydrogen storage body 2, the occlusion treatment can be performed in a very short time not only during the release but also during the occlusion. A power source (not shown) is connected to the heater 6. The power supply is also provided with a control system (not shown) that feeds back the hydrogen release amount. Thereby, the hydrogen release amount can be controlled.

流路形成部材としての外部流通管7は、水素ガスを透過させない管壁により構成されている。外部流通管7の内部には酸素、水蒸気などの水素以外の反応性ガスが進入することができない機能をもつフィルタ8が設けられている。これにより、水素貯蔵体が酸素や水蒸気等と反応して劣化するのを防止し、その吸蔵性能を維持することができる。このようなフィルタ8は、必要により設けることがあるが、設けなくてもよい。フィルタ8の材料としては、たとえばパラジウム合金(Au:5%、Ag:20%、Pd:70%)などの水素透過物質が好適である。なお、フィルタ8は、内部流通管4の内部に設けてもよい。また、フィルタ8の代わりに、内部流通管4の内側または外側の表面に水素透過物質の膜を設けるか、あるいは内部流通管4の管壁の材料に水素透過物質を用いてもよい。   The external flow pipe 7 as a flow path forming member is configured by a pipe wall that does not allow hydrogen gas to pass therethrough. A filter 8 having a function in which reactive gases other than hydrogen such as oxygen and water vapor cannot enter is provided inside the external flow pipe 7. Thereby, it can prevent that a hydrogen storage body reacts with oxygen, water vapor | steam, etc., and deteriorates, and the occlusion performance can be maintained. Such a filter 8 may be provided if necessary, but may not be provided. The material of the filter 8 is preferably a hydrogen permeable material such as a palladium alloy (Au: 5%, Ag: 20%, Pd: 70%). The filter 8 may be provided inside the internal circulation pipe 4. Further, instead of the filter 8, a hydrogen permeable substance film may be provided on the inner or outer surface of the internal flow pipe 4, or a hydrogen permeable substance may be used as the material of the tube wall of the internal flow pipe 4.

次に、水素貯蔵タンク1の動作について説明する。水素ガスを水素貯蔵タンク1に貯蔵する場合には、まずヒータ6により水素貯蔵体2を加熱し、十分に水素の吸蔵機能を発揮する温度、たとえば120℃に維持しておく。外部流通管7に連結されるコンプレッサ(図示せず)により、水素ガスを10MPa程度の圧力で圧送し、内部流通管4を通して水素貯蔵体2に吸蔵させる。吸蔵の際には、水素貯蔵体2においてLiNH+H→LiNH+LiHの反応が生じる。一方、水素ガスを水素貯蔵タンク1から放出する場合には、まずヒータ6により水素貯蔵体2を加熱し、十分に水素の放出機能を発揮する温度、たとえば200℃に維持しておく。加熱により水素貯蔵体2から水素ガスが放出され、内部流通管4を通して、外部流通管7へ水素ガスが送られる。放出の際には、水素貯蔵体2においてLiNH+LiH→LiNH+Hの反応が生じる。 Next, the operation of the hydrogen storage tank 1 will be described. When hydrogen gas is stored in the hydrogen storage tank 1, the hydrogen storage body 2 is first heated by the heater 6 and maintained at a temperature at which the hydrogen storage function is fully exhibited, for example, 120 ° C. Hydrogen gas is pumped at a pressure of about 10 MPa by a compressor (not shown) connected to the external flow pipe 7 and occluded in the hydrogen storage body 2 through the internal flow pipe 4. During the occlusion, a reaction of Li 2 NH + H 2 → LiNH 2 + LiH occurs in the hydrogen storage body 2. On the other hand, when hydrogen gas is released from the hydrogen storage tank 1, the hydrogen storage body 2 is first heated by the heater 6 and maintained at a temperature at which the hydrogen releasing function is fully exhibited, for example, 200 ° C. Hydrogen gas is released from the hydrogen storage body 2 by heating, and the hydrogen gas is sent to the external flow pipe 7 through the internal flow pipe 4. At the time of discharge, a reaction of LiNH 2 + LiH → Li 2 NH + H 2 occurs in the hydrogen storage body 2.

[実施形態2]
実施形態1では、加熱手段として容器3の外部にヒータ6が設けられているが、図2に示すように、容器3の内部にヒータ10を設けてもよい。ヒータ10は、電熱式のヒータであり、機能は実施形態1のヒータ6と同様である。このように内部にヒータ10を設けることにより、水素貯蔵体2の温度を制御し易くし、水素の吸蔵および放出の効率をあげることができる。また、ヒータ10には熱伝導性を向上させるために周囲に伝熱フィンを設けてもよい。
[Embodiment 2]
In the first embodiment, the heater 6 is provided outside the container 3 as a heating unit. However, as shown in FIG. 2, the heater 10 may be provided inside the container 3. The heater 10 is an electrothermal heater, and the function is the same as that of the heater 6 of the first embodiment. Thus, by providing the heater 10 inside, it becomes easy to control the temperature of the hydrogen storage body 2, and the efficiency of occlusion and discharge | release of hydrogen can be raised. The heater 10 may be provided with heat transfer fins around it in order to improve thermal conductivity.

なお、この場合も、ヒータ10に電源(図示せず)が接続されている。水素放出量をコントロールする必要性から、電源には水素放出量をフィードバックされた制御システム(図示せず)が併設されている。   In this case as well, a power source (not shown) is connected to the heater 10. Due to the necessity of controlling the hydrogen release amount, the power supply is provided with a control system (not shown) in which the hydrogen release amount is fed back.

[実施形態3]
実施形態1では、加熱手段として容器3の外部にヒータ6が設けられているが、図3に示すように、少なくとも100℃以上の沸点を有する熱媒体(図示せず)と、容器3の外部と内部との間で熱媒体の循環路を形成する循環パイプ20と、熱媒体を加熱するヒータ21と、熱媒体を循環パイプ20内に圧送する循環ポンプ22とを設けてもよい。ヒータ21は、電熱式のヒータであり、外部システムとして電源(図示せず)がヒータ21に接続されている。水素放出量をコントロールする必要性から、電源には水素放出量をフィードバックされた制御システム(図示せず)が併設されている。これにより、効率よく水素貯蔵体2を加熱することができ、水素の吸蔵および放出を短時間で行なうことができる。なお、この加熱手段を用いる場合には、熱媒体の温度は沸点以下に維持しておく。また、循環パイプ20には熱伝導性を向上させるために周囲に伝熱フィンを設けてもよい。
[Embodiment 3]
In the first embodiment, the heater 6 is provided outside the container 3 as a heating unit. However, as shown in FIG. 3, a heating medium (not shown) having a boiling point of at least 100 ° C. A circulation pipe 20 that forms a circulation path of the heat medium between the inside and the inside, a heater 21 that heats the heat medium, and a circulation pump 22 that pumps the heat medium into the circulation pipe 20 may be provided. The heater 21 is an electrothermal heater, and a power source (not shown) is connected to the heater 21 as an external system. Due to the necessity of controlling the hydrogen release amount, the power supply is provided with a control system (not shown) that feeds back the hydrogen release amount. Thereby, the hydrogen storage body 2 can be heated efficiently, and hydrogen can be occluded and released in a short time. When this heating means is used, the temperature of the heat medium is kept below the boiling point. The circulation pipe 20 may be provided with heat transfer fins around it in order to improve thermal conductivity.

[実施形態4]
実施形態1では、流路形成部材として、円筒形状の内部流通管4が設けられているが、図4に示すように、らせん状のガス流通管として内部流通管30が設けられていてもよい。これにより、内部流通管30の表面積を大きくし、水素貯蔵体が水素を吸蔵または放出する効率を上げることができる。
[Embodiment 4]
In the first embodiment, the cylindrical internal flow pipe 4 is provided as the flow path forming member. However, as shown in FIG. 4, the internal flow pipe 30 may be provided as a spiral gas flow pipe. . Thereby, the surface area of the internal flow pipe 30 can be increased, and the efficiency with which the hydrogen storage body occludes or releases hydrogen can be increased.

[実施形態5]
また、図5に示すように、水素貯蔵タンク41を移動体としての燃料電池自動車に搭載してもよい。これにより、軽くて、一回の補給で走れる走行距離の長い燃料電池自動車を実現することができる。水素貯蔵タンク41では、外部流通管47が水素ガス吸蔵用の外部流通管47aおよび水素ガス放出用の外部流通管47bに分岐している。水素ガス吸蔵用の外部流通管47aおよび水素ガス放出用の外部流通管47bは、管を閉じることができる蓋またはバルブ等を備えている。水素ガス放出用の外部流通管47bは、後部タイヤ50に連結されている後部シャフト51の上を跨ぐように形成され、燃料電池60に連結されている。水素貯蔵タンク41は温度が高くなるため、その周囲を断熱材で覆うことが好ましい。一方、車体の水素貯蔵タンク41とは反対側には、酸素吸入管61が、コンプレッサ62に連結されて設けられている。コンプレッサ62の酸素吸入管61とは反対側には、圧送管63が燃料電池60に連結されている。また、燃料電池60には、水放出管64が設けられている。
[Embodiment 5]
Further, as shown in FIG. 5, the hydrogen storage tank 41 may be mounted on a fuel cell vehicle as a moving body. As a result, it is possible to realize a fuel cell vehicle that is light and has a long mileage that can be driven by one replenishment. In the hydrogen storage tank 41, the external flow pipe 47 is branched into an external flow pipe 47a for storing hydrogen gas and an external flow pipe 47b for releasing hydrogen gas. The external circulation pipe 47a for storing hydrogen gas and the external circulation pipe 47b for releasing hydrogen gas are provided with a lid or a valve that can close the pipe. The external circulation pipe 47 b for releasing hydrogen gas is formed so as to straddle over the rear shaft 51 connected to the rear tire 50, and is connected to the fuel cell 60. Since the temperature of the hydrogen storage tank 41 increases, it is preferable to cover the periphery with a heat insulating material. On the other hand, on the opposite side of the vehicle body from the hydrogen storage tank 41, an oxygen suction pipe 61 is connected to the compressor 62. A pressure feeding pipe 63 is connected to the fuel cell 60 on the opposite side of the compressor 62 from the oxygen suction pipe 61. Further, the fuel cell 60 is provided with a water discharge pipe 64.

燃料電池60には、発生した電力を導通する導線70が接続され、導線70の他端はバッテリ71に接続されている。バッテリ71には導線72が接続され、その他端はモータ80に接続されている。モータ80には、モータ80の動力を前部タイヤ81に伝える前部シャフト82が回転可能に取り付けられている。図5では、簡単のために、前部シャフト82はモータ80に直接取り付けられているように表現しているが、実際にはモータ80の動力をプーリやクラッチ機構を用いて、前部タイヤに動力を伝える。   The fuel cell 60 is connected to a conducting wire 70 that conducts the generated power, and the other end of the conducting wire 70 is connected to a battery 71. A conductive wire 72 is connected to the battery 71, and the other end is connected to the motor 80. A front shaft 82 that transmits the power of the motor 80 to the front tire 81 is rotatably attached to the motor 80. In FIG. 5, for the sake of simplicity, the front shaft 82 is expressed as being directly attached to the motor 80, but actually the power of the motor 80 is applied to the front tire using a pulley or a clutch mechanism. Transmit power.

なお、水素貯蔵タンク41の容器43に水素貯蔵体2を出し入れすることのできる出入機構を設ける場合には、水素貯蔵タンク41を自動車40に搭載したまま出し入れ可能な機構としてもよいし、水素貯蔵タンク41を取り外し別の場所で出し入れする機構としてもよい。また、水素貯蔵タンクを搭載する移動体は、燃料電池自動車に限られず水素エンジン自動車であってもよく、移動体には、自動車、バイク等の車両、船および飛行機も含まれる。   In addition, when providing the entrance / exit mechanism which can take in / out the hydrogen storage body 2 in the container 43 of the hydrogen storage tank 41, it is good also as a mechanism which can be taken in / out with the hydrogen storage tank 41 mounted in the motor vehicle 40, or hydrogen storage. It is good also as a mechanism which removes the tank 41 and takes in / out at another place. In addition, the mobile body on which the hydrogen storage tank is mounted is not limited to a fuel cell vehicle, and may be a hydrogen engine vehicle. Examples of the mobile body include vehicles such as automobiles and motorcycles, ships, and airplanes.

次に、自動車40の動作を説明する。まず、自動車40に水素ガスを補充する場合には、水素補充のシステムが整備されている水素ステーション等で、水素貯蔵タンク41を最適な温度に加熱し、図5に示す矢印Aの方向に外部流通管47aから水素ガスを圧送する。このとき外部流通管47bは閉じられている。このようにして、水素ガスは水素貯蔵タンク41内の水素貯蔵体に吸蔵される。   Next, the operation of the automobile 40 will be described. First, when hydrogen gas is replenished to the automobile 40, the hydrogen storage tank 41 is heated to an optimum temperature at a hydrogen station or the like where a hydrogen replenishment system is provided, and externally in the direction of arrow A shown in FIG. Hydrogen gas is pumped from the flow pipe 47a. At this time, the external circulation pipe 47b is closed. In this way, the hydrogen gas is stored in the hydrogen storage body in the hydrogen storage tank 41.

自動車40を駆動させる場合には、まず外部流通管47aを閉じた状態で、水素貯蔵タンク41の加熱手段により内部の水素貯蔵体を最適な温度に加熱し、外部流通管47bに水素ガスを送り込む。一方、コンプレッサ62を始動させ、図5に示す矢印B方向に酸素(空気)を酸素吸入管61から、圧送管63を通して燃料電池60に送り込む、燃料電池60を働かせて、電力をバッテリ71に蓄える。このとき、反応により生じた水は水放出管64から外部に放出する。バッテリ71に蓄えられた電力でモータ80を駆動させて、前部シャフト82および前部タイヤ81を回転させる。このようにして、自動車40を駆動させる。なお、これらの実施形態は例示であって、本発明がこれらの実施形態に限定されるものではない。   When driving the automobile 40, first, with the external circulation pipe 47a closed, the internal hydrogen storage body is heated to an optimum temperature by the heating means of the hydrogen storage tank 41, and hydrogen gas is sent into the external circulation pipe 47b. . On the other hand, the compressor 62 is started, oxygen (air) is sent from the oxygen suction pipe 61 to the fuel cell 60 through the pressure feed pipe 63 in the direction of arrow B shown in FIG. . At this time, water generated by the reaction is discharged from the water discharge pipe 64 to the outside. The motor 80 is driven by the electric power stored in the battery 71 to rotate the front shaft 82 and the front tire 81. In this way, the automobile 40 is driven. In addition, these embodiment is an illustration, Comprising: This invention is not limited to these embodiment.

本発明に係る水素貯蔵タンクの第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the hydrogen storage tank which concerns on this invention. 本発明に係る水素貯蔵タンクの第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the hydrogen storage tank which concerns on this invention. 本発明に係る水素貯蔵タンクの第3の実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the hydrogen storage tank which concerns on this invention. 本発明に係る水素貯蔵タンクの第4の実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the hydrogen storage tank which concerns on this invention. 本発明に係る移動体の一例を示す概略図である。It is the schematic which shows an example of the moving body which concerns on this invention.

符号の説明Explanation of symbols

1 水素貯蔵タンク
2 水素貯蔵体
3 容器
4 内部流通管(流路形成部材)
5 安全バルブ
6 ヒータ(加熱手段)
7 外部流通管(流路形成部材)
8 フィルタ
10 ヒータ(加熱手段)
20 循環パイプ
21 ヒータ
22 循環ポンプ
30 内部流通管(流路形成部材)
40 自動車(移動体)
41 水素貯蔵タンク
43 容器
47a 外部流通管(流路形成部材)
47b 外部流通管(流路形成部材)
DESCRIPTION OF SYMBOLS 1 Hydrogen storage tank 2 Hydrogen storage body 3 Container 4 Internal distribution pipe (flow-path formation member)
5 Safety valve 6 Heater (heating means)
7 External distribution pipe (channel forming member)
8 Filter 10 Heater (heating means)
20 Circulating pipe 21 Heater 22 Circulating pump 30 Internal flow pipe (flow path forming member)
40 automobile (mobile)
41 Hydrogen storage tank 43 Container 47a External flow pipe (flow path forming member)
47b External flow pipe (flow path forming member)

Claims (4)

リチウムイミド、リチウムアミドと水素化リチウムとの組み合わせ、またはリチウムイミドとリチウムアミドと水素化リチウムとの組み合わせからなるリチウム系水素吸蔵材料と前記リチウム系水素吸蔵材料の水素の吸蔵および放出を促進する触媒とを含む固体の水素貯蔵体と、Lithium imide, a combination of lithium amide and lithium hydride, or a lithium-based hydrogen storage material comprising a combination of lithium imide, lithium amide and lithium hydride, and a catalyst for promoting the storage and release of hydrogen in the lithium-based hydrogen storage material A solid hydrogen storage body comprising:
前記水素貯蔵体を封入する容器と、A container for enclosing the hydrogen storage body;
外部に連通するとともに、前記容器の内部において水素ガスの流路を形成する流路形成部材と、A flow path forming member that communicates with the outside and forms a flow path of hydrogen gas inside the container;
前記水素貯蔵体を80℃以上の温度に加熱する加熱手段と、を備えることを特徴とする水素貯蔵タンク。A hydrogen storage tank, comprising: a heating unit that heats the hydrogen storage body to a temperature of 80 ° C. or higher.
前記加熱手段は、The heating means includes
100℃以上の沸点を有する熱媒体と、A heating medium having a boiling point of 100 ° C. or higher;
前記容器の外部と内部との間で循環路を形成する循環パイプと、A circulation pipe forming a circulation path between the outside and the inside of the container;
前記熱媒体を加熱するヒータと、A heater for heating the heat medium;
前記熱媒体を前記循環パイプ内で圧送する循環ポンプと、を備えることを特徴とする請求項1記載の水素貯蔵タンク。The hydrogen storage tank according to claim 1, further comprising: a circulation pump that pumps the heat medium in the circulation pipe.
前記内部流路形成部材は、水素ガスを透過する多孔質の管壁を有するらせん状のガス流The internal flow path forming member has a spiral gas flow having a porous tube wall that is permeable to hydrogen gas.
通管であることを特徴とする請求項1または請求項2に記載の水素貯蔵タンク。The hydrogen storage tank according to claim 1, wherein the hydrogen storage tank is a through pipe.
請求項1から請求項3のいずれか一項に記載の水素貯蔵タンクを搭載した移動体。The mobile body carrying the hydrogen storage tank as described in any one of Claims 1-3.
JP2004101759A 2003-08-11 2004-03-31 Hydrogen storage tank and mobile body equipped with the same Expired - Fee Related JP4729674B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004101759A JP4729674B2 (en) 2004-03-31 2004-03-31 Hydrogen storage tank and mobile body equipped with the same
PCT/JP2004/009538 WO2005014165A1 (en) 2003-08-11 2004-07-05 Material for storing hydrogen and method and apparatus for production thereof
US11/351,244 US7537748B2 (en) 2003-08-11 2006-02-09 Hydrogen storage matter and manufacturing method and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101759A JP4729674B2 (en) 2004-03-31 2004-03-31 Hydrogen storage tank and mobile body equipped with the same

Publications (2)

Publication Number Publication Date
JP2005282828A JP2005282828A (en) 2005-10-13
JP4729674B2 true JP4729674B2 (en) 2011-07-20

Family

ID=35181436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101759A Expired - Fee Related JP4729674B2 (en) 2003-08-11 2004-03-31 Hydrogen storage tank and mobile body equipped with the same

Country Status (1)

Country Link
JP (1) JP4729674B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957007B2 (en) * 2006-02-03 2012-06-20 日産自動車株式会社 Hydrogen generation system, fuel cell system, and fuel cell vehicle
JP5211357B2 (en) * 2008-03-10 2013-06-12 国立大学法人広島大学 Hydrogen storage station, hydrogen supply station and composite cartridge
JP2010086771A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Fuel container, power-generation device, power-generation device body, fuel supply method, and calculation method of rough fuel remaining amount
KR101120574B1 (en) * 2008-12-22 2012-03-09 한국전자통신연구원 gas storage structure and gas storage apparatus using thereof
PL2681792T3 (en) * 2011-02-28 2021-05-31 Nicolas Kernene Energy unit with safe and stable hydrogen storage
US9548507B2 (en) 2013-08-28 2017-01-17 Elwha Llc Systems and methods for hydrogen fuel storage and hydrogen powered vehicles
US20160273713A1 (en) * 2013-10-28 2016-09-22 Alternative Fuel Containers, Llc Fuel gas tank filling system and method
WO2015171795A1 (en) * 2014-05-06 2015-11-12 Alternative Fuel Containers, Llc Fuel gas storage tank and method of filling the same
TWI591890B (en) 2015-08-21 2017-07-11 亞太燃料電池科技股份有限公司 A heating and safety device for canister, gas storage canister and hydrogen storage canister
KR101875633B1 (en) 2016-01-26 2018-08-02 현대자동차 주식회사 Solid state hydrogen storage device and solid state hydrogen storage system
US9841147B1 (en) 2016-05-23 2017-12-12 Twisted Sun Innovations, Inc. Gas storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281798U (en) * 1985-11-05 1987-05-25
JPH0518261A (en) * 1991-07-09 1993-01-26 Toyota Autom Loom Works Ltd Control method for temperature of hydrogen storage alloy in hydrogen storage alloy containing container
JPH0783396A (en) * 1993-09-14 1995-03-28 Sanyo Electric Co Ltd Hydrogen storage alloy tank for hydrogen storage
JP2000055300A (en) * 1998-08-10 2000-02-22 Agency Of Ind Science & Technol Hydrogen storage container
JP2001253702A (en) * 2000-03-08 2001-09-18 Toyota Central Res & Dev Lab Inc Hydrogen generating method and hydrogen generating material
JP2002526255A (en) * 1998-10-07 2002-08-20 マクギル・ユニヴァーシティ Reversible hydrogen storage composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281798U (en) * 1985-11-05 1987-05-25
JPH0518261A (en) * 1991-07-09 1993-01-26 Toyota Autom Loom Works Ltd Control method for temperature of hydrogen storage alloy in hydrogen storage alloy containing container
JPH0783396A (en) * 1993-09-14 1995-03-28 Sanyo Electric Co Ltd Hydrogen storage alloy tank for hydrogen storage
JP2000055300A (en) * 1998-08-10 2000-02-22 Agency Of Ind Science & Technol Hydrogen storage container
JP2002526255A (en) * 1998-10-07 2002-08-20 マクギル・ユニヴァーシティ Reversible hydrogen storage composition
JP2001253702A (en) * 2000-03-08 2001-09-18 Toyota Central Res & Dev Lab Inc Hydrogen generating method and hydrogen generating material

Also Published As

Publication number Publication date
JP2005282828A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4729674B2 (en) Hydrogen storage tank and mobile body equipped with the same
JP2009144901A (en) Hydrogen storage system for fuel cell powered vehicle
JP5234898B2 (en) Hydrogen supply device for fuel cell
US6195999B1 (en) Electrochemical engine
EP1992397B1 (en) Method and device for safe storage and use of volatile ammonia storage materials
JP2010513812A (en) Method and apparatus for safe storage and safe transport of ammonia, and use of ammonia storage materials
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
JP2013538934A (en) Production and supply system for hydrogen and sodium chlorate, including sodium chloride electrolyzer for producing sodium chlorate
JP2018076214A (en) Hydrogen generator
CA2701648C (en) Hydrogen production method, hydrogen production system, and fuel cell system
EP3415805A1 (en) Gas supply and storage device and corresponding assembly
Oelerich et al. Mg-based hydrogen storage materials with improved hydrogen sorption
CN217444446U (en) Quick start type methanol reforming fuel cell system
KR102169149B1 (en) Low pressure metal hybrid type hydrogen storage and emitting system for fuel cell
CA2323196A1 (en) Electrochemical engine arrangement
US8549849B2 (en) Insulated main NH3 cartridge system with separate start-up unit
JP4844233B2 (en) Hydrogen storage device and hydrogen storage method
WO2016123332A1 (en) Fuel gas storage tank as air conditioner
WO2005014165A1 (en) Material for storing hydrogen and method and apparatus for production thereof
CN110546425B (en) Hydrogen storage device
WO2016207287A1 (en) Device for heating a battery
JP2009054474A (en) Hydrogen supply device and fuel cell vehicle
JP2021103682A (en) Device equipped with storage unit for hydrogen storage alloy for operating heat-generating hydrogen consumer
JPS5943329B2 (en) Method and device for cooling the interior of a motor vehicle
JP5938035B2 (en) Electric vehicle with a fuel cell including a sodium chlorate decomposition reactor for supplying oxygen to the fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees