JPH0783396A - Hydrogen storage alloy tank for hydrogen storage - Google Patents
Hydrogen storage alloy tank for hydrogen storageInfo
- Publication number
- JPH0783396A JPH0783396A JP22887893A JP22887893A JPH0783396A JP H0783396 A JPH0783396 A JP H0783396A JP 22887893 A JP22887893 A JP 22887893A JP 22887893 A JP22887893 A JP 22887893A JP H0783396 A JPH0783396 A JP H0783396A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- hydrogen storage
- tank
- storage alloy
- ejection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水素注入ノズルが配設
された水素貯蔵用水素吸蔵合金タンクに関し、より詳し
くは水素注入ノズルの改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy tank for storing hydrogen having a hydrogen injection nozzle, and more particularly to an improvement of the hydrogen injection nozzle.
【0002】[0002]
【従来の技術】近年、地球環境保全への関心の高まりと
ともに、クリーンエネルギーに対する要請が一段と高ま
っている。このような背景にあって、クリーンエネルギ
ーとしての水素の重要性が従来に増して高まっている。
ところで、水素は、通常気体であり且つ極めて活性な物
質であるため、このような性質の水素を如何に適切に個
別貯蔵するかが、水素エネルギーの高度利用を図る際の
重要課題になる。例えば宇宙開発用ロケットや電気自動
車の電源として、エネルギー変換効率が高くかつ環境汚
染に対する影響の少ない水素燃料電池を活用しようとす
る方向にあるが、この場合、先ず電池燃料である水素を
如何に供給するかが問題となる。また、いわば無尽蔵の
資源である太陽エネルギーの利用を図るため、砂漠等で
太陽電池発電を行いその電力を水の電気分解を通じて一
旦水素に変換し、水素の形態でエネルギー貯蔵し、これ
を消費地に運搬等して利用しようと考える場合、上記と
同様に先ず水素の蓄積貯蔵方法が問題となる。つまり、
如何に適切簡便に水素を貯蔵できるかが水素エネルギー
の高度利用を図るための鍵となる。2. Description of the Related Art In recent years, the demand for clean energy has further increased with the growing interest in preserving the global environment. Against this background, the importance of hydrogen as clean energy is increasing more than ever before.
By the way, since hydrogen is usually a gas and is an extremely active substance, how to properly and individually store hydrogen having such a property is an important issue in advanced utilization of hydrogen energy. For example, as a power source for space development rockets and electric vehicles, there is a tendency to utilize hydrogen fuel cells, which have high energy conversion efficiency and little influence on environmental pollution. In this case, first, how to supply hydrogen as a cell fuel The question is whether to do it. In addition, in order to use the solar energy, which is an inexhaustible resource, so-called solar power generation is performed in the desert, etc., the power is once converted to hydrogen through electrolysis of water, and the energy is stored in the form of hydrogen. When it is considered to be transported and used, the first problem is how to store and store hydrogen as in the above case. That is,
How to store hydrogen appropriately and conveniently is the key to the advanced utilization of hydrogen energy.
【0003】しかして、最近、水素を可逆的に吸蔵放出
し得る水素吸蔵合金が注目され、この水素吸蔵合金に水
素を吸蔵させて水素貯蔵を行う方式が、水素貯蔵法とし
て利用されるようになって来ている。この方式によれ
ば、水素の個別貯蔵(任意の単位での貯蔵をいう)が容
易となるとともに、その取り出しも容易となるので、高
圧液化方式の従来型貯蔵法に比べて、水素及び水素利用
装置の活用範囲を大幅に拡大できることになる。Recently, however, a hydrogen storage alloy capable of reversibly storing and releasing hydrogen has attracted attention, and a method of storing hydrogen by storing hydrogen in this hydrogen storage alloy is used as a hydrogen storage method. It is becoming. According to this method, individual storage of hydrogen (referred to as storage in arbitrary units) is facilitated, and it is also easy to take out hydrogen. Therefore, compared with the conventional high-pressure liquefaction storage method, hydrogen and hydrogen utilization The utilization range of the device can be greatly expanded.
【0004】[0004]
【発明が解決しようとする課題】本発明の発明者らは、
上記の如き状況を踏まえ、水素吸蔵合金に水素を吸蔵さ
せて水素貯蔵を行う従来型水素貯蔵用水素吸蔵合金タン
クについて見直しを行ったところ、次のような問題点を
見い出した。即ち、従来型水素貯蔵用水素吸蔵合金タン
クに使用されている水素注入ノズルは、水素の噴き出し
方向がノズル軸方向に対し平行であるので、水素の注入
に際し、噴出された水素がそのままタンク内の水素吸蔵
合金に吹き当たる。よって、図7に示したように、水素
吸蔵合金粒子がタンク奥の方に押しやられることになる
が、この場合、細粒子ほど奥に押しやられることになる
ため、タンク内の水素吸蔵合金分布が場所的、粒度的に
偏在化する。ここで、水素吸蔵合金は水素を吸蔵すると
発熱膨張するが、水素吸蔵合金が偏在化し高密度になっ
た部分(タンク奥)では、この発熱膨張の影響により温
度が異常に上昇するとともに、合金の膨張によって内圧
が異常に高まりタンク壁を強く押圧することとなる。こ
のように集中的局部的に加えられる発熱膨張作用は、タ
ンク壁面の疲労(例えば金属疲労)を招来する。つま
り、水素の貯蔵放出の繰り返しによって、タンク壁は次
第に疲労劣化し、タンクの歪みや変形、更には破裂等の
不測の事態を招くことになる。SUMMARY OF THE INVENTION The inventors of the present invention have
Based on the above situation, when reviewing the conventional hydrogen storage alloy tank for storing hydrogen by causing the hydrogen storage alloy to store hydrogen, the following problems were found. That is, in the hydrogen injection nozzle used in the conventional hydrogen storage alloy tank for storing hydrogen, since the direction of hydrogen injection is parallel to the nozzle axis direction, when injecting hydrogen, the injected hydrogen remains in the tank. It hits the hydrogen storage alloy. Therefore, as shown in FIG. 7, the hydrogen-absorbing alloy particles are pushed toward the back of the tank. In this case, however, the finer particles are pushed further toward the back, so that the hydrogen-absorbing alloy distribution in the tank is It is unevenly distributed in terms of location and granularity. Here, the hydrogen storage alloy expands exothermically when it absorbs hydrogen, but in the part where the hydrogen storage alloy is unevenly distributed and has a high density (in the tank), the temperature rises abnormally due to the effect of this exothermic expansion, and Due to the expansion, the internal pressure is abnormally increased and the tank wall is strongly pressed. The heat-expanding action applied locally in this manner causes fatigue (for example, metal fatigue) of the tank wall surface. In other words, due to repeated storage and release of hydrogen, the tank wall gradually deteriorates due to fatigue, which causes unexpected situations such as distortion and deformation of the tank, and further rupture.
【0005】本発明は、このような認識のもとで、水素
注入に際し、タンク内で水素吸蔵合金の偏在化が起こり
にくい水素注入ノズルを備えた水素貯蔵用水素吸蔵合金
タンクを提供することを目的とする。Based on the above recognition, the present invention provides a hydrogen storage alloy tank for hydrogen storage, which is equipped with a hydrogen injection nozzle that is less likely to cause uneven distribution of the hydrogen storage alloy during hydrogen injection. To aim.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の本発明は、水素ガス噴き出し用の噴
出孔を少なくとも一つ有した水素注入ノズルが、タンク
の長手方向の一端に備えられた水素貯蔵用水素吸蔵合金
タンクにおいて、前記水素注入ノズルから噴き出される
水素の噴き出し方向ベクトルの少なくとも一つが、前記
タンクの長手方向に直交する方向成分を有していること
を特徴とする。To achieve the above object, the present invention according to claim 1 provides a hydrogen injection nozzle having at least one ejection hole for ejecting hydrogen gas, wherein one end in the longitudinal direction of the tank. In the hydrogen storage alloy tank for hydrogen storage provided in, at least one of ejection direction vectors of hydrogen ejected from the hydrogen injection nozzle has a directional component orthogonal to the longitudinal direction of the tank. To do.
【0007】また請求項2記載の本発明は、前記請求項
1記載の水素貯蔵用水素吸蔵合金タンクにおいて、水素
注入ノズルが、水素注入管と該注入管から噴き出された
水素の風向を調節する案内板とで構成されたことを特徴
とする。更に請求項3記載の本発明は、前記請求項1記
載の水素貯蔵用水素吸蔵合金タンクにおいて、水素注入
ノズルが、その周側面に水素噴出孔を複数設けた筒状の
水素噴出部材を備えたことを特徴とする。According to a second aspect of the present invention, in the hydrogen storage alloy tank for storing hydrogen according to the first aspect, the hydrogen injection nozzle adjusts the hydrogen injection pipe and the wind direction of hydrogen ejected from the injection pipe. And a guide plate that operates. Further, according to the present invention of claim 3, in the hydrogen storage alloy tank for hydrogen storage according to claim 1, the hydrogen injection nozzle includes a cylindrical hydrogen ejection member having a plurality of hydrogen ejection holes on a peripheral side surface thereof. It is characterized by
【0008】また請求項4記載の本発明は、前記請求項
3記載の水素貯蔵用水素吸蔵合金タンクにおいて、前記
周側面に複数設けられた水素噴出孔が、水素貯蔵用水素
吸蔵合金タンクの周方向に配列されたものであることを
特徴とする。更に請求項5記載の本発明は、前記請求項
3記載の水素貯蔵用水素吸蔵合金タンクにおいて、前記
周側面に複数設けられた水素噴出孔が、水素貯蔵用水素
吸蔵合金タンクの長手方向に配列されたものであること
を特徴とする。According to a fourth aspect of the present invention, in the hydrogen storage alloy tank for hydrogen storage according to the third aspect, a plurality of hydrogen ejection holes provided on the peripheral side surface are provided in the periphery of the hydrogen storage alloy tank for hydrogen storage. It is characterized by being arranged in the direction. Furthermore, the present invention according to claim 5 is the hydrogen storage alloy tank for hydrogen storage according to claim 3, wherein a plurality of hydrogen ejection holes provided on the peripheral side surface are arranged in a longitudinal direction of the hydrogen storage alloy tank for hydrogen storage. It is characterized by being
【0009】また請求項6記載の本発明は、前記長手方
向に配列された複数の水素噴出孔が、各噴出孔からの噴
出速度または噴出量が同一になるように、先端側に進む
につれて孔径を大きく形成したことを特徴とする。According to the sixth aspect of the present invention, the plurality of hydrogen ejection holes arranged in the longitudinal direction are arranged so that the ejection speed or ejection amount from each ejection hole is the same, and the diameters of the holes are increased toward the tip side. Is formed to be large.
【0010】[0010]
【作用】上記の構成によれば、タンクの長手方向の一端
に設けられた水素噴出ノズルより噴き出される水素は、
長手方向以外の噴出方向成分を有しているので、水素吸
蔵合金粉末に当たる風圧が緩和される。したがって、水
素噴出圧によって水素吸蔵合金粉末がタンク内で飛散
し、偏在化する現象を緩和できる。よって、タンクへの
水素注入を効率的に行えるようになる。According to the above structure, the hydrogen ejected from the hydrogen ejection nozzle provided at one end of the tank in the longitudinal direction is
Since it has a jetting direction component other than the longitudinal direction, the wind pressure that hits the hydrogen storage alloy powder is relaxed. Therefore, it is possible to alleviate the phenomenon that the hydrogen storage alloy powder scatters in the tank due to the hydrogen ejection pressure and is unevenly distributed. Therefore, hydrogen can be efficiently injected into the tank.
【0011】[0011]
【実施例】本発明の実施例を、図に基づいて説明する。 〔実施例1〕本発明の実施例1を図1に基づいて説明す
る。 図1は、円筒状の水素噴出部材の長手方向に沿っ
て、水素ガス噴出孔を8個配列してなる水素注入ノズル
を備えた水素貯蔵用水素吸蔵合金タンクの断面模式図で
ある。図1中、1は水素貯蔵用水素吸蔵合金タンク本
体、2bは中空棒状の水素噴出部材、3は水素ガス噴出
孔、4はフィルター、5は水素ガス供給管であり、矢印
の方向は水素ガスの噴き出し方向を示している。ここ
で、水素貯蔵用水素吸蔵合金タンク本体1は、長手方向
の一端に水素注入ノズルの取付け口を有し、他端が閉じ
られた、長さ159mm、直径38mm、壁厚2mmの
大きさの円筒形状をしたタンクである。また、水素注入
ノズルは、後端側に水素ガスから塵等を除去するための
フィルターが取り付けられており、先端側には直径6.
35mm、長さ約150mmの中空棒状の水素噴出部材
2bが取り付けられている。そして、この水素噴出部材
2には、長手方向に沿ってほぼ均等に8個の孔が配設さ
れ、各孔の内側には水素ガスから塵等を除去するととも
に、水素吸蔵合金の流入を防止するために、それぞれ直
径2.5mmのフィルター(2μm)が取り付けられて
いる。なお、このような形状のタンク本体及び水素注入
ノズルの材質は、アルミニウム合金(A5052)であ
る。 〔実施例2〕本発明の実施例2を、図2に基づいて説明
する。図2は、水素噴出部材の長手方向に沿って、水素
ガス噴出孔を2列に4個配列した例である。但し、水素
ガス噴出孔の配列の仕方は適当に定めればよく、例えば
4列2段の配列であってもよく、また螺旋状に配列して
もよい。更に、長手方向に進むにつれて、孔径を大きく
形成し、水素ガス噴出量または噴出速度が各噴出孔とも
同一になるようにしてもよい。このようにすると、水素
ガスの噴き出しによって生じる水素吸蔵合金粒子の偏在
化現象を効果的に防止できる。なお、先端ほど孔径を大
きくするのは、下流側ほど水素圧が低下するためであ
る。 〔実施例3〕本発明の実施例3を図3、4に基づいて説
明する。 図2中、2bはその円周方向に沿って水素ガ
ス 噴出孔を配列した偏平タイプの水素ガス噴出部材で
ある。この水素ガス噴出部材2bは、その拡大斜視図を
図4に示すが、直径9.5mm、厚さ8mmの円筒体
で、その円周面には直径2.5mmの水素ガス噴出孔が
8個配列されたものである。なお、図番号は実施例1と
同様であり、水素ガス噴出部材等の材質も実施例1の場
合と同様である。Embodiments of the present invention will be described with reference to the drawings. [First Embodiment] A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of a hydrogen storage alloy tank for hydrogen storage equipped with a hydrogen injection nozzle in which eight hydrogen gas ejection holes are arranged along the longitudinal direction of a cylindrical hydrogen ejection member. In FIG. 1, 1 is a hydrogen storage alloy tank main body for hydrogen storage, 2b is a hollow rod-shaped hydrogen ejection member, 3 is a hydrogen gas ejection hole, 4 is a filter, 5 is a hydrogen gas supply pipe, and the direction of the arrow is hydrogen gas. The spouting direction of is shown. Here, the hydrogen storage alloy tank main body 1 for storing hydrogen has a length of 159 mm, a diameter of 38 mm, and a wall thickness of 2 mm, which has a hydrogen injection nozzle attachment port at one longitudinal end and the other end is closed. It is a cylindrical tank. Further, the hydrogen injection nozzle has a filter for removing dust and the like from hydrogen gas on the rear end side, and a diameter of 6.
A hollow rod-shaped hydrogen ejection member 2b having a length of 35 mm and a length of about 150 mm is attached. The hydrogen ejection member 2 is provided with eight holes substantially evenly along the longitudinal direction, and dust and the like are removed from the hydrogen gas inside each hole and the inflow of the hydrogen storage alloy is prevented. In order to do so, filters (2 μm) each having a diameter of 2.5 mm are attached. The material of the tank body and the hydrogen injection nozzle having such a shape is aluminum alloy (A5052). [Second Embodiment] A second embodiment of the present invention will be described with reference to FIG. FIG. 2 is an example in which four hydrogen gas ejection holes are arranged in two rows along the longitudinal direction of the hydrogen ejection member. However, the method of arranging the hydrogen gas ejection holes may be appropriately determined, and for example, may be arranged in four rows and two stages, or may be arranged in a spiral shape. Further, the hole diameter may be increased as it goes in the longitudinal direction so that the hydrogen gas ejection amount or ejection velocity is the same for each ejection hole. By doing so, it is possible to effectively prevent the uneven distribution phenomenon of the hydrogen storage alloy particles caused by the ejection of hydrogen gas. The reason why the pore diameter is increased toward the tip is that the hydrogen pressure decreases toward the downstream side. [Third Embodiment] A third embodiment of the present invention will be described with reference to FIGS. In FIG. 2, 2b is a flat type hydrogen gas ejection member in which hydrogen gas ejection holes are arranged along the circumferential direction. An enlarged perspective view of the hydrogen gas ejection member 2b is shown in FIG. 4, and is a cylindrical body having a diameter of 9.5 mm and a thickness of 8 mm, and eight hydrogen gas ejection holes having a diameter of 2.5 mm are formed on the circumferential surface thereof. It is arranged. The reference numerals are the same as those in the first embodiment, and the materials for the hydrogen gas ejection member and the like are also the same as those in the first embodiment.
【0012】この実施例3に示した水素噴出部材は、実
施例1のものと異なり、周方向すなわち長手方向に直交
する方向に水素を噴出するように構成したものである。
したがって、水素吸蔵合金タンクの形状が、直径が大き
く、長手方向に短かい場合により効果的に本発明の作用
効果を奏する。 〔実施例4〕本発明の実施例4を図5(イ)〜(ハ)に
基づいて説明する。実施例4は、水素ガス注入管の前方
に案内板を設け、この案内板により注入管より噴き出さ
れた水素ガスの進行方向を変更して、タンク長手方向と
直交する方向成分を形成させる方式の例である。The hydrogen spouting member shown in the third embodiment is different from that of the first embodiment in that hydrogen is spouted in the circumferential direction, that is, in the direction orthogonal to the longitudinal direction.
Therefore, when the shape of the hydrogen storage alloy tank has a large diameter and is short in the longitudinal direction, the function and effect of the present invention are more effectively exhibited. [Fourth Embodiment] A fourth embodiment of the present invention will be described with reference to FIGS. Example 4 is a system in which a guide plate is provided in front of the hydrogen gas injection pipe, and the direction of hydrogen gas ejected from the injection pipe is changed by the guide plate to form a directional component orthogonal to the tank longitudinal direction. Is an example of.
【0013】図4中、(イ)は、水素注入管の前方に円
板状の邪魔板(案内板)を配設し、注入管より噴き出し
た水素ガスがこの邪魔板に当たって、長手方向と直交す
る方向に曲がるよう構成した水素噴出部材である。ま
た、(ロ)は、円錐体の頂点を注入管側に配置し、円錐
側面を案内板として作用させて、注入管より噴き出す水
素ガスを所定の方向に導くよう構成した水素噴出部材で
ある。更に(ハ)は、円錐体の側面を曲線状(ラッパ
状)に形成して(ロ)の場合より長手方向と直交する方
向への曲げを大きくするよう構成した水素噴出部材であ
る。In FIG. 4, (a) shows that a disc-shaped baffle plate (guide plate) is arranged in front of the hydrogen injection pipe, and the hydrogen gas ejected from the injection pipe hits the baffle plate and is orthogonal to the longitudinal direction. It is a hydrogen ejection member configured to bend in the direction of. Further, (b) is a hydrogen ejection member in which the apex of the conical body is arranged on the injection pipe side and the side surface of the cone acts as a guide plate to guide the hydrogen gas ejected from the injection pipe in a predetermined direction. Further, (c) is a hydrogen ejection member configured such that the side surface of the conical body is formed in a curved shape (trumpet shape) so that the bending in the direction orthogonal to the longitudinal direction is larger than in the case of (b).
【0014】なお、上記実施例1〜3では、円筒状の水
素噴出部材を用いたが、例えば円錐筒状、角筒状、三角
筒状、四角筒状等であってもよい。また、実施例4にお
ける案内板は、その形状が特に限定されるものではな
く、所望する噴き出し方向に適合する形状を適当に設定
すればよい。更に、上記実施例を示す各図において、水
素噴出部材がむき出しの状態のままに描いてあるが、こ
れらの水素噴出部材は水素の噴き出しを妨害しない限り
において、カバーで覆うことも可能である。 〔比較例1〕タンク長手方向への噴き出し成分のみを有
した水素注入ノズルを備えた、図7の従来型水素貯蔵用
水素吸蔵合金タンクを作製した。この比較例1の水素貯
蔵用水素吸蔵合金タンクは、タンク本体の材質、大き
さ、及び水素注入ノズルの材質が実施例1〜4と同様で
あり、また水素注入ノズルの形状、大きさが実施例4の
水素注入管と同様にしてある。Although the cylindrical hydrogen jetting member is used in the first to third embodiments, it may have a conical tubular shape, a rectangular tubular shape, a triangular tubular shape, a quadrangular tubular shape, or the like. In addition, the shape of the guide plate in the fourth embodiment is not particularly limited, and a shape suitable for a desired ejection direction may be set appropriately. Further, in each of the drawings showing the above-mentioned embodiment, the hydrogen jetting members are drawn in the exposed state, but these hydrogen jetting members can be covered with a cover as long as they do not interfere with the hydrogen jetting. [Comparative Example 1] A conventional hydrogen storage alloy tank for hydrogen storage shown in Fig. 7 having a hydrogen injection nozzle having only a jet component in the longitudinal direction of the tank was produced. In the hydrogen storage alloy tank for hydrogen storage of Comparative Example 1, the material and size of the tank body and the material of the hydrogen injection nozzle were the same as those in Examples 1 to 4, and the shape and size of the hydrogen injection nozzle were the same. It is the same as the hydrogen injection tube of Example 4.
【0015】〔実験〕実施例1、実施例2、実施例3、
及び比較例1のタンク内に、カサ密度4.8g/mlの
ミッシュメタル系(Lm、Y、Ni)の水素吸蔵合金粉
末570gを充填した。この場合のタンク内容積に占め
る水素吸蔵合金粉末の充填率は50%となる。[Experiment] Example 1, Example 2, Example 3,
The tank of Comparative Example 1 was filled with 570 g of a hydrogen storage alloy powder of misch metal type (Lm, Y, Ni) having a bulk density of 4.8 g / ml. In this case, the filling rate of the hydrogen storage alloy powder in the tank inner volume is 50%.
【0016】次に、何れの実施例タンクについても、水
素注入ノズルの幹管部(水素供給源側)での流速が7m
/secとなるように水素ガス圧をかけ、タンク内に6
0リットルの水素を注入し、タンク内における合金粉末
の偏在状況を観察した。 (結果)上記条件での水素ガス注入時間は約15分であ
り、この場合における各実施例タンク内の状況は次のよ
うであった。Next, in any of the tanks of the examples, the flow velocity at the main pipe portion (hydrogen supply source side) of the hydrogen injection nozzle was 7 m.
The hydrogen gas pressure is applied so that the pressure becomes / sec, and 6
0 liter of hydrogen was injected and the uneven distribution of alloy powder in the tank was observed. (Results) The hydrogen gas injection time under the above conditions was about 15 minutes, and the situation in each example tank in this case was as follows.
【0017】比較例1のタンクでは、図7に示すよう
に、合金粉末がガスの噴出勢いによりタンク奥(川下)
の方に押しやられていた。また、奥にはより細かい合金
粉末が存在し、手前にはより粗い合金粉末が存在してい
た。更に、水素の吸蔵とともにタンク奥部分が膨張した
ことが外観的に観察された。この膨張は、タンク奥部分
では水素吸蔵合金が結果的に高密度充填された状態とな
っているため、水素の吸蔵に伴う水素吸蔵合金の膨張圧
力が集合されて局部的に強大となってタンク壁面を強力
に押圧するためであると考えられる。In the tank of Comparative Example 1, as shown in FIG. 7, the alloy powder is deep in the tank (downstream) due to the force of gas ejection.
It was pushed to me. Further, there was finer alloy powder in the back and coarser alloy powder in the front. Furthermore, it was visually observed that the inner part of the tank expanded as hydrogen was absorbed. This expansion results in a high density filling of the hydrogen storage alloy in the inner part of the tank, so that the expansion pressure of the hydrogen storage alloy due to the storage of hydrogen gathers locally and becomes strong. It is considered that this is because the wall surface is strongly pressed.
【0018】これに対し、実施例1〜3では、合金粉末
の偏在化は少なく、またタンクの膨張も観察されなかっ
た。なお、実施例1〜3では、水素注入ノズルの各噴出
孔から噴き出される水素ガスの噴出速度は、1m/se
c以下であった。一方、比較例1において合金粉末の偏
在化を少なくするために、水素注入速度を減少させたと
ころ、水素注入時間を2倍以上としても、実施例1〜3
に比較して水素吸蔵合金粉末の偏在化が大きかった。On the other hand, in Examples 1 to 3, uneven distribution of the alloy powder was small, and expansion of the tank was not observed. In Examples 1 to 3, the ejection speed of hydrogen gas ejected from each ejection hole of the hydrogen injection nozzle was 1 m / se.
It was less than or equal to c. On the other hand, in Comparative Example 1, in order to reduce uneven distribution of the alloy powder, the hydrogen injection rate was reduced. Even if the hydrogen injection time was doubled or longer, Examples 1 to 3 were performed.
The uneven distribution of the hydrogen storage alloy powder was larger than that of the above.
【0019】[0019]
【発明の効果】以上のように、本発明によれば、水素吸
蔵合金タンクへ水素を注入する際、注入水素の風圧によ
りタンク内の合金粉末がタンク奥に押しやられ、また飛
散するため合金分布が偏在化するという現象が抑制でき
る。このため、本発明水素貯蔵用水素吸蔵合金タンク
は、従来型水素貯蔵用水素吸蔵合金タンクの場合のよう
に、単位時間当たりの水素注入量を注意深く制御しなく
とも、前記合金粉末の偏在化が生じ難い。よって、水素
注入作業の短縮とともに、水素吸蔵合金の水素吸蔵膨張
がタンクに金属疲労等を生じさせる現象を防止できる。As described above, according to the present invention, when hydrogen is injected into the hydrogen storage alloy tank, the alloy powder in the tank is pushed into the depth of the tank due to the wind pressure of the injected hydrogen and is scattered. Uneven distribution can be suppressed. For this reason, the hydrogen storage alloy tank for hydrogen storage of the present invention, as in the case of the conventional hydrogen storage alloy tank for hydrogen storage, without uneven control of the hydrogen injection amount per unit time, uneven distribution of the alloy powder Hard to happen. Therefore, it is possible to shorten the hydrogen injection work and prevent the phenomenon that the hydrogen storage expansion of the hydrogen storage alloy causes metal fatigue or the like in the tank.
【図1】本発明の実施例1にかかる水素貯蔵用水素吸蔵
合金タンクを示す断面模式図である。FIG. 1 is a schematic sectional view showing a hydrogen storage alloy tank for storing hydrogen according to a first embodiment of the present invention.
【図2】本発明の実施例2にかかる水素貯蔵用水素吸蔵
合金タンクを示す断面模式図である。FIG. 2 is a schematic sectional view showing a hydrogen storage alloy tank for hydrogen storage according to a second embodiment of the present invention.
【図3】本発明の実施例3にかかる水素貯蔵用水素吸蔵
合金タンクを示す断面模式図である。FIG. 3 is a schematic sectional view showing a hydrogen storage alloy tank for storing hydrogen according to a third embodiment of the present invention.
【図4】本発明の実施例3にかかる水素貯蔵用水素吸蔵
合金タンクの水素噴出ノズル部分を示す拡大斜視図であ
る。FIG. 4 is an enlarged perspective view showing a hydrogen ejection nozzle portion of a hydrogen storage alloy tank for hydrogen storage according to a third embodiment of the present invention.
【図5】本発明の実施例4にかかる水素貯蔵用水素吸蔵
合金タンクの水素噴出ノズル部分を示す拡大斜視図であ
る。FIG. 5 is an enlarged perspective view showing a hydrogen ejection nozzle portion of a hydrogen storage alloy tank for hydrogen storage according to a fourth embodiment of the present invention.
【図6】本発明のその他の実施例にかかる水素貯蔵用水
素吸蔵合金タンクの水素噴出ノズル部分を示す拡大斜視
図である。FIG. 6 is an enlarged perspective view showing a hydrogen ejection nozzle portion of a hydrogen storage alloy tank for hydrogen storage according to another embodiment of the present invention.
【図7】従来例にかかる水素貯蔵用水素吸蔵合金タンク
を示す断面模式図である。FIG. 7 is a schematic sectional view showing a hydrogen storage alloy tank for storing hydrogen according to a conventional example.
1 水素貯蔵用水素吸蔵合金タンク本体 2 水素噴出部材 3 噴出孔 1 Hydrogen storage alloy tank main body for hydrogen storage 2 Hydrogen ejection member 3 Ejection hole
───────────────────────────────────────────────────── フロントページの続き (72)発明者 堤 勝 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Tsutsumi 2-18 Keihan Hondori, Moriguchi-shi Sanyo Electric Co., Ltd.
Claims (6)
も一つ有した水素注入ノズルが、タンクの長手方向の一
端に備えられた水素貯蔵用水素吸蔵合金タンクにおい
て、 前記水素注入ノズルから噴き出される水素の噴き出し方
向ベクトルの少なくとも一つが、前記タンクの長手方向
に直交する方向成分を有していることを特徴とする水素
貯蔵用水素吸蔵合金タンク。1. A hydrogen injection nozzle having at least one injection hole for ejecting hydrogen gas is ejected from the hydrogen injection nozzle in a hydrogen storage alloy tank for hydrogen storage, which is provided at one longitudinal end of the tank. A hydrogen storage alloy tank for hydrogen storage, wherein at least one of the jetting direction vectors of hydrogen has a direction component orthogonal to the longitudinal direction of the tank.
注入管から噴き出された水素の風向を調節する案内板と
で構成されたことを特徴とする請求項1記載の水素貯蔵
用水素吸蔵合金タンク。2. The hydrogen storage hydrogen according to claim 1, wherein the hydrogen injection nozzle comprises a hydrogen injection pipe and a guide plate for adjusting a wind direction of hydrogen ejected from the hydrogen injection pipe. Storage alloy tank.
出孔が複数設けられた筒状の水素噴出部材を備えたこと
を特徴とする請求項1記載の水素貯蔵用水素吸蔵合金タ
ンク。3. The hydrogen storage alloy tank for storing hydrogen according to claim 1, wherein the hydrogen injection nozzle includes a cylindrical hydrogen ejection member having a plurality of hydrogen ejection holes on a peripheral surface thereof.
は、水素貯蔵用水素吸蔵合金タンクの周方向に配列され
たものであることを特徴とする請求項3記載の水素貯蔵
用水素吸蔵合金タンク。4. The hydrogen storage hydrogen storage hydrogen storage tank according to claim 3, wherein the plurality of hydrogen ejection holes provided on the peripheral side surface are arranged in the circumferential direction of the hydrogen storage hydrogen storage alloy tank. Alloy tank.
は、水素貯蔵用水素吸蔵合金タンクの長手方向に配列さ
れたものであることを特徴とする請求項3記載の水素貯
蔵用水素吸蔵合金タンク。5. The hydrogen storage hydrogen storage tank according to claim 3, wherein the plurality of hydrogen ejection holes provided on the peripheral side surface are arranged in the longitudinal direction of the hydrogen storage alloy tank for hydrogen storage storage. Alloy tank.
出孔は、各噴出孔からの噴出速度または噴出量が同一に
なるように、先端側に進むにつれて孔径を大きく形成し
たことを特徴とする請求項5記載の水素貯蔵用水素吸蔵
合金タンク。6. The plurality of hydrogen ejection holes arrayed in the longitudinal direction are formed so that the ejection holes from the ejection holes have the same ejection velocity or ejection amount and have a larger diameter toward the tip end. The hydrogen storage alloy tank for storing hydrogen according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22887893A JP2951170B2 (en) | 1993-09-14 | 1993-09-14 | Hydrogen storage alloy tank for hydrogen storage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22887893A JP2951170B2 (en) | 1993-09-14 | 1993-09-14 | Hydrogen storage alloy tank for hydrogen storage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0783396A true JPH0783396A (en) | 1995-03-28 |
JP2951170B2 JP2951170B2 (en) | 1999-09-20 |
Family
ID=16883282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22887893A Expired - Lifetime JP2951170B2 (en) | 1993-09-14 | 1993-09-14 | Hydrogen storage alloy tank for hydrogen storage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2951170B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005282828A (en) * | 2004-03-31 | 2005-10-13 | Taiheiyo Cement Corp | Hydrogen storage tank and movable body mounting this |
CN113203040A (en) * | 2021-06-17 | 2021-08-03 | 重庆大学 | Solid hydrogen storage tank for magnesium-based hydrogen storage |
DE102020213774A1 (en) | 2020-11-03 | 2022-05-05 | Robert Bosch Gesellschaft mit beschränkter Haftung | Lance for a hydrogen tank container for a vehicle and hydrogen tank container for a vehicle |
-
1993
- 1993-09-14 JP JP22887893A patent/JP2951170B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005282828A (en) * | 2004-03-31 | 2005-10-13 | Taiheiyo Cement Corp | Hydrogen storage tank and movable body mounting this |
JP4729674B2 (en) * | 2004-03-31 | 2011-07-20 | 太平洋セメント株式会社 | Hydrogen storage tank and mobile body equipped with the same |
DE102020213774A1 (en) | 2020-11-03 | 2022-05-05 | Robert Bosch Gesellschaft mit beschränkter Haftung | Lance for a hydrogen tank container for a vehicle and hydrogen tank container for a vehicle |
CN113203040A (en) * | 2021-06-17 | 2021-08-03 | 重庆大学 | Solid hydrogen storage tank for magnesium-based hydrogen storage |
Also Published As
Publication number | Publication date |
---|---|
JP2951170B2 (en) | 1999-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5145062B2 (en) | Tank for storing cryogenic liquids and storable fuel | |
US7320726B2 (en) | Hydrogen storage apparatus | |
US4069664A (en) | Monopropellant thruster | |
JP5760000B2 (en) | Hydrogen storage tank with metal hydride | |
CN102991729A (en) | Light mesh-type surface tension storage tank | |
CN109611301B (en) | Hydrazine arc thruster ignition system for inhibiting pressure from fluctuating greatly | |
KR20020002300A (en) | Cleaning nozzle and cleaning apparatus | |
JPH0783396A (en) | Hydrogen storage alloy tank for hydrogen storage | |
CN107187618B (en) | Gas propellant control system and control method | |
WO2015174366A1 (en) | Vapor jet system enabling jetting for many seconds using multiple kinds of mutually insoluble liquid gases as fuel | |
US6520219B2 (en) | Method and apparatus for storing compressed gas | |
FR2906805A1 (en) | Pyrotechnic method for disposing non-pressurized hydrogen to portable or loaded fuel cells, comprises heating a solid pyrotechnic load in a chamber for generating hydrogen, and flowing the hydrogen through an opening in large volume tank | |
JP6409256B2 (en) | Vent device with filter | |
US20210239075A1 (en) | Dynamic rocket nozzle | |
CN215884126U (en) | Energy dissipation device for rocket tank | |
CN109780434B (en) | Metal hydride hydrogen storage tank with stress buffer structure | |
US7077161B2 (en) | Excess pressure relief system for tank | |
CN114370602A (en) | Metal hydride hydrogen storage tank with strong stress resistance and good heat and mass transfer effects | |
JP2005336040A (en) | Hydrogen storage alloy container | |
Nguyen | Zero-g thermodynamic venting system (TVS) performance prediction program | |
JPH1182171A (en) | Single-liquid type hydrazine thruster | |
Vashishtha et al. | Novel mechanism of instability control using a tapered spike in hypersonic flow | |
Shlosman | Induced starburst and nuclear activity: faith, facts and theory | |
CN114352924B (en) | Diffusion type hydrogen storage bottle | |
JP4222527B2 (en) | Propellant feeder for arcjet thrusters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080709 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080709 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20110709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20110709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20110709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20120709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120709 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120709 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20120709 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 14 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R314531 |
|
S804 | Written request for registration of cancellation of exclusive license |
Free format text: JAPANESE INTERMEDIATE CODE: R314805 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R314531 |
|
S804 | Written request for registration of cancellation of exclusive license |
Free format text: JAPANESE INTERMEDIATE CODE: R314805 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |