JP4711644B2 - Metal amide compound and method for producing the same - Google Patents

Metal amide compound and method for producing the same Download PDF

Info

Publication number
JP4711644B2
JP4711644B2 JP2004186449A JP2004186449A JP4711644B2 JP 4711644 B2 JP4711644 B2 JP 4711644B2 JP 2004186449 A JP2004186449 A JP 2004186449A JP 2004186449 A JP2004186449 A JP 2004186449A JP 4711644 B2 JP4711644 B2 JP 4711644B2
Authority
JP
Japan
Prior art keywords
hydride
metal
ammonia
amide compound
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004186449A
Other languages
Japanese (ja)
Other versions
JP2006008440A (en
Inventor
博信 藤井
貴之 市川
海燕 冷
和彦 常世田
豊之 窪川
恵介 岡本
茂 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Taiheiyo Cement Corp
Original Assignee
Hiroshima University NUC
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Taiheiyo Cement Corp filed Critical Hiroshima University NUC
Priority to JP2004186449A priority Critical patent/JP4711644B2/en
Priority to PCT/JP2004/009538 priority patent/WO2005014165A1/en
Publication of JP2006008440A publication Critical patent/JP2006008440A/en
Priority to US11/351,244 priority patent/US7537748B2/en
Application granted granted Critical
Publication of JP4711644B2 publication Critical patent/JP4711644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池等の燃料として用いられる水素を発生させる水素貯蔵材料の製造原料として用いられる金属アミド化合物とその製造方法に関する。   The present invention relates to a metal amide compound used as a raw material for producing a hydrogen storage material that generates hydrogen used as a fuel for a fuel cell or the like, and a method for producing the metal amide compound.

NOやSO等の有害物質やCO等の温室効果ガスを出さないクリーンなエネルギー源として燃料電池の開発が盛んに行われており、既に幾つかの分野で実用化されている。この燃料電池技術を支える重要な技術として、燃料電池の燃料となる水素を貯蔵する技術がある。水素の貯蔵形態としては、高圧ボンベによる圧縮貯蔵や液体水素化させる冷却貯蔵、水素貯蔵物質による貯蔵が知られており、これらの形態の中で、水素貯蔵物質による貯蔵は、分散貯蔵や輸送の点で有利である。水素貯蔵物質としては、水素貯蔵効率の高い材料、つまり水素貯蔵物質の単位重量または単位体積あたりの水素貯蔵量が高い材料、低い温度で水素の吸収/放出が行われる材料、良好な耐久性を有する材料が望まれる。 NO X and development of fuel cells have been actively as a clean energy source that does not emit greenhouse gases such as toxic substances and CO 2 in the SO X or the like, and is already practiced in several areas. As an important technology that supports this fuel cell technology, there is a technology for storing hydrogen as fuel for the fuel cell. As storage forms of hydrogen, compression storage by high-pressure cylinders, cooling storage by liquid hydrogenation, and storage by hydrogen storage materials are known. Among these forms, storage by hydrogen storage materials is used for distributed storage and transportation. This is advantageous. Hydrogen storage materials include materials with high hydrogen storage efficiency, that is, materials with a high hydrogen storage amount per unit weight or volume of the hydrogen storage material, materials that absorb and release hydrogen at a low temperature, and good durability. A material having is desired.

従来、水素貯蔵物質としては、希土類系、チタン系、バナジウム系、マグネシウム系等を中心とする金属材料、金属アラネート(例えば、NaAlHやLiAlH)等の軽量無機化合物、カーボン等の種々の材料が知られている。また、例えば、下記(1)式で示されるリチウム窒化物を用いた水素貯蔵方法も報告されている(例えば、非特許文献1参照)。
LiN+2H⇔LiNH+LiH+H⇔LiNH+2LiH …(1)
Conventionally, as a hydrogen storage material, various materials such as metal materials such as rare earth, titanium, vanadium, and magnesium, lightweight inorganic compounds such as metal alanate (for example, NaAlH 4 and LiAlH 4 ), and carbon, etc. It has been known. In addition, for example, a hydrogen storage method using lithium nitride represented by the following formula (1) has also been reported (see, for example, Non-Patent Document 1).
Li 3 N + 2H 2 ⇔Li 2 NH + LiH + H 2 ⇔LiNH 2 + 2LiH (1)

ここで、LiNによる水素の吸収は100℃程度から開始し、255℃、30分で9.3質量%の水素吸収が確認されている。また、吸収された水素の放出特性としては、ゆっくり加熱することによって200℃弱で6.3質量%、320℃以上で3.0質量%と、二段階のステップを経ることが報告されている。すなわち、上記(1)式の右辺部分に相当する下記(2)式の反応は200℃弱で進行し始め、上記(1)式の左辺部分に相当する下記(3)式の反応は約320℃で進行し始めることが示されている。
LiNH+2LiH→LiNH+LiH+H↑ …(2)
LiNH+LiH→LiN+H↑ …(3)
Here, absorption of hydrogen by Li 3 N started from about 100 ° C., and 9.3 mass% hydrogen absorption was confirmed at 255 ° C. for 30 minutes. In addition, it has been reported that the absorption characteristics of absorbed hydrogen pass through two steps: 6.3% by mass at less than 200 ° C. and 3.0% by mass at 320 ° C. or higher by slowly heating. . That is, the reaction of the following formula (2) corresponding to the right side portion of the above formula (1) starts to proceed at a little less than 200 ° C., and the reaction of the following formula (3) corresponding to the left side portion of the above formula (1) is about 320 It has been shown to begin to progress at ° C.
LiNH 2 + 2LiH → Li 2 NH + LiH + H 2 ↑ (2)
Li 2 NH + LiH → Li 3 N + H 2 ↑ (3)

しかしながら、上記(1)式に示されるリチウム窒化物は、水素放出速度が遅いという問題がある。また、水素放出開始温度が高いという問題がある。
Ping Chen et al., Interaction ofhydrogen with metalnitrides and imides, NATURE Vol.420, 21 NOVEMBER 2002, p302〜304
However, the lithium nitride represented by the above formula (1) has a problem that the hydrogen release rate is slow. There is also a problem that the hydrogen release start temperature is high.
Ping Chen et al., Interaction ofhydrogen with metalnitrides and imides, NATURE Vol.420, 21 NOVEMBER 2002, p302〜304

発明者らはかかる事情に鑑み、先に特願2003−291672号において、リチウムアミド(LiNH)と水素化リチウム(LiH)をナノ構造化することにより、水素発生反応温度を低温側へシフトさせた水素貯蔵材料を開示した。ここで、リチウムアミドの製造方法としては、上記(1)式に示すように、窒化リチウムを水素ガスと反応させる方法がある。 In view of such circumstances, the inventors previously made a nanostructure of lithium amide (LiNH 2 ) and lithium hydride (LiH) in Japanese Patent Application No. 2003-291672 to shift the hydrogen generation reaction temperature to the low temperature side. A hydrogen storage material has been disclosed. Here, as a method for producing lithium amide, there is a method of reacting lithium nitride with hydrogen gas as shown in the above formula (1).

しかしながら、このような方法では金属アミド化合物と同時に金属水素化物が生成するために、金属アミド化合物を単離することが困難である。このため異種の金属アミド化合物を有する水素貯蔵材料の製造や、金属アミド化合物と金属水素化物のそれぞれの金属種が異なる水素貯蔵材料の製造において、その純度を高めることが困難である。また、水素ガスを用いた反応では、製造装置の安全対策が必要不可欠であり、製造装置が高価になる問題や大量生産が困難であるという問題もある。さらに、リチウム以外の金属では、このような反応を起こさないか、または、反応を起こさせるために特別な装置が必要となる等、金属アミド化合物を合成する障害が多い。   However, in such a method, since a metal hydride is formed simultaneously with the metal amide compound, it is difficult to isolate the metal amide compound. For this reason, it is difficult to increase the purity in the production of hydrogen storage materials having different metal amide compounds, or in the production of hydrogen storage materials having different metal species of the metal amide compound and the metal hydride. Further, in the reaction using hydrogen gas, safety measures for the manufacturing apparatus are indispensable, and there are problems that the manufacturing apparatus becomes expensive and that mass production is difficult. Furthermore, with metals other than lithium, there are many obstacles in synthesizing a metal amide compound, such as not causing such a reaction, or requiring a special apparatus for causing the reaction.

本発明は、このような事情に鑑み、金属アミド化合物を単体で効率よく製造することができる金属アミド化合物の製造方法、およびこの製造方法により得られた金属アミド化合物を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a method for producing a metal amide compound capable of efficiently producing a metal amide compound alone, and a metal amide compound obtained by this production method. .

本発明によれば、水素化カルシウムまたは水素化マグネシウムとアンモニアとを反応させることを特徴とする金属アミド化合物の製造方法、が提供される。 According to this invention, the manufacturing method of the metal amide compound characterized by making calcium hydride or magnesium hydride and ammonia react.

この金属アミド化合物の製造方法においては、前記水素化カルシウムまたは前記水素化マグネシウムにさらに金属リチウムを加えて、これらをアンモニアと反応させることも好ましい。アンモニアとしては液体アンモニアが好適に用いられる。さらにこの反応は、前記水素化カルシウムまたは前記水素化マグネシウムと前記金属リチウムとを粉砕しながら行うことが好ましい。 In the method for producing the metal amide compound, it is also preferable to add metal lithium to the calcium hydride or the magnesium hydride and react them with ammonia. Liquid ammonia is preferably used as the ammonia. In addition, this reaction is not preferable to carry out while pulverizing said metallic lithium and the calcium hydride or the magnesium hydride.

また本発明によれば、前記水素化カルシウムまたは前記水素化マグネシウムにさらに金属リチウムを加えて、前記アンモニアと反応させることにより製造された金属アミド化合物、が提供される。
Moreover, according to this invention, the metal amide compound manufactured by adding metal lithium to the said calcium hydride or the said magnesium hydride, and making it react with the said ammonia is provided.

本発明によれば、純度の高い金属アミド化合物を単体で容易に製造することができる。これによって、例えば、金属水素化物を構成する金属と金属アミド化合物を構成する金属が異種である場合にも、高い純度で水素貯蔵材料を製造することができる。さらに、複数種の金属アミド化合物の混合物も容易に得ることができる。   According to the present invention, a highly pure metal amide compound can be easily produced by itself. Accordingly, for example, even when the metal constituting the metal hydride and the metal constituting the metal amide compound are different, the hydrogen storage material can be produced with high purity. Furthermore, a mixture of a plurality of types of metal amide compounds can be easily obtained.

以下、本発明の実施の形態について説明する。
本発明では、金属水素化物とアンモニアとを反応させて、金属アミド化合物を製造する。金属水素化物としては、水素化リチウム(LiH)、水素化ナトリウム(NaH)、水素化カリウム(KH)、水素化ルビジウム(RbH)、水素化セシウム(CsH)、水素化マグネシウム(MgH)、水素化カルシウム(CaH)、水素化ベリリウム(BeH)、水素化ストロンチウム(SrH)、水素化バリウム(BaH)、水素化スカンジウム(ScH)、水素化ランタン(LaH、LaH)、水素化チタン(TiH)、水素化バナジウム(VH)、水素化イットリウム(YH,YH)、水素化ジルコニウム(ZrH)、水素化ネオジウム(NdH、NdH)等が挙げられる。また、これらの金属水素化物から選ばれた2種以上の金属水素化物の混合物も好適に用いられる。
Embodiments of the present invention will be described below.
In the present invention, a metal amide compound is produced by reacting a metal hydride with ammonia. Examples of metal hydrides include lithium hydride (LiH), sodium hydride (NaH), potassium hydride (KH), rubidium hydride (RbH), cesium hydride (CsH), magnesium hydride (MgH 2 ), hydrogen Calcium hydride (CaH 2 ), beryllium hydride (BeH 2 ), strontium hydride (SrH 2 ), barium hydride (BaH 2 ), scandium hydride (ScH 2 ), lanthanum hydride (LaH 2 , LaH 3 ), Examples thereof include titanium hydride (TiH 2 ), vanadium hydride (VH X ), yttrium hydride (YH 3 , YH 2 ), zirconium hydride (ZrH 2 ), and neodymium hydride (NdH 3 , NdH 2 ). A mixture of two or more metal hydrides selected from these metal hydrides is also preferably used.

金属水素化物には、特にアルカリ金属またはアルカリ土類金属の水素化物が含まれていることが好ましい。これは、反応によって得られる金属アミド化合物の水素放出特性が良好なためである。   The metal hydride preferably contains an alkali metal or alkaline earth metal hydride. This is because the metal amide compound obtained by the reaction has good hydrogen release characteristics.

金属水素化物は所定の機械的粉砕により微細化されていることも好ましく、アンモニアとの反応によって、水素放出特性が良好な金属アミド化合物を得ることができる。金属水素化物単体の粉砕処理や複数種の金属水素化物の混合粉砕処理においては、粉砕助剤として、無機質担体、合成品担体、植物担体や有機溶剤等を添加することが、効率よく金属水素化物を微細化する上で有効である。   It is also preferable that the metal hydride is refined by a predetermined mechanical pulverization, and a metal amide compound having good hydrogen release characteristics can be obtained by reaction with ammonia. In the pulverization treatment of a single metal hydride or the mixing and pulverization treatment of a plurality of types of metal hydrides, it is possible to efficiently add an inorganic carrier, a synthetic carrier, a plant carrier, an organic solvent, etc. as a grinding aid. This is effective in reducing the size of the screen.

例えば、水素化リチウムとアンモニア(NH)との反応は、下記(4)式で示される。また、水素化マグネシウムとアンモニアとの反応は、下記(5)式で、水素化カルシウムとアンモニアとの反応は下記(6)式で、それぞれ示される。
LiH+NH→LiNH+H↑ …(4)
MgH+2NH→Mg(NH+2H↑ …(5)
CaH+2NH→Ca(NH+2H↑ …(6)
For example, the reaction between lithium hydride and ammonia (NH 3 ) is represented by the following formula (4). The reaction between magnesium hydride and ammonia is represented by the following formula (5), and the reaction between calcium hydride and ammonia is represented by the following formula (6).
LiH + NH 3 → LiNH 2 + H 2 ↑ (4)
MgH 2 + 2NH 3 → Mg (NH 2 ) 2 + 2H 2 ↑ (5)
CaH 2 + 2NH 3 → Ca (NH 2 ) 2 + 2H 2 ↑ (6)

アンモニアとしては液体アンモニアが好適に用いられる。この場合には当然に、反応温度をアンモニアの沸点(約−33℃)以下に保つ。反応効率を高めるためには、液体アンモニアを十分に攪拌することが好ましい。   Liquid ammonia is preferably used as the ammonia. In this case, of course, the reaction temperature is kept below the boiling point of ammonia (about −33 ° C.). In order to increase the reaction efficiency, it is preferable to sufficiently stir the liquid ammonia.

一方、気体アンモニアを用いる場合には、例えば、ペンタン,ヘキサン,シクロヘキサンなどの飽和脂肪族炭化水素、ベンゼン,トルエンなどの芳香族炭化水素、クロロホルムなどのハロゲン化アルキル類、エーテル類などの各種有機不活性溶媒中に金属水素化物を分散させ、この溶媒を気体アンモニア中で攪拌することにより、反応を行うことが好ましい。これにより金属水素化物が均等に反応するようになる。なお、これらの溶媒は単独で使用してもよく、二種類以上を混合して使用してもよい。反応後は溶媒を蒸発させることにより、生成物を単離することができる。   On the other hand, when gaseous ammonia is used, various organic solvents such as saturated aliphatic hydrocarbons such as pentane, hexane and cyclohexane, aromatic hydrocarbons such as benzene and toluene, alkyl halides such as chloroform, ethers and the like. The reaction is preferably carried out by dispersing the metal hydride in the active solvent and stirring the solvent in gaseous ammonia. This allows the metal hydride to react evenly. In addition, these solvents may be used independently and may mix and use 2 or more types. After the reaction, the product can be isolated by evaporating the solvent.

上記(4)〜(6)式に示されるように、アンモニアは金属水素化物1モルに対して化学等量に相応するモル数あればよいが、反応の進行を早めるためにはアンモニアを過剰とすることが好ましい。   As shown in the above formulas (4) to (6), the ammonia may be in the number of moles corresponding to the chemical equivalent with respect to 1 mole of the metal hydride. However, in order to accelerate the reaction, excess ammonia is used. It is preferable to do.

アンモニアと反応する金属単体または合金と金属水素化物とを混合させることも好ましい。このような金属単体または合金としては、Li、Na、K、Be、Mg、Ca等が挙げられ、例えば、金属リチウムとアンモニアとの反応は下記(7)式で表される。
2Li+2NH→2LiNH+H↑ …(7)
It is also preferable to mix a metal simple substance or alloy that reacts with ammonia and a metal hydride. Examples of such a simple metal or alloy include Li, Na, K, Be, Mg, and Ca. For example, the reaction between metallic lithium and ammonia is represented by the following formula (7).
2Li + 2NH 3 → 2LiNH 2 + H 2 ↑ (7)

金属水素化物と金属単体または合金とを混合することによって、合成される金属アミド化合物が不安定化し、合成した金属アミド化合物の分解温度が低温化するという効果が得られる。なお、これら金属単体または金属合金とアンモニアとを、金属水素化物の存在なしに反応させることは、高温・高圧を必要とする場合があり(例えば、金属マグネシウムの場合)、操作上実用化が困難であり、また、エネルギー効率上好ましくない等の理由により、好ましいものではない。   By mixing the metal hydride and the metal simple substance or alloy, the synthesized metal amide compound is destabilized and the decomposition temperature of the synthesized metal amide compound is lowered. In addition, reacting these metals alone or metal alloys with ammonia without the presence of a metal hydride may require high temperature and high pressure (for example, in the case of magnesium metal), making it difficult to put it to practical use in operation. In addition, it is not preferable because it is not preferable in terms of energy efficiency.

上述した金属アミド化合物の反応は、回分方式,半回分方式,連続方式のいずれの方式を採用してもよい。   Any of a batch system, a semi-batch system, and a continuous system may be employed for the reaction of the metal amide compound described above.

高純度アルゴングローブボックス中で、400cmのステンレス製のマイクロリアクターに、10g(0.24mol)の水素化カルシウム(アルドリッチ社製、純度:95%)を仕込み、密閉した後、このマイクロリアクターをドライアイス−メタノール寒剤でアンモニアの沸点未満に冷却し、これに約10g(約0.60mol)の液体アンモニアをボンベからマイクロリアクターに供給し、5時間、連続攪拌した。 In a high-purity argon glove box, 400 g 3 of a stainless steel microreactor was charged with 10 g (0.24 mol) of calcium hydride (Aldrich, purity: 95%), sealed, and then dried. The mixture was cooled to below the boiling point of ammonia with ice-methanol cryogen, and about 10 g (about 0.60 mol) of liquid ammonia was supplied from the cylinder to the microreactor and continuously stirred for 5 hours.

その後、マイクロリアクターを室温に戻し、ガス化したアンモニアを含む反応後のガスの圧力を測定するとともに、一定量をサンプリングし、その組成分析をガスクロマトグラフ装置(島津製作所製、GC9A、TCD検出器、カラム:Molecular Sieve 5A)を用いて分析した。その結果、サンプリングしたガス中の水素量を測定した結果、カルシウムアミドの収率は82%であった。得られた反応物であるカルシウムアミド(固体)は、高純度アルゴングローブボックス中で、マイクロリアクターから容易に採取することができた。   Thereafter, the microreactor is returned to room temperature, the pressure of the gas after the reaction including the gasified ammonia is measured, a certain amount is sampled, and the composition analysis is performed by a gas chromatograph apparatus (manufactured by Shimadzu Corporation, GC9A, TCD detector, Column: Analyzed using Molecular Sieve 5A). As a result, the amount of hydrogen in the sampled gas was measured, and as a result, the yield of calcium amide was 82%. The resulting reaction product, calcium amide (solid), was easily collected from the microreactor in a high purity argon glove box.

高純度アルゴングローブボックス中で水素化マグネシウム6g(0.24mol)を計量し、上記実施例1と同じ条件で液体アンモニアと反応させた。サンプリングガス中の水素量の定量により、マグネシウムアミドの収率は72%であった。   In a high purity argon glove box, 6 g (0.24 mol) of magnesium hydride was weighed and reacted with liquid ammonia under the same conditions as in Example 1 above. As a result of quantification of the amount of hydrogen in the sampling gas, the yield of magnesium amide was 72%.

高純度アルゴングローブボックス中で、400cmのステンレス製のマイクロリアクターに、5g(0.12mol)の水素化カルシウム(アルドリッチ社製、純度:95%)と1.6g(0.24mol)の金属リチウムを仕込み、密閉した後、マイクロリアクターをドライアイス−メタノール寒剤で冷却し、これに約10g(約0.60mol)の液体アンモニアをボンベからマイクロリアクターに供給し、5時間、連続攪拌した。 In a high-purity argon glove box, a 400 cm 3 stainless steel microreactor was charged with 5 g (0.12 mol) of calcium hydride (Aldrich, purity: 95%) and 1.6 g (0.24 mol) of metallic lithium. After being sealed and sealed, the microreactor was cooled with dry ice-methanol cryogen, and about 10 g (about 0.60 mol) of liquid ammonia was supplied from the bomb to the microreactor and continuously stirred for 5 hours.

マイクロリアクターを室温に戻し、生成したガスの圧力を測定するとともにサンプリングを行った。サンプリングした反応ガス中の水素量をガスクロマトグラフィーにより分析した結果、カルシウムアミドとリチウムアミド混合物(Ca0.5Li(NH相当の固体)の収率は83%であった。 The microreactor was returned to room temperature, the pressure of the generated gas was measured, and sampling was performed. As a result of analyzing the amount of hydrogen in the sampled reaction gas by gas chromatography, the yield of a mixture of calcium amide and lithium amide (solid corresponding to Ca 0.5 Li (NH 2 ) 2 ) was 83%.

高純度アルゴングローブボックス中で3.1g(0.12mol)の水素化マグネシウムと1.6g(0.24mol)の金属リチウムを計量し、実施例3と同じ条件で液体アンモニアと反応させた。サンプリングした反応ガス中の水素量を分析した結果、得られたマグネシウムアミドとリチウムアミドとの混合物(Mg0.5Li(NH相当の固体)の収率は75%であった。 In a high purity argon glove box, 3.1 g (0.12 mol) of magnesium hydride and 1.6 g (0.24 mol) of lithium metal were weighed and reacted with liquid ammonia under the same conditions as in Example 3. As a result of analyzing the amount of hydrogen in the sampled reaction gas, the yield of the obtained mixture of magnesium amide and lithium amide (solid corresponding to Mg 0.5 Li (NH 2 ) 2 ) was 75%.

高純度アルゴングローブボックス中で2gの水素化カルシウム(アルドリッチ社製、純度:95%)を計量し、高クロム鋼製のバルブ付ミル容器(内容積:250cm)に投入した。続いて、このミル容器内を真空排気した後、アルゴンガスを1MPa導入し、遊星型ボールミル装置(Fritsch社製,P−5)を用いて、室温、公転数250r.p.mで30分間ミリング処理を行い原料粉末の微細化を行った。続いて、このミル内を真空排気後、アルゴン−10vol%アンモニア混合ガスを1MPa導入し、同じ遊星型ボールミル装置を用いて、室温、公転数250r.p.mで2時間ミリング処理を行い、ミリング後のミル容器内のガスをサンプリングした後、ミル内を真空排気した。このアンモニア混合ガスによる反応操作は5回繰返して行った。 2 g of calcium hydride (manufactured by Aldrich, purity: 95%) was weighed in a high-purity argon glove box and put into a mill vessel with a valve (internal volume: 250 cm 3 ) made of high-chromium steel. Subsequently, after the inside of the mill container was evacuated, 1 MPa of argon gas was introduced, and a planetary ball mill apparatus (manufactured by Fritsch, P-5) was used at room temperature with a revolution number of 250 r. p. Milling was performed for 30 minutes at m to refine the raw material powder. Subsequently, after the inside of the mill was evacuated, an argon-10 vol% ammonia mixed gas was introduced at 1 MPa, and the same planetary ball mill apparatus was used at room temperature with a revolution number of 250 r. p. After milling for 2 hours at m and sampling the gas in the mill vessel after milling, the inside of the mill was evacuated. The reaction operation with this ammonia mixed gas was repeated 5 times.

各回のミリング後にミル内から採取した反応ガスの水素量を測定することで収率を算出した結果、最終的なカルシウムアミドの収率は83%であった。   As a result of calculating the yield by measuring the amount of hydrogen in the reaction gas collected from inside the mill after each milling, the final yield of calcium amide was 83%.

高純度アルゴングローブボックス中で2gの水素化マグネシウム(アルドリッチ社製、純度95%)を計量し、実施例5と同様にして、1MPaのアルゴンガス中で微粉砕化した後、アルゴン−10vol%アンモニア混合ガスと10時間(2時間×5回)反応させた。反応ガスをサンプリングし、そのガス中の水素量を定量した結果、マグネシウムアミドの最終収率は75%であった。   In a high-purity argon glove box, 2 g of magnesium hydride (manufactured by Aldrich, purity 95%) was weighed and pulverized in 1 MPa argon gas in the same manner as in Example 5, and then argon-10 vol% ammonia. The mixture was reacted with the mixed gas for 10 hours (2 hours × 5 times). As a result of sampling the reaction gas and quantifying the amount of hydrogen in the gas, the final yield of magnesium amide was 75%.

高純度アルゴングローブボックス中で、1.5g(0.036mol)の水素化カルシウム(アルドリッチ社製、純度:95%)と0.48g(0.072mol)の金属リチウムを秤量し、これらを実施例5と同様にして、1MPaのアルゴンガス中で微粉砕化した後、アルゴン−10vol%アンモニア混合ガスと10時間(2時間×5回)反応させた。反応ガスをサンプリングし、そのガス中の水素量を定量した結果、反応物たるカルシウムアミドとリチウムアミドとの混合物(Ca0.5Li(NH相当の固体)の最終収率は84%であった。 In a high-purity argon glove box, 1.5 g (0.036 mol) of calcium hydride (manufactured by Aldrich, purity: 95%) and 0.48 g (0.072 mol) of metallic lithium were weighed and used as examples. After pulverizing in 1 MPa argon gas in the same manner as in No. 5, the mixture was reacted with an argon-10 vol% ammonia mixed gas for 10 hours (2 hours × 5 times). As a result of sampling the reaction gas and quantifying the amount of hydrogen in the gas, the final yield of a mixture of calcium amide and lithium amide (a solid corresponding to Ca 0.5 Li (NH 2 ) 2 ) as a reaction product was 84%. Met.

高純度アルゴングローブボックス中で、1.32g(0.051mol)の水素化マグネシウムと0.68g(0.102mol)の金属リチウムを秤量し、これらを実施例5と同様にして、1MPaのアルゴンガス中で微粉砕化した後、アルゴン−10vol%アンモニア混合ガスと10時間(2時間×5回)反応させた。反応ガスをサンプリングし、そのガス中の水素量を定量した結果、反応物たるマグネシウムアミドとリチウムアミドとの混合物(Mg0.5Li(NH相当)の最終収率は77%であった。 In a high-purity argon glove box, 1.32 g (0.051 mol) of magnesium hydride and 0.68 g (0.102 mol) of lithium metal were weighed and these were subjected to 1 MPa argon gas in the same manner as in Example 5. After being pulverized in the reactor, it was reacted with an argon-10 vol% ammonia mixed gas for 10 hours (2 hours × 5 times). The reaction gas was sampled and the amount of hydrogen in the gas was quantified. As a result, the final yield of the mixture of magnesium amide and lithium amide (equivalent to Mg 0.5 Li (NH 2 ) 2 ) was 77%. It was.

本発明の金属アミド化合物は、水素と酸素を燃料として発電する燃料電池等に用いられる水素貯蔵材料に好適である。   The metal amide compound of the present invention is suitable for a hydrogen storage material used in a fuel cell or the like that generates power using hydrogen and oxygen as fuel.

Claims (4)

水素化カルシウムまたは水素化マグネシウムとアンモニアとを反応させることを特徴とする金属アミド化合物の製造方法。 A process for producing a metal amide compound comprising reacting calcium hydride or magnesium hydride with ammonia. 前記水素化カルシウムまたは前記水素化マグネシウムにさらに金属リチウムを加えて、前記アンモニアと反応させることを特徴とする請求項1に記載の金属アミド化合物の製造方法。 The method for producing a metal amide compound according to claim 1, wherein metal lithium is further added to the calcium hydride or the magnesium hydride and reacted with the ammonia. 前記アンモニアとして液体アンモニアを用いることを特徴とする請求項1または請求項2に記載の金属アミド化合物の製造方法。   The method for producing a metal amide compound according to claim 1 or 2, wherein liquid ammonia is used as the ammonia. 前記水素化カルシウムまたは前記水素化マグネシウムにさらに金属リチウムを加えて、前記アンモニアと反応させることにより製造された金属アミド化合物。  A metal amide compound produced by adding metallic lithium to the calcium hydride or the magnesium hydride and reacting with the ammonia.
JP2004186449A 2003-08-11 2004-06-24 Metal amide compound and method for producing the same Expired - Fee Related JP4711644B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004186449A JP4711644B2 (en) 2004-06-24 2004-06-24 Metal amide compound and method for producing the same
PCT/JP2004/009538 WO2005014165A1 (en) 2003-08-11 2004-07-05 Material for storing hydrogen and method and apparatus for production thereof
US11/351,244 US7537748B2 (en) 2003-08-11 2006-02-09 Hydrogen storage matter and manufacturing method and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186449A JP4711644B2 (en) 2004-06-24 2004-06-24 Metal amide compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006008440A JP2006008440A (en) 2006-01-12
JP4711644B2 true JP4711644B2 (en) 2011-06-29

Family

ID=35776089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186449A Expired - Fee Related JP4711644B2 (en) 2003-08-11 2004-06-24 Metal amide compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP4711644B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106623A (en) * 2005-10-12 2007-04-26 Taiheiyo Cement Corp Metal amide complex and its production method
JP4558068B2 (en) * 2008-05-22 2010-10-06 トヨタ自動車株式会社 Lithium hydride activation method and hydrogen generation method
JP2010265138A (en) * 2009-05-14 2010-11-25 Hiroshima Univ Hydrogen producing method
JP5381513B2 (en) * 2009-08-28 2014-01-08 株式会社豊田中央研究所 Mixture and method for producing the same, method for producing hydrogen gas, and hydrogen generator
KR101746562B1 (en) * 2009-11-12 2017-06-13 다이헤이요 세멘토 가부시키가이샤 Method for producing alkali metal nitride or alkaline earth metal nitride
JP4585043B1 (en) * 2009-11-12 2010-11-24 太平洋セメント株式会社 Method for producing metal nitride
JP5651493B2 (en) * 2010-02-08 2015-01-14 太平洋セメント株式会社 Method for producing various alkaline earth metal nitride composites
JP5627105B2 (en) * 2010-02-08 2014-11-19 太平洋セメント株式会社 Method for producing alkaline earth metal nitride
JP5627099B2 (en) * 2010-02-08 2014-11-19 太平洋セメント株式会社 Method for producing alkali metal nitride
JP5567880B2 (en) * 2010-03-30 2014-08-06 太平洋セメント株式会社 Reaction control method
JP6670754B2 (en) 2014-12-05 2020-03-25 国立研究開発法人科学技術振興機構 Composite, method for producing composite, ammonia synthesis catalyst, and ammonia synthesis method
JP6366038B2 (en) * 2015-03-24 2018-08-01 太平洋セメント株式会社 Method for producing metal nitride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510133A (en) * 1995-07-19 1999-09-07 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Method for reversible hydrogen storage
JP2002522209A (en) * 1998-08-06 2002-07-23 ユニヴァーシティー オブ ハワイ Novel hydrogen storage material and production method by dry homogenization
JP2003230832A (en) * 2002-02-08 2003-08-19 Mitsubishi Heavy Ind Ltd Method for manufacturing hydrogen-storage body
JP2005126273A (en) * 2003-10-23 2005-05-19 Taiheiyo Cement Corp Hydrogen storage material precursor and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510133A (en) * 1995-07-19 1999-09-07 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Method for reversible hydrogen storage
JP2002522209A (en) * 1998-08-06 2002-07-23 ユニヴァーシティー オブ ハワイ Novel hydrogen storage material and production method by dry homogenization
JP2003230832A (en) * 2002-02-08 2003-08-19 Mitsubishi Heavy Ind Ltd Method for manufacturing hydrogen-storage body
JP2005126273A (en) * 2003-10-23 2005-05-19 Taiheiyo Cement Corp Hydrogen storage material precursor and its manufacturing method

Also Published As

Publication number Publication date
JP2006008440A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4711644B2 (en) Metal amide compound and method for producing the same
Friedrichs et al. Breaking the passivation—the road to a solvent free borohydride synthesis
Hino et al. Hydrogen desorption properties of the Ca–N–H system
US7749484B2 (en) Li-B-Mg-X system for reversible hydrogen storage
WO2006104079A1 (en) Hydrogen-storing materials and process for production of the same
US7608233B1 (en) Direct synthesis of calcium borohydride
JP2008043927A (en) Method of manufacturing hydrogen storage material
JP4500534B2 (en) Hydrogen storage material and hydrogen generation method
JP4853810B2 (en) Hydrogen storage material and method for producing the same
EP2038211B1 (en) Method of producing (nh2(r2)) and/or hydrogen
CN108698817B (en) Method for producing metal borohydrides and molecular hydrogen
JP2007106623A (en) Metal amide complex and its production method
WO2015123438A1 (en) Mechanochemical synthesis of alane
JP2005306724A (en) Material for hydrogen storage, production method for the same, and method for storing hydrogen
Isobe et al. Hydrogen desorption processes in Li–Mg–N–H systems
Liu et al. Synthesis and thermal decomposition properties of a novel dual-cation/anion complex hydride Li2Mg (BH4) 2 (NH2) 2
JP4615908B2 (en) Hydrogen storage material and method for producing the same
JP2007320815A (en) Hydrogen storage material and hydrogen generation method
Vasquez et al. Hydrogen sorption properties of M0. 2Ca0. 8MgH4 (M= Li, Na)
JP4575866B2 (en) Method for producing hydrogen storage material
JP2006008439A (en) Hydrogen storing material and manufacturing method therefor
Zheng et al. Improved hydrogen desorption properties of Co-doped Li 2 BNH 6
CN101175719A (en) Process for producing functional molecule capable of ionic dissociation and process for producing raw molecule thereof
JP2005126273A (en) Hydrogen storage material precursor and its manufacturing method
Zou et al. Catalyst-free synthesis of lithium hydride at room temperature

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees