JPH04323334A - Method and device for producing hydrogen storage alloy - Google Patents
Method and device for producing hydrogen storage alloyInfo
- Publication number
- JPH04323334A JPH04323334A JP3122055A JP12205591A JPH04323334A JP H04323334 A JPH04323334 A JP H04323334A JP 3122055 A JP3122055 A JP 3122055A JP 12205591 A JP12205591 A JP 12205591A JP H04323334 A JPH04323334 A JP H04323334A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- storage alloy
- mill
- mill pot
- acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 48
- 239000000956 alloy Substances 0.000 title claims abstract description 48
- 239000001257 hydrogen Substances 0.000 title claims abstract description 47
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 47
- 238000003860 storage Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 230000001133 acceleration Effects 0.000 claims abstract description 20
- 238000005275 alloying Methods 0.000 claims abstract description 20
- 150000002739 metals Chemical class 0.000 claims abstract description 18
- 239000000843 powder Substances 0.000 claims abstract description 16
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 18
- 238000000227 grinding Methods 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 230000001590 oxidative effect Effects 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229910001122 Mischmetal Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 238000010298 pulverizing process Methods 0.000 claims 2
- 230000007935 neutral effect Effects 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 150000002431 hydrogen Chemical class 0.000 abstract description 4
- -1 Mg and Ni Chemical class 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 19
- 229910019758 Mg2Ni Inorganic materials 0.000 description 15
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 238000005551 mechanical alloying Methods 0.000 description 10
- 229910012375 magnesium hydride Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 229910052987 metal hydride Inorganic materials 0.000 description 3
- 150000004681 metal hydrides Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- 229910014459 Ca-Ni Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910014473 Ca—Ni Inorganic materials 0.000 description 1
- 229910020794 La-Ni Inorganic materials 0.000 description 1
- 229910019086 Mg-Cu Inorganic materials 0.000 description 1
- 229910019083 Mg-Ni Inorganic materials 0.000 description 1
- 229910017973 MgNi2 Inorganic materials 0.000 description 1
- 229910019403 Mg—Ni Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- NPURPEXKKDAKIH-UHFFFAOYSA-N iodoimino(oxo)methane Chemical compound IN=C=O NPURPEXKKDAKIH-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は水素吸蔵合金の製造方法
に係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrogen storage alloys.
【0002】0002
【従来の技術】水素をある種の金属又は合金に吸蔵させ
て金属水素化物の形で貯蔵し又は移送し、さらにその応
用として水素精製,ヒートポンプ,冷暖房システムの部
材として利用する技術が開発されている。この場合、金
属水素化物が水素の吸蔵,放出を行なう時には必ず発熱
,吸熱を伴うのでこの性質に着目して熱交換装置やヒー
トポンプに利用できるのである。現在まで水素吸蔵合金
として発表され一部実用化されている合金の組合せとし
ては、Mg−Ni,Mg−Cu,Ca−Ni,Fe−T
i,Ti−Mn,La−Ni,ミッシュメタル−Niな
どを主な基本成分として、この一部を別の金属で置き替
えた合金も多数報告されている。たとえば、 Mg2
Ni0.75Cr0.25 ,Ca0.7Mn0.3N
i5 ,LaNi4.7Al0.3 ,TiFe0
.8Mn0.2 などが知られている。一般的に言えば
、Mg,Ca,La,ミッシュメタル,Tiなどで形成
する一群から選んだ1又は2以上の金属とNi,Al,
V,Cr,Fe,Co,Zn,Cu,Mnで形成する一
群から選んだ1又は2以上の金属とを合金化することに
よって製造される。水素吸蔵合金を製造するためには原
料である異種金属を高周波誘導炉や弧光式高温溶解炉で
溶解する。高周波誘導炉は量産化に適当であるが、原料
金属のうちとくにMg,Ca,Alなどは蒸気圧が大き
く酸素との親和力の強いものが多いので炉内をArガス
などで不活性な雰囲気に調整して金属の酸化を防止しな
ければならない。材料金属が溶解して相互に混合し高温
下において合金反応が十分進んですべての材料が所望の
合金組成となったところで、非酸化性雰囲気下で金型内
へ鋳造して造塊する。得られたインゴットは熱処理を施
し、合金を完結させたのち、非酸化性雰囲気下において
クラッシャ内で粉砕し所望の粒度の水素吸蔵合金の粉末
を得る。[Prior Art] Technology has been developed to absorb hydrogen in certain metals or alloys, store or transport it in the form of metal hydrides, and use the hydrogen as a component in hydrogen purification, heat pumps, and heating and cooling systems. There is. In this case, when a metal hydride absorbs or releases hydrogen, it always generates heat or absorbs heat, so this property can be used for heat exchange devices and heat pumps. The alloy combinations that have been announced and partially put into practical use as hydrogen storage alloys to date include Mg-Ni, Mg-Cu, Ca-Ni, Fe-T.
Many alloys have been reported in which the main basic components are i, Ti-Mn, La-Ni, Mischmetal-Ni, etc., and some of these are replaced with other metals. For example, Mg2
Ni0.75Cr0.25, Ca0.7Mn0.3N
i5, LaNi4.7Al0.3, TiFe0
.. 8Mn0.2 and the like are known. Generally speaking, one or more metals selected from the group consisting of Mg, Ca, La, misch metal, Ti, etc. and Ni, Al,
It is manufactured by alloying one or more metals selected from the group consisting of V, Cr, Fe, Co, Zn, Cu, and Mn. To manufacture hydrogen storage alloys, raw materials of different metals are melted in a high-frequency induction furnace or arc-type high-temperature melting furnace. High-frequency induction furnaces are suitable for mass production, but many of the raw metals, especially Mg, Ca, and Al, have high vapor pressures and strong affinity for oxygen, so the inside of the furnace must be kept in an inert atmosphere with Ar gas, etc. must be adjusted to prevent metal oxidation. When the material metals are melted and mixed with each other and the alloy reaction progresses sufficiently at high temperatures to reach the desired alloy composition, the material is cast into a mold in a non-oxidizing atmosphere to form an ingot. The obtained ingot is heat-treated to complete the alloy, and then crushed in a crusher in a non-oxidizing atmosphere to obtain a hydrogen storage alloy powder with a desired particle size.
【0003】一方溶解せず固体のままで所望の合金組成
を得ようとする技術も最近脚光を浴びている。これは一
般にメカニカルアロイング法と呼ばれ、1970年代に
アメリカのインコ社(INCO)のベンジャミンによっ
てはじめて開発され、高エネルギーボールミル(アトラ
イタ)などによって金属粉末へ機械的エネルギーを与え
て冷間圧着と破壊とを繰り返して超微粒子を分散する方
法である。メカニカルアロイングの原理については、衝
撃力の大きいミリングによって粉末はまず鍛造され偏平
,片状化し、次に加工硬化した粒子は破壊または剥離し
冷間鍛接が繰り返され(混練)、続いて合金成分間にラ
メラ組織が発達し結晶粒は急激に微細化し一方の粒子が
他方の粒子内で微細に分散し、最後に粒子形状が等軸形
状となってランダム化すると説いている。エム ワイ
ソングとイー アイ イワノフは遊星ボールミルを使っ
てMgとNiの粉末をメカニカルアロイング法によって
合金化する実験結果をハイドロゼンエナージィー誌(H
ydrogen Energy vol10 No.3
P169−178,1985)に発表している。この
報告の中で遊星ボールミルの加速度は6.1Gとし、N
iはカルボニールタイプを使用してArガス雰囲気中で
30分混合して得られた試料に対し種々の水素化処理を
加えたものをX線回析によって比較検討している。結果
的には水素化を1回から58回まで繰り返した試料のう
ち、水素化数の少ないものは Mg2Ni, 微量のM
gO ,Mg,Ni相が混在していることが検知された
が、熱処理(アンニーリング)を施し、かつ水素化数の
多いものについてはMgとNiは殆ど Mg2Niにな
ったと認められ、特に水素化の繰り返しよりも熱処理の
効果がより強く認められ、不完全ながら溶解によらない
で水素吸蔵合金を製造する方法を初めて報告した。On the other hand, a technique for obtaining a desired alloy composition while remaining solid without melting has recently been in the spotlight. This is generally called the mechanical alloying method, and was first developed by Benjamin of INCO in the United States in the 1970s. It involves applying mechanical energy to metal powder using a high-energy ball mill (attritor), etc. to achieve cold compression and fracture. In this method, ultrafine particles are dispersed by repeating the above steps. The principle of mechanical alloying is that the powder is first forged by milling with a high impact force to flatten and flake, then the work-hardened particles are broken or exfoliated and cold forge welding is repeated (kneading), and then the alloy components are The theory is that a lamellar structure develops during this period, the crystal grains rapidly become finer, one grain becomes finely dispersed within the other, and finally the grain shape becomes equiaxed and becomes random. M Y
Song and Yi Ivanov published their experimental results in Hydrozen Energy magazine (H
Hydrogen Energy vol10 No. 3
P169-178, 1985). In this report, the acceleration of the planetary ball mill is 6.1G, and N
i compares and examines samples obtained by mixing for 30 minutes in an Ar gas atmosphere using a carbonyl type and subjected to various hydrogenation treatments by X-ray diffraction. As a result, among the samples that were hydrogenated from 1 to 58 times, the one with the lowest hydrogenation number was Mg2Ni, with a trace amount of M.
It was detected that gO, Mg, and Ni phases coexisted, but it was recognized that most of the Mg and Ni became Mg2Ni in those that were heat-treated (annealed) and had a large number of hydrogenations. The effect of heat treatment was recognized to be stronger than that of repeated steps, and this was the first report on a method for producing a hydrogen storage alloy without melting, although it was incomplete.
【0004】0004
【発明が解決しようとする課題】従来技術のうち溶解に
よって水素吸蔵合金を製造することは相当高度の技術と
よく管理された設備を必要とする。例えば Mg2Ni
を製造する場合、Niの蒸気圧は10℃で2057mm
Hg,760℃で2732mmHgと高いレベルで変動
し、一方Mgは同じくそれぞれ743mmHgから11
07mmHgと変動する。Caも同983mmHgから
1487mmHgと変動し、これらの蒸気圧のバランス
を保ちながら炉内を昇温していくことは非常に難しい。
一方溶解一般の原則から見て両成分の固溶度の多少も合
金の難易度に影響を与えるが、一番問題となるのは両成
分の密度と溶融点の差である。Niのそれは8.90g
/cm3 ,1455℃であり、Mgは1.74g/c
m3,650℃、Caは1.55g/cm3,850℃
である。従ってMg又はCaとNiとの合金化が如何に
困難であるかはこのことだけでも明らかである。これに
反しLaは密度6.15g/cm3 ,溶融点826℃
であり、Niと密度が近いだけでも困難さは軽減される
が、一般に稀土類元素は資源的に貴重な存在でしかも高
価である。MgとNiを合金化するとき大きな課題とな
るのはMgの蒸気圧がNiの溶融点近くにおいてはほぼ
25気圧に達し、この蒸気圧のため溶湯中からのMgの
蒸発を避けることが難しいのでNiが過剰となって製品
の一部が水素化物をつくらないMgNi2となることで
ある。 またこれを防止するためにMgをはじめから過
剰に配合しておくと、たとえば化学式をMg2.35N
iで表わしているが実態はMg2Ni+Mg0.35の
ように遊離したMg単体を含む原因となっている。Among the conventional techniques, manufacturing hydrogen storage alloys by melting requires considerably sophisticated technology and well-managed equipment. For example, Mg2Ni
When manufacturing Ni, the vapor pressure of Ni is 2057 mm at 10°C.
Hg, fluctuates at a high level of 2732 mmHg at 760°C, while Mg also varies from 743 mmHg to 11
It fluctuates at 0.07 mmHg. Ca also fluctuates from 983 mmHg to 1487 mmHg, and it is extremely difficult to raise the temperature inside the furnace while maintaining the balance of these vapor pressures. On the other hand, from the general principle of melting, the degree of solid solubility of both components influences the difficulty of forming an alloy, but the most problematic one is the difference in density and melting point of both components. That of Ni is 8.90g
/cm3, 1455℃, Mg is 1.74g/c
m3, 650℃, Ca is 1.55g/cm3, 850℃
It is. Therefore, it is clear from this fact alone how difficult it is to alloy Mg or Ca with Ni. On the other hand, La has a density of 6.15 g/cm3 and a melting point of 826°C.
However, in general, rare earth elements are valuable resources and are expensive. A major problem when alloying Mg and Ni is that the vapor pressure of Mg reaches approximately 25 atmospheres near the melting point of Ni, and it is difficult to avoid evaporation of Mg from the molten metal due to this vapor pressure. Ni is in excess, and part of the product becomes MgNi2, which does not form hydrides. To prevent this, if Mg is added in excess from the beginning, for example, the chemical formula can be changed to Mg2.35N.
Although it is expressed as i, the actual situation is that it contains free Mg alone, such as Mg2Ni+Mg0.35.
【0005】水素吸蔵合金の特性の上にこのことがどう
関わるかを図12,図13について説明する。図12は
溶解法によって製造した水素吸蔵合金Mg2.35Ni
の圧力−組成等温線図(以下、「PCT線図」という)
であり、縦軸に水素圧P(単位はMPa)をとり、横軸
に水素ガスと金属の原子比H/Mをとって一定温度(3
50℃)における水素ガスの吸蔵,放出に伴う原子比の
挙動を図表化したものである。図において曲線は水素圧
が0.5近くに達すと吸蔵,放出ともに緩やかな傾斜を
辿って右方へ移る範囲Aとほぼ水平に右方へ移る範囲B
とに明確に分れ、範囲AがMg単体による水素の吸蔵,
放出を示し、範囲Bが Mg2Niによる水素の吸蔵,
放出を示している。換言すれば範囲Aが認められるとい
うことは水素ガスと結合するMgが存在することを示し
、水素との親和力において Mg2Niよりはるかに劣
るMgが合金内に含まれ水素吸蔵合金として求められる
機能を低下させていることを示す。How this relates to the characteristics of the hydrogen storage alloy will be explained with reference to FIGS. 12 and 13. Figure 12 shows the hydrogen storage alloy Mg2.35Ni produced by the melting method.
pressure-composition isotherm diagram (hereinafter referred to as "PCT diagram")
The vertical axis shows the hydrogen pressure P (unit: MPa), the horizontal axis shows the atomic ratio H/M of hydrogen gas and metal, and the constant temperature (3
This is a graphical representation of the behavior of the atomic ratio associated with the absorption and desorption of hydrogen gas at a temperature of 50°C. In the figure, when the hydrogen pressure reaches nearly 0.5, both the absorption and desorption trace a gentle slope to the right in range A, and the range B shifts almost horizontally to the right.
Range A is hydrogen absorption by Mg alone,
release, and range B indicates hydrogen absorption by Mg2Ni,
showing release. In other words, the fact that range A is observed indicates the presence of Mg that binds to hydrogen gas, and Mg, which has a far inferior affinity for hydrogen than Mg2Ni, is contained in the alloy, reducing the functionality required as a hydrogen storage alloy. Indicates that the
【0006】図13は同じ試料の高圧熱示差分析図(以
下、「DTA線図」という)であって、縦軸に温度、横
軸に時間を目盛り、一定圧(1.1MPa)の水素を密
閉容器内へ封入し、容器を外部から最高500℃まで加
熱し、又は500℃から冷却した時、容器内に封入した
Mg2.35Niの温度を測定して示した曲線C、およ
びこの試料と比較のため容器内へ封入した標準試料(ア
ルミナ)との間に生じる温度差を示した曲線Dとを表わ
している。水素吸蔵合金は水素ガスを吸蔵する時には発
熱し、放出する時には吸熱するので、曲線Dにおいても
加熱時には放出に伴う下向きのピークが、また冷却時に
は吸蔵に伴う上向きのピークがそれぞれ認められる。と
ころが点P,Q,Rに明らかに認められるようにこのピ
ークが尖った1点だけではなくダブルピーク及至はピー
クに近い異常な屈折点があるということはMg2Niと
Mg2NiH4の相変化の他に、MgとMgH2との相
変化もあることを示している。これは同一水素圧の下で
はMgの方が Mg2Niより高温側で解離することに
よって生じる。何れにしても溶解法で製造する水素吸蔵
合金には製造上の困難さの他に機能低下をもたらす成分
がなお混在することが避け難いという課題がある。FIG. 13 is a high-pressure differential thermal analysis diagram (hereinafter referred to as "DTA diagram") of the same sample, with temperature on the vertical axis and time on the horizontal axis, with hydrogen at a constant pressure (1.1 MPa) Curve C shown by measuring the temperature of Mg2.35Ni sealed in the container when the container was heated to a maximum of 500°C from the outside or cooled from 500°C, and compared with this sample. Therefore, curve D shows the temperature difference generated between the sample and the standard sample (alumina) sealed in the container. Since a hydrogen storage alloy generates heat when storing hydrogen gas and absorbs heat when releasing hydrogen gas, curve D also shows a downward peak due to release during heating, and an upward peak due to occlusion during cooling. However, as clearly seen at points P, Q, and R, there is not only one point where the peak is sharp, but also a double peak or an abnormal refraction point close to the peak.In addition to the phase change between Mg2Ni and Mg2NiH4, This shows that there is also a phase change between Mg and MgH2. This occurs because Mg dissociates at a higher temperature than Mg2Ni under the same hydrogen pressure. In any case, hydrogen storage alloys manufactured by the melting method have the problem that, in addition to manufacturing difficulties, it is difficult to avoid the presence of components that cause functional deterioration.
【0007】一方溶解によることなくいわゆるメカニカ
ルアロイング法によって Mg2Niを得ようとする試
みは一応技術的に可能という示唆を与えた。しかし水素
圧0.7MPaの条件で温度300℃に保って、試料の
合金へ水素化,脱水素化を繰り返して判ったことは、数
回程度の水素化の繰り返しでは単相のMgやNiの存在
は消滅できず、水素圧0.25〜0.85MPaにおい
て270〜300℃の温度を2ヶ月保つ熱処理を行ない
、かつ水素化処理を58回繰り返してはじめてほぼ全量
がMg2Ni になったと認められるに過ぎない。思う
にいまメカニカルアロイング法を機械的合金法と邦訳し
ているが、現段階の技術レベルでは単体の異種金属同士
の完全合金化に到達しているとまでは認められず、金属
粒子中に同系の酸化物を超微粒的に分散したり、金属間
化合物を出発原料として異なる相に変化する(例えばア
モルファス相)程度にとどまっていると評価するのが妥
当である。本発明は以上の課題を解決するために選ばれ
た二種類以上の金属を溶解することなく合金化率の高い
水素吸蔵合金を製造する方法とその装置の提供を目的と
する。On the other hand, it has been suggested that an attempt to obtain Mg2Ni by a so-called mechanical alloying method without dissolution is technically possible. However, by repeatedly hydrogenating and dehydrogenating the sample alloy at a hydrogen pressure of 0.7 MPa and at a temperature of 300°C, it was found that single-phase Mg and Ni The presence of Mg2Ni could not be eliminated, and it was not until a heat treatment was performed at a temperature of 270 to 300°C for two months under a hydrogen pressure of 0.25 to 0.85 MPa, and the hydrogenation treatment was repeated 58 times, that almost the entire amount became Mg2Ni. Not too much. I believe that the mechanical alloying method is now translated into Japanese as a mechanical alloying method, but at the current technological level, it is not recognized that complete alloying of single dissimilar metals has been achieved, and there are It is appropriate to evaluate that the same type of oxide is dispersed in ultrafine particles or that the intermetallic compound is used as a starting material and changes to a different phase (for example, an amorphous phase). In order to solve the above problems, the present invention aims to provide a method and an apparatus for producing a hydrogen storage alloy with a high alloying ratio without melting two or more selected metals.
【0008】[0008]
【課題を解決するための手段】本発明に係る水素吸蔵合
金の製造方法は、高速ボールミルのミルポット内へ直径
3〜5mmの粉砕ボールを充填し、合金化して水素吸蔵
合金を形成し得る2以上の異種金属の粉末を加えて密封
し、ミルポット内を非酸化性雰囲気に調整したのち、重
力加速度の30倍以上の加速度をミルポット内に加えて
、混合,粉砕,分散を経て合金化率の高い水素吸蔵合金
を形成することによって前記の課題を解決した。なお具
体的には非酸化性雰囲気が、Arガス,Heガス,N2
ガス の何れかによってミルポット内を充満させたこと
や、2以上の異種金属はMg,Ca,Al,La,ミッ
シュメタル,Tiの一群から選んだ一種以上の金属と、
Ni,Al,V,Cr,Fe,Co,Zr,Cu,Mn
の一群から選んだ一種以上の金属とよりなることを明示
した。さらに本発明を実施するうえで不可欠の高速ボー
ルミルとしては、非酸化性雰囲気の調整手段と着脱自在
に連結するミルポットを有し、主軸の回転によって公転
するとともに自己の回転軸を中心に自転し、かつ[Means for Solving the Problems] A method for producing a hydrogen storage alloy according to the present invention is to fill a mill pot of a high-speed ball mill with crushed balls having a diameter of 3 to 5 mm, and to alloy two or more balls that can form a hydrogen storage alloy. After adding dissimilar metal powder and sealing it, and adjusting the inside of the mill pot to a non-oxidizing atmosphere, an acceleration of more than 30 times the acceleration of gravity is applied to the inside of the mill pot, and through mixing, crushing, and dispersion, a high alloying rate is achieved. The above problem was solved by forming a hydrogen storage alloy. Specifically, the non-oxidizing atmosphere is Ar gas, He gas, N2
The mill pot is filled with one of the gases, and the two or more dissimilar metals are one or more metals selected from the group consisting of Mg, Ca, Al, La, misch metal, and Ti.
Ni, Al, V, Cr, Fe, Co, Zr, Cu, Mn
It was clearly stated that the material consists of one or more metals selected from a group of. Furthermore, the high-speed ball mill essential to carrying out the present invention has a non-oxidizing atmosphere adjustment means and a mill pot that is detachably connected, and it revolves around the rotation of the main shaft and rotates around its own rotation axis. and
【数2
】
で表わされるミルポット内部へ加わる合成粉砕加速度比
Gが少なくとも30以上であり、かつ自公転角速度比率
Rが1.9以下の回分式遊星ボールミルであることを示
した。[Number 2
] It was shown that this is a batch type planetary ball mill in which the synthetic grinding acceleration ratio G applied to the inside of the mill pot is at least 30 or more, and the rotation-revolution angular velocity ratio R is 1.9 or less.
【0009】[0009]
【作用】本発明に係る製造方法は水素吸蔵合金を形成し
得る二種以上の金属を炉内で溶解することなく合金化す
るものであるから、メカニカルアロイング法適用の一種
と言えるが、従来の周知慣用的な高速ボールミルとは桁
外れな加速度をミルポット内に加え従来に比べるとはる
かに合金化率の高い合金を得た。この加速度は重力加速
度の30倍以上を要件としているのでこの加速度の得ら
れる装置が製造方法実施上の最大の前提となることは言
うまでもない。メカニカルアロイングのプロセスについ
てはまだ研究途上にあって正確なことは判っていないが
、条件として原子の相互拡散が十分に起こることと混合
のエンタルピーΔHmが負で大きいことが大切であると
説かれている。低温での原子の相互拡散は与える有効な
エネルギーが大きいほど進行が加速することは当然であ
る。従来のメカニカルアロイングが粒子の偏平,片状化
,冷間鍛接(混練),ラメラ組織化,分散,ランダム化
の経過を辿って微細化,均質化されていたのに対し、本
発明の場合はより強力な原子結合の段階にまで合金化が
完結したと見るべきであると考察する。[Function] The manufacturing method according to the present invention alloys two or more metals that can form a hydrogen storage alloy without melting them in a furnace, so it can be said to be a type of mechanical alloying method. By applying an extraordinary acceleration inside the mill pot compared to the well-known and conventional high-speed ball mill, we were able to obtain an alloy with a much higher alloying rate than the conventional method. Since this acceleration is required to be at least 30 times the gravitational acceleration, it goes without saying that an apparatus capable of obtaining this acceleration is the greatest prerequisite for implementing the manufacturing method. The mechanical alloying process is still under research and the exact details are not known, but it is said that the important conditions are that sufficient interdiffusion of atoms occurs and that the enthalpy of mixing ΔHm is large and negative. ing. It is natural that the interdiffusion of atoms at low temperatures accelerates as the effective energy provided increases. While conventional mechanical alloying is refined and homogenized through the process of flattening, flaking, cold forging (kneading), lamellar structure, dispersion, and randomization of particles, in the case of the present invention, considers that alloying should be considered to have been completed to the stage of stronger atomic bonds.
【0010】合成粉砕加速度比Gを大きくする程メカニ
カルアロイングの完結するのに必要な時間が短縮するこ
とは容易に推察できるが、同じ加速度を加えた場合でも
ミルポット内へ装入する粉砕ボールの直径が異なると完
結するのに必要な時間に差の生じることが確認できた。
粉砕ボールの直径を変えその他の条件を全く同一にして
高速ボールミルを運転し、比較的短時間で運転停止後合
金化の進行状態を調べると、粉砕ボールの直径と明らか
な因果関係が成立する。その理論的解明は今後の研究に
譲るが、ボールの直径が3〜5mmの範囲を選んだとき
合金化の進行が最も活発であることを確認した。It can be easily inferred that the larger the synthetic grinding acceleration ratio G is, the shorter the time required to complete mechanical alloying is. However, even when the same acceleration is applied, the grinding balls charged into the mill pot are It was confirmed that there was a difference in the time required to complete the process when the diameter was different. When a high-speed ball mill is operated with the diameter of the grinding balls changed and all other conditions kept the same, and the progress of alloying is examined after the operation is stopped in a relatively short period of time, a clear causal relationship is established between the diameter of the grinding balls and the progress of alloying. Although we will leave the theoretical elucidation to future research, we have confirmed that alloying progresses most actively when the diameter of the ball is in the range of 3 to 5 mm.
【0011】[0011]
【実施例】製造方法の前提となる回分式の遊星ボールミ
ル1の実施例を図1と図2に示す。図において一般的な
構造を説明するとモータ6によって駆動される主軸22
の回転を受けて、公転する複数のミルポット21を主軸
22の周囲に均等に(2ヶならば対称的に、3ヶ以上な
らば主軸22から等距離放射状に)配設し、該ミルポッ
ト21自体も自己の回転軸を中心に自転するものである
。具体的には主軸22と共に回転するミルポット21の
外周に遊星歯車8を周設し、この遊星歯車8と噛合する
太陽歯車7を別に回転または停止させて(図では停止)
、ミルポット21を公転しつつ、自転させる。太陽歯車
7は主軸22に外嵌されている。ミルポット21の内部
には粉砕媒体である粉砕ボールBと金属の粉末Mが収納
され、処理中の金属粉末Mの酸化を防止するため、内部
雰囲気はArガスなどの不活性ガスに置換されている。
雰囲気調整手段2の実施例としてArガスに置換するに
は、図1に示すようにミルポット21の蓋に管31を、
その先端に一対のワンタッチカプラ32を取付け、さら
に管33とバルブ11を介して真空ポンプ41に、バル
ブ13と管34を介して圧力計61に、管35とバルブ
12を介してArガス充填ボンベ51に接続する。
バルブ12を全閉にし、バルブ11,13を全開にした
状態で真空ポンプ41で真空引きを行ない、ミルポット
21内の空気を排除する。圧力計61で所定の真空度に
到達したことを確認後、バルブ11を全閉にしバルブ1
2を開け、Arガス充填ボンベ51からArガスをミル
ポット21に充填する。圧力計61により充填Arガス
圧力が大気圧と同じまたはそれ以上の所定圧力に達した
ことを確認後、バルブ12も全閉し、ワンタッチカプラ
32部で管31と管33を切り離す。ミルポット21内
のArガスはワンタッチカプラ32の片方で保持される
。このArガス充填作業は1回以上行なう。以上のよう
にミルポット21に粉砕ボールB金属の粉末Mを入れA
rガスを充填した後、遊星ボールミルを運転することに
より、公転,自転運動による遠心力とコリオリス力とが
相乗的に粉砕ボールBと処理物Mに作用し、金属粉末M
が加工される。[Embodiment] An embodiment of a batch-type planetary ball mill 1, which is the premise of the manufacturing method, is shown in FIGS. 1 and 2. To explain the general structure in the figure, a main shaft 22 driven by a motor 6
A plurality of mill pots 21 are arranged evenly around the main shaft 22 (symmetrically if there are two mill pots, radially equidistant from the main shaft 22 if there are three or more mill pots 21), which revolve in response to the rotation of the mill pots 21 themselves. also rotates around its own axis of rotation. Specifically, a planetary gear 8 is provided around the outer periphery of the mill pot 21 that rotates together with the main shaft 22, and the sun gear 7 that meshes with the planetary gear 8 is separately rotated or stopped (stopped in the figure).
, rotates the mill pot 21 while revolving around it. The sun gear 7 is externally fitted onto the main shaft 22. The mill pot 21 houses grinding balls B as grinding media and metal powder M, and the internal atmosphere is replaced with an inert gas such as Ar gas to prevent oxidation of the metal powder M during processing. . In order to replace the atmosphere with Ar gas as an example of the atmosphere adjustment means 2, as shown in FIG.
A pair of one-touch couplers 32 are attached to the tip, and a vacuum pump 41 is connected via a tube 33 and a valve 11, a pressure gauge 61 is connected via a valve 13 and a tube 34, and an Ar gas cylinder is connected via a tube 35 and a valve 12. Connect to 51. With the valve 12 fully closed and the valves 11 and 13 fully open, the vacuum pump 41 is used to evacuate the air inside the mill pot 21. After confirming that the predetermined degree of vacuum has been reached with the pressure gauge 61, fully close the valve 11 and close the valve 1.
2 is opened, and the mill pot 21 is filled with Ar gas from the Ar gas filling cylinder 51. After confirming by the pressure gauge 61 that the filled Ar gas pressure has reached a predetermined pressure equal to or higher than atmospheric pressure, the valve 12 is also fully closed, and the one-touch coupler 32 separates the pipes 31 and 33. Ar gas in the mill pot 21 is held by one side of the one-touch coupler 32. This Ar gas filling operation is performed at least once. As described above, put the powder M of the grinding ball B metal into the mill pot 21.
After filling with r gas, by operating the planetary ball mill, the centrifugal force and Coriolis force due to the revolution and rotation motion act synergistically on the grinding balls B and the processed material M, and the metal powder M
is processed.
【0012】図2は遊星ボールミルのミルポットの運動
模式図であり、 公転角速度ω1,公転直径Kを0.5
2m, ミルポット内径Nを0.075m, R=ω2
/ω1,ω2 は公転に対する自転の相対角速度とし、
合成粉砕角速度比Gを前に挙げた数式で計算して90と
なるようにω1を43.4(1/s)、ω2を59.0
(1/s)に設定した。なお、ω2/ω1(=R)はこ
の場合、1.36であるがこの点については次の考察が
前提となっている。図3(イ),(ロ),(ハ)はミル
ポット内におけるボールBの運動状態とミルの公転,自
転の角速度の相対的比率の関係を示したものである。公
転角速度をω1 、自転の相対角速度をω2 、両者の
比率R=ω2/ω1 として図(イ)はRが0.5の
ミルポット内の状態を示している。ここではボールは一
体的,集団的にミルポットの内周面に沿ってサージング
し内周面とボール、ボール同士の間で装入された金属へ
有効な圧縮力,剪断力を与えてすべてメカニカルアロイ
ングに有効な作用を及ぼしている。図(ロ)はR=1.
0、図(ハ)はR=1.22の場合のボールの挙動を示
したもので自転角速度が相対的に大きな割合になるほど
ボールの一部が内周面から離れてミルポット内の空間を
飛翔しはじめ、ボール同士の衝突でエネルギーの一部が
無駄に消費されメカニカルアロイングの目的からは後退
した現象を見せはじめる。この傾向はRが大きくなるほ
ど大きくなりRが1.9を超えると、いかに合成粉砕加
速度比Gが30以上であっても合金化率の高い水素吸蔵
合金は得られなくなる。今回はこの点を考慮に入れてR
を1.36に選んだが望ましくはRは1.5〜0.5の
範囲が良いと考えられる。この実施例では水素吸蔵合金
のうち Mg2Niを選びその原料として平均粒径9μ
のNi粉末と平均粒径85μのMg粉末を合金組成の割
合に秤量してミルポット内へ装入し、高炭素Cr軸受鋼
を材料とする粉砕ボールの直径を1mm及至6.35m
mの範囲に亘って種々変えてミルポットの空間容積30
%に相当する量だけ装入した。なお金属粉末Mの0.2
5〜1.0%に相当するステアリン酸を助剤として添加
し運転時間は30分に決めて処理を行なった。
各試料について金属粉末が全て合金化しているか、それ
とも未反応のMgが単相の形で残っているかをDTA分
析によって検査した。試料番号と粉砕ボールの直径(m
m)との関係を表1に示す。FIG. 2 is a schematic diagram of the motion of the mill pot of a planetary ball mill, where the revolution angular velocity ω1 and the revolution diameter K are 0.5.
2m, Mill pot inner diameter N is 0.075m, R=ω2
/ω1, ω2 are the relative angular velocities of rotation with respect to revolution,
ω1 is 43.4 (1/s) and ω2 is 59.0 so that the synthetic crushing angular velocity ratio G is calculated using the formula listed above and becomes 90.
(1/s). Note that ω2/ω1 (=R) is 1.36 in this case, but this point is based on the following considerations. Figures 3(a), (b), and (c) show the relationship between the motion state of ball B in the mill pot and the relative ratio of the angular velocities of revolution and rotation of the mill. Assuming that the angular velocity of revolution is ω1, the relative angular velocity of rotation is ω2, and the ratio of the two is R=ω2/ω1, Figure (a) shows the state inside the mill pot where R is 0.5. Here, the balls collectively and collectively surge along the inner circumferential surface of the mill pot, applying effective compressive force and shearing force to the inner circumferential surface, the balls, and the metal charged between the balls. It has an effective effect on ing. Figure (b) shows R=1.
0. Figure (c) shows the behavior of the ball when R = 1.22, and as the rotational angular velocity becomes relatively large, a part of the ball separates from the inner peripheral surface and flies in the space inside the mill pot. As the balls collide with each other, some of the energy is wasted, and the purpose of mechanical alloying begins to fall behind. This tendency increases as R increases, and when R exceeds 1.9, a hydrogen storage alloy with a high alloying ratio cannot be obtained no matter how high the synthetic crushing acceleration ratio G is 30 or more. This time, taking this point into consideration, R
was selected to be 1.36, but it is considered that R is desirably in the range of 1.5 to 0.5. In this example, Mg2Ni was selected from among the hydrogen storage alloys, and the average particle size was 9μ as its raw material.
Ni powder and Mg powder with an average particle size of 85μ are weighed in the proportion of the alloy composition and charged into a mill pot, and the diameter of the grinding ball made of high carbon Cr bearing steel is 1 mm to 6.35 m.
The spatial volume of the mill pot is varied over a range of 30 m.
% was charged. In addition, 0.2 of metal powder M
Stearic acid corresponding to 5 to 1.0% was added as an auxiliary agent, and the operation time was set to 30 minutes. For each sample, it was examined by DTA analysis whether all the metal powders were alloyed or whether unreacted Mg remained in the form of a single phase. Sample number and diameter of grinding ball (m
m) is shown in Table 1.
【0013】[0013]
【表1】[Table 1]
【0014】ここで自由粉とは粉砕処理が終ってミルポ
ットの蓋を開き内部の処理物を取り出したとき,ボール
やミルポットの内面に付着せず直ちに回収された処理物
の割合をいう。すなわち割合が100%というのはほぼ
全量の処理物が何ら手を加えなくても回収したことを示
している。[0014] Here, free powder refers to the proportion of the processed material that is immediately collected without adhering to the balls or the inner surface of the mill pot when the lid of the mill pot is opened and the processed material inside is taken out after the grinding process is completed. In other words, a percentage of 100% indicates that almost the entire amount of treated material was recovered without any modification.
【0015】DTA分析で一番明瞭に現われるのは成分
ごとに異なる金属水素化物の解離圧の温度依存性である
。図4において、いま水素の解離圧が1MPaとなる温
度を求めるとMgが1MPaと交叉する温度T1は M
g2Niが1MPaと交叉する温度T2より常に高温側
にあることが示されている。従って水素化物を作る金属
が単相であるか、または二種以上が共存している複合相
であるかは水素の解離又は結合を示す温度が単一である
か複数であるかによって識別することができる。What is most clearly revealed in DTA analysis is the temperature dependence of the dissociation pressure of metal hydrides, which differs from component to component. In Figure 4, if we now find the temperature at which the dissociation pressure of hydrogen is 1 MPa, the temperature T1 at which Mg crosses 1 MPa is M
It is shown that g2Ni is always on the higher temperature side than the temperature T2 which crosses 1 MPa. Therefore, whether the metal forming the hydride is a single phase or a complex phase in which two or more types coexist can be determined by whether the temperature at which hydrogen dissociates or bonds is single or multiple. Can be done.
【0016】各試料をミルポットから回収してDTA線
図を作成した結果が図5〜図9である。
(1) 試料1(図5)
示差熱を表わす曲線DにおいてMg2NiH4がMg2
NiとH2に解離するピーク点Eの他にMgH2がMg
とH2に解離するピーク点Fがあり、Mg2NiがH2
と結合するピーク点Iの他に MgH2が生じるピーク
点Jがあり、単相のMgがかなり存在することを示して
いる。
(2) 試料2(図6)
Mg2NiとH2とが結合又は解離する単一のピーク点
の他にMgH2 が生じるピーク点(屈折点)Lがあり
、痕跡のMgが残っていることを示している。
(3) 試料3および試料4(図7および図8)何れもFIGS. 5 to 9 show the results of DTA diagrams prepared by collecting each sample from the mill pot. (1) Sample 1 (Figure 5) In curve D representing differential heating, Mg2NiH4 is
In addition to the peak point E where MgH2 dissociates into Ni and H2, MgH2
There is a peak point F where Mg2Ni dissociates into H2 and H2.
In addition to the peak point I where MgH2 is combined, there is a peak point J where MgH2 is generated, indicating that a considerable amount of single-phase Mg exists. (2) Sample 2 (Figure 6) In addition to the single peak point where Mg2Ni and H2 bond or dissociate, there is a peak point (refraction point) L where MgH2 is generated, indicating that traces of Mg remain. There is. (3) Both sample 3 and sample 4 (Figures 7 and 8)
【数3】
で示される相変化だけが認められ、単相のMgの存在を
示す。ダブルピーク及至屈折点は全く見られない。
(4) 試料5(図9)
ここにおいて再びMgH2からH2の解離を示すピーク
点S、同じく結合を示すピーク点Tが現れ、試料1に近
い状態となって単相のMgが少し残っていることを明ら
かにした。Only the phase change shown by Equation 3 was observed, indicating the presence of single-phase Mg. No double peaks or inflection points are observed. (4) Sample 5 (Figure 9) Here again, peak point S indicating dissociation of H2 from MgH2 and peak point T indicating bonding appear, and the state is similar to sample 1, with a small amount of single-phase Mg remaining. It revealed that.
【0017】試料1から試料5まで全く同一の出発原料
であり粉砕ボールの直径が異なる他は全く同一条件のメ
カニカルアロイングであったが自由粉の割合に大きな差
があり、この差と合金化の進行との間にある相関関係が
あるように解釈されることも興味深いが、その理論的解
明は他日に譲る。合成粉砕加速度比Gを90としたとき
、別の実験データによれば少なくとも4時間の運転後に
は完全に合金化が終り単相のMgが存在しないことが確
認できている。しかし粉砕ボールの直径を3〜5mmと
すればほぼ30分の運転で合金化が終る。図10は合成
粉砕加速度比Gを30とし12時間ミルポットを運転し
て得られた水素吸蔵合金のPCT線図であり、図11は
同じくDTA線図である。この場合でも粉砕ボールの直
径を3.9mmに統一してGを90、Rを1.9以下と
して運転すれば12時間という所望時間が大幅に短縮さ
れることは容易に類推できる。Samples 1 to 5 were mechanically alloyed under exactly the same conditions except for the same starting materials and different diameters of the grinding balls, but there was a large difference in the proportion of free powder, and this difference and alloying It is interesting that there seems to be a correlation between the progress of When the synthetic crushing acceleration ratio G is 90, other experimental data confirms that alloying is completely completed and no single phase Mg exists after at least 4 hours of operation. However, if the diameter of the grinding balls is 3 to 5 mm, alloying can be completed in approximately 30 minutes of operation. FIG. 10 is a PCT diagram of a hydrogen storage alloy obtained by operating the mill pot for 12 hours with a synthetic crushing acceleration ratio G of 30, and FIG. 11 is a DTA diagram. Even in this case, it can be easily inferred that if the diameter of the grinding balls is unified to 3.9 mm and the operation is performed with G of 90 and R of 1.9 or less, the desired time of 12 hours can be significantly shortened.
【0018】[0018]
【発明の効果】本発明は以上に述べたとおり溶解による
ことなく水素吸蔵合金を製造し、かつ従来に比べて水素
化物へ有効迅速に相変化する合金だけを含み、その他の
単相金属を含まないきわめて合金化率の高い合金体を得
ることができる。従って水素との反応速度が速くその吸
蔵,放出能力は理論値の近くまで強化されている。その
ため従来から適用されてきた種々の用途に取付けた時に
は従来よりはるかに優れた結果をもたらすことが期待さ
れる。しかも非溶解法による製造方法の中でも、その合
金化の速度に着目して最良の条件の一つを見出し最も効
率の良い製造方法の一つをつきとめたので量産性,経済
性において従来のレベルを大幅に向上することができた
。なお従来技術である溶解法によるよりも格段に製造コ
ストが低いうえ、高価なLaを使わない合金でも自由に
製造できるから、その点についても品質の向上とともに
大きな経済的効果を得ることは言うまでもない。[Effects of the Invention] As described above, the present invention produces a hydrogen storage alloy without melting, and contains only an alloy that undergoes a phase change to a hydride more effectively and quickly than in the past, and does not contain other single-phase metals. It is possible to obtain an alloy body with an extremely high alloying rate. Therefore, the reaction rate with hydrogen is fast, and its absorption and desorption capabilities are enhanced to near theoretical values. Therefore, it is expected that when installed in various applications that have been applied in the past, it will produce results far superior to those of the past. Moreover, among non-melting manufacturing methods, we focused on the speed of alloying and found one of the best conditions, and found one of the most efficient manufacturing methods, surpassing the conventional level in terms of mass production and economy. We were able to improve significantly. Furthermore, the manufacturing cost is much lower than the conventional melting method, and alloys that do not use expensive La can also be manufactured freely, so it goes without saying that in this respect, as well as improving quality, a large economic effect can be obtained. .
【図1】本発明の実施に用いる装置の縦断正面図である
。FIG. 1 is a longitudinal sectional front view of an apparatus used to implement the present invention.
【図2】同装置の運動の模式図である。FIG. 2 is a schematic diagram of the movement of the device.
【図3】(イ),(ロ),(ハ)によってボールの運転
状態とミルの自転,公転の角速度相対的比率の関係を示
す。[Fig. 3] (A), (B), and (C) show the relationship between the operating state of the ball and the relative ratio of angular velocities of rotation and revolution of the mill.
【図4】MgおよびMg2Niなどの水素解離圧と温度
との関係図である。FIG. 4 is a diagram showing the relationship between hydrogen dissociation pressure and temperature for Mg, Mg2Ni, etc.
【図5】本発明の比較例のDTA線図である。FIG. 5 is a DTA diagram of a comparative example of the present invention.
【図6】本発明の比較例のDTA線図である。FIG. 6 is a DTA diagram of a comparative example of the present invention.
【図7】本発明の実施例のDTA線図である。FIG. 7 is a DTA diagram of an embodiment of the present invention.
【図8】本発明の実施例のDTA線図である。FIG. 8 is a DTA diagram of an embodiment of the present invention.
【図9】本発明の比較例のDTA線図である。FIG. 9 is a DTA diagram of a comparative example of the present invention.
【図10】本発明の参考例のPCT線図である。FIG. 10 is a PCT diagram of a reference example of the present invention.
【図11】本発明の参考例のDTA線図である。FIG. 11 is a DTA diagram of a reference example of the present invention.
【図12】従来技術のPCT線図である。FIG. 12 is a PCT diagram of the prior art.
【図13】従来技術のDTA線図である。FIG. 13 is a DTA diagram of the prior art.
1 遊星ボールミル 2 雰囲気調整手段 7 太陽歯車 8 遊星歯車 21 ミルポット 22 主軸 41 真空ポンプ 51 Arガス充填ボンベ B 粉砕ボール 1 Planetary ball mill 2 Atmosphere adjustment means 7 Sun gear 8 Planetary gear 21 Mill pot 22 Main shaft 41 Vacuum pump 51 Ar gas filled cylinder B. Grinding ball
Claims (4)
3〜5mmの粉砕ボールを充填し、合金化して水素吸蔵
合金を形成し得る2以上の異種金属の粉末を加えて密封
し、ミルポット内を非酸化性雰囲気に調整したのち、重
力加速度の30倍以上の加速度をミルポット内に加えて
、混合,粉砕,分散を経て合金化率の高い水素吸蔵合金
を形成することを特徴とする水素吸蔵合金の製造方法。Claim 1: Grinding balls with a diameter of 3 to 5 mm are filled into the mill pot of a high-speed ball mill, powders of two or more dissimilar metals that can be alloyed to form a hydrogen storage alloy are added and sealed, and the inside of the mill pot is non-oxidized. Production of a hydrogen storage alloy characterized by forming a hydrogen storage alloy with a high alloying rate through mixing, pulverization, and dispersion by applying an acceleration of 30 times or more of gravitational acceleration in a mill pot after adjusting the atmosphere to a neutral atmosphere. Method.
Arガス,Heガス,N2ガス の何れかをミルポット
内へ充填したことを特徴とする水素吸蔵合金の製造方法
。2. In claim 1, the non-oxidizing atmosphere is
A method for producing a hydrogen storage alloy, characterized in that a mill pot is filled with any one of Ar gas, He gas, and N2 gas.
種金属はMg,Ca,La,ミッシュメタル,Tiの一
群から選んだ一種以上の金属と、Ni,Al,V,Cr
,Fe,Co,Zr,Cu,Mnの一群から選んだ一種
以上の金属とよりなることを特徴とする水素吸蔵合金の
製造方法。3. In claim 1 or 2, the two or more dissimilar metals are one or more metals selected from the group of Mg, Ca, La, misch metal, Ti, and Ni, Al, V, Cr.
, Fe, Co, Zr, Cu, and Mn.
非酸化性の雰囲気調整手段と着脱自在に連結するミルポ
ットを有し、主軸の回転によって公転するとともに自己
の回転軸を中心に自転し、かつ 【数1】 で表わされるミルポット内部へ加わる合成粉砕加速度比
Gが少なくとも30以上であり、かつ自公転角速度比率
Rが1.9以下の回分式遊星ボールミルであることを特
徴とする水素吸蔵合金を製造する装置。[Claim 4] The high-speed ball mill according to Claim 1 comprises:
It has a mill pot that is removably connected to a non-oxidizing atmosphere adjustment means, revolves around the rotation of the main shaft and rotates around its own rotation axis, and has a synthetic pulverization acceleration applied to the inside of the mill pot expressed by [Equation 1] An apparatus for producing a hydrogen storage alloy, characterized in that it is a batch planetary ball mill having a ratio G of at least 30 and a revolution-revolution angular velocity ratio R of 1.9 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3122055A JP2560566B2 (en) | 1991-04-23 | 1991-04-23 | Method for producing hydrogen storage alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3122055A JP2560566B2 (en) | 1991-04-23 | 1991-04-23 | Method for producing hydrogen storage alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04323334A true JPH04323334A (en) | 1992-11-12 |
JP2560566B2 JP2560566B2 (en) | 1996-12-04 |
Family
ID=14826503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3122055A Expired - Fee Related JP2560566B2 (en) | 1991-04-23 | 1991-04-23 | Method for producing hydrogen storage alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2560566B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04323335A (en) * | 1991-04-23 | 1992-11-12 | Kurimoto Ltd | Method and device for producing hydrogen storage alloy |
JPH04323333A (en) * | 1991-04-23 | 1992-11-12 | Kurimoto Ltd | Method and device for producing hydrogen storage alloy |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101489571B1 (en) * | 2013-02-26 | 2015-02-03 | 전북대학교산학협력단 | Method for preparing metal-nitride composite powder using gas-solid reaction and metal-nitride composite powder prepared by the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04323335A (en) * | 1991-04-23 | 1992-11-12 | Kurimoto Ltd | Method and device for producing hydrogen storage alloy |
JPH04323333A (en) * | 1991-04-23 | 1992-11-12 | Kurimoto Ltd | Method and device for producing hydrogen storage alloy |
-
1991
- 1991-04-23 JP JP3122055A patent/JP2560566B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04323335A (en) * | 1991-04-23 | 1992-11-12 | Kurimoto Ltd | Method and device for producing hydrogen storage alloy |
JPH04323333A (en) * | 1991-04-23 | 1992-11-12 | Kurimoto Ltd | Method and device for producing hydrogen storage alloy |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04323335A (en) * | 1991-04-23 | 1992-11-12 | Kurimoto Ltd | Method and device for producing hydrogen storage alloy |
JPH04323333A (en) * | 1991-04-23 | 1992-11-12 | Kurimoto Ltd | Method and device for producing hydrogen storage alloy |
JP2560567B2 (en) * | 1991-04-23 | 1996-12-04 | 株式会社栗本鐵工所 | Method for producing hydrogen storage alloy |
JP2560565B2 (en) * | 1991-04-23 | 1996-12-04 | 株式会社栗本鐵工所 | Method for producing hydrogen storage alloy |
Also Published As
Publication number | Publication date |
---|---|
JP2560566B2 (en) | 1996-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2316289C (en) | Process for manufacturing nanocrystalline metal hydrides | |
EP1293003A1 (en) | Hydrogen storage powder and process for preparing the same | |
JP2560565B2 (en) | Method for producing hydrogen storage alloy | |
CN110629091B (en) | High-capacity multi-phase hydrogen storage alloy for fuel cell and preparation method thereof | |
JP2008043927A (en) | Method of manufacturing hydrogen storage material | |
CN113862536B (en) | Mg-Al-Y-based hydrogen storage material and preparation method thereof | |
Silva et al. | Hydrogen storage properties of filings of the ZK60 alloy modified with 2.5 wt% mischmetal | |
JP4602926B2 (en) | Method for producing alloy powder | |
US20060108457A1 (en) | Reactive milling process for the manufacture of a hydrogen storage alloy | |
CN108588521A (en) | A kind of high capacity Mg-Cu-Ni ternary hydrogen-storage alloys and preparation method thereof | |
US5837030A (en) | Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures | |
JP2560567B2 (en) | Method for producing hydrogen storage alloy | |
JPH04323334A (en) | Method and device for producing hydrogen storage alloy | |
CN110976848A (en) | Aluminum alloy powder capable of blooming and preparation method and application thereof | |
JP2005226114A (en) | Method of producing hydrogen storage alloy powder, and hydrogen storage alloy powder obtained by the production method | |
CN106756355B (en) | Fuel cell stores hydrogen intermediate alloy, hydrogen storage material and preparation method with Mg-Sn-Ni ternary | |
JP4189447B2 (en) | Mg-Ti hydrogen storage alloy and method for producing the same | |
EP1117500B8 (en) | Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures | |
JPS63143209A (en) | Production of iva metal powder | |
JP4086241B2 (en) | Hydrogen storage alloy powder | |
CN115369274B (en) | Preparation method of CoCrFeNi high-entropy alloy powder with superfine single-phase structure | |
CN115852273B (en) | Preparation method of nanocrystalline magnesium-based hydrogen storage alloy | |
JP3062743B2 (en) | Hydrogen-containing titanium-aluminum alloy powder, method for producing the same alloy powder, sintered titanium-aluminum alloy, and method for producing the same | |
JP3394088B2 (en) | ZrNi-based hydrogen storage alloy and method for producing the same | |
CN118143256A (en) | Nanometer Na3AlF6Catalytic high-capacity Mg-Y-Al-Ti-Sc-based hydrogen storage alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |