JPH04323335A - Method and device for producing hydrogen storage alloy - Google Patents

Method and device for producing hydrogen storage alloy

Info

Publication number
JPH04323335A
JPH04323335A JP3122056A JP12205691A JPH04323335A JP H04323335 A JPH04323335 A JP H04323335A JP 3122056 A JP3122056 A JP 3122056A JP 12205691 A JP12205691 A JP 12205691A JP H04323335 A JPH04323335 A JP H04323335A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
mill
mill pot
pot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3122056A
Other languages
Japanese (ja)
Other versions
JP2560567B2 (en
Inventor
Teruya Okada
岡田 輝也
Kantaro Kaneko
貫太郎 金子
Takashi Yamakawa
山川 隆士
Masaru Ogata
緒方 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP3122056A priority Critical patent/JP2560567B2/en
Publication of JPH04323335A publication Critical patent/JPH04323335A/en
Application granted granted Critical
Publication of JP2560567B2 publication Critical patent/JP2560567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To economically produce a hydrogen storage alloy enhanced in alloying rate. CONSTITUTION:This hydrogen storage alloy is produced by the following steps. Namely, (1) the powders M of >=2 different kinds of metals, e.g. Mg and Ni giving a hydrogen storage alloy on alloying, a crushing ball B and 0.5-1.5wt.% of a higher fatty acid based on the metal powder are charged into the mill pot 21 of a high-speed ball mill. (2) The mill pot is filled in with a nonoxidizing atmosphere. The mill is operated under conditions where the resultant crushing acceleration ratio G expressed by the following equation is controlled to >=30 and the ratio R of the rotating to revolving angular velocity to <=1.9 to exert an effective mechanical alloying effect. The equation is expressed by G=amax/g=(omega1)<2>/2g(K+NX(1+R)<2>, where G is the resultant crushing acceleration ratio, amax is the resultant crushing acceleration, omega1 is the revolving angular velocity (1/S), K is the diameter (m) of revolution, N is the inner diameter (m) of the mill pot, omega2 is the relative angular velocity (1/S) of the rotation to revolution, and R=omega2/omega1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は水素吸蔵合金の製造方法
に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrogen storage alloys.

【0002】0002

【従来の技術】水素をある種の金属又は合金に吸蔵させ
て金属水素化物の形で貯蔵し又は移送し、さらにその応
用として水素精製,ヒートポンプ,冷暖房システムの部
材として利用する技術が開発されている。この場合、金
属水素化物が水素の吸蔵,放出を行なう時には必ず発熱
,吸熱を伴うのでこの性質に着目して熱交換装置やヒー
トポンプに利用できるのである。現在まで水素吸蔵合金
として発表され一部実用化されている合金の組合せとし
ては、Mg−Ni,Mg−Cu,Ca−Ni,Fe−T
i,Ti−Mn,La−Ni,ミッシュメタル−Niな
どを主な基本成分として、この一部を別の金属で置き替
えた合金も多数報告されている。たとえば、Mg2Ni
0.75Cr0.25  ,Ca0.7Mn0.3Ni
5 ,LaNi4.7Al0.3  ,TiFe0.8
Mn0.2  などが知られている。一般的に言えば、
Mg,Ca,La,ミッシュメタル,Tiなどで形成す
る一群から選んだ1又は2以上の金属とNi,Al,V
,Cr,Fe,Co,Zn,Cu,Mnで形成する一群
から選んだ1又は2以上の金属とを合金化することによ
って製造される。水素吸蔵合金を製造するためには原料
である異種金属を高周波誘導炉や弧光式高温溶解炉で溶
解する。高周波誘導炉は量産化に適当であるが、原料金
属のうちとくにMg,Ca,Alなどは蒸気圧が大きく
酸素との親和力の強いものが多いので炉内をArガスな
どで不活性な雰囲気に調整して金属の酸化を防止しなけ
ればならない。材料金属が溶解して相互に混合し高温下
において合金反応が十分進んですべての材料が所望の合
金組成となったところで非酸化性雰囲気下で金型内へ鋳
造して造塊する。得られたインゴットは熱処理を施し、
合金を完結させたのち非酸化性雰囲気下においてクラッ
シャ内で粉砕し所望の粒度の水素吸蔵合金の粉末を得る
[Prior Art] Technology has been developed to absorb hydrogen in certain metals or alloys, store or transport it in the form of metal hydrides, and use the hydrogen as a component in hydrogen purification, heat pumps, and heating and cooling systems. There is. In this case, when a metal hydride absorbs or releases hydrogen, it always generates heat or absorbs heat, so this property can be used for heat exchange devices and heat pumps. The alloy combinations that have been announced and partially put into practical use as hydrogen storage alloys to date include Mg-Ni, Mg-Cu, Ca-Ni, Fe-T.
Many alloys have been reported in which the main basic components are i, Ti-Mn, La-Ni, Mischmetal-Ni, etc., and some of these are replaced with other metals. For example, Mg2Ni
0.75Cr0.25, Ca0.7Mn0.3Ni
5, LaNi4.7Al0.3, TiFe0.8
Mn0.2 etc. are known. Generally speaking,
One or more metals selected from the group consisting of Mg, Ca, La, misch metal, Ti, etc. and Ni, Al, V
, Cr, Fe, Co, Zn, Cu, and Mn. To manufacture hydrogen storage alloys, raw materials of different metals are melted in a high-frequency induction furnace or arc-type high-temperature melting furnace. High-frequency induction furnaces are suitable for mass production, but many of the raw metals, especially Mg, Ca, and Al, have high vapor pressures and strong affinity for oxygen, so the inside of the furnace must be kept in an inert atmosphere with Ar gas, etc. must be adjusted to prevent metal oxidation. When the material metals are melted and mixed with each other, and the alloy reaction progresses sufficiently under high temperature conditions so that all the materials have the desired alloy composition, they are cast into a mold in a non-oxidizing atmosphere to form an ingot. The obtained ingot is heat treated,
After the alloy is completed, it is crushed in a crusher in a non-oxidizing atmosphere to obtain a hydrogen storage alloy powder with a desired particle size.

【0003】一方溶解をせず固体のままで所望の合金組
成を得ようとする技術も最近脚光を浴びている。これは
一般にメカニカルアロイング法と呼ばれ、1970年代
にアメリカのインコ社(INCO)のベンジャミンによ
ってはじめて開発され、高エネルギーボールミル(アト
ライタ)などによって金属粉末へ機械的エネルギーを与
えて冷間圧着と破壊を繰り返して超微粒子を分散する方
法である。メカニカルアロイングの原理については、衝
撃力の大きいミリングによって粉末はまず鍛造され偏平
,片状化し、次に加工硬化した粒子は破壊または剥離し
冷間鍛接が繰り返され(混練)、続いて合金成分間にラ
メラ組織が発達し結晶粒は急激に微細化し一方の粒子が
他方の粒子内で微細に分散し、最後に粒子形状が等軸形
状となってランダム化すると説いている。エム ワイ 
ソングとイー アイ イワノフは遊星ボールミルを使っ
てMgとNiの粉末をメカニカルアロイング法によって
合金化する実験結果をハイドロゼンエナージィー誌(H
ydrogen Energy vol10 No.3
 P169−178,1985)に発表している。この
報告の中で遊星ボールミルの加速度は6.1Gとし、N
iはカルボニールタイプを使用してArガス雰囲気中で
30分混合して得られた試料に対し種々の水素化処理を
加えたものをX線回析によって比較検討している。結果
的には水素化を1回から58回まで繰り返した試料のう
ち、水素化数の少ないものは Mg2Ni,微量のMg
O,Mg,Ni相が混在していることが検知されたが熱
処理(アンニーリング)を施し、かつ水素化数の多いも
のについてはMgとNiは殆ど Mg2Niになったと
認められ、特に水素化の繰り返しよりも熱処理の効果が
より強く認められ、不完全ながら溶解によらないで水素
吸蔵合金を製造する方法を初めて報告した。
On the other hand, a technique for obtaining a desired alloy composition while remaining solid without melting has recently been in the spotlight. This is generally called the mechanical alloying method, and was first developed by Benjamin of INCO in the United States in the 1970s. It involves applying mechanical energy to metal powder using a high-energy ball mill (attritor), etc. to achieve cold compression and fracture. This is a method of repeating the steps to disperse ultrafine particles. The principle of mechanical alloying is that the powder is first forged by milling with a high impact force to flatten and flake, then the work-hardened particles are broken or exfoliated and cold forge welding is repeated (kneading), and then the alloy components are The theory is that a lamellar structure develops during this period, the crystal grains rapidly become finer, one grain becomes finely dispersed within the other, and finally the grain shape becomes equiaxed and becomes random. M Y
Song and Yi Ivanov published their experimental results in Hydrozen Energy magazine (H
Hydrogen Energy vol10 No. 3
P169-178, 1985). In this report, the acceleration of the planetary ball mill is 6.1G, and N
i compares and examines samples obtained by mixing for 30 minutes in an Ar gas atmosphere using a carbonyl type and subjected to various hydrogenation treatments by X-ray diffraction. As a result, among the samples that were hydrogenated from 1 to 58 times, those with the lowest hydrogenation number were Mg2Ni, with a trace amount of Mg.
It was detected that O, Mg, and Ni phases coexisted, but in cases where heat treatment (annealing) was applied and the number of hydrogenations was high, it was recognized that most of the Mg and Ni became Mg2Ni, especially when hydrogenated. The effect of heat treatment was recognized to be stronger than that of repetition, and this was the first report on a method for producing a hydrogen storage alloy without melting, although it was incomplete.

【0004】0004

【発明が解決しようとする課題】従来技術のうち溶解に
よって水素吸蔵合金を製造することは相当高度の技術と
よく管理された設備を必要とする。例えば Mg2Ni
を製造する場合、Niの蒸気圧は10℃で2057mm
Hg,760℃で2732mmHgと高いレベルで変動
し、一方Mgは同じくそれぞれ743mmHgから11
07mmHgと変動する。Caも同983mmHgから
1487mmHgと変動し、これらの蒸気圧のバランス
を保ちながら炉内を昇温していくことは非常に難しい。 一方溶解一般の原則から見て両成分の固溶度の多少も合
金の難易度に影響を与えるが、一番問題となるのは両成
分の密度と溶融点の差である。Niのそれは8.90g
/cm3,1455℃であり、Mgは1.74g/cm
3,650℃、Caは1.55g/cm3,850℃で
ある。従ってMg又はCaとNiとの合金化が如何に困
難であるかはこのことだけでも明らかである。これに反
しLaは密度6.15g/cm3 ,溶融点826℃で
あり、Niと密度が近いだけでも困難さは軽減されるが
、一般に稀土類元素は資源的に貴重な存在でしかも高価
である。MgとNiを合金化するとき大きな課題となる
のはMgの蒸気圧がNiの溶融点近くにおいてはほぼ2
5気圧に達し、この蒸気圧のため溶湯中からのMgの蒸
発を避けることが難しいのでNiが過剰となって製品の
一部が水素化物をつくらない MgNi2となることで
ある。またこれを防止するためにMgをはじめから過剰
に配合しておくと、例えば化学式をMg2.35Niで
表わしているが実態はMg2Ni+Mg0.35の よ
うに遊離したMg単体を含む原因となっている。
Among the conventional techniques, manufacturing hydrogen storage alloys by melting requires considerably sophisticated technology and well-managed equipment. For example, Mg2Ni
When manufacturing Ni, the vapor pressure of Ni is 2057 mm at 10°C.
Hg, fluctuates at a high level of 2732 mmHg at 760°C, while Mg also varies from 743 mmHg to 11
It fluctuates at 0.07 mmHg. Ca also fluctuates from 983 mmHg to 1487 mmHg, and it is extremely difficult to raise the temperature inside the furnace while maintaining the balance of these vapor pressures. On the other hand, from the general principle of melting, the degree of solid solubility of both components influences the difficulty of forming an alloy, but the most problematic one is the difference in density and melting point of both components. That of Ni is 8.90g
/cm3, 1455°C, and Mg is 1.74g/cm
3,650°C, Ca is 1.55g/cm3,850°C. Therefore, it is clear from this fact alone how difficult it is to alloy Mg or Ca with Ni. On the other hand, La has a density of 6.15 g/cm3 and a melting point of 826°C, and although the difficulty is alleviated simply because the density is close to that of Ni, rare earth elements are generally valuable resources and expensive. . A major problem when alloying Mg and Ni is that the vapor pressure of Mg is approximately 2 near the melting point of Ni.
The vapor pressure reaches 5 atm, and because of this vapor pressure, it is difficult to avoid evaporation of Mg from the molten metal, so Ni becomes excessive and a part of the product becomes MgNi2, which does not form hydrides. In addition, if excessive Mg is blended from the beginning to prevent this, for example, although the chemical formula is expressed as Mg2.35Ni, in reality, it becomes a cause of containing free Mg alone, such as Mg2Ni+Mg0.35.

【0005】水素吸蔵合金の特性の上にこのことがどう
関わるかを図8,図9について説明する。図8は溶解法
によって製造した水素吸蔵合金Mg2.35Niの圧力
−組成等温線図(以下、「PCT線図」という)であり
、縦軸に水素圧P(単位はMPa)をとり、横軸に水素
ガスと金属の原子比H/Mをとって一定温度(350℃
)における水素ガスの吸蔵,放出に伴う原子比の挙動を
図表化したものである。図において曲線は水素圧が0.
5近くに達すと吸蔵,放出ともに緩やかな傾斜を辿って
右方へ移る範囲Aとほぼ水平に右方へ移る範囲Bとに明
確に分れ、範囲AがMg単体による水素の吸蔵,放出を
示し、範囲Bが Mg2Niによる水素の吸蔵,放出を
示している。換言すれば範囲Aが認められるということ
は水素ガスと結合するMgが存在することを示し、水素
との親和力において Mg2Niよりはるかに劣るMg
が合金内に含まれ水素吸蔵合金として求められる機能を
低下させていることを示す。
How this relates to the characteristics of the hydrogen storage alloy will be explained with reference to FIGS. 8 and 9. Figure 8 is a pressure-composition isotherm diagram (hereinafter referred to as "PCT diagram") of the hydrogen storage alloy Mg2.35Ni manufactured by the melting method, where the vertical axis represents hydrogen pressure P (unit: MPa) and the horizontal axis represents The atomic ratio H/M of hydrogen gas and metal is taken and the temperature is set at a constant temperature (350℃
) is a graphical representation of the behavior of the atomic ratio as hydrogen gas is absorbed and released. In the figure, the curve shows the hydrogen pressure at 0.
5, it is clearly divided into range A where both occlusion and desorption follow a gentle slope to the right, and range B where it moves almost horizontally to the right. The range B indicates the absorption and desorption of hydrogen by Mg2Ni. In other words, the fact that range A is observed indicates the presence of Mg that binds to hydrogen gas, and Mg has a far inferior affinity to hydrogen than Mg2Ni.
is contained in the alloy, reducing the functionality required as a hydrogen storage alloy.

【0006】図9は同じ試料の高圧熱示差分析図(以下
、「DTA線図」という)であって、縦軸に温度、横軸
に時間を目盛り、一定圧(1.1MPa)の水素を密閉
容器内へ封入し、容器を外部から最高500℃まで加熱
し、又は500℃から冷却した時、容器内に封入したM
g2.35Niの温度を測定して示した曲線C、および
この試料と比較のため容器内へ封入した標準試料(アル
ミナ)との間に生じる温度差を示した曲線Dとを表わし
ている。水素吸蔵合金は水素ガスを吸蔵する時には発熱
し、放出する時には吸熱するので、曲線Dにおいても加
熱時には放出に伴う下向きのピークが、また冷却時には
吸蔵に伴う上向きのピークがそれぞれ認められる。とこ
ろが点P,Q,Rに明らかに認められるようにこのピー
クが尖った1点だけではなくダブルピーク及至はピーク
に近い異常な屈折点があるということは Mg2Niと
Mg2NiH4の相変化の他に、MgとMgH2との相
変化もあることを示している。 これは同一水素圧の下
ではMgの方がMg2Niより高温側で解離することに
よって生じる。何れにしても溶解法で製造する水素吸蔵
合金には製造上の困難さの他に機能低下をもたらす成分
がなお混在することが避け難いという課題がある。
FIG. 9 is a high-pressure differential thermal analysis diagram (hereinafter referred to as "DTA diagram") of the same sample, with temperature on the vertical axis and time on the horizontal axis, with hydrogen at a constant pressure (1.1 MPa) When the container is heated from the outside up to a maximum of 500°C or cooled from 500°C, the M sealed in the container is sealed.
Curve C shows the measured temperature of g2.35Ni, and Curve D shows the temperature difference between this sample and a standard sample (alumina) sealed in a container for comparison. Since a hydrogen storage alloy generates heat when storing hydrogen gas and absorbs heat when releasing hydrogen gas, curve D also shows a downward peak due to release during heating, and an upward peak due to occlusion during cooling. However, as clearly seen at points P, Q, and R, there is not only one point where the peak is sharp, but also a double peak or an abnormal refraction point close to the peak.In addition to the phase change between Mg2Ni and Mg2NiH4, This shows that there is also a phase change between Mg and MgH2. This occurs because Mg dissociates at a higher temperature than Mg2Ni under the same hydrogen pressure. In any case, hydrogen storage alloys manufactured by the melting method have the problem that, in addition to manufacturing difficulties, it is difficult to avoid the presence of components that cause functional deterioration.

【0007】一方溶解によることなくいわゆるメカニカ
ルアロイング法によってMg2Niを得ようとする試み
は一応技術的に可能という示唆を与えた。しかし水素圧
0.7MPaの条件で温度300℃に保って、試料の合
金へ水素化,脱水素化を繰り返して判ったことは、数回
程度の水素化の繰り返しでは単相のMgやNiの存在は
消滅できず、水素圧0.25〜0.85MPaにおいて
270〜300℃の温度を2ヶ月保つ熱処理を行ない、
かつ水素化処理を58回も繰り返してはじめてほぼ全量
がMg2Ni になったと認められるに過ぎない。思う
にいまメカニカルアロイング法を機械的合金法と邦訳し
ているが、現段階の技術レベルでは単体の異種金属同士
の完全合金化に到達しているとまでは認められず、金属
粒子中に同系の酸化物を超微粒的に分散したり、金属間
化合物を出発原料として異なる相に変化する(例えばア
モルファス相)程度にとどまっていると評価するのが妥
当である。本発明は以上の課題を解決するために選ばれ
た二種類以上の金属を溶解することなく合金化率の高い
水素吸蔵合金を製造する方法とその装置の提供を目的と
する。
On the other hand, it has been suggested that an attempt to obtain Mg2Ni by a so-called mechanical alloying method without dissolution is technically possible. However, by repeatedly hydrogenating and dehydrogenating the sample alloy at a hydrogen pressure of 0.7 MPa and at a temperature of 300°C, it was found that single-phase Mg and Ni The presence cannot be eliminated, so heat treatment is performed to maintain a temperature of 270 to 300 ° C for 2 months at a hydrogen pressure of 0.25 to 0.85 MPa,
Moreover, it was only after repeating the hydrogenation treatment 58 times that it was recognized that almost the entire amount had become Mg2Ni. I believe that the mechanical alloying method is now translated into Japanese as a mechanical alloying method, but at the current technological level, it is not recognized that complete alloying of single dissimilar metals has been achieved, and there are It is appropriate to evaluate that the same type of oxide is dispersed in ultrafine particles or that the intermetallic compound is used as a starting material and changes to a different phase (for example, an amorphous phase). In order to solve the above problems, the present invention aims to provide a method and an apparatus for producing a hydrogen storage alloy with a high alloying ratio without melting two or more selected metals.

【0008】[0008]

【課題を解決するための手段】本発明に係る水素吸蔵合
金の製造方法は、合金化して水素吸蔵合金を形成し得る
2以上の異種金属の粉末と、助剤として当該金属粉末の
0.5〜1.5重量%の高級脂肪酸と、粉砕媒体として
粉砕ボールとを高速ボールミルのミルポット内へ密封し
、ミルポット内を非酸化性雰囲気に調整したのち、重力
加速度の30倍以上の加速度をミルポット内に加えて、
混合,粉砕,分散を経て合金化率の高い水素吸蔵合金を
形成することによって前記の課題を解決した。なお、具
体的には非酸化性雰囲気が、Arガス,Heガス,N2
ガス の何れかによってミルポット内を充満させたこと
や、2以上の異種金属は、Mg,Ca,La,ミッシュ
メタル,Tiの一群から選んだ一種以上の金属と、Ni
,Al,V,Cr,Fe,Co,Zr,Cu,Mnの一
群から選んだ一種以上の金属とよりなること、並びに助
剤として添加する高級脂肪酸のうちステアリン酸が最も
望ましいことを併せて示した。さらに本発明を実施する
うえで不可欠の高速ボールミルとしては、非酸化性雰囲
気の調整手段と着脱自在に連結するミルポットを有し、
主軸の回転によって公転するとともに自己の回転軸を中
心に自転し、かつ
[Means for Solving the Problems] A method for producing a hydrogen storage alloy according to the present invention comprises powders of two or more dissimilar metals that can be alloyed to form a hydrogen storage alloy, and 0.5% of the metal powder as an auxiliary agent. ~1.5% by weight of higher fatty acids and grinding balls as grinding media are sealed in the mill pot of a high-speed ball mill, and after adjusting the inside of the mill pot to a non-oxidizing atmosphere, an acceleration of more than 30 times the gravitational acceleration is applied inside the mill pot. In addition to,
The above problem was solved by forming a hydrogen storage alloy with a high alloying rate through mixing, pulverization, and dispersion. Specifically, the non-oxidizing atmosphere includes Ar gas, He gas, N2
The mill pot was filled with one of the gases, and the two or more dissimilar metals were one or more metals selected from the group of Mg, Ca, La, misch metal, and Ti, and Ni.
, Al, V, Cr, Fe, Co, Zr, Cu, Mn, and among the higher fatty acids added as an auxiliary agent, stearic acid is the most desirable. Ta. Furthermore, the high-speed ball mill essential to carrying out the present invention has a means for adjusting a non-oxidizing atmosphere and a mill pot that is detachably connected.
It revolves around the rotation of the main axis, and also rotates around its own axis of rotation, and

【数2】 で表わされるミルポット内部へ加わる合成粉砕加速度比
Gが少なくとも30以上であり、かつ自公転角速度比率
Rが1.9以下の回分式遊星ボールミルであることを明
らかにした。
It has been clarified that this is a batch planetary ball mill in which the synthetic crushing acceleration ratio G applied to the inside of the mill pot, expressed by Equation 2, is at least 30 or more, and the rotation-revolution angular velocity ratio R is 1.9 or less.

【0009】[0009]

【作用】本発明に係る製造方法は水素吸蔵合金を形成し
得る二種以上の金属を炉内で溶解することなく合金化す
るものであるから、メカニカルアロイング法適用の一種
と言えるが、従来の周知慣用的な高速ボールミルとは桁
外れな加速度をミルポット内に加え従来に比べるとはる
かに合金化率の高い合金を得た。この加速度は重力加速
度の30倍以上を要件としているのでこの加速度の得ら
れる装置が製造方法実施上の最大の前提となることは言
うまでもない。メカニカルアロイングのプロセスについ
てはまだ研究途上にあって正確なことは判っていないが
、条件として原子の相互拡散が十分に起ることと混合の
エンタルピーΔHmが負で大きいことが大切であると説
かれている。低温での原子の相互拡散は与える有効なエ
ネルギーが大きいほど進行が加速することは当然である
。  従来のメカニカルアロイングが粒子の偏平,片状
化,冷間鍛接(混練),ラメラ組織化,分散,ランダム
化の経過を辿って微細化,均質化されていたのに対し、
本発明の場合はより強力な原子結合の段階にまで合金化
が完結したと見るべきであると考察する。
[Function] The manufacturing method according to the present invention alloys two or more metals that can form a hydrogen storage alloy without melting them in a furnace, so it can be said to be a type of mechanical alloying method. By applying an extraordinary acceleration inside the mill pot compared to the well-known and conventional high-speed ball mill, we were able to obtain an alloy with a much higher alloying rate than the conventional method. Since this acceleration is required to be at least 30 times the gravitational acceleration, it goes without saying that an apparatus capable of obtaining this acceleration is the greatest prerequisite for implementing the manufacturing method. The mechanical alloying process is still under research and the exact details are not known, but it is believed that the important conditions are that sufficient interdiffusion of atoms occurs and that the enthalpy of mixing ΔHm is large and negative. It's dark. It is natural that the interdiffusion of atoms at low temperatures accelerates as the effective energy provided increases. In contrast to conventional mechanical alloying, which is refined and homogenized through the process of flattening, flaking, cold forging (kneading), lamellar structure, dispersion, and randomization of particles,
It is considered that in the case of the present invention, alloying should be considered to have been completed to the stage of stronger atomic bonds.

【0010】合成粉砕加速度比Gを大きくする程、メカ
ニカルアロイングの完結するのに必要な時間が短縮する
ことは容易に推察できるが、同じ加速度を加えた場合で
もミルポット内へ金属粉末および粉砕ボールとともに助
剤を添加すると完結するまでに必要な時間に著しい差の
生じることが確認できた。助剤として脂肪酸の一種を選
びかつその添加量を変え、その他の条件を全く同一にし
て高速ボールミルを運転し、比較的短時間で運転停止後
、合金化の進行状態を調べると、助剤の有無およびその
添加割合と実際の製品との間にある因果関係が認められ
、この関係を利用して好ましい条件を設定すれば発明の
目的がより容易に、かつより確実に達成できる。その理
論的解明は今後の研究に譲るが、助剤としてステアリン
酸を選びかつ装入する金属粉末の0.5〜1.5重量%
を添加したとき合金化の進行が最も活発であることを確
認した、
It can be easily inferred that the larger the synthetic grinding acceleration ratio G is, the shorter the time required to complete mechanical alloying is. It was confirmed that there was a significant difference in the time required to complete the process when an auxiliary agent was added. Select a type of fatty acid as an auxiliary agent, change the amount added, operate a high-speed ball mill under exactly the same conditions, and after stopping the operation in a relatively short time, examine the progress of alloying. It is recognized that there is a causal relationship between the presence or absence and the proportion of addition thereof and the actual product, and if preferable conditions are set using this relationship, the purpose of the invention can be achieved more easily and more reliably. The theoretical elucidation will be left to future research, but stearic acid is selected as an auxiliary agent and 0.5 to 1.5% by weight of the charged metal powder is used.
It was confirmed that alloying progressed most actively when

【0011】[0011]

【実施例】製造方法の前提となる回分式の遊星ボールミ
ル1の実施例を図1と図2に示す。図において一般的な
構造を説明するとモータ6によって駆動される主軸22
の回転を受けて、公転する複数のミルポット21を主軸
22の周囲に均等に(2ヶならば対称的に、3ヶ以上な
らば主軸22から等距離放射状に)配設し、該ミルポッ
ト21自体も自己の回転軸を中心に自転するものである
。具体的には主軸22と共に回転するミルポット21の
外周に遊星歯車8を周設し、この遊星歯車8と噛合する
太陽歯車7を別に回転または停止させて(図では停止)
、ミルポット21を公転しつつ、自転させる。太陽歯車
7は主軸22に外嵌されている。ミルポット21の内部
には粉砕媒体である粉砕ボールBと金属の粉末Mが収納
され、処理中の金属の粉末Mの酸化を防止するため、内
部雰囲気はArガスなどの不活性ガスに置換されている
。雰囲気調整手段2の実施例としてArガスに置換する
には、図1に示すようにミルポット21の蓋に管31を
、その先端に一対のワンタッチカプラ32を取付け、さ
らに管33とバルブ11を介して真空ポンプ41に、バ
ルブ13と管34を介して圧力計61に、管35とバル
ブ12を介してArガス充填ボンベ51に接続する。バ
ルブ12を全閉にし、バルブ11,13を全開にした状
態で真空ポンプ41で真空引きを行ない、ミルポット2
1内の空気を排除する。圧力計61で所定の真空度に到
達したことを確認後、バルブ11を全閉にしバルブ12
を開け、Arガス充填ボンベ51からArガスをミルポ
ット21に充填する。圧力計61により充填Arガス圧
力が大気圧と同じまたはそれ以上の所定圧力に達したこ
とを確認後、バルブ12も全閉し、ワンタッチカプラ3
2部で管31と管33を切り離す。ミルポット21内の
Arガスはワンタッチカプラ32の片方で保持される。 このArガス充填作業は1回以上行なう。以上のように
ミルポット21に粉砕ボールBと金属粉末Mを入れAr
ガスを充填した後、遊星ボールミルを運転することによ
り、公転,自転運動による遠心力とコリオリス力とが相
乗的に粉砕ボールBと金属粉末Mに作用し、金属粉末M
が加工される。
[Embodiment] An embodiment of a batch-type planetary ball mill 1, which is the premise of the manufacturing method, is shown in FIGS. 1 and 2. To explain the general structure in the figure, a main shaft 22 driven by a motor 6
A plurality of mill pots 21 are arranged evenly around the main shaft 22 (symmetrically if there are two mill pots, radially equidistant from the main shaft 22 if there are three or more mill pots 21), which revolve in response to the rotation of the mill pots 21 themselves. also rotates around its own axis of rotation. Specifically, a planetary gear 8 is provided around the outer periphery of the mill pot 21 that rotates together with the main shaft 22, and the sun gear 7 that meshes with the planetary gear 8 is separately rotated or stopped (stopped in the figure).
, rotates the mill pot 21 while revolving around it. The sun gear 7 is externally fitted onto the main shaft 22. Grinding balls B, which are grinding media, and metal powder M are stored inside the mill pot 21, and the internal atmosphere is replaced with an inert gas such as Ar gas to prevent oxidation of the metal powder M during processing. There is. In order to replace the atmosphere with Ar gas as an example of the atmosphere adjustment means 2, as shown in FIG. It is connected to a vacuum pump 41, to a pressure gauge 61 via a valve 13 and a pipe 34, and to an Ar gas cylinder 51 via a pipe 35 and a valve 12. With the valve 12 fully closed and the valves 11 and 13 fully open, the vacuum pump 41 is used to evacuate the mill pot 2.
Eliminate the air inside 1. After confirming that the predetermined degree of vacuum has been reached using the pressure gauge 61, fully close the valve 11 and close the valve 12.
The mill pot 21 is filled with Ar gas from the Ar gas cylinder 51. After confirming with the pressure gauge 61 that the filled Ar gas pressure has reached a predetermined pressure equal to or higher than atmospheric pressure, the valve 12 is also fully closed, and the one-touch coupler 3 is closed.
Separate the pipe 31 and the pipe 33 in two parts. Ar gas in the mill pot 21 is held by one side of the one-touch coupler 32. This Ar gas filling operation is performed at least once. As described above, put the grinding balls B and metal powder M into the mill pot 21 and
After filling with gas, by operating the planetary ball mill, the centrifugal force and Coriolis force due to the revolution and rotation motion act synergistically on the grinding balls B and the metal powder M, and the metal powder M
is processed.

【0012】図2は遊星ボールミルのミルポットの運動
模式図であり、 公転角速度ω1  ,公転直径Kを0
.52m, ミルポット内径Nを0.075m, R=
ω2/ω1,ω2 は公転に対する自転の相対角速度と
し、合成粉砕角速度比Gを前に挙げた数式で計算して9
0となるようにω1を43.4(1/s)、ω2を59
.0(1/s)と設定した。ここで  ω2/ω1(=
R)を1.36に設定したのは次の理由による。図3(
イ),(ロ),(ハ)はミルポット内におけるボールB
の運動状態とミルの公転,自転の角速度の相対的比率の
関係を示したものである。公転角速度をω1 、自転の
相対角速度をω2 、両者の比率R=ω2/ω1  と
して図(イ)はRが0.5のミルポット内の状態を示し
ている。ここではボールは一体的,集団的にミルポット
の内周面に沿ってサージングし内周面とボール、ボール
同士の間で装入された金属へ有効な圧縮力,剪断力を与
えてすべてメカニカルアロイングに有効な作用を及ぼし
ている。図(ロ)はR=1.0、図(ハ)はR=1.2
2の場合のボールの挙動を示したもので自転角速度が相
対的に大きな割合になるほどボールの一部が内周面から
離れてミルポット内の空間を飛翔しはじめ、ボール同士
の衝突でエネルギーの一部が無駄に消費されメカニカル
アロイングの目的からは後退した現象を見せはじめる。 この傾向はRが大きくなるほど大きくなりRが1.9を
超えると、いかに合成粉砕加速度比Gが30以上であっ
ても合金化率の高い水素吸蔵合金は得られなくなる。今
回はこの点を考慮に入れてRを1.36に選んだが望ま
しくはRは1.5〜0.5の範囲が良いと考えられる。
FIG. 2 is a schematic diagram of the motion of the mill pot of a planetary ball mill, where the revolution angular velocity ω1 and the revolution diameter K are 0.
.. 52m, Mill pot inner diameter N is 0.075m, R=
ω2/ω1, ω2 is the relative angular velocity of rotation with respect to revolution, and the composite crushing angular velocity ratio G is calculated using the formula listed above and is 9
Set ω1 to 43.4 (1/s) and ω2 to 59 so that it becomes 0.
.. It was set to 0 (1/s). Here ω2/ω1 (=
The reason why R) was set to 1.36 is as follows. Figure 3 (
A), (B), and (C) are ball B in the mill pot.
This figure shows the relationship between the state of motion of the mill and the relative ratio of the angular velocities of the mill's revolution and rotation. Assuming that the angular velocity of revolution is ω1, the relative angular velocity of rotation is ω2, and the ratio of the two is R=ω2/ω1, Figure (a) shows the state inside the mill pot where R is 0.5. Here, the balls collectively and collectively surge along the inner circumferential surface of the mill pot, applying effective compressive force and shearing force to the inner circumferential surface, the balls, and the metal charged between the balls. It has an effective effect on ing. Figure (b) is R=1.0, figure (c) is R=1.2
This figure shows the behavior of the ball in case 2. As the rotational angular velocity becomes relatively large, a part of the ball separates from the inner peripheral surface and begins to fly through the space inside the mill pot, and the energy is absorbed by collisions between the balls. The purpose of mechanical alloying begins to show signs of a regression as parts are wasted and the purpose of mechanical alloying is lost. This tendency increases as R increases, and when R exceeds 1.9, a hydrogen storage alloy with a high alloying ratio cannot be obtained no matter how high the synthetic crushing acceleration ratio G is 30 or more. This time, we took this point into consideration and selected R to be 1.36, but it is considered that R is desirably in the range of 1.5 to 0.5.

【0013】この実施例では水素吸蔵合金のうち Mg
2Niを選びその原料として平均粒径9μのNi粉末と
平均粒径85μのMg粉末を合金組成の割合に秤量して
ミルポット内へ装入し、高炭素Cr軸受鋼を材料とする
直径3.9mmの粉砕ボールをミルポットの空間容積3
0%に相当する量だけ装入した。助剤の高級脂肪酸とし
てはミスチリン酸,パルミチン酸,ラウリン酸,オレイ
ン酸,リノレン酸など一群の組成物の中からステアリン
酸[CH3(CH2)16COOH]を選び添加量を金
属粉末に対する重量比で0〜2.0%に変え、添加量0
の場合のみ粉砕時間を240分とし、その他は添加の多
少に拘らず30分と一定に保って同条件で処理した。各
試料について金属粉末が全て合金化しているか、それと
も未反応のMgが単相の形で残っているかをDTA分析
によって検査した。試料番号とステアリン酸の添加割合
および自由粉の割合を表1に示す。ここで自由粉とは粉
砕処理が終ってミルポットの蓋を開き内部の処理物を取
り出したときボールやミルポットの内面に付着せず直ち
に回収された処理物の割合をいう。すなわち割合が10
0%というのは全量の処理物が何ら手を加えなくても回
収したことを示している。
In this example, among the hydrogen storage alloys, Mg
2Ni was selected as the raw material, and Ni powder with an average particle size of 9μ and Mg powder with an average particle size of 85μ were weighed in the proportion of the alloy composition and charged into a mill pot, and a diameter of 3.9mm made of high carbon Cr bearing steel was prepared. The space volume of the mill pot is 3.
Only the amount corresponding to 0% was charged. As the auxiliary higher fatty acid, stearic acid [CH3(CH2)16COOH] was selected from a group of compositions such as mystilic acid, palmitic acid, lauric acid, oleic acid, and linolenic acid, and the amount added was 0 in weight ratio to the metal powder. ~ Changed to 2.0%, added amount 0
The grinding time was set to 240 minutes only in the case of 1, and the other conditions were kept constant at 30 minutes regardless of the amount of addition. For each sample, it was examined by DTA analysis whether all the metal powders were alloyed or whether unreacted Mg remained in the form of a single phase. Table 1 shows the sample number, the proportion of stearic acid added, and the proportion of free flour. Here, the term "free powder" refers to the proportion of the processed material that is immediately collected without adhering to the balls or the inner surface of the mill pot when the lid of the mill pot is opened and the processed material inside is taken out after the grinding process is completed. That is, the ratio is 10
0% indicates that the entire amount of processed material was recovered without any modification.

【0014】[0014]

【表1】[Table 1]

【0015】粉砕の実際作業において、試料1において
はミルポット内の処理物はすべて粉砕ボール,ミルポッ
ト内周面に付着し、手を加えずに回収できた処理物は0
であった。また試料2は付着が無くなり自由粉としての
回収がほぼ100%になるが、粉砕ボールと粉体との篩
いによる分離作業に発火があり不適当である。
In the actual grinding work, in sample 1, all of the processed materials in the mill pot adhered to the grinding balls and the inner peripheral surface of the mill pot, and the processed materials that could be recovered without any modification were zero.
Met. In addition, in sample 2, there is no adhesion and recovery as free powder is almost 100%, but ignition occurs during the separation process between the grinding balls and the powder by sieving, making it unsuitable.

【0016】DTA分析で一番明瞭に現われるのは成分
ごとに異なる金属水素化物の解離圧の温度依存性である
。図4において、いま水素の解離圧が1MPaとなる温
度を求めるとMgが1MPaと交叉する温度T1はMg
2Niが1MPaと交叉する温度T2より常に高温側に
あることが示されている。従って水素化物を作る金属が
単相であるか、または二種以上が共存している複合相で
あるかは水素の解離又は結合を示す温度が単一であるか
複数であるかによって識別することができる。
What is most clearly revealed in DTA analysis is the temperature dependence of the dissociation pressure of metal hydrides, which differs from component to component. In Figure 4, if we now find the temperature at which the dissociation pressure of hydrogen is 1 MPa, the temperature T1 at which Mg crosses 1 MPa is Mg
It is shown that 2Ni is always on the higher temperature side than the temperature T2 which crosses 1 MPa. Therefore, whether the metal forming the hydride is a single phase or a complex phase in which two or more types coexist can be determined by whether the temperature at which hydrogen dissociates or bonds is single or multiple. Can be done.

【0017】試料1から試料6についてDTA分析とP
CT線図を作成し上記の原理に基づいて Mg2Niへ
の合金化を検査した。このうち代表例として試料1と試
料4を取り出しその結果を図示する。 (1) 試料1 図5はこの試料のDTA分析である。示差熱を表わす曲
線DにおいてMg2NiH4がMg2NiとH2に解離
するピーク点Eの他にMgH2がMgとH2に解離する
ピーク点Fがあり、Mg2NiがH2と結合するピーク
点Iの他に MgH2が生じるピーク点Jがあり、単相
のMgがかなり存在することを示している。 (2) 試料4 図6はこの試料のPCT線図であり、図8に示した従来
技術(溶解法)と比べると明瞭な差が認められる。すな
わち図8では水素圧が0.6MPa近くに達すると吸蔵
,放出ともに緩やかな傾斜をたどる範囲Aがあり、これ
がMg単相の存在を示すと説明したが、試料4には範囲
Aに相当するような部分がなくMgがほぼ完全に Mg
2Niになっていることを表している。図7は同じ試料
のDTA分析であり、
DTA analysis and P for samples 1 to 6
A CT diagram was created and alloying into Mg2Ni was examined based on the above principle. Among these, Sample 1 and Sample 4 are taken as representative examples and the results are illustrated. (1) Sample 1 Figure 5 shows the DTA analysis of this sample. In curve D representing differential heating, in addition to peak point E where Mg2NiH4 dissociates into Mg2Ni and H2, there is peak point F where MgH2 dissociates into Mg and H2, and in addition to peak point I where Mg2Ni combines with H2, MgH2 is generated. There is a peak point J, indicating that a considerable amount of single-phase Mg exists. (2) Sample 4 FIG. 6 is a PCT diagram of this sample, and a clear difference is recognized when compared with the conventional technique (dissolution method) shown in FIG. In other words, in Figure 8, when the hydrogen pressure reaches nearly 0.6 MPa, there is a range A where both occlusion and desorption follow a gentle slope, and it was explained that this indicates the existence of a single Mg phase, but sample 4 corresponds to range A. There is no such part and Mg is almost completely Mg
This indicates that it is 2Ni. Figure 7 is a DTA analysis of the same sample;

【数3】 で示される相変化だけが認められ、単相のMgの存在を
示すダブルピーク及至屈折点は全く見られない。
Only the phase change shown by Equation 3 is observed, and no double peak or inflection point indicating the presence of single-phase Mg is observed.

【0018】以上に述べたとおり、ステアリン酸を助剤
として加えると、粉末と粉砕ボールやミルポット内周面
への付着が抑制され、分散が良くなって合金化反応が促
進され、合金化完了までに要する時間は大幅に短縮する
。すなわちこの例でステアリン酸が添加割合0のときに
は粉砕時間を240分かけても、なお単相のMgが若干
残っている(試料1)が、ステアリン酸を0.25以上
添加すると粉砕時間を1/6にしても単相のMgが消滅
した合金を得ることができた。しかし自由粉の割合から
みると下限としてステアリン酸は0.5以上が望ましく
また2%以上とすると活性が大きくなり過ぎて粉砕ボー
ルと粉末との篩による分離時に発火する恐れがあるので
1.5%を上限とするのが望ましく、結局この発明で助
剤としての高級脂肪酸の添加する割合を0.5〜1.5
重量%に特定する根拠となった。
As mentioned above, when stearic acid is added as an auxiliary agent, adhesion of the powder to the grinding balls and the inner peripheral surface of the mill pot is suppressed, and the dispersion is improved and the alloying reaction is accelerated, and the process continues until the alloying is completed. The time required will be significantly reduced. In other words, in this example, when the addition ratio of stearic acid is 0, even if the grinding time is 240 minutes, some single-phase Mg still remains (sample 1), but if 0.25 or more stearic acid is added, the grinding time is 1 /6, it was possible to obtain an alloy in which single phase Mg disappeared. However, considering the proportion of free powder, the lower limit for stearic acid is preferably 0.5 or more, and if it is more than 2%, the activity will become too large and there is a risk of ignition when the grinding balls and powder are separated by a sieve, so it is 1.5. It is desirable to set the upper limit to 0.5% to 1.5%.
This was the basis for specifying the weight percentage.

【0019】[0019]

【発明の効果】本発明は以上に述べたとおり溶解による
ことなく水素吸蔵合金を製造し、かつ従来に比べて水素
化物へ有効迅速に相変化する合金だけを含み、その他の
単相金属を含まないきわめて合金化率の高い合金体を得
ることができる。従って水素との反応速度が早くその吸
蔵,放出能力は理論値の近くまで強化されている。その
ため従来から適用されてきた種々の用途に取付けた時に
は従来よりはるかに優れた結果をもたらすことが期待さ
れる。しかも非溶解法による製造方法の中でも、その合
金化の速度に着目して最良の条件の一つを見出し最も効
率の良い製造方法の一つをつきとめたので量産性,経済
性において従来のレベルを大幅に向上することができた
。なお、従来技術である溶解法によるものよりも格段に
製造コストが低いうえ、高価なLaを使わない合金でも
自由に製造できるから、その点についても品質の向上と
ともに大きな経済的効果を得ることは言うまでもない。
[Effects of the Invention] As described above, the present invention produces a hydrogen storage alloy without melting, and contains only an alloy that undergoes a phase change to a hydride more effectively and quickly than in the past, and does not contain other single-phase metals. It is possible to obtain an alloy body with an extremely high alloying rate. Therefore, the reaction rate with hydrogen is fast, and its absorption and desorption capabilities are enhanced to near the theoretical value. Therefore, when installed in various applications that have been applied in the past, it is expected that results far superior to those of the past will be produced. Moreover, among non-melting manufacturing methods, we focused on the speed of alloying and found one of the best conditions, and found one of the most efficient manufacturing methods, surpassing the conventional level in terms of mass production and economy. We were able to improve significantly. Furthermore, the manufacturing cost is much lower than the conventional melting method, and alloys that do not use expensive La can also be manufactured freely, so in this regard, it is possible to obtain large economic effects as well as quality improvement. Needless to say.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施に用いる装置の縦断正面図である
FIG. 1 is a longitudinal sectional front view of an apparatus used to implement the present invention.

【図2】同装置の運動の模式図である。FIG. 2 is a schematic diagram of the movement of the device.

【図3】(イ),(ロ),(ハ)によってボールの運転
状態とミルの自転,公転の角速度相対的比率の関係を示
す。
[Fig. 3] (A), (B), and (C) show the relationship between the operating state of the ball and the relative ratio of angular velocities of rotation and revolution of the mill.

【図4】MgおよびMg2Niなどの水素解離圧と温度
との関係図である。
FIG. 4 is a diagram showing the relationship between hydrogen dissociation pressure and temperature for Mg, Mg2Ni, etc.

【図5】本発明の比較例のDTA線図である。FIG. 5 is a DTA diagram of a comparative example of the present invention.

【図6】本発明の実施例のPCT線図である。FIG. 6 is a PCT diagram of an example of the present invention.

【図7】本発明の実施例のDTA線図である。FIG. 7 is a DTA diagram of an embodiment of the present invention.

【図8】従来技術のPCT線図である。FIG. 8 is a PCT diagram of the prior art.

【図9】従来技術のDTA線図である。FIG. 9 is a DTA diagram of the prior art.

【符号の説明】[Explanation of symbols]

1  遊星ボールミル 2  雰囲気調整手段 7  太陽歯車 8  遊星歯車 21  ミルポット 22  主軸 41  真空ポンプ 51  Arガス充填ボンベ 1 Planetary ball mill 2 Atmosphere adjustment means 7 Sun gear 8 Planetary gear 21 Mill pot 22 Main shaft 41 Vacuum pump 51 Ar gas filled cylinder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  合金化して水素吸蔵合金を形成し得る
2以上の異種金属の粉末と助剤として当該金属粉末の0
.5〜1.5重量%の高級脂肪酸と、粉砕媒体として粉
砕ボールとを高速ボールミルのミルポット内へ密封し、
ミルポット内を非酸化性雰囲気に調整したのち、重力加
速度の30倍以上の加速度をミルポット内に加えて、混
合,粉砕,分散を経て合金化率の高い水素吸蔵合金を形
成することを特徴とする水素吸蔵合金の製造方法。
Claim 1: Powders of two or more different metals that can be alloyed to form a hydrogen storage alloy, and 0% of the metal powder as an auxiliary agent.
.. 5 to 1.5% by weight of higher fatty acids and grinding balls as grinding media are sealed in a mill pot of a high-speed ball mill,
After adjusting the inside of the mill pot to a non-oxidizing atmosphere, an acceleration of 30 times or more of the gravitational acceleration is applied to the inside of the mill pot, and a hydrogen storage alloy with a high alloying rate is formed through mixing, crushing, and dispersion. Method for manufacturing hydrogen storage alloy.
【請求項2】  請求項1において非酸化性雰囲気が、
Arガス,Heガス,N2ガス の何れかをミルポット
内へ充填したことを特徴とする水素吸蔵合金の製造方法
2. In claim 1, the non-oxidizing atmosphere is
A method for producing a hydrogen storage alloy, characterized in that a mill pot is filled with any one of Ar gas, He gas, and N2 gas.
【請求項3】  請求項1又は2において、2以上の異
種金属はMg,Ca,La,ミッシュメタル,Tiの一
群から選んだ一種以上の金属と、Ni,Al,V,Cr
,Fe,Co,Zr,Cu,Mnの一群から選んだ一種
以上の金属とよりなることを特徴とする水素吸蔵合金の
製造方法。
3. In claim 1 or 2, the two or more dissimilar metals are one or more metals selected from the group of Mg, Ca, La, misch metal, Ti, and Ni, Al, V, Cr.
, Fe, Co, Zr, Cu, and Mn.
【請求項4】  請求項1及至3のいずれかにおいて、
高級脂肪酸がステアリン酸であることを特徴とする水素
吸蔵合金の製造方法。
[Claim 4] In any one of claims 1 to 3,
A method for producing a hydrogen storage alloy, characterized in that the higher fatty acid is stearic acid.
【請求項5】  請求項1における高速ボールミルが、
非酸化性の雰囲気調整手段と着脱自在に連結するミルポ
ットを有し、主軸の回転によって公転するとともに自己
の回転軸を中心に自転し、かつ 【数1】 で表わされるミルポット内部へ加わる合成粉砕加速度比
Gが少なくとも30以上であり、かつ自公転角速度比率
Rが1.9以下の回分式遊星ボールミルであることを特
徴とする水素吸蔵合金を製造する装置。
5. The high-speed ball mill according to claim 1,
It has a mill pot that is removably connected to a non-oxidizing atmosphere adjustment means, revolves around the rotation of the main shaft and rotates around its own rotation axis, and has a synthetic pulverization acceleration applied to the inside of the mill pot expressed by [Equation 1] An apparatus for producing a hydrogen storage alloy, characterized in that it is a batch planetary ball mill having a ratio G of at least 30 and a revolution-revolution angular velocity ratio R of 1.9 or less.
JP3122056A 1991-04-23 1991-04-23 Method for producing hydrogen storage alloy Expired - Fee Related JP2560567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3122056A JP2560567B2 (en) 1991-04-23 1991-04-23 Method for producing hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3122056A JP2560567B2 (en) 1991-04-23 1991-04-23 Method for producing hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH04323335A true JPH04323335A (en) 1992-11-12
JP2560567B2 JP2560567B2 (en) 1996-12-04

Family

ID=14826529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3122056A Expired - Fee Related JP2560567B2 (en) 1991-04-23 1991-04-23 Method for producing hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2560567B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323334A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JPH04323333A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JPH09118941A (en) * 1994-12-26 1997-05-06 Samsung Display Devices Co Ltd Hydrogen storage alloy and its production
JP2011148644A (en) * 2010-01-19 2011-08-04 Toyota Motor Corp Method of hydrogenating hydrogen storage material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323334A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JPH04323333A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323334A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JPH04323333A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323334A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JPH04323333A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JP2560565B2 (en) * 1991-04-23 1996-12-04 株式会社栗本鐵工所 Method for producing hydrogen storage alloy
JP2560566B2 (en) * 1991-04-23 1996-12-04 株式会社栗本鐵工所 Method for producing hydrogen storage alloy
JPH09118941A (en) * 1994-12-26 1997-05-06 Samsung Display Devices Co Ltd Hydrogen storage alloy and its production
JP2011148644A (en) * 2010-01-19 2011-08-04 Toyota Motor Corp Method of hydrogenating hydrogen storage material

Also Published As

Publication number Publication date
JP2560567B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
US6902699B2 (en) Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
JP2560565B2 (en) Method for producing hydrogen storage alloy
CN110576185A (en) Nanocrystalline high-entropy alloy powder and preparation method thereof
CN111621670A (en) Multi-grain-size core-shell-structure titanium alloy block material and preparation method thereof
CN110629091B (en) High-capacity multi-phase hydrogen storage alloy for fuel cell and preparation method thereof
CN111118379B (en) Co-bonded TiZrNbMoTa refractory high-entropy alloy and preparation method thereof
CN112877570A (en) Cobalt-chromium-nickel multi-element casting alloy and preparation method thereof
JPH08109406A (en) Treatment of sponge titanium powder
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
EP1534870B1 (en) Reactive milling process for the manufacture of a hydrogen storage alloy
JPH04323335A (en) Method and device for producing hydrogen storage alloy
US5837030A (en) Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures
CN108588521A (en) A kind of high capacity Mg-Cu-Ni ternary hydrogen-storage alloys and preparation method thereof
US4655825A (en) Metal powder and sponge and processes for the production thereof
JPH04323334A (en) Method and device for producing hydrogen storage alloy
JP2821662B2 (en) Titanium-based powder and method for producing the same
JPH04362105A (en) Production of fine intermetallic compound powder
JP4189447B2 (en) Mg-Ti hydrogen storage alloy and method for producing the same
EP1117500B8 (en) Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures
JPS63143209A (en) Production of iva metal powder
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
JP4086241B2 (en) Hydrogen storage alloy powder
CN115369274B (en) Preparation method of CoCrFeNi high-entropy alloy powder with superfine single-phase structure
JP3062743B2 (en) Hydrogen-containing titanium-aluminum alloy powder, method for producing the same alloy powder, sintered titanium-aluminum alloy, and method for producing the same
JP3063014B2 (en) Manufacturing method of titanium powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees