JPH0817613A - Material alloy for manufacturing rare earth magnet powder and its manufacture - Google Patents

Material alloy for manufacturing rare earth magnet powder and its manufacture

Info

Publication number
JPH0817613A
JPH0817613A JP6173717A JP17371794A JPH0817613A JP H0817613 A JPH0817613 A JP H0817613A JP 6173717 A JP6173717 A JP 6173717A JP 17371794 A JP17371794 A JP 17371794A JP H0817613 A JPH0817613 A JP H0817613A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
temperature
earth magnet
magnet powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6173717A
Other languages
Japanese (ja)
Inventor
Ryoji Nakayama
亮治 中山
Yoshiyuki Nagatomo
義幸 長友
Kiichi Komada
紀一 駒田
Takuo Takeshita
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6173717A priority Critical patent/JPH0817613A/en
Publication of JPH0817613A publication Critical patent/JPH0817613A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve resistance to oxidation, and enable preservation as material alloy, by making hydrogen compound of granular rare earth element whose average grain diameter is in a specific range exist in the base of alloy composed of rare earth element and transition metal. CONSTITUTION:Alloy composed of R (rare earth element containing Y) and T (transition metal) is held in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and inert gas, in the temperature range of about 750-1000 deg.C. Next the temperature is kept at about 100-700 deg.C which is more approximate than hydrogen occlusion treatment temperature, and the alloy is subsequently cooled at a room temperature. Thus granular hydride of R whose average grain diameter is about 0.002-20mum is made to exist in the base of the alloy composed of R and T. Thereby resistance to oxidation of material alloy is improved, and preservation and storage are enabled. Only by dehydrogenation of the material alloy, rare earth magnet powder excellent in magnetic characteristics can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、脱水素処理するだけ
で希土類磁石粉末を製造することのできる原料合金およ
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material alloy capable of producing a rare earth magnet powder only by a dehydrogenation treatment and a method for producing the same.

【0002】[0002]

【従来の技術】R(Yを含む希土類元素)、T(遷移金
属)、D(B、Cなどの半金属)、さらにM(Si、G
a、Zr、Nb、Mo、Hf、Ta、W、Al、Ti、
Vのうち1種または2種以上)とすると、RとT、Rと
TとDまたはRとTとDとMを主成分とする希土類磁石
粉末は知られており、例えば、RとTを主成分とする希
土類磁石粉末にはR2 17、RT12、RT5 、RT3
RT2 などの金属間化合物相を主相とする希土類磁石粉
末などがあり、RとTとDを主成分とする希土類磁石粉
末にはR2 14B金属間化合物相を主相とする希土類磁
石粉末などがあり、さらに、RとTとDとMを主成分と
する希土類磁石粉末にはR2 (T、M)14B金属間化合
物相を主相とする希土類磁石粉末などがあることも知ら
れている。
2. Description of the Related Art R (rare earth element including Y), T (transition metal), D (semi-metal such as B and C), and M (Si, G)
a, Zr, Nb, Mo, Hf, Ta, W, Al, Ti,
V is one or more of V), rare earth magnet powders containing R and T, R and T and D or R, T, D and M as main components are known. R 2 T 17 , RT 12 , RT 5 , RT 3 ,
There are rare earth magnet powders having an intermetallic compound phase such as RT 2 as a main phase, and rare earth magnet powders having R, T and D as main components include rare earth magnets having an R 2 T 14 B intermetallic compound phase as a main phase. There are magnet powders and the like, and further, rare earth magnet powders containing R, T, D and M as main components include rare earth magnet powders having an R 2 (T, M) 14 B intermetallic compound phase as a main phase. Is also known.

【0003】前記RとTとDを主成分とする希土類磁石
粉末またはRとTとDとMを主成分とする希土類磁石粉
末は、R−T−D合金またはR−T−D−M合金をAr
ガス雰囲気中、温度:600〜1200℃に保持して均
質化処理し、または均質化処理せずに、R−T−D合金
またはR−T−D−M合金をH2 ガスまたはH2 ガスと
不活性ガスの混合雰囲気中で室温から昇温し、温度:5
00〜1000℃に保持してH2 吸蔵処理したのち、真
空雰囲気中または不活性ガス雰囲気中、温度:500〜
1000℃に保持して脱H2 処理し、ついで冷却し、粉
砕して製造される。この様にして得られた希土類磁石粉
末の内部組織は、微細で均一な希土類金属間化合物の再
結晶集合組織となり、その磁気特性が大幅に向上するこ
とも知られている。
The rare earth magnet powder containing R, T and D as main components or the rare earth magnet powder containing R, T, D and M as main components is an R-T-D alloy or R-T-D-M alloy. Ar
In a gas atmosphere, the temperature is kept at 600 to 1200 ° C. to perform homogenization treatment, or without homogenization treatment, the RTD alloy or RTDM alloy is used as H 2 gas or H 2 gas. The temperature was raised from room temperature to a temperature of 5 in a mixed atmosphere of
After holding at 0 to 1000 ° C. for H 2 occlusion treatment, in a vacuum atmosphere or an inert gas atmosphere, temperature: 500 to
It is produced by holding at 1000 ° C. for de-H 2 treatment, then cooling and crushing. It is also known that the internal structure of the rare earth magnet powder thus obtained becomes a fine and uniform recrystallized texture of the rare earth intermetallic compound, and its magnetic properties are significantly improved.

【0004】内部組織が微細で均一な希土類金属間化合
物の再結晶集合組織となる過程において、例えば、R−
Fe−B合金をH2 ガスまたはH2 ガスと不活性ガスの
混合雰囲気中で温度:500〜1000℃に保持してH
2 吸蔵処理すると、 R2 Fe14B(Hx )→RH2 +Fe+Fe2 B に相変態し、続けて同じ温度領域で脱H2 処理すると、 RH2 +Fe+Fe2 B→R2 Fe14B(Hx ) に再変態し、微細な希土類金属間化合物相の再結晶の集
合組織が形成されることも知られている(特開平3−1
29702号公報、特開平3−129703号公報、特
開平4−253304号公報、特開平4−245403
号公報など参照)。 前記のようなH2 吸蔵処理および
脱H2 処理による相変態を行って微細な希土類金属間化
合物相の再結晶の集合組織が形成されることはR2 Fe
17、R(Fe,Ti)12系磁石材料についても示されて
いる(特開平4−260302号公報、特開平4−34
8002号公報など参照)。
In the process of forming a fine and uniform recrystallized texture of a rare earth intermetallic compound, for example, R-
The Fe-B alloy is kept at a temperature of 500 to 1000 ° C. in the atmosphere of H 2 gas or a mixed atmosphere of H 2 gas and an inert gas to produce H.
2 When the occlusion treatment is performed, a phase transformation is performed to R 2 Fe 14 B (H x ) → RH 2 + Fe + Fe 2 B, and subsequently, H 2 treatment is performed in the same temperature range, RH 2 + Fe + Fe 2 B → R 2 Fe 14 B (H It is also known that a recrystallized texture of fine rare earth intermetallic compound phase is formed by retransformation into x ).
29702, JP-A-3-129703, JP-A-4-253304, JP-A-4-245403.
(See the bulletin, etc.) The formation of recrystallized texture of the fine rare-earth intermetallic compound phase by performing the phase transformation by the H 2 storage treatment and the de-H 2 treatment as described above means that R 2 Fe
17 , R (Fe, Ti) 12 based magnet materials are also disclosed (Japanese Patent Laid-Open No. 4-260302 and Japanese Patent Laid-Open No. 4-34).
(See Japanese Patent Publication No. 8002).

【0005】また、Nd−Fe−B合金をH2 ガスまた
はH2 ガスと不活性ガスの混合雰囲気中で温度:500
〜1000℃に保持してH2 吸蔵すると、マトリックス
中に0.2〜0.5μmのNdH2 が分散している組織
となることも確認されている(日本金属学会秋季大会一
般講演概要19891,P367参照)。
The temperature of the Nd-Fe-B alloy is 500 in H 2 gas or a mixed atmosphere of H 2 gas and an inert gas.
It has also been confirmed that when H 2 is occluded while being held at ˜1000 ° C., a structure in which 0.2 to 0.5 μm of NdH 2 is dispersed in the matrix (General Lecture of Autumn Meeting of the Japan Institute of Metals 19891, (See P367).

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の温度:
500〜1000℃に保持してH2 吸蔵処理したのち、
引き続いて同じ温度に保持して脱H2 処理する製造方法
では、(a) 同一容器内の雰囲気をH2 ガスまたはH
2 ガスと不活性ガスの混合雰囲気中から真空雰囲気に変
換しなければならず、真空雰囲気に切り換える際に、高
温の水素とロータリポンプなどの機内に残留する空気と
が反応して、爆発する危険性がある、(b) H2 吸蔵
処理工程では相分解は発熱反応であり、脱H2 処理工程
での再結合は吸熱反応であるために、連続的な熱処理を
行うと熱変化により希土類金属間化合物の再結晶組織が
制御できず、異常粒成長が起こるなどして均一で微細な
再結晶集合組織が得られない、などの課題があった。
However, the conventional temperature:
After holding at 500 to 1000 ° C. for H 2 occlusion treatment,
In the manufacturing method in which the same temperature is subsequently maintained and H 2 is removed, (a) the atmosphere in the same container is changed to H 2 gas or H 2 gas.
It is necessary to convert from a mixed atmosphere of 2 gases and an inert gas to a vacuum atmosphere, and when switching to a vacuum atmosphere, high temperature hydrogen reacts with the air remaining inside the machine such as a rotary pump, which may cause an explosion. (B) Since the phase decomposition is an exothermic reaction in the H 2 occlusion treatment step and the recombination in the de-H 2 treatment step is an endothermic reaction, continuous heat treatment causes a thermal change due to a change in rare earth metal. There is a problem that the recrystallization texture of the intermetallic compound cannot be controlled and abnormal grain growth occurs, so that a uniform and fine recrystallization texture cannot be obtained.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者らは、
かかる課題を解決すべく研究を行った結果、R−T合
金、またはR−T−M合金をH2 ガスまたはH2 ガスと
不活性ガスの混合雰囲気中で室温から昇温し、温度:7
50〜1000℃に保持してH2 吸蔵処理しのち、さら
に水素吸蔵処理温度よりも相対的に低い100〜700
℃の範囲内の所定の温度に保持し、引き続いて室温まで
冷却した合金は、合金素地中に平均粒径:0.002〜
20μmの粒状のRの水素化物が分散している組織が生
成し、かかる組織を有する合金は耐酸化性も向上するの
で原料合金として保存することができ、この原料合金を
予め作製して貯蔵しておき、所定量取り出して別の真空
炉に装入し、温度:500〜1000℃に昇温保持して
脱H2 処理すると、前記雰囲気の変換に伴う危険、並び
にH2 吸蔵処理工程での相分解による発熱反応および脱
2 処理工程での再結合による吸熱反応に伴う希土類金
属間化合物の再結晶組織の異常粒成長を防止することが
でき、従来よりも磁気特性の優れた希土類磁石粉末を製
造することができるという知見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have:
As a result of research to solve such problems, the RT alloy or the RTM alloy was heated from room temperature in an atmosphere of H 2 gas or a mixture of H 2 gas and an inert gas at a temperature of 7
After holding at 50 to 1000 ° C. for H 2 occlusion treatment, 100 to 700 which is relatively lower than the hydrogen occlusion treatment temperature.
The alloy kept at a predetermined temperature within the range of ℃, and subsequently cooled to room temperature has an average grain size of 0.002 to 0.002 in the alloy base.
A structure in which 20 μm granular R hydrides are dispersed is generated, and an alloy having such a structure is also improved in oxidation resistance and therefore can be stored as a raw material alloy. This raw material alloy is prepared in advance and stored. In addition, if a predetermined amount is taken out, charged into another vacuum furnace, and kept at a temperature of 500 to 1000 ° C. for a de-H 2 treatment, the danger associated with the conversion of the atmosphere and the H 2 occlusion treatment process phase degradation can prevent abnormal grain growth of recrystallized structure of a rare earth intermetallic compounds with the endothermic reaction by recombination in the exothermic reaction and deprotection H 2 treatment steps, superior rare earth magnet powder in the magnetic properties than conventional We have obtained the knowledge that can be manufactured.

【0008】この発明は、かかる知見に基づいて成され
たものであって、(1) RとTからなる合金、または
RとTとMからなる合金の素地中に平均粒径:0.00
2〜20μmの粒状のRの水素化物が存在している組織
を有する希土類磁石粉末を製造するための原料合金、
(2) RとTからなる合金、またはRとTとMからな
る合金を、水素雰囲気中または水素と不活性ガスの混合
ガス雰囲気中、750〜1000℃の範囲内の所定の温
度に保持したのち、さらに水素吸蔵処理温度よりも低い
100〜700℃の範囲内の所定の温度に保持し、引き
続いて室温に冷却する希土類磁石粉末を製造するための
原料合金の製造方法、に特徴を有するものである。
The present invention has been made on the basis of the above findings, and (1) an average particle size of 0.00 is formed in a base material of an alloy of R and T or an alloy of R, T and M.
A raw material alloy for producing a rare earth magnet powder having a structure in which a granular R hydride of 2 to 20 μm is present,
(2) The alloy composed of R and T or the alloy composed of R, T and M was maintained at a predetermined temperature within a range of 750 to 1000 ° C. in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. Then, a method for producing a raw material alloy for producing a rare earth magnet powder, which is further maintained at a predetermined temperature in the range of 100 to 700 ° C. lower than the hydrogen storage treatment temperature, and subsequently cooled to room temperature, characterized by: Is.

【0009】原料合金素地中に分散している粒状のRの
水素化物の平均粒径は0.002〜20μmの範囲内に
あることが好ましく、一層好ましい範囲は0.002〜
3μm、さらに好ましい範囲は0.002〜1μmであ
る。なお、粒状のRの水素化物の析出量は多いほど好ま
しく、素地中に50Vol%以上あるのが好ましい。
The average particle size of the granular R hydride dispersed in the raw material alloy base is preferably in the range of 0.002 to 20 μm, and more preferably 0.002 to 0.002 μm.
3 μm, more preferably 0.002 to 1 μm. The larger the amount of granular R hydrides deposited, the more preferable, and it is preferable that the amount is 50 vol% or more in the matrix.

【0010】RとTからなる合金、またはRとTとMか
らなる合金を、水素雰囲気中または水素と不活性ガスの
混合ガス雰囲気中、750〜1000℃の範囲内の所定
の温度に保持して水素吸蔵処理しのち、さらに水素吸蔵
処理温度よりも低い100〜700℃の範囲内の所定の
温度に保持する。水素吸蔵処理後の保持温度が100℃
未満または700℃を越えると、Rの水素化物が粒状に
ならない場合や分散した組織にならない場合があり、こ
れを脱水素しても優れた磁気特性が得られないので好ま
しくない。したがって、水素吸蔵処理後の保持温度は1
00〜700℃の範囲内の所定の温度に定めた。750
〜900℃の範囲内の所定の温度に保持して水素吸蔵処
理しのち、さらに水素吸蔵処理温度よりも低い400〜
700℃の範囲内の所定の温度に保持することが一層好
ましい。この発明の原料合金を製造するための出発原料
としては鋳造合金、焼結合金、超急冷合金、アトマイズ
合金、一部または全部非晶質合金、メカニカルアロイ合
金、共還元粉末などいずれの合金を用いても良い。この
中でも鋳造合金、一部または全部非晶質合金、メカニカ
ルアロイ合金を用いることが特に好ましい。
The alloy composed of R and T or the alloy composed of R, T and M is kept at a predetermined temperature within a range of 750 to 1000 ° C. in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. After the hydrogen storage treatment, the temperature is maintained at a predetermined temperature in the range of 100 to 700 ° C., which is lower than the hydrogen storage treatment temperature. Hold temperature after hydrogen storage is 100 ℃
If it is less than 700 ° C. or exceeds 700 ° C., the hydride of R may not be granular or may have a dispersed structure, and even if dehydrogenated, excellent magnetic properties cannot be obtained, which is not preferable. Therefore, the holding temperature after hydrogen storage treatment is 1
It was set at a predetermined temperature within the range of 00 to 700 ° C. 750
To 400 ° C, which is lower than the hydrogen storage temperature, after being stored at a predetermined temperature in the range of up to 900 ° C for hydrogen storage treatment.
More preferably, the temperature is maintained at a predetermined temperature within the range of 700 ° C. As the starting raw material for producing the raw material alloy of the present invention, any alloy such as a casting alloy, a sintered alloy, a super-quenched alloy, an atomized alloy, a partially or wholly amorphous alloy, a mechanical alloy alloy, and a co-reduced powder is used. May be. Among them, it is particularly preferable to use a cast alloy, a part or all of an amorphous alloy, or a mechanical alloy alloy.

【0011】[0011]

【実施例】【Example】

実施例1〜9および比較例1〜4 Arガス雰囲気中、プラズマアーク溶解炉を用いて、表
1に示される成分組成の合金を溶解し、鋳造して鋳塊A
〜Iを製造した。
Examples 1 to 9 and Comparative Examples 1 to 4 In an Ar gas atmosphere, a plasma arc melting furnace was used to melt an alloy having the composition of components shown in Table 1, and casting was performed to form an ingot A
~ I was prepared.

【0012】[0012]

【表1】 [Table 1]

【0013】表1の鋳塊A〜Iをアルゴン雰囲気中で表
2に示される条件で均質化処理し、またはすることなく
表2に示される大きさに粉砕し、ついで1気圧の水素雰
囲気中で表2に示される温度および時間保持して水素吸
蔵処理の第一処理を施したのち、さらに1気圧の水素雰
囲気中で水素吸蔵処理温度よりも低い表2に示される温
度および時間保持の条件で第二処理を施し、引き続いて
表2に示される条件で室温に冷却し、本発明原料合金1
〜9および比較原料合金1〜4を作製した。これら原料
合金を走査電子顕微鏡または透過電子顕微鏡で組織観察
を行い、原料合金素地中に分散している粒状のRの水素
化物の平均粒径を測定し、その結果を表2に示した。比
較例原料合金3は粒状のRの水素化物が40%、比較例
原料合金4は粒状のRの水素化物が凝集し、平均粒径の
測定が不可であった。なお、実施例5で得られた本発明
原料合金5を透過電子顕微鏡で組織観察を行い、透過電
子顕微鏡による金属組織写真を図1に、透過電子顕微鏡
で組織観察を行った時の金属組織の写生図を図2に示し
た。
The ingots A to I shown in Table 1 were homogenized under the conditions shown in Table 2 in an argon atmosphere, or were crushed into the sizes shown in Table 2 without any treatment, and then in a hydrogen atmosphere at 1 atm. The temperature and time retention conditions shown in Table 2 below after the first treatment of the hydrogen storage treatment at a temperature and time retention shown in Table 2 and further lower than the hydrogen storage treatment temperature in a hydrogen atmosphere at 1 atm. Second treatment, and subsequently cooled to room temperature under the conditions shown in Table 2 to obtain the raw material alloy 1 of the present invention.
-9 and comparative raw material alloys 1-4 were produced. The structures of these raw material alloys were observed with a scanning electron microscope or a transmission electron microscope, and the average particle size of granular R hydrides dispersed in the raw material alloy base was measured. The results are shown in Table 2. In the comparative example material alloy 3, 40% of granular R hydride was aggregated, and in the comparative example material alloy 4, granular R hydride was aggregated, and the average particle size could not be measured. The raw material alloy 5 of the present invention obtained in Example 5 was microscopically observed with a transmission electron microscope. A metallographic photograph of the transmission electron microscope is shown in FIG. A sketch drawing is shown in FIG.

【0014】[0014]

【表2】 [Table 2]

【0015】これら本発明原料合金1〜9および比較原
料合金1〜4を別の真空炉に装入し、表3に示される温
度および時間保持することにより脱水素処理したのち、
必要に応じて表3に示される条件で窒化処理し、ついで
粉砕し、均一で微細な希土類金属間化合物の再結晶集合
組織を有する希土類磁石粉末を作製した。この磁石粉末
の残留磁化および保磁力を振動試料型磁束計で測定し、
これらの測定結果を表3に示した。
After the raw material alloys 1 to 9 of the present invention and the comparative raw material alloys 1 to 4 were charged into another vacuum furnace and the temperature and time shown in Table 3 were maintained for dehydrogenation,
If necessary, nitriding treatment was performed under the conditions shown in Table 3, and then pulverization was performed to prepare a rare earth magnet powder having a uniform and fine recrystallized texture of the rare earth intermetallic compound. Measure the residual magnetization and coercive force of this magnet powder with a vibrating sample type magnetometer,
The results of these measurements are shown in Table 3.

【0016】[0016]

【表3】 [Table 3]

【0017】従来例1〜3 表1の鋳塊E、G、Iを実施例5、7、9と同じ条件で
均質化処理し、またはすることなく表4に示される大き
さに粉砕し、ついで水素雰囲気中で表4に示される温度
および時間保持することにより水素吸蔵処理の第一処理
を施し、そのまま同じ容器内に保持しながら第二処理を
施すこと無く室温まで冷却し、引き続いて同じ容器内で
表5に示される温度に表5に示される時間保持すること
により脱水素処理したのち、必要に応じて表5に示され
る条件で窒化処理し、ついで粉砕し、希土類金属間化合
物の再結晶集合組織を有する希土類磁石粉末を作製し
た。この希土類磁石粉末の残留磁化および保磁力を振動
試料型磁束計で測定し、これらの測定結果を表5に示し
た。
Conventional Examples 1 to 3 The ingots E, G, and I in Table 1 were homogenized under the same conditions as in Examples 5, 7, and 9, or were crushed into the sizes shown in Table 4 without the homogenization. Then, the first treatment of hydrogen storage treatment was carried out by holding the temperature and time shown in Table 4 in a hydrogen atmosphere, and while being kept in the same container as it was, it was cooled to room temperature without performing the second treatment, and subsequently the same. After performing dehydrogenation treatment by keeping the temperature shown in Table 5 for a time shown in Table 5 in a container, if necessary, nitriding treatment was performed under the conditions shown in Table 5, and then pulverization was performed to obtain a rare earth intermetallic compound. A rare earth magnet powder having a recrystallization texture was prepared. The residual magnetization and coercive force of this rare earth magnet powder were measured with a vibrating sample magnetometer, and the measurement results are shown in Table 5.

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【表5】 [Table 5]

【0020】実施例1〜9、比較例1〜4および従来例
1〜3を対比すると、実施例1〜9で得られた本発明原
料合金1〜9を原料合金として使用し、これを脱水素処
理することにより得られた希土類磁石粉末の残留磁化お
よび保磁力は、従来例1〜3で得られた希土類磁石粉末
の残留磁化および保磁力に比べて優れていることが分か
る。しかし、原料合金素地中に分散している粒状のRの
水素化物の平均粒径が0.002〜20μmの範囲から
外れている比較例1〜2または第二処理温度が100〜
700℃から外れている比較例3〜4で得られた原料合
金を使用して得られた希土類磁石粉末は十分な残留磁化
および保磁力が得られないことが分かる。
When Examples 1 to 9, Comparative Examples 1 to 4 and Conventional Examples 1 to 3 are compared, the raw material alloys 1 to 9 of the present invention obtained in Examples 1 to 9 are used as raw material alloys and dehydrated. It can be seen that the remanent magnetization and coercive force of the rare earth magnet powder obtained by the elementary treatment are superior to those of the rare earth magnet powders obtained in Conventional Examples 1 to 3. However, the average particle size of the granular R hydride dispersed in the raw material alloy base material is out of the range of 0.002 to 20 μm, or the second treatment temperature is 100 to
It can be seen that the rare earth magnet powders obtained by using the raw material alloys obtained in Comparative Examples 3 to 4 which deviate from 700 ° C. cannot obtain sufficient residual magnetization and coercive force.

【0021】実施例10〜12 Arガス雰囲気中、プラズマアーク溶解炉を用いて、表
6に示される成分組成の合金を作製し、この合金を溶解
して得られた溶湯を単ロール式の液体急冷装置にて超急
冷を行い、アモルファスリボンを作製し、このアモルフ
ァスリボンを粉砕して表6に示される平均粒径の粉末J
〜Lを製造した。
Examples 10 to 12 In an Ar gas atmosphere, a plasma arc melting furnace was used to prepare alloys having the component compositions shown in Table 6, and the resulting molten metal was melted into a single roll liquid. Ultra-quick cooling is performed in a quenching device to produce an amorphous ribbon, and the amorphous ribbon is crushed to obtain a powder J having an average particle size shown in Table 6.
~ L was produced.

【0022】[0022]

【表6】 [Table 6]

【0023】この粉末J〜Lを水素雰囲気中で表7に示
される圧力および温度に表7に示される時間保持するこ
とにより水素吸蔵処理の第一処理を施し、水素吸蔵処理
たのち、さらに水素吸蔵処理温度よりも相対的に低い表
7に示される圧力、温度および時間保持の条件で保持の
第二処理を施し、引き続いて表7に示される条件で室温
に冷却し、本発明原料合金粉末10〜12を作製した。
これら原料合金粉末を走査電子顕微鏡または透過電子顕
微鏡で組織観察を行い、原料合金粉末素地中に分散して
いる粒状のRの水素化物の平均粒径を測定し、その結果
を表8に示した。
The powders J to L were subjected to a first hydrogen storage treatment by maintaining the pressure and temperature shown in Table 7 for a time shown in Table 7 in a hydrogen atmosphere. The second treatment of holding is performed under the conditions of pressure, temperature and holding time shown in Table 7 which are relatively lower than the storage temperature, and subsequently cooled to room temperature under the conditions shown in Table 7 to obtain the raw material alloy powder of the present invention. 10-12 were produced.
The structures of these raw alloy powders were observed with a scanning electron microscope or a transmission electron microscope, and the average particle size of granular R hydrides dispersed in the raw alloy powder matrix was measured. The results are shown in Table 8. .

【0024】これら本発明原料合金粉末10〜12を別
の真空炉に装入し、表8に示される圧力および温度に表
8に示される時間保持することにより脱水素処理し、均
一で微細な希土類金属間化合物の再結晶集合組織を有す
る希土類磁石粉末を作製した。なお、実施例10につい
ては引き続き450℃で50時間窒素ガス中で窒化処理
を行った。この希土類磁石粉末の残留磁化および保磁力
を振動試料型磁束計で測定し、これらの測定結果を表8
に示した。
These raw material alloy powders 10 to 12 of the present invention were charged into another vacuum furnace, and the dehydrogenation treatment was carried out by maintaining the pressure and temperature shown in Table 8 for the time shown in Table 8 to obtain a uniform and fine powder. A rare earth magnet powder having a recrystallized texture of a rare earth intermetallic compound was prepared. In addition, in Example 10, the nitriding treatment was continued in nitrogen gas at 450 ° C. for 50 hours. The residual magnetization and coercive force of this rare earth magnet powder were measured with a vibrating sample magnetometer, and the measurement results are shown in Table 8.
It was shown to.

【0025】従来例10〜12 表6の粉末J〜Lを実施例10〜12と同じ条件で第二
処理を施すこと無く第一処理を施し、そのまま同じ容器
内に保持しながら水素吸蔵処理温度から室温まで冷却
し、引き続いて表7に示される圧力、温度および時間保
持することにより脱水素処理し、ついで粉砕し、均一で
微細な希土類金属間化合物の再結晶集合組織を有する希
土類磁石粉末を作製した。なお、従来例10については
引き続き450℃で50時間窒素ガス中で窒化処理を行
った。この希土類磁石粉末の残留磁化および保磁力を振
動試料型磁束計で測定し、これらの測定結果を表8に示
した。
Conventional Examples 10 to 12 Powders J to L shown in Table 6 were subjected to the first treatment under the same conditions as in Examples 10 to 12 without being subjected to the second treatment, and were stored in the same container as they were while the hydrogen storage temperature was maintained. To room temperature, followed by dehydrogenation by maintaining the pressure, temperature and time shown in Table 7, and then pulverizing to obtain a rare earth magnet powder having a uniform and fine recrystallized texture of rare earth intermetallic compound. It was made. Regarding Conventional Example 10, the nitriding treatment was continued at 450 ° C. for 50 hours in nitrogen gas. The residual magnetization and coercive force of this rare earth magnet powder were measured with a vibrating sample magnetometer, and the measurement results are shown in Table 8.

【0026】[0026]

【表7】 [Table 7]

【0027】[0027]

【表8】 [Table 8]

【0028】[0028]

【発明の効果】実施例10〜12および従来例10〜1
2を対比すると、実施例10〜12で得られた本発明原
料合金粉末10〜12を別の真空炉に移して脱水素処理
することにより得られた希土類磁石粉末の残留磁化およ
び保磁力は、従来例10〜12で得られた希土類磁石粉
末の残留磁化および保磁力に比べて優れていることが分
かる。
EFFECTS OF THE INVENTION Examples 10-12 and Conventional Examples 10-1
When comparing No. 2, the residual magnetization and coercive force of the rare earth magnet powder obtained by transferring the raw material alloy powders 10 to 12 of the present invention obtained in Examples 10 to 12 to another vacuum furnace and performing dehydrogenation treatment, It is understood that the rare earth magnet powders obtained in Conventional Examples 10 to 12 are excellent in residual magnetization and coercive force.

【0029】上述のように、この発明によると、R−T
合金、またはR−T−M合金をH2ガスまたはH2 ガス
と不活性ガスの混合雰囲気中で室温から昇温し、温度:
750〜1000℃に保持してH2 吸蔵処理しのち前記
水素吸蔵処理温度よりも低い100〜700℃の範囲内
の所定の温度に保持し、引き続いて室温まで冷却して、
合金素地中に平均粒径:0.002〜20μmの粒状の
Rの水素化物が分散している組織を有する原料合金を予
め作製して貯蔵しておき、原料合金を所定量取り出して
別の真空炉に装入し、温度:500〜1000℃に昇温
保持して脱H2処理すると、従来よりも磁気特性の優れ
た希土類磁石粉末を製造することができ、産業上すぐれ
た効果を奏するものである。
As mentioned above, according to the present invention, RT
The alloy or the R-T-M alloy is heated from room temperature in a H 2 gas or a mixed atmosphere of H 2 gas and an inert gas, and the temperature:
After holding at 750 to 1000 ° C. for H 2 occlusion treatment and then maintaining at a predetermined temperature within the range of 100 to 700 ° C. lower than the hydrogen storage treatment temperature, subsequently cooling to room temperature,
A raw material alloy having a structure in which granular R hydrides having an average particle diameter of 0.002 to 20 μm are dispersed in the alloy base is prepared in advance and stored, and a predetermined amount of the raw material alloy is taken out and another vacuum is produced. When charged in a furnace, heated at a temperature of 500 to 1000 ° C. and held to remove H 2 from it, rare earth magnet powder having better magnetic properties than before can be produced, which is an excellent industrial effect. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明原料合金の透過電子顕微鏡による金属組
織写真である。
FIG. 1 is a transmission electron microscope photograph of a metal structure of a raw material alloy of the present invention.

【図2】透過電子顕微鏡で組織観察を行った時の金属組
織の写生図である。
FIG. 2 is a drawing of a metallic structure when the structure is observed with a transmission electron microscope.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武下 拓夫 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuo Takeshita 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Central Research Laboratory, Mitsubishi Materiality Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R(Yを含む希土類元素)、T(遷移金
属)とすると、RとTからなる合金素地中に平均粒径:
0.002〜20μmの粒状のRの水素化物が分散して
いる組織を有することを特徴とする希土類磁石粉末を製
造するための原料合金。
1. When R (rare earth element containing Y) and T (transition metal) are used, the average particle diameter in the alloy base material composed of R and T:
A raw material alloy for producing a rare earth magnet powder, which has a structure in which 0.002 to 20 µm of granular R hydride is dispersed.
【請求項2】 R(Yを含む希土類元素)、T(遷移金
属)、さらにM(Si、Ga、Zr、Nb、Mo、H
f、Ta、W、Al、Ti、Vのうち1種または2種以
上)とすると、 RとTとMからなる合金素地中に平均粒径:0.002
〜20μmの粒状のRの水素化物が分散している組織を
有することを特徴とする希土類磁石粉末を製造するため
の原料合金。
2. R (rare earth element including Y), T (transition metal), and further M (Si, Ga, Zr, Nb, Mo, H).
f, Ta, W, Al, Ti, and V), the average particle size in the alloy base material consisting of R, T, and M: 0.002
A raw material alloy for producing a rare earth magnet powder, which has a structure in which granular R hydrides having a particle size of ˜20 μm are dispersed.
【請求項3】 RおよびTからなる合金、またはR、T
およびMからなる合金を、水素雰囲気中または水素と不
活性ガスの混合ガス雰囲気中、750〜1000℃の範
囲内の所定の温度に保持して水素吸蔵処理したのち前記
水素吸蔵処理温度よりも低い100〜700℃の範囲内
の所定の温度に保持し、引き続いて室温に冷却すること
を特徴とする希土類磁石粉末を製造するための原料合金
の製造方法。
3. An alloy consisting of R and T, or R, T
The alloy consisting of M and M is stored at a predetermined temperature in the range of 750 to 1000 ° C. in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas, and is subjected to hydrogen storage treatment, and then lower than the hydrogen storage treatment temperature. A method for producing a raw material alloy for producing a rare earth magnet powder, which is characterized by holding at a predetermined temperature within a range of 100 to 700 ° C. and subsequently cooling to room temperature.
JP6173717A 1994-07-01 1994-07-01 Material alloy for manufacturing rare earth magnet powder and its manufacture Withdrawn JPH0817613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6173717A JPH0817613A (en) 1994-07-01 1994-07-01 Material alloy for manufacturing rare earth magnet powder and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6173717A JPH0817613A (en) 1994-07-01 1994-07-01 Material alloy for manufacturing rare earth magnet powder and its manufacture

Publications (1)

Publication Number Publication Date
JPH0817613A true JPH0817613A (en) 1996-01-19

Family

ID=15965841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6173717A Withdrawn JPH0817613A (en) 1994-07-01 1994-07-01 Material alloy for manufacturing rare earth magnet powder and its manufacture

Country Status (1)

Country Link
JP (1) JPH0817613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107739949A (en) * 2017-10-20 2018-02-27 江西金力永磁科技股份有限公司 A kind of method of the rich phase alloy utilized for magnet scrap loop and waste and old magnet cycling and reutilization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107739949A (en) * 2017-10-20 2018-02-27 江西金力永磁科技股份有限公司 A kind of method of the rich phase alloy utilized for magnet scrap loop and waste and old magnet cycling and reutilization
CN107739949B (en) * 2017-10-20 2020-08-25 江西金力永磁科技股份有限公司 Phase-rich alloy for recycling magnet waste and method for recycling waste magnet

Similar Documents

Publication Publication Date Title
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
EP0556751B1 (en) Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
JP6561117B2 (en) Rare earth permanent magnet and manufacturing method thereof
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US5580396A (en) Treatment of pulverant magnetic materials and products thus obtained
JP7179799B2 (en) R-Fe-B system sintered magnet
JP3594326B2 (en) Fe-RE-B type magnet powder, sintered magnet, and method for preparing the same
US20070240790A1 (en) Rare-earth sintered magnet and method for producing the same
JP2024023206A (en) Anisotropic rare earth sintered magnet and manufacturing method thereof
JP2024020341A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
Park et al. Structure and decomposition behaviour of rapidly solidified Mg Nd X (X Al, Si) Alloys
JPH11100601A (en) Hydrogen storage alloy grain and its production
JPH0817613A (en) Material alloy for manufacturing rare earth magnet powder and its manufacture
JP2022119057A (en) Method for manufacturing rare earth permanent magnet
JPH0892705A (en) Raw material alloy for producing rare earth magnet powder and its production
JP2002516925A (en) Method for producing magnetic material and magnetic powder by forging
JP3562138B2 (en) Raw material alloy for manufacturing rare earth magnet powder
RU2174261C1 (en) Material for rare-earth permanent magnets and its production process
JP2623731B2 (en) Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JP3353461B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JPH0841502A (en) Production of alloy powder for rare-earth permanent magnet
JP3204025B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JPH06151127A (en) Manufacture of r-fe mother alloy powder for rare earth magnet
JP3562597B2 (en) Raw material alloy for producing rare earth magnet powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904