JPH0841502A - Production of alloy powder for rare-earth permanent magnet - Google Patents

Production of alloy powder for rare-earth permanent magnet

Info

Publication number
JPH0841502A
JPH0841502A JP6177014A JP17701494A JPH0841502A JP H0841502 A JPH0841502 A JP H0841502A JP 6177014 A JP6177014 A JP 6177014A JP 17701494 A JP17701494 A JP 17701494A JP H0841502 A JPH0841502 A JP H0841502A
Authority
JP
Japan
Prior art keywords
phase
hydrogen
alloy
amorphous
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6177014A
Other languages
Japanese (ja)
Inventor
Shiro Sasaki
史郎 佐々木
Hiroshi Hasegawa
寛 長谷川
Yoichi Hirose
洋一 広瀬
Masato Sagawa
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Intermetallics Co Ltd filed Critical Showa Denko KK
Priority to JP6177014A priority Critical patent/JPH0841502A/en
Publication of JPH0841502A publication Critical patent/JPH0841502A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide an R2Fe14B phase and to obtain the alloy powder for a rare-earth permanent magnet by applying rapid cooling with water, hydrogenation and dehydrogenation to a rare-earth element-iron-boron alloy of specified composition. CONSTITUTION:This alloy consists essentially of R (rare-earth elements including Y), T (transition metal contg. >=50 atomic % Fe) and B and contains 2-12% R, 5-20% B and the balance T. This alloy is subjected to a stage to form an amorphous or metastable crystalline structure or a structure contg. both structures, further to a stage to heat-treat the structure in an atmosphere contg. hydrogen to occlude the hydrogen and then to a stage to heat-treat the product in an atmosphere substantially free from hydrogen to discharge the hydrogen, and the alloy powder for the magnet is obtained. In this method, hydrogen is occluded in a structure not contg. R2T14B compd. phase to form the hydride of the R, and then the R2T14B compd. phase is formed in the hydrogen discharging stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類元素(Yを含む)
と遷移金属(Fe を必須とする)及びBを基本成分と
し、ボンド磁石に使用される希土類永久磁石用合金粉末
の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to rare earth elements (including Y).
The present invention relates to a method for producing an alloy powder for a rare earth permanent magnet, which comprises, as a basic component, a transition metal (essentially containing Fe) and B and is used in a bond magnet.

【0002】[0002]

【従来の技術】磁石粉末と樹脂とを混合し、押出成形、
圧縮成形あるいは射出成形により、樹脂ボンド永久磁石
(複合磁石)を得ることは周知のことである。特に最近
希土類合金系の優れた磁気特性を活かした希土類ボンド
永久磁石が注目されてきている。本発明は、かかる希土
類ボンド永久磁石に用いられる高磁気特性の磁石粉末で
ある希土類永久磁石用合金粉末の製造方法に関するもの
である。希土類と遷移金属を主成分とした既知の永久磁
石材料は、Sm-Co 系、Nd-Fe-B系が知られており、
その優れた特性から広範囲で使用されている。中でもN
d2Fe14 B化学量論組成よりも若干希土類リッチ側の組
成で、液体急冷と熱処理によって生成した数10nm程度の
微細なNd2Fe14 B相からなる組織を有する等方性Nd-
Fe-B系材料は、コストパフォーマンスに優れるため生
産量が急増している。
2. Description of the Related Art A mixture of magnet powder and resin is extruded,
It is well known to obtain a resin-bonded permanent magnet (composite magnet) by compression molding or injection molding. In particular, rare-earth bonded permanent magnets, which take advantage of the excellent magnetic properties of rare-earth alloys, have recently attracted attention. The present invention relates to a method for producing an alloy powder for a rare earth permanent magnet, which is a magnetic powder with high magnetic properties used for such a rare earth bonded permanent magnet. Known permanent magnet materials mainly composed of rare earths and transition metals include Sm-Co and Nd-Fe-B systems,
Widely used due to its excellent properties. Above all, N
Isotropic Nd- having a composition slightly finer than the stoichiometric composition of d 2 Fe 14 B and having a fine Nd 2 Fe 14 B phase of about several tens nm generated by liquid quenching and heat treatment.
The production amount of Fe-B materials is rapidly increasing due to their excellent cost performance.

【0003】近年、この等方性Nd-Fe-B系材料におい
てハード磁性相のNd2Fe14 B化学量論組成よりもNd
量を減少し、磁化並びに最大エネルギー積を増加させた
材料に関する報告が、次世代のボンド磁石材料として注
目を集めている。それらは大きく2つのグル−プに分け
られるが、どちらも従来材同様、液体急冷と熱処理によ
って100nm以下の微細組織を生成している。1つはN
d2Fe14 B化学量論組成よりも若干希土類量が少ない8
〜10at%程度の材料である。単なるNd 量の減少の
みではα−Fe が生成するため保磁力が激減するが、Z
r 、Nb 、V等の添加で保磁力低下の抑制に成功してい
る(例えばProceeding of the 10th. Int'l. Workshop
on RE Magnets, Kyoto Japan,315(1989))。以降この型
の材料を単純希土類減少型と呼ぶ。
In recent years, the Nd 2 Fe 14 B stoichiometric composition of the hard magnetic phase in this isotropic Nd-Fe-B system material is more than Nd.
A report on a material having a decreased amount and an increased magnetization and maximum energy product has been attracting attention as a next-generation bonded magnet material. They are roughly divided into two groups, both of which generate a fine structure of 100 nm or less by liquid quenching and heat treatment as in the conventional material. One is N
d 2 Fe 14 B Slightly less rare earth than stoichiometric composition 8
The material is about 10 at%. The coercive force is drastically reduced because α-Fe is generated only by decreasing the amount of Nd, but Z
The addition of r, Nb, and V has succeeded in suppressing the decrease in coercive force (eg, Proceeding of the 10th. Int'l. Workshop.
on RE Magnets, Kyoto Japan, 315 (1989)). Hereinafter, this type of material is referred to as a simple rare earth reduction type.

【0004】もう一つは、Nd2Fe14 B組成よりも極端
な低Nd 、高BであるNd4Fe7719近傍の組成に於
て、Nd2Fe14 B相とFe3B相からなる微細結晶粒組織
を生成し、1.2Tの極めて高い飽和磁化の発現に成功
している。(J.de Physique,C8,1988,P669-670参照)。
この材料の主相は磁気的にソフトなFe3B相であること
が、既存の永久磁石材料との大きな相違である。以降こ
の型の材料を低Nd 高B型と呼ぶ。しかし保磁力は3kO
e 程度であり、実用化には不十分であったため、以降幾
つかの保磁力増加に関する研究が発表されている。例え
ばNd3Dy2Fe70. 5 Co5Ga118.5の組成では保磁力6
kOe と良好な角型性が得られたと報告された(日本応用
磁気学会誌17,1993,185-190 )。ここではNd の一部の
Dy 置換によるハード相Nd2Fe14 B相の異方性磁界増
加とCo 、Ga の添加による組織微細化によって、磁性
の向上をもたらしたとしている。
[0004] Another, Nd 2 Fe 14 B extremely low Nd than composition, At a Nd 4 Fe 77 B 19 near the composition is a high B, and Nd 2 Fe 14 B phase and Fe 3 B phase It has succeeded in producing an extremely high saturation magnetization of 1.2T by producing the following fine grain structure. (See J. de Physique, C8, 1988, P669-670).
The main phase of this material is the magnetically soft Fe 3 B phase, which is a major difference from existing permanent magnet materials. Hereinafter, this type of material is referred to as a low Nd high B type. But the coercive force is 3 kO
Since it was about e, which was insufficient for practical use, several studies on increase in coercive force have been published since then. For example Nd 3 Dy 2 Fe 70. 5 Co 5 Ga 1 coercivity 6 in composition B 18.5
It was reported that good squareness was obtained with kOe (Journal of Applied Magnetics, Japan 17,1993,185-190). Here, it is said that the magnetic field is improved by increasing the anisotropic magnetic field of the hard phase Nd 2 Fe 14 B phase by substituting a part of Nd with Dy and by refining the structure by adding Co and Ga.

【0005】[0005]

【発明が解決しようとする課題】以上のように液体急冷
と熱処理による微細結晶粒組織を有する等方性Nd-Fe-
B系材料に於て、全く異なる2種類の方法で磁化の上昇
がなされたが、それぞれ以下のような課題を抱えてい
る。まず、前者の単純希土類減少型では、保磁力が8kO
e 以上であり、実用可能な能力を有しているが、従来材
に対する磁化増加量が少なく優位性が乏しい。
As described above, isotropic Nd-Fe- having a fine crystal grain structure by liquid quenching and heat treatment.
In the B-based material, the magnetization was increased by two completely different methods, but each has the following problems. First, in the former simple rare earth reduction type, the coercive force is 8 kO.
It is more than e and has a practical ability, but the amount of increase in magnetization is small compared to the conventional material and the superiority is poor.

【0006】一方、後者の低Nd 高B型であるが、非常
に大きな磁化を有する反面、保磁力は最高で6kOe と未
だ不十分であるため、実用化にはさらなる保磁力増加が
必要である。ハード相の異方性磁界増加と組織微細化以
外に保磁力を増加する最も簡単な方法は、ハード相の体
積率増加があげられる。しかし、これ以上にNd2Fe1 4
B相の体積率を増加する組成、つまりNd-Fe-B系3元
状態図上でNd2Fe14B相方向に近づく組成では、準安
定なNd2Fe233 相がNd2Fe14 B相に代って晶出す
るため、保磁力が低下することが知られている(J.Mag.
Mag.Mat. 80(1989)101-104)。なお、Nd2Fe233
からなる組織を十分加熱すると主にα−Fe とNd Fe4
4 相からなり、少量のNd2Fe14 B相を含む組織とな
るが、Nd2Fe14 B相の体積率が低いため、保磁力が1
kOe 以下であることは本発明者が確認している。このN
d2Fe233 相が晶出し、保磁力が発現しにくい組成域
を以降中間組成域と呼ぶ。図1にNd-Fe-B系3元状態
図のFe 近傍に上記各型磁石の組成域を示す。
On the other hand, although the latter is a low Nd high B type, it has a very large magnetization, but on the other hand, the coercive force is still insufficient at the maximum of 6 kOe, so that a further increase in coercive force is required for practical use. . The simplest method of increasing the coercive force other than increasing the anisotropic magnetic field of the hard phase and refining the structure is to increase the volume fraction of the hard phase. However, Nd 2 Fe 1 4
In the composition that increases the volume ratio of the B phase, that is, in the composition in which the Nd 2 Fe 14 B phase direction approaches in the Nd-Fe-B system ternary phase diagram, the metastable Nd 2 Fe 23 B 3 phase is Nd 2 Fe 14 It is known that the coercive force decreases because it crystallizes instead of the B phase (J.Mag.
Mag.Mat. 80 (1989) 101-104). It should be noted that when the structure composed of the Nd 2 Fe 23 B 3 phase is sufficiently heated, mainly α-Fe and Nd Fe 4
The structure is composed of the B 4 phase and contains a small amount of the Nd 2 Fe 14 B phase, but the coercive force is 1 because the volume ratio of the Nd 2 Fe 14 B phase is low.
The present inventor has confirmed that it is kOe or less. This N
The composition region in which the d 2 Fe 23 B 3 phase is crystallized and the coercive force is unlikely to be expressed is hereinafter referred to as an intermediate composition region. FIG. 1 shows the composition region of each of the above-mentioned type magnets near Fe in the Nd-Fe-B system ternary phase diagram.

【0007】[0007]

【課題を解決するための手段】本発明者は液体急冷と熱
処理によって生成する微細結晶粒組織を有する等方性N
d-Fe-B系材料に於て、上記の単純希土類減少型の磁化
不足と低Nd 高B型の保磁力不足を解決する方法とし
て、両者の中間的な組成を有する中間組成域での構成相
の適性化について検討した。その結果、非晶質からNd2
Fe233 相が晶出する温度域における吸水素、さらに
脱水素処理によって、Nd2Fe233 相が消失してNd2
Fe14 B相を生成する事実を見出した。本発明はこれら
の知見に基づいてなされたものである。すなわち、本発
明は基本成分を希土類−鉄−ボロンとし、液体急冷と熱
処理によって生成した微細結晶粒組織を有する等方性永
久磁石材料に於いて、準安定な希土類化合物の生成によ
って、ハード相であるR2 Fe14 B相を生成しないた
め、磁石とならなかった組成域に於いて、吸水素、脱水
素処理を施すことによりR2 Fe14 B相の生成を可能と
することにより上記課題を解決したものである。
DISCLOSURE OF THE INVENTION The inventor has found that isotropic N having a fine grain structure produced by liquid quenching and heat treatment.
As a method of solving the above-mentioned lack of magnetization of the simple rare earth-reducing type and the lack of coercive force of the low Nd and high B type in the d-Fe-B system material, a composition in an intermediate composition range having an intermediate composition between the two The suitability of phases was examined. As a result, amorphous to Nd 2
Nd 2 Fe 23 B 3 phase disappears due to hydrogen absorption and dehydrogenation treatment in the temperature range where the Fe 23 B 3 phase crystallizes, and Nd 2
The fact that Fe 14 B phase is generated was found. The present invention has been made based on these findings. That is, the present invention uses a rare earth-iron-boron as a basic component, and in an isotropic permanent magnet material having a fine crystal grain structure produced by liquid quenching and heat treatment, a metastable rare earth compound is produced to form a hard phase. Since a certain R 2 Fe 14 B phase is not generated, it is possible to generate the R 2 Fe 14 B phase by subjecting it to hydrogen absorption and dehydrogenation treatment in a composition range where it does not function as a magnet. It has been resolved.

【0008】次に本発明の構成を以下に詳細に記す。 (1) 組成 R(Yを含む希土類元素)とT(Fe が50at%以上
である遷移金属)並びにBを基本成分とし、 R:2〜12at% B:5〜20at% T:残部 であることを特徴とする。
Next, the constitution of the present invention will be described in detail below. (1) Composition R (rare earth element including Y), T (transition metal having Fe of 50 at% or more) and B as basic components, R: 2 to 12 at% B: 5 to 20 at% T: balance. Is characterized by.

【0009】Rは2〜12at%である。Rが2at%
以下であるとハード相であるR2 Fe14 B型化合物相の
体積率が不十分となり、保磁力の低下をもたらす。ま
た、12at%以上であるとソフト磁性相の体積率が減
少するため、磁化の低下をもたらす。R種はNd 、Pr
又はそれらの混合物が好ましい。また一部をDy 等の重
希土類で置換するとR2 Fe14 B相の異方性磁界が増加
するため、保磁力が増加する。しかし同時に磁化が低下
するため、添加量はRの50%程度までが適当である。
La は非晶質又は微細結晶粒組織の生成を容易にする効
果がある。しかしLa 添加によってR2 Fe14 B相の異
方性磁界が低下するため、過度の添加は保磁力の低下を
もたらす。したがってLa 添加量はRの25%程度まで
が適当である。Rのより好ましい範囲は5〜8at%で
ある。
R is 2 to 12 at%. R is 2 at%
When it is below, the volume ratio of the R 2 Fe 14 B type compound phase which is a hard phase becomes insufficient, resulting in a decrease in coercive force. On the other hand, if it is 12 at% or more, the volume ratio of the soft magnetic phase is reduced, resulting in a decrease in magnetization. R type is Nd, Pr
Or a mixture thereof is preferable. Also, if a part of it is replaced with a heavy rare earth such as Dy, the coercive force increases because the anisotropic magnetic field of the R 2 Fe 14 B phase increases. However, since the magnetization decreases at the same time, the addition amount is appropriate up to about 50% of R.
La has the effect of facilitating the formation of an amorphous or fine crystal grain structure. However, addition of La lowers the anisotropic magnetic field of the R 2 Fe 14 B phase, so excessive addition causes a decrease in coercive force. Therefore, an appropriate amount of La added is about 25% of R. The more preferable range of R is 5 to 8 at%.

【0010】Bは5〜20at%である。Bが5at%
以下であると、α−Fe の体積率が増加するため保磁力
が低下する。また、20at%以上であると磁化の低下
をもたらす。残部は遷移金属Tであり、その内50%以
上がFe である。Tの内Fe が50%以下では各磁気特
性が低下する。Fe 以外のTとしては30%以内のCo
添加が高温での磁気特性向上、組織微細化による保磁
力、角型性の向上に有効である。しかし、30%以上の
Co 添加は保磁力の低下を招く。その他少量のIVa 、V
a 族元素、さらにCr 、Cu 、Si 、Al 、Ga の添加
も組織微細化に有効であり、保磁力、角型性が向上す
る。
B is 5 to 20 at%. B is 5 at%
When it is below, the coercive force is lowered because the volume ratio of α-Fe is increased. Further, if it is 20 at% or more, the magnetization is lowered. The balance is the transition metal T, of which 50% or more is Fe. When Fe of T is 50% or less, each magnetic property is deteriorated. Co within 30% as T other than Fe
Addition is effective for improving magnetic properties at high temperatures, and improving coercive force and squareness due to the refinement of the structure. However, addition of 30% or more of Co causes a decrease in coercive force. Other small amount of IVa, V
Addition of Group a elements, and further Cr, Cu, Si, Al, and Ga is also effective for the refinement of the structure, and the coercive force and squareness are improved.

【0011】(2) 水素吸蔵処理前の組織 非晶質または準安定結晶相組織、あるいは非晶質と準安
定結晶相の両方を含む組織であることを特徴とする。水
素吸蔵処理前の組織限定理由は以下の通りである。この
組成域に於ては平衡状態ではR2 Fe14 B相の他に、主
にα−Fe 、RFe44 相によって構成される。そして
一般的な鋳造凝固法に依れば、それら各相は数μm以上
の結晶粒となっている。このような組織に対し以下に述
べる水素吸蔵、脱水素処理を実施しても、各希土類化合
物の分解、再結合のみ起り、希土類を含まないα−Fe
等は変化しないため、良好な磁気特性の発現は不可能で
ある。ハード相とソフト相が共存する永久磁石材料で
は、微細混合組織とすることで、量子力学的な磁気的相
互作用である交換相互作用によりソフト相がもたらす高
い磁化とハード相がもたらす高保磁力の両立が可能とな
っている。したがって均一な微細混合組織を生成するに
は、組成的に均一な状態である非晶質あるいは単相組織
から出発する必要がある。しかし、この組成域内には平
衡相が存在しないため、非晶質あるいは配合組成近傍の
準安定相、例えばR2 Fe233 相からなる組織とする
必要がある。
(2) Texture before hydrogen storage treatment It is characterized in that it is an amorphous or metastable crystalline phase texture, or a texture containing both amorphous and metastable crystalline phases. The reasons for limiting the structure before the hydrogen storage treatment are as follows. In this composition region, in the equilibrium state, in addition to the R 2 Fe 14 B phase, it is mainly composed of α-Fe and RFe 4 B 4 phases. Then, according to a general casting solidification method, each of these phases is a crystal grain of several μm or more. Even if hydrogen storage and dehydrogenation processes described below are performed on such a structure, only rare earth compound-containing α-Fe containing only rare earth compounds is decomposed and recombined.
Since, etc. do not change, good magnetic properties cannot be expressed. In a permanent magnet material in which a hard phase and a soft phase coexist, by having a fine mixed structure, it is possible to achieve both high magnetization caused by the soft phase and high coercive force caused by the hard phase due to exchange interaction, which is a quantum mechanical magnetic interaction. Is possible. Therefore, in order to form a uniform fine mixed structure, it is necessary to start from an amorphous or single phase structure which is a compositionally uniform state. However, since there is no equilibrium phase in this composition region, it is necessary to make the structure amorphous or a metastable phase near the compounding composition, for example, the R 2 Fe 23 B 3 phase.

【0012】本発明と同様のR−T−B系合金を水素吸
蔵、脱水素処理して等方性又は異方性の磁石粉を作製す
る方法が良く知られている(例えばProceeding of the
11th. Int'l. Workshop on RE Magnets,49(1990))。し
かしこれはNd2Fe14 B近傍の組成に於てNd2Fe14
相の分解、再結合反応をもたらすことで、組織を微細化
するものである。それに対し本発明の組成域はR2 Fe
14 Bよりも低希土、高B側であるため、上記のように
組成的に均一な非晶質相あるいは配合組成近傍の準安定
相からなる組織である必要がある。R2 Fe14 B相を含
む場合には必然的にα−Fe 、RFe44 相等を含むこ
とになり、水素吸蔵、脱水素処理によって各磁性相が微
細に混合する組織の生成は困難である。
A method for producing an isotropic or anisotropic magnet powder by hydrogen storage and dehydrogenation treatment of an RTB alloy similar to that of the present invention is well known (for example, Proceeding of the
11th. Int'l. Workshop on RE Magnets, 49 (1990)). However, this is due to Nd 2 Fe 14 B in the composition near Nd 2 Fe 14 B.
The structure is refined by causing the decomposition of phases and the recombination reaction. In contrast, the composition range of the present invention is R 2 Fe
Since it is on the side of rare earth and higher B than 14 B, it must have a structure composed of a compositionally uniform amorphous phase or a metastable phase near the compounding composition as described above. When the R 2 Fe 14 B phase is included, it necessarily includes the α-Fe, RFe 4 B 4 phase, etc., and it is difficult to generate a structure in which the respective magnetic phases are finely mixed by hydrogen absorption and dehydrogenation treatment. is there.

【0013】(3) 水素吸蔵処理前の組織生成方法 水素吸蔵処理前の非晶質または準安定結晶相組織、ある
いは非晶質と準安定結晶相の両方を含む組織の生成は、
液体急冷法、気相急冷法、メカニカルアロイ法等によっ
て可能である。その中で液体急冷法が特性、コストの両
面で優れている。気相急冷法は冷却速度が大きく、非晶
質生成能力では最も優れているが、生産性が極めて悪
い。メカニカルアロイ法は液体急冷法で非晶質化不可能
である合金での非晶質化が報告されており、大変有力な
方法であるが、本発明の合金組成では液体急冷法で十分
非晶質化は可能である。また、生産性も液体急冷法が格
段に優れている。
(3) Method of generating texture before hydrogen storage treatment The formation of an amorphous or metastable crystal phase texture before hydrogen storage treatment, or a texture containing both amorphous and metastable crystal phases is
Liquid quenching, vapor quenching, mechanical alloying, etc. are possible. Among them, the liquid quenching method is excellent in both characteristics and cost. The vapor-phase quenching method has a high cooling rate and is most excellent in the amorphous forming ability, but the productivity is extremely poor. The mechanical alloy method has been reported to be amorphized in an alloy that cannot be amorphized by the liquid quenching method, and is a very effective method, but the alloy composition of the present invention is sufficiently amorphous by the liquid quenching method. Quality can be improved. Also, the liquid quenching method is remarkably superior in productivity.

【0014】液体急冷法としてはロール法、アトマイズ
法、スプラットクエンチ法等が一般に良く知られてい
る。この中でロール法が冷却速度、処理量、均一性の全
てで優れており、本発明に最適な方法である。ロール法
の中でも双ロール法よりも単ロール法が冷却速度、作業
性の面で優れている。スプラットクエンチ法は最も高い
冷却速度が達成され、非晶質、又は準安定相組織の生成
能力は高いが、処理量が極端に少なく、同一試料内での
冷却速度の相違が大きいため、組織の均一性にも欠ける
ので実用的な生産には不向きである。アトマイズ法は処
理量、均一性は優れるが冷却速度が劣るため、本発明を
構成する組織の生成は困難である。
As a liquid quenching method, a roll method, an atomizing method, a splat quench method, etc. are generally well known. Among them, the roll method is excellent in all of the cooling rate, throughput, and uniformity, and is the most suitable method for the present invention. Among the roll methods, the single roll method is superior to the twin roll method in terms of cooling rate and workability. The splat quench method achieves the highest cooling rate and has a high ability to generate an amorphous or metastable phase structure, but the throughput is extremely small and the difference in cooling rate within the same sample is large, so Since it lacks uniformity, it is not suitable for practical production. The atomization method is excellent in throughput and uniformity, but is inferior in cooling rate, so that it is difficult to generate the structure constituting the present invention.

【0015】(4) 水素吸蔵、脱水素処理 上記合金を水素を含む雰囲気中で熱処理し水素を吸蔵す
る工程、さらに実質的に水素を含まない雰囲気中で熱処
理し水素を放出する工程からなることを特徴とする。以
下、それぞれの工程について説明する。
(4) Hydrogen storage and dehydrogenation treatment The process comprises the steps of heat-treating the above alloy in a hydrogen-containing atmosphere to store hydrogen, and further heat-treating in a substantially hydrogen-free atmosphere to release hydrogen. Is characterized by. Each step will be described below.

【0016】(A) 水素吸蔵 水素を含む雰囲気とは、純水素あるいは水素と不活性ガ
スの混合雰囲気であり、水素分圧によって適性処理条件
は変化する。処理温度は水素吸蔵によってRの水素化物
を生成する範囲内で低温の方が好ましい。処理温度の上
昇は組織の粗大化を招き、脱水素後の組織粗大化につな
がり磁気特性が低下する。同様に処理時間もRの水素化
物を生成する範囲内で短時間の方が好ましい。具体的に
は600〜750℃程度で30分以内が適当である。水
素吸蔵反応は発熱反応であるため、特に処理量が増加し
た際には速やかな反応熱の除去が、安定した試料の作製
には重要であり、蓄熱材の利用等が有効である。また、
雰囲気圧力の増加、He との混合によるガスの熱伝導度
増加も有効である。
(A) Hydrogen Storage The atmosphere containing hydrogen is pure hydrogen or a mixed atmosphere of hydrogen and an inert gas, and the appropriate treatment conditions change depending on the hydrogen partial pressure. The treatment temperature is preferably a low temperature within the range of producing R hydride by hydrogen absorption. The increase in the treatment temperature leads to the coarsening of the structure, which leads to the coarsening of the structure after dehydrogenation and the deterioration of the magnetic properties. Similarly, the treatment time is preferably as short as possible within the range in which R hydride is produced. Specifically, the temperature is preferably 600 to 750 ° C. and within 30 minutes. Since the hydrogen storage reaction is an exothermic reaction, it is important to quickly remove the reaction heat, especially when the amount of treatment increases, for the preparation of a stable sample, and the use of a heat storage material is effective. Also,
Increasing the atmospheric pressure and increasing the thermal conductivity of the gas by mixing with He are also effective.

【0017】この水素吸蔵反応によって例えばR2 Fe
233 近傍の組成においては、非晶質相(Am)は以下
のように変化する。 Am →(Am-H)→(R2 Fe233 )→(R2 Fe23
3-H)→R−H+α−Fe +Fe2B ここで括弧内の状態の有無は組成に依って変化するもの
と推定される。なお“−H”はそれぞれ水素固溶状態を
示す。
By this hydrogen storage reaction, for example, R 2 Fe
In the composition near 23 B 3 , the amorphous phase (Am) changes as follows. Am → (Am-H) → (R 2 Fe 23 B 3 ) → (R 2 Fe 23
B 3 -H) → RH + α-Fe + Fe 2 B Here, it is estimated that the presence or absence of the state in parentheses changes depending on the composition. In addition, "-H" shows a hydrogen solid solution state, respectively.

【0018】(B) 脱水素 上記水素吸蔵状態から水素が放出するのに、水素分圧が
十分に低い雰囲気中で加熱する。具体的には酸化防止、
速やかな水素放出の目的から0.1Torr以下の真空が好
ましい。処理温度は脱水素が可能な範囲内で低温の方が
好ましい。処理温度の上昇は水素吸蔵処理と同様に組織
の粗大化を招き、磁気特性が低下する。同様に処理時間
も脱水素が可能な範囲内で短時間の方が好ましい。具体
的には600〜750℃程度で30分以内が適当であ
る。
(B) Dehydrogenation In order to release hydrogen from the hydrogen storage state, heating is performed in an atmosphere having a hydrogen partial pressure sufficiently low. Specifically, antioxidant,
A vacuum of 0.1 Torr or less is preferable for the purpose of rapid hydrogen release. The treatment temperature is preferably low as long as dehydrogenation is possible. As in the hydrogen storage treatment, the increase in the treatment temperature leads to the coarsening of the structure, and the magnetic properties deteriorate. Similarly, the treatment time is preferably short within a range where dehydrogenation is possible. Specifically, the temperature is preferably 600 to 750 ° C. and within 30 minutes.

【0019】この脱水素反応によって、上記R2 Fe23
3 近傍の組成の水素吸蔵状態が以下のように変化す
る。 R−H+α−Fe +Fe2B → R2 Fe14 B+α−F
e +Fe2B このように水素吸脱処理によってR2 Fe233 相の消
失、ハード磁性相R2Fe14 B相の生成によって磁石化
が可能となる。一方、先に触れたようにR2 Fe233
近傍組成の非晶質を単に加熱した際の変化は以下の通り
である。 Am → R2 Fe233 → α−Fe +RFe44 +R
2 Fe14 B このようにR2 Fe14 B相を生成するものの生成量は極
少量であり、Rの大部分はRFe44 相生成に費やされ
る。したがって、水素吸脱処理と比較してR2Fe14
相の体積率が低いため保磁力が低下し、RFe44 相は
非磁性であるため磁化も低下する。
By this dehydrogenation reaction, the above R 2 Fe 23
The hydrogen storage state of the composition near B 3 changes as follows. R−H + α−Fe + Fe 2 B → R 2 Fe 14 B + α−F
e + Fe 2 B As described above, the hydrogen adsorption / desorption treatment allows the R 2 Fe 23 B 3 phase to disappear, and the hard magnetic phase R 2 Fe 14 B phase to be generated, whereby magnetization becomes possible. On the other hand, as I mentioned earlier, R 2 Fe 23 B 3
The changes when the amorphous material having the near composition is simply heated are as follows. Am → R 2 Fe 23 B 3 → α-Fe + RFe 4 B 4 + R
2 Fe 14 B As described above, the amount of R 2 Fe 14 B phase generated is extremely small, and most of R is spent for RFe 4 B 4 phase generation. Therefore, as compared with the hydrogen absorption / desorption treatment, R 2 Fe 14 B
Since the volume fraction of the phase is low, the coercive force is reduced, and the RFe 4 B 4 phase is non-magnetic, so the magnetization is also reduced.

【0020】なお、本発明の効果は中間組成域以外に於
ても確認されている。低Nd 高B組成ではNd のDy 置
換による保磁力増加は極めて有効な方法であるが、半分
程度以上の置換では相関係が変化し、準安定なR3 Fe
6214相の晶出を招き、R2Fe14 B相が不安定となる
ため保磁力が低下していた(J.Magn.Magn.Mat.83,1990,
228-230 )。しかし本発明によれば、以下のようにR3
Fe6214相を消失し、R2 Fe14 B相が生成されるた
め、磁石化が可能となる。 従来法:Am → Fe3B+Am → Fe3B+R3 Fe62
14 本発明:Am → Fe3B+Am → Fe3B+R−H+α
−Fe +Fe2B→ Fe3B+R2 Fe14
The effects of the present invention have been confirmed outside the intermediate composition range. Increasing the coercive force by substituting Dy for Nd is a very effective method for low Nd and high B composition, but the phase relation changes with more than half the substitution, resulting in metastable R 3 Fe.
62 B 14 phase was caused to crystallize and the R 2 Fe 14 B phase became unstable, resulting in a decrease in coercive force (J. Magn. Magn. Mat. 83, 1990,
228-230). However, according to the present invention, R 3
Since the Fe 62 B 14 phase disappears and the R 2 Fe 14 B phase is generated, magnetization becomes possible. Conventional method: Am → Fe 3 B + Am → Fe 3 B + R 3 Fe 62
B 14 Present invention: Am → Fe 3 B + Am → Fe 3 B + R−H + α
-Fe + Fe 2 B → Fe 3 B + R 2 Fe 14 B

【0021】[0021]

【作用】本発明は基本成分を希土類−鉄−ボロンとし、
液体急冷と熱処理によって生成した微細結晶粒組織を有
する等方性永久磁石材料に於いて、準安定な希土類化合
物の生成によって、ハード相であるR2 Fe14 B相を生
成しないため、磁石とならなかった組成域に於いて、吸
水素、脱水素処理を施すことによりR2 Fe14 B相の生
成を可能とした。
In the present invention, the basic component is rare earth-iron-boron,
In an isotropic permanent magnet material having a fine crystal grain structure formed by liquid quenching and heat treatment, a hard phase R 2 Fe 14 B phase is not generated due to the formation of a metastable rare earth compound, so that it is a magnet. In the composition range which did not exist, the hydrogen absorption and dehydrogenation treatments were performed to enable the formation of the R 2 Fe 14 B phase.

【0022】[0022]

【実施例】以下、実施例により本発明を更に詳細に説明
する。なお、各実施例、比較例の熱処理条件、磁気特性
を表1にまとめて示す。 実施例1 合金組成として原子%でNd7Fe79.3813.62 の組成と
なるようにアーク溶解炉を用いて合金塊を得た。液体急
冷は直径30cmのCu-Be 合金製ロールを有する単ロー
ル型装置で実施した。約7mm角に切出した該合金を内径
10mmの底部に直径0.5mmの穴(オリフィス)を有す
る石英管に投入し、1気圧中のAr 雰囲気中で高周波加
熱により溶解した後、0.2kgf /cm2 の吹出し圧で
ロール回転数3000rpm 、ノズルとロールの間隔0.
5mmで吐出させ、幅約2mm、厚さ約20μmのリボン状
試料を得た。得られたリボン状試料はXRDより、非晶
質であることを確認した。このリボン状試料を真空炉に
入れ、1気圧の水素雰囲気下10℃/min. の昇温速度で
725℃まで加熱し、30分間保持した。引続いて炉内
をロータリーポンプと油拡散ポンプで真空排気し、1×
10-4Torrの真空度になるまで約30分間そのままの温
度で保持した後、室温まで冷却して炉から取り出した。
取りだした試料はVSMにより磁気特性を測定したとこ
ろ、残留磁化110emu/g 、保磁力2.5kOe であっ
た。また、熱処理後の同試料のXRD測定結果より、R
2 Fe1 4 B型化合物相、α−Fe とFe2B相からなるこ
とが確認された。
The present invention will be described in more detail with reference to the following examples. Table 1 shows the heat treatment conditions and magnetic properties of each example and comparative example. Example 1 An alloy lump was obtained by using an arc melting furnace so that the composition of the alloy was Nd 7 Fe 79.38 B 13.62 in atomic%. The liquid quench was carried out in a single roll type apparatus having a Cu-Be alloy roll having a diameter of 30 cm. The alloy cut into about 7 mm square was put into a quartz tube having a hole (orifice) with a diameter of 0.5 mm at the bottom with an inner diameter of 10 mm, melted by high frequency heating in an Ar atmosphere at 1 atm, and then 0.2 kgf / With a blowing pressure of cm 2 , the roll rotation speed is 3000 rpm, and the distance between the nozzle and the roll is 0.
The sample was discharged at 5 mm to obtain a ribbon-shaped sample having a width of about 2 mm and a thickness of about 20 μm. It was confirmed by XRD that the obtained ribbon-shaped sample was amorphous. This ribbon-shaped sample was placed in a vacuum furnace, heated to 725 ° C. at a temperature rising rate of 10 ° C./min. Then, evacuate the furnace with a rotary pump and an oil diffusion pump, and
The temperature was maintained for about 30 minutes until a vacuum of 10 −4 Torr was reached, then cooled to room temperature and taken out of the furnace.
When the magnetic characteristics of the sample taken out were measured by VSM, the residual magnetization was 110 emu / g and the coercive force was 2.5 kOe. In addition, from the XRD measurement result of the same sample after heat treatment, R
It was confirmed to consist of 2 Fe 1 4 B type compound phase, α-Fe and Fe 2 B phase.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例2〜8 合金組成として表1の組成となるようにアーク溶解炉を
用いて合金塊を得た。次いで該各合金を用いて、実施例
1と同様の処理を実施したところ、表1のような特性を
示した。
Examples 2 to 8 Alloy lumps were obtained by using an arc melting furnace so that the alloy compositions shown in Table 1 were obtained. Next, when the same treatment as in Example 1 was carried out using each of the alloys, the characteristics shown in Table 1 were exhibited.

【0025】比較例1〜4 合金組成として表1の組成となるようにアーク溶解炉を
用いて合金塊を得た。次いで該各合金を用いて、実施例
1と同様の処理を実施したところ、表1のような特性を
示した。
Comparative Examples 1 to 4 Alloy lumps were obtained by using an arc melting furnace so that the alloy compositions shown in Table 1 were obtained. Next, when the same treatment as in Example 1 was carried out using each of the alloys, the characteristics shown in Table 1 were exhibited.

【0026】実施例9 実施例1と同じ組成の合金塊をアーク溶解炉で作成し
た。該合金塊をロール回転数のみ1000rpm とし、他
の条件は実施例1と同様に処理し、幅約2mm、厚さ約3
5μmのリボン状試料を得た。得られたリボン状試料は
XRDより、R2Fe233 型化合物相からなることが
確認された。次いで該各合金を用いて、実施例1と同様
の処理を実施し、VSMにより磁気特性を測定したとこ
ろ、残留磁化103emu/g 、保磁力1.9kOe であっ
た。
Example 9 An alloy ingot having the same composition as in Example 1 was prepared in an arc melting furnace. The alloy ingot was processed at a roll rotation speed of 1000 rpm, and the other conditions were processed in the same manner as in Example 1 to obtain a width of about 2 mm and a thickness of about 3
A 5 μm ribbon-shaped sample was obtained. It was confirmed by XRD that the obtained ribbon-shaped sample was composed of the R 2 Fe 23 B 3 type compound phase. Next, the same treatment as in Example 1 was performed using each of the alloys, and the magnetic characteristics were measured by VSM. The residual magnetization was 103 emu / g and the coercive force was 1.9 kOe.

【0027】比較例5 実施例1で作成した非晶質からなる液体急冷後のリボン
状試料を真空中のみで実施例1と同様の昇温、保持条件
で熱処理したところ保磁力は0.1kOe 以下であった。
また、XRDより同試料はR2 Fe233 型化合物相か
らなることが確認され た。
Comparative Example 5 The ribbon-shaped sample prepared by quenching the amorphous liquid prepared in Example 1 was heat-treated in vacuum only under the same temperature rising and holding conditions as in Example 1. The coercive force was 0.1 kOe. It was below.
Further, it was confirmed by XRD that the sample consisted of an R 2 Fe 23 B 3 type compound phase.

【0028】比較例6 実施例1で作成した非晶質からなる液体急冷後のリボン
状試料を実施例1と同様の方法で水素中熱処理を実施し
た後、そのまま冷却して取り出したところ保磁力は0.
1kOe 以下であった。また、XRDより同試料はRの水
素化物、α−Fe とFe2B型化合物相からなることを確
認した。
Comparative Example 6 A ribbon-shaped sample prepared by quenching the amorphous liquid prepared in Example 1 was heat-treated in hydrogen in the same manner as in Example 1 and then cooled and taken out. Is 0.
It was less than 1 kOe. Further, it was confirmed by XRD that the sample consisted of R hydride, α-Fe and Fe 2 B type compound phase.

【0029】比較例7 実施例1と同じ組成の合金塊をアーク溶解炉で作成し
た。XRDより該合金塊はα−Fe 、RFe44 型化合
物相と若干のR2 Fe14 B型化合物相からなることを確
認した。該合金塊をジョークラッシャーで数mm程度に粉
砕した後、実施例1と同様の水素吸脱処理を実施したと
ころ、保磁力は0.1kOe 以下であった。また、XRD
より同試料はα−Fe 、Fe2B型化合物相、RFe44
型化合物相と若干のR2 Fe14 B型化合物相からなるこ
とを確認した。
Comparative Example 7 An alloy ingot having the same composition as in Example 1 was prepared in an arc melting furnace. From XRD, it was confirmed that the alloy ingot consisted of α-Fe, RFe 4 B 4 type compound phase and some R 2 Fe 14 B type compound phase. The alloy ingot was crushed to several mm with a jaw crusher and then subjected to the same hydrogen adsorption / desorption treatment as in Example 1, and the coercive force was 0.1 kOe or less. Also, XRD
From the same sample, α-Fe, Fe 2 B type compound phase, RFe 4 B 4
It was confirmed that it consisted of the type compound phase and some R 2 Fe 14 B type compound phase.

【0030】[0030]

【発明の効果】本発明によれば基本成分を希土類−鉄−
ボロンとし、液体急冷と熱処理によって生成した微細結
晶粒組織を有する等方性永久磁石材料に於いて、準安定
な希土類化合物の生成によって、ハード相であるR2
e14 B相を生成しないため、磁石とならなかった組成域
に於いて、吸水素、脱水素処理を施すことによりR2
e14 B相を生成し、高い磁化と保磁力の両立を可能とし
た。
According to the present invention, the basic component is a rare earth-iron-
In an isotropic permanent magnet material, which is made of boron and has a fine crystal grain structure formed by liquid quenching and heat treatment, a hard phase R 2 F is generated due to the formation of a metastable rare earth compound.
Since e 14 B phase is not generated, R 2 F can be obtained by subjecting it to hydrogen absorption and dehydrogenation in the composition range where it did not become a magnet.
e 14 B phase is generated, and it is possible to achieve both high magnetization and coercive force.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明と従来の等方性永久磁石材料の組成域を
Nd-Fe-B系3元状態図上に示した説明図である。
FIG. 1 is an explanatory diagram showing composition regions of an isotropic permanent magnet material of the present invention and a conventional isotropic phase diagram of Nd-Fe-B system.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 1/06 (72)発明者 長谷川 寛 埼玉県秩父市大字下影森1505番地 昭和電 工株式会社秩父研究所内 (72)発明者 広瀬 洋一 埼玉県秩父市大字下影森1505番地 昭和電 工株式会社秩父研究所内 (72)発明者 佐川 眞人 京都府京都市西京区松室追上町22番地の1 インターメタリックス株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01F 1/053 1/06 (72) Inventor Hiroshi Hasegawa 1505 Shimokagemori, Chichibu-shi, Saitama Showaden Kochi Co., Ltd. (72) Inventor Yoichi Hirose, 1505 Shimokagemori, Chichibu, Saitama Prefecture Showa Denko Co., Ltd., Chichibu Research Institute (72) Inventor, Masato Sagawa 1 of 22 Matsumuroage-cho, Nishikyo-ku, Kyoto Prefecture Intermetallics Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R(Yを含む希土類元素)とT(Fe が
50at%以上である遷移金属)並びにBを基本成分と
し、 R:2〜12at% B:5〜20at% T:残部 からなる合金の非晶質または準安定結晶相組織、あるい
は非晶質と準安定結晶相の両方を含む組織を生成する工
程と、これを水素を含む雰囲気中で熱処理し水素を吸蔵
する工程と、さらに実質的に水素を含まない雰囲気中で
熱処理し水素を放出する工程からなることを特徴とする
希土類永久磁石用合金粉末の製造法。
1. R (a rare earth element including Y), T (a transition metal having Fe of 50 at% or more) and B as basic components, and R: 2 to 12 at% B: 5 to 20 at% T: the balance. A step of producing an amorphous or metastable crystalline phase structure of the alloy, or a structure containing both an amorphous and metastable crystalline phase; and a step of heat treating this in an atmosphere containing hydrogen to occlude hydrogen, A method for producing an alloy powder for a rare earth permanent magnet, which comprises a step of releasing hydrogen by heat treatment in an atmosphere containing substantially no hydrogen.
【請求項2】 実質的にR214B型化合物相を含まな
い組織に水素を吸蔵させRの水素化物を生成し、水素を
放出する工程においてR214B型化合物相を含む組織
を生成することを特徴とする請求項1記載の希土類永久
磁石用合金粉末の製造法。
2. A tissue containing an R 2 T 14 B-type compound phase in the step of occluding hydrogen in a tissue substantially not containing the R 2 T 14 B-type compound phase to generate a hydride of R and releasing hydrogen. The method for producing an alloy powder for rare earth permanent magnets according to claim 1, wherein
【請求項3】 非晶質または準安定結晶相組織、あるい
は非晶質と準安定結晶相の両方を含む組織を生成する工
程が、液体急冷法であることを特徴とする請求項1又は
2に記載の希土類永久磁石用合金粉末の製造法。
3. The method according to claim 1, wherein the step of producing an amorphous or metastable crystalline phase structure or a structure containing both an amorphous and metastable crystalline phase is a liquid quenching method. The method for producing an alloy powder for rare earth permanent magnets according to item 1.
JP6177014A 1994-07-28 1994-07-28 Production of alloy powder for rare-earth permanent magnet Pending JPH0841502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6177014A JPH0841502A (en) 1994-07-28 1994-07-28 Production of alloy powder for rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6177014A JPH0841502A (en) 1994-07-28 1994-07-28 Production of alloy powder for rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH0841502A true JPH0841502A (en) 1996-02-13

Family

ID=16023661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6177014A Pending JPH0841502A (en) 1994-07-28 1994-07-28 Production of alloy powder for rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH0841502A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080921A (en) * 2000-09-07 2002-03-22 Sumitomo Special Metals Co Ltd Raw material alloy for iron-based rare earth alloy magnet and its production method
JP2002275598A (en) * 2001-03-16 2002-09-25 Showa Denko Kk Normal/defective judgement method for rare earth magnet alloy ingot, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
WO2003085147A1 (en) * 2002-04-09 2003-10-16 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
WO2004003245A1 (en) * 2002-06-28 2004-01-08 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080921A (en) * 2000-09-07 2002-03-22 Sumitomo Special Metals Co Ltd Raw material alloy for iron-based rare earth alloy magnet and its production method
JP2002275598A (en) * 2001-03-16 2002-09-25 Showa Denko Kk Normal/defective judgement method for rare earth magnet alloy ingot, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
JP4723741B2 (en) * 2001-03-16 2011-07-13 昭和電工株式会社 Rare earth magnet alloy ingot quality determination method, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
WO2003085147A1 (en) * 2002-04-09 2003-10-16 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
WO2004003245A1 (en) * 2002-06-28 2004-01-08 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet

Similar Documents

Publication Publication Date Title
US5908513A (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US6413327B1 (en) Nitride type, rare earth magnet materials and bonded magnets formed therefrom
JP3724513B2 (en) Method for manufacturing permanent magnet
US5580396A (en) Treatment of pulverant magnetic materials and products thus obtained
JP4687662B2 (en) Iron-based rare earth alloy magnet
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JP3801456B2 (en) Iron-based rare earth permanent magnet alloy and method for producing the same
JPH10265915A (en) Production of microcruystalline permanent magnet alloy and permanent magnet powder
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH0841502A (en) Production of alloy powder for rare-earth permanent magnet
JPH07188704A (en) Alloy powder for rare earth permanent magnet and its production
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JPS60176202A (en) Iron-rare earth-nitrogen permanent magnet
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH07130522A (en) Manufacture of permanent magnet
JP4071911B2 (en) Rare earth / iron / boron magnets and method for producing the same
JP4650218B2 (en) Method for producing rare earth magnet powder
JP3773484B2 (en) Nano composite magnet
JP3815983B2 (en) Rare earth magnet and manufacturing method thereof
JP2002064009A (en) Iron-based rare earth alloy magnet and method of manufacturing the same
JPH0931608A (en) High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JPH11340020A (en) Magnet material, its manufacture, and bonded magnet using the same
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JPH02192102A (en) Permanent magnet