EP1081572B1 - Versorgungsschaltung mit Spannungswähler - Google Patents

Versorgungsschaltung mit Spannungswähler Download PDF

Info

Publication number
EP1081572B1
EP1081572B1 EP00410109A EP00410109A EP1081572B1 EP 1081572 B1 EP1081572 B1 EP 1081572B1 EP 00410109 A EP00410109 A EP 00410109A EP 00410109 A EP00410109 A EP 00410109A EP 1081572 B1 EP1081572 B1 EP 1081572B1
Authority
EP
European Patent Office
Prior art keywords
transistor
power supply
voltage
supply
supply circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00410109A
Other languages
English (en)
French (fr)
Other versions
EP1081572A1 (de
Inventor
Claude Renous
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1081572A1 publication Critical patent/EP1081572A1/de
Application granted granted Critical
Publication of EP1081572B1 publication Critical patent/EP1081572B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/59Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load

Definitions

  • the present invention relates to circuits supply, and in particular the supply circuits which receive multiple supply voltages and which select the highest supply voltage.
  • Such circuits are used, for example, in a rechargeable battery to power the device, if applicable, from the battery or from a power source external.
  • Figure 1 shows a power circuit conventional receiving two supply voltages V1 and V2 out of two respective supply lines L1 and L2, and providing a voltage Vdd on an output node S.
  • the two lines two are connected to the output node P channel MOS transistors (PMOS), T1 and T2 respectively.
  • a comparator A1 has two inputs connected respectively to the two supply lines so that the output of comparator A1 is at a low level when the voltage V1 is greater than the voltage V2 and at a high level otherwise.
  • the exit of comparator A1 is directly connected to the grid of transistor T1, and is connected to the gate of transistor T2 by through an inverter I1.
  • Such supply circuits are used when we want to obtain a low voltage drop between voltage V1 or V2 and the voltage Vdd. In cases where one can admit a significant voltage drop, we use diodes instead of transistors T1 and T2.
  • FIG. 2 represents the evolution of the gate voltages V G1 and V G2 of the transistors T1 and T2 for an example of relative variation of the two supply voltages V1 and V2.
  • the voltage V1 is constant, while the voltage V2 crosses the voltage V1 by decreasing, then increasing. It is assumed that the comparator A1 and the inverter I1 are both supplied between the voltage Vdd and the ground.
  • the voltage V A1 supplied by the comparator is equal to the voltage Vdd.
  • the gates G1 and G2 are respectively at the voltage Vdd and at ground. It follows that the transistor T2 conducts and that the transistor T1 is blocked, the transistor T2 transmitting the voltage V2 on the output node S.
  • the voltage V A1 supplied by the comparator is grounded, where it follows that the transistor T2 is blocked and that the transistor T1 conducts, the transistor T1 transmitting the voltage V1 on the output node S.
  • the range ⁇ ⁇ V is a range where the comparator, by nature imperfect, behaves linearly.
  • the comparator behaves linearly between instants t1 and t2 where the voltage V2 gradually decreases from the voltage V1 + ⁇ V to the voltage V1- ⁇ V and the voltage V G1 progressively changes from the voltage Vdd to ground.
  • the inverter I1 comprises a PMOS transistor and an N channel MOS transistor (NMOS).
  • the threshold voltage of the PMOS transistor of the inverter I1 is called V TH , which voltage is also that of the PMOS transistors T1 and T2.
  • the threshold voltage of the NMOS transistor is called V TL .
  • the voltage V G1 is equal to the voltage Vdd-V TH , and at an instant t4 the voltage V G1 reaches the voltage V TL .
  • the gate voltage V G2 at the output of the inverter I1, progressively changes between a zero level at time t3 and the level Vdd at time t4.
  • the transistor T1 begins to conduct when its gate voltage V G1 reaches the voltage Vdd-V TH , that is to say at time t3.
  • the gate voltage V G2 reaches the voltage Vdd-V TH .
  • the transistor T2 stops driving at time t5.
  • the sources supply producing the voltages V1 and V2 are short-circuited, which is not desirable.
  • the short circuit of power sources lowers the supply voltage the higher at the other supply voltage and the comparator A1 can no longer determine which of the voltages is the highest. The selection circuit power supply is then blocked in an intermediate state and no longer performs its function properly.
  • EP 0838745 describes a voltage regulator comprising means (11) for automatically selecting the highest supply voltage (VM, VL) among voltages present at two input terminals (EM, EL). This document does not plan to avoid a short circuit of the lines when the two voltages present at the terminals input are equal to each other and greater than the voltage of the output terminal.
  • An object of the present invention is to provide a circuit for selecting the higher of two voltages or more, capable of operating without short circuiting power lines.
  • the present invention provides a supply circuit receiving multiple supply voltages on supply lines respective, each of which is connected to a respective switch, at least one of the switches being a first MOS transistor of a first type of conductivity, connected between the line associated power supply and a common output terminal, which includes, for said at least one switch: a second transistor, of the first type of conductivity, connected between the gate of the first transistor and a supply node maintained at the highest of the other supply voltages, a third transistor, of a second type of conductivity, less conductive to the on state that the second transistor, connected between the gate of the first transistor and a reference potential, and a fourth transistor, of the first type of conductivity, the source is connected to the supply line associated with the switch and whose drain is connected to the reference potential through a power source, and at the grids of second, third and fourth transistors.
  • said current source is a fifth transistor, from the second type of conductivity, the grid of which is connected to said node Power.
  • the supply circuit has two supply lines and two respective switches, the power supply node associated with a switch being connected directly to the power line associated with the other switch.
  • the supply circuit comprises three supply lines, a sixth transistor connected between the third line and the power node and whose grid is connected to the second supply line, and a seventh transistor connected between the second supply line and the power node and whose grid is connected to the third feeder.
  • At least one of the switches is a diode.
  • the second transistor has a width / length ratio of 20/2
  • the third transistor has a W / L ratio of 3/25.
  • the fourth transistor has a W / L ratio of 40/2
  • the fifth transistor has a W / L ratio of 3/50.
  • the first and second types of conductivity are respectively P and N.
  • a comparator is used separate to control each of the T1 and T2 transistors, the characteristics of each of the comparators being chosen from so as to eliminate the range of simultaneous conduction.
  • FIG. 3 represents a supply circuit according to the present invention, receiving two supply voltages V1 and V2 on two respective supply lines L1 and L2.
  • the supply lines are, as in Figure 1, respectively connected to an output node S by PMOS transistors T1 and T2.
  • Transistors T1 and T2 are controlled by two comparators respective A1 and A2 of particular structure.
  • Comparator A1 includes a PMOS transistor T3 whose source is connected to the line L2, and whose drain, constituting the output of the comparator, is connected to grid G1.
  • the drain of an NMOS transistor T4 is connected to grid G1 and its source is connected to a potential of reference, here the mass.
  • the grids of transistors T3 and T4 are connected to the drain and the gate of a PMOS transistor T5 connected as a diode whose source is connected to line L1 and whose the drain is connected to ground via a source of current R1.
  • the comparator A2 associated with the transistor T2 comprises T6, T7 and T8 transistors and a homologous R2 current source respective transistors T3, T4 and T5 and the source of current R1.
  • the sources of transistors T6 and T8 are connected lines L1 and L2 respectively, i.e. inverted with respect to the connection of their T3 counterparts and T5.
  • comparator A1 is behaves like a conventional comparator of the type input by sources.
  • the output of comparator A1 is brought to a near voltage of voltage V2 and transistor T1 is open.
  • the comparator output is brought to a voltage close to ground and transistor T1 is closed.
  • the comparator A2 has homologous functioning.
  • a solution to obtain a transistor T4 aux desired characteristics is to lengthen its grid relative to the gate of transistor T3.
  • the transistor T7 of the comparator A2 has the same properties as the transistor T4, so that the operation of comparator A2 is homologous to that of comparator A1.
  • the transistors T1 and T2 are both open when the voltages V1 and V2 are equal and there is no simultaneous conduction.
  • the present invention can also be adapted to a power circuit receiving more than two voltages Power.
  • Figure 4 schematically represents a circuit receiving three voltages V1, V2 and V3 respectively out of three supply lines L1, L2 and L3.
  • Line L1 is connected to the terminal S by a PMOS transistor T1 controlled by a comparator A1 like the one in figure 3, connected to compare the voltage V1 at a voltage VN present on a node N.
  • the node N is connected to lines L3 and L2 by two PMOS transistors T10 and T11 respective whose grids are respectively connected to lines L2 and L3. With this configuration, node N receives the higher voltages V2 and V3.
  • To prevent conduction simultaneous transistors T10 and T11 does not cause problems mentioned above, these are chosen very resistive.
  • Figure 4 we have only shown Figure 4 as comparator A1.
  • Two A2 peer comparators and A3 can be connected to control two T2 transistors and T3 on lines L2 and L3.
  • comparator A1 The operation of comparator A1 is substantially the same as that described in relation to FIG. 3. Depending on whether the voltage V1 is lower or higher than voltage VN, the transistor T1 is open or closed. Likewise, when the voltage V1 is equal to the voltage VN, the transistor T1 is open so avoid simultaneous conduction with possible transistors homologous to transistor T1 on lines L2 and L3.
  • the current source R1 of Figure 3 is replaced here by an NMOS transistor T9 whose grid is controlled by the voltage VN. This reduces the current consumption of comparator A1. If the voltage V1 is the maximum voltage, the voltages V2 and V3 (therefore VN) are canceled in practice, which causes the blocking of transistor T4 and therefore the cancellation of the current flowing through it, which is not the case with a conventional R1 current source such as a resistance.
  • transistor T9 is intended to be crossed by a current of the same order as the current which crosses transistor T4.
  • the gate of transistor T9 will have preferably a W / L ratio of 3/50.
  • the present invention is capable of various variants and modifications which will appear to the man of the job.
  • one of the supply voltages is relatively high compared to the voltage drop in a diode, we can replace the transistor connecting this voltage supply to the output terminal S by a diode such as the diode D3 shown in Figure 4.
  • a supply circuit has been described in FIG. 4 receiving three supply voltages, but those skilled in the art will easily adapt the present invention to a circuit supply receiving more than three supply voltages.
  • the present application has described supply circuits receiving supply voltages positive, in which the supply lines are connected to the output terminal by PMOS transistors.
  • the skilled person will easily adapt the present invention to a circuit supply receiving negative supply voltages, in which the supply lines are connected to the terminal output by NMOS transistors.
  • the transistors PMOS and NMOS in Figures 3 and 4 will be replaced by transistors of the opposite type.

Claims (8)

  1. Eine Leistungsversorgungsschaltung, die mehrere Versorgungsspannungen (V1, V2) auf entsprechenden Leistungsversorgungsleitungen (L1, L2) empfängt, wobei jede der Leistungsversorgungsleitungen mit einem entsprechenden Schalter (T1, T2) verbunden ist, wobei ein erster Schalter und/oder ein zweiter Schalter aus einem erstem MOS Transistor (T1, T2) eines ersten Leitfähigkeitstyp ausgebildet ist, und zwar verbunden zwischen der zugehörigen Leistungsversorgungsleitung (L1) und einem gemeinsamen Ausgangsanschluss (S), wobei
       jeder erste Transistor durch einen Komparator (A1, A2) gesteuert wird, wobei ferner Folgendes vorgesehen ist:
    ein zweiter Transistor (T3) des ersten Leitfähigkeitstyps, verbunden zwischen dem Gate des ersten Transistors und einem Leistungsversorgungsknoten (N), der auf der höchsten der anderen Versorgungsspannungen gehalten wird,
    ein dritter Transistor (T4) eines zweiten Leitfähigkeitstyps, der in dem Ein-Zustand weniger leitfähig ist, als der zweite Transistor, und zwar geschaltet zwischen das Gate des ersten Transistors und ein Bezugspotential, und
    ein vierter Transistor (T5) des ersten Leitfähigkeitstyps, dessen Source mit der Leistungsversorgungsleitung assoziiert mit dem Schalter verbunden ist und dessen Drain mit dem Bezugspotential über eine Stromquelle (R1) verbunden ist und ferner mit den Gates der zweiten, dritten und vierten Transistoren.
  2. Leistungsversorgungsschaltung nach Anspruch 1, dadurch gekennzeichnet, dass die erwähnte Stromquelle einen fünften Transistor (T9) des zweiten Leitfähigkeitstyps ist, wobei dessen Gate mit dem erwähnten Leistungsversorgungsknoten (N) verbunden ist.
  3. Leistungsversorgungsschaltung nach Anspruch 2, dadurch gekennzeichnet, dass zwei Leistungsversorgungsleitungen (L1, L2) und zwei entsprechende Schalter (T1, T2) vorgesehen sind, wobei der Leistungsversorgungsknoten assoziiert mit einem der Schalter direkt mit der Leistungsversorgungsleitung assoziiert mit dem anderen Schalter verbunden ist.
  4. Leistungsversorgungsschaltung nach Anspruch 2, dadurch gekennzeichnet, dass sie Folgendes aufweist:
    drei Leistungsversorgungsleitungen (L1, L2, L3), und dass
    jeder Steuerkomparator eines ersten Transistors assoziiert mit einer ersten Leistungsversorgungsleitung Folgendes aufweist:
    einen sechsten Transistor (T10) geschaltet zwischen eine zweite Leistungsversorgungsleitung (L3) und den Leistungsversorgungsknoten und mit seinem Gate verbunden, mit einer dritten Leistungsversorgungsleitung (L2), und
    einen siebten Transistor (T11 ) verbunden zwischen der dritten Leistungsversorgungsleitung (L2) und dem Leistungsversorgungsknoten und mit seinem Gate verbunden mit der zweiten Leistungsversorgungsleitung (L3)
  5. Leistungsversorgungsschaltung nach Anspruch 4, dadurch gekennzeichnet, dass mindestens einer der Schalter eine Diode (D3) ist.
  6. Leistungsversorgungsschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
       der zweite Transistor (T3) ein Breiten- zu Längenverhältnis (W/L) von 20/2 besitzt und dass,
       der dritte Transistor (T4) ein W/L-Verhältnis von 3/25 besitzt.
  7. Leistungsversorgungsschaltung nach Anspruch 6, dadurch gekennzeichnet, dass der vierte Transistor (T5) ein W/L-Verhältnis von 40/2 besitzt, dass
       der fünfte Transistor (T9) ein W/L-Verhältnis von 3/50 besitzt.
  8. Leistungsversorgungsschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten und zweiten Leitfähigkeitstypen P bzw. N sind.
EP00410109A 1999-08-31 2000-08-30 Versorgungsschaltung mit Spannungswähler Expired - Lifetime EP1081572B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9911033 1999-08-31
FR9911033A FR2798014B1 (fr) 1999-08-31 1999-08-31 Circuit d'alimentation a selecteur de tension

Publications (2)

Publication Number Publication Date
EP1081572A1 EP1081572A1 (de) 2001-03-07
EP1081572B1 true EP1081572B1 (de) 2004-11-03

Family

ID=9549510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00410109A Expired - Lifetime EP1081572B1 (de) 1999-08-31 2000-08-30 Versorgungsschaltung mit Spannungswähler

Country Status (4)

Country Link
US (1) US6566935B1 (de)
EP (1) EP1081572B1 (de)
DE (1) DE60015464D1 (de)
FR (1) FR2798014B1 (de)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW548613B (en) * 2001-11-23 2003-08-21 Winbond Electronics Corp Multiple power source control circuit
US6744151B2 (en) * 2002-09-13 2004-06-01 Analog Devices, Inc. Multi-channel power supply selector
US20040066217A1 (en) * 2002-10-02 2004-04-08 Daniels David G. Apparatus and method for providing a signal having a controlled transition characteristic
JP2006513645A (ja) * 2003-01-17 2006-04-20 フリースケール セミコンダクター インコーポレイテッド 電力管理システム
US6803806B2 (en) * 2003-03-10 2004-10-12 Winbond Electronics Corporation Circuit and method for a circuit of selecting reference voltage
US7053691B2 (en) * 2003-05-06 2006-05-30 Hewlett-Packard Development Company, L.P. Electrical circuit for selecting a desired power source
US7036028B2 (en) * 2003-05-13 2006-04-25 Bae Systems Controls, Inc. Power management system including a variable voltage link
US6879142B2 (en) * 2003-08-20 2005-04-12 Broadcom Corporation Power management unit for use in portable applications
TWI244327B (en) * 2004-03-26 2005-11-21 Asustek Comp Inc Electronic device and control method used therein
DE102004022425B4 (de) * 2004-05-06 2006-12-28 Infineon Technologies Ag Integrierte Schaltungsanordnung zur Stabilisierung einer Spannung
US7176749B2 (en) * 2004-09-24 2007-02-13 Texas Instruments Incorporated Avoiding excessive cross-terminal voltages of low voltage transistors due to undesirable supply-sequencing in environments with higher supply voltages
US8013473B2 (en) * 2006-09-01 2011-09-06 Atmel Corporation Detector based combination regulator
US7635925B2 (en) * 2006-10-04 2009-12-22 Atmel Corporation Analog combination regulator
FR2916288B1 (fr) * 2007-05-18 2009-08-21 Commissariat Energie Atomique Dispositif d'alimentation d'un circuit electronique et circuit electronique
CN101465559A (zh) * 2007-12-19 2009-06-24 鸿富锦精密工业(深圳)有限公司 双重电源转换电路
US8164378B2 (en) * 2008-05-06 2012-04-24 Freescale Semiconductor, Inc. Device and technique for transistor well biasing
US20100109440A1 (en) * 2008-10-31 2010-05-06 Honeywell International Inc. Single fault tolerant isolated dual bus power input circuits and systems
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
US8183911B2 (en) * 2009-10-19 2012-05-22 Stmicroelectronics International N.V. High voltage tolerance of external pad connected MOS in power-off mode
JP2011150482A (ja) * 2010-01-20 2011-08-04 Sanyo Electric Co Ltd 電源回路
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
EP3376667B1 (de) 2010-04-19 2021-07-28 Qorvo US, Inc. Energieverwaltungssystem mit pseudo-hüllkurvenfolger
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
US8258853B2 (en) * 2010-06-14 2012-09-04 Ememory Technology Inc. Power switch circuit for tracing a higher supply voltage without a voltage drop
WO2012047738A1 (en) 2010-09-29 2012-04-12 Rf Micro Devices, Inc. SINGLE μC-BUCKBOOST CONVERTER WITH MULTIPLE REGULATED SUPPLY OUTPUTS
WO2012068260A1 (en) 2010-11-16 2012-05-24 Rf Micro Devices, Inc. Digital gain multiplier for envelop tracking systems and corresponding method
CN102545293B (zh) * 2010-12-29 2016-03-23 华润矽威科技(上海)有限公司 低成本带电平补偿的多路电压信号自动选高电路
WO2012109227A2 (en) 2011-02-07 2012-08-16 Rf Micro Devices, Inc. Group delay calibration method for power amplifier envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
WO2012166992A1 (en) 2011-05-31 2012-12-06 Rf Micro Devices, Inc. Rugged iq receiver based rf gain measurements
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
US8942652B2 (en) 2011-09-02 2015-01-27 Rf Micro Devices, Inc. Split VCC and common VCC power management architecture for envelope tracking
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
WO2013063364A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US8947161B2 (en) 2011-12-01 2015-02-03 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US8981839B2 (en) * 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
CN104662792B (zh) 2012-07-26 2017-08-08 Qorvo美国公司 用于包络跟踪的可编程rf陷波滤波器
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9197256B2 (en) 2012-10-08 2015-11-24 Rf Micro Devices, Inc. Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal
WO2014062902A1 (en) 2012-10-18 2014-04-24 Rf Micro Devices, Inc Transitioning from envelope tracking to average power tracking
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
US9329649B2 (en) * 2012-11-21 2016-05-03 Stmicroelectronics S.R.L. Dual input single output regulator for an inertial sensor
US9929696B2 (en) 2013-01-24 2018-03-27 Qorvo Us, Inc. Communications based adjustments of an offset capacitive voltage
US9178472B2 (en) 2013-02-08 2015-11-03 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
US9197162B2 (en) 2013-03-14 2015-11-24 Rf Micro Devices, Inc. Envelope tracking power supply voltage dynamic range reduction
WO2014152876A1 (en) 2013-03-14 2014-09-25 Rf Micro Devices, Inc Noise conversion gain limited rf power amplifier
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
US9735614B2 (en) * 2014-05-18 2017-08-15 Nxp Usa, Inc. Supply-switching system
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
US9733661B2 (en) * 2014-09-29 2017-08-15 Mediatek Inc. Power management circuit and associated power management method
JP6421624B2 (ja) * 2015-01-29 2018-11-14 株式会社ソシオネクスト 降圧電源回路および集積回路
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9843294B2 (en) 2015-07-01 2017-12-12 Qorvo Us, Inc. Dual-mode envelope tracking power converter circuitry
US9654101B2 (en) * 2015-07-30 2017-05-16 Qualcomm Incorporated Integrated circuit power rail multiplexing
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US20180041046A1 (en) * 2016-08-04 2018-02-08 National Chung Shan Institute Of Science And Technology Multi-power supply device
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US10886774B2 (en) 2018-10-30 2021-01-05 Nxp Usa, Inc. Method and apparatus to switch power supply for low current standby operation
CN109256752B (zh) * 2018-11-20 2020-02-11 北京千丁互联科技有限公司 电池保护电路和供电系统
US11320850B1 (en) * 2021-02-04 2022-05-03 Dialog Semiconductor B.V. Voltage selection circuit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116268A (en) * 1979-03-03 1980-09-06 Agency Of Ind Science & Technol Detector of detect maximum value of electric signal and channel having maximum value thereof
US4617473A (en) * 1984-01-03 1986-10-14 Intersil, Inc. CMOS backup power switching circuit
US4654829A (en) * 1984-12-17 1987-03-31 Dallas Semiconductor Corporation Portable, non-volatile read/write memory module
JP2733796B2 (ja) 1990-02-13 1998-03-30 セイコーインスツルメンツ株式会社 スイッチ回路
JP2985317B2 (ja) * 1991-02-18 1999-11-29 松下電器産業株式会社 比較装置
US5187396A (en) * 1991-05-22 1993-02-16 Benchmarq Microelectronics, Inc. Differential comparator powered from signal input terminals for use in power switching applications
JP2882163B2 (ja) * 1992-02-26 1999-04-12 日本電気株式会社 比較器
US5341034A (en) * 1993-02-11 1994-08-23 Benchmarq Microelectronics, Inc. Backup battery power controller having channel regions of transistors being biased by power supply or battery
JP3566745B2 (ja) * 1994-01-25 2004-09-15 新日本製鐵株式会社 電圧変換装置
US5748033A (en) * 1996-03-26 1998-05-05 Intel Corporation Differential power bus comparator
FR2755316B1 (fr) * 1996-10-25 1999-01-15 Sgs Thomson Microelectronics Regulateur de tension a selection automatique d'une tension d'alimentation la plus elevee
US6040718A (en) * 1997-12-15 2000-03-21 National Semiconductor Corporation Median reference voltage selection circuit

Also Published As

Publication number Publication date
US6566935B1 (en) 2003-05-20
FR2798014B1 (fr) 2002-03-29
FR2798014A1 (fr) 2001-03-02
EP1081572A1 (de) 2001-03-07
DE60015464D1 (de) 2004-12-09

Similar Documents

Publication Publication Date Title
EP1081572B1 (de) Versorgungsschaltung mit Spannungswähler
FR3051570B1 (fr) Dispositif de regulation a faible chute de tension, en particulier capable de supporter des tensions d'alimentation compatibles avec la norme usb type c
EP1079525B1 (de) System zur Steuerung eines Zweirichtungs-Schalters mit zwei Transistoren
EP1366402B1 (de) Spannungsregler mit kurzschlussschutz
FR2819064A1 (fr) Regulateur de tension a stabilite amelioree
FR2755318A1 (fr) Circuit regulateur et dispositif a circuit integre a semi-conducteur le comprenant
FR2677793A1 (fr) Circuit pour produire une tension d'alimentation interne.
EP1977514B1 (de) Steuerung eines mos-transistors
FR2836762A1 (fr) Circuit de conversion de tension continue pour lampe a decharge
EP0700151A1 (de) Leistungsfolgeverstärkerstufe
EP3267583B1 (de) Auswahlschaltkreis einer betriebsspannung mit kontolliertem übergang
FR2798550A1 (fr) Appareil a lampes a decharge pour vehicule
EP0571302B1 (de) Verstärker mit Ausgangsstrombegrenzung
FR2791193A1 (fr) Procede de controle du fonctionnement d'une pompe de charge capacitive et dispositif de pompe de charge capacitive correspondant
FR2630837A1 (fr) Circuit en vue d'engendrer une tension de reference en utilisant un circuit de charge et de decharge
EP0715240B1 (de) Spannungsregler für Logikschaltung in gekoppeltem Betriebszustand
FR2957732A1 (fr) Etage de sortie d'un circuit electronique
EP0164770B1 (de) Statisches Relais für niedrige Gleichstromspannung
EP0722217B1 (de) Vorrichtung zur Einstellung der Dämpfung eines Signals
FR2654880A1 (fr) Circuit integre de puissance "intelligent" du type mos, pour la commande de l'alimentation d'une charge electrique.
WO2023118731A1 (fr) Circuit de reference de tension
EP4358125A1 (de) Leistungstransistor
EP4358406A2 (de) Überhitzungsschutzschaltung
EP4357877A1 (de) Spannungsregelschaltung
WO2007048447A1 (fr) Circuit de conversion de niveau de tension

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RENOUS, CLAUDE

17P Request for examination filed

Effective date: 20010831

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STMICROELECTRONICS S.A.

17Q First examination report despatched

Effective date: 20040116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 60015464

Country of ref document: DE

Date of ref document: 20041209

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050204

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060808

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060830

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070830