EP1079080A2 - Ölgekühlte Brennkraftmaschine - Google Patents

Ölgekühlte Brennkraftmaschine Download PDF

Info

Publication number
EP1079080A2
EP1079080A2 EP00117193A EP00117193A EP1079080A2 EP 1079080 A2 EP1079080 A2 EP 1079080A2 EP 00117193 A EP00117193 A EP 00117193A EP 00117193 A EP00117193 A EP 00117193A EP 1079080 A2 EP1079080 A2 EP 1079080A2
Authority
EP
European Patent Office
Prior art keywords
space
internal combustion
combustion engine
oil
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00117193A
Other languages
English (en)
French (fr)
Other versions
EP1079080B1 (de
EP1079080A3 (de
Inventor
Reinhard Suttner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1079080A2 publication Critical patent/EP1079080A2/de
Publication of EP1079080A3 publication Critical patent/EP1079080A3/de
Application granted granted Critical
Publication of EP1079080B1 publication Critical patent/EP1079080B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/12Closed-circuit lubricating systems not provided for in groups F01M1/02 - F01M1/10
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P2003/006Liquid cooling the liquid being oil

Definitions

  • the invention relates to an internal combustion engine with an engine block, the one Cylinder housing and a cylinder head covering the cylinder housing and has a cooling jacket through which oil flows, the cooling jacket, an axially at least partially surrounding the working space of a piston Annulus and the work area almost completely on the front covering head space, the head space and the annular space in are in direct contact with each other.
  • Oil-cooled internal combustion engines of this type are known in particular among diesel engines.
  • the cylinder block in the immediate vicinity of the cylinders is provided with cooling rooms through which a stream of oil flows to remove the heat of combustion.
  • the main advantage of using oil as a coolant is that there is no need for cooling water. Dispensing with cooling water goes hand in hand with solving many of the problems that actually exist This means that the operating temperature of water-cooled engines is limited to around 95 ° C due to the physical properties of the coolant, which limits the degree of energy conversion and the reduction in pollutants.
  • a disadvantage of the previously known oil-cooled engines is that the cooling can be controlled relatively poorly.
  • the individual parts may heat up differently and thus tension and even cracks in the engine block. At the same time, it can occur because of locally occurring hot spots "lead to partial coking and thus contamination of the cooling oil, which leads to an impairment of the cooling performance.
  • the object of the present invention is an oil-cooled internal combustion engine to create that operate even at comparatively high temperatures leaves. It is also an object of the invention to provide an internal combustion engine from simple construction and high reliability to create a good Heat regulation made possible by controlling the cooling oil flow and thus an optimization of the energy conversion allowed.
  • a central idea of the invention is that the invention Engine with its multi-chamber system for oil guidance surrounding the cylinders and oil absorption a precise control of the temperature by controlled Oil flow and good heat dissipation.
  • This peculiarity of the engine allows comparatively high operating temperatures of up to 140 ° C or allow about it. For such high operating temperatures, however Use of a metal gasket as a cylinder head gasket is essential.
  • the cooling jacket On the one hand has a Displacement of the cylinders coaxially at least partially surrounding the annular space, the headspace that covers the combustion chamber on the front continues.
  • the head space is designed so that it the respective Cylinder head and the combustion chamber arranged in it almost completely covered.
  • the headspace is only of the necessary bushings for the injector or the valves are broken.
  • the return space is advantageous Arranged parallel to the piston and forms the lowest point Oil sump. The oil runs down its vertical walls and cools before going to a collection room at the lowest point due to gravity, especially in the oil sump.
  • a hydrodynamically special inexpensive and easy to implement embodiment are all cylinders of the Motors surrounded by a common return space. In the return space At the same time, gases from compression losses flow up into the Valve cover and can be removed from there.
  • the oil is from a promoted in particular electrically operated pump.
  • the oil flow occurs from below via a provided near the bottom of the annulus Entry opening into the cooling jacket and is countered by gravity promoted the headspace, where it over the highest possible Exit opening leaves.
  • a special one can be used for the cooling oil Circulation can be provided so that oil with special properties for Cooling can be used.
  • the engine oil provided for lubrication of the engine also for To use cooling.
  • Another essential idea of the invention is that in one common collecting space oil collected in a in the engine block to transport the integrated storage container.
  • Storage container designed as a chamber in the engine block and not as known as a separately arranged container, for example as an oil pan, outside of Engine block arranged.
  • the pantry is all Surrounds cylinders as a continuous space.
  • a pantry for Cooling oil and / or another storage chamber for lubricating oil can be provided. If the lubricating oil is used as cooling oil, a common one is sufficient Pantry off.
  • the pantry sits in the Cylinder head, in the valve cover and in the crankcase and thus surrounds the Cylinder completely.
  • the storage chamber integrated in the engine block and surrounding the cylinders can also be used with conventional motors with water cooling.
  • a pantry offers several advantages. First of all Construction space saved by the arrangement according to the invention. Another The advantage is that the coolant jacket surrounding the return chamber, which the Pantry forms, contributes to damping and thus the running noise and Vibrations of the engine can be reduced. In this way, the Noise level from diesel engines to the level of gasoline engines be reduced.
  • the metal gasket according to the invention ensures that the engine also Temperatures above 100 ° C, at which the cylinder head gaskets are made burn conventional material or burn up, can be operated.
  • An oil-cooled engine sealed with the metal gasket that also is equipped with the completely surrounding cooling jacket, can be Operate temperatures of 150 ° C.
  • the one because of the higher ones Temperatures of more complete combustion cause less Particle emission especially in diesel engines.
  • the high temperature of over 140 ° C the combustion process significantly improved and on the other hand the lower temperature difference means i.e. the lower energy dissipation, better use of energy.
  • the metal seal is advantageously formed by individual metal rings, which are formed from wire and in a corresponding groove around the opening of the Cylinders are placed. In this way, each cylinder is separately against the Sealed cylinder head.
  • the metal rings can be easily and Manufacture and assemble inexpensively by machine. When screwing on the Cylinder head they are pressed together and deformed. If the Cylinder head is made of aluminum, the comparatively harder press Metal rings in the material
  • the metal seal is advantageously cooled.
  • This cooling can be Realize particularly easily with the sealing rings by using a special in particular wedge-shaped cooling chamber is provided, via which the Oil flow can be brought up to the sealing ring. It is particularly easy if the Sealing rings are dimensioned so that a certain distance between the Cylinder housing and the cylinder head remains so that the oil in the Clearance can flow around the sealing ring.
  • the cooling chamber from the mutually facing end faces of the Cylinder head and the cylinder block above and below and from the sealing ring limited laterally.
  • the engine consists essentially of four parts, namely the Cylinder crankcase, the crankcase lower part, the cylinder head and the Cylinder head cover. It differs from conventional motors in that that the four components were enclosed on all sides by two additional chambers are.
  • This chamber opens into the oil sump.
  • Another The function of this chamber is to vent the crankcase from penetrating combustion gases that rise up in this chamber and in the area of the cylinder head cover in the calm state to the outside be directed.
  • the return space according to the invention completely encloses the area of the engine in which the mechanically generated noises as well as the combustion noises arise, and thus causes an acoustic separation to the outside.
  • the return chamber is an inner chamber on all sides from an outer chamber enclosed.
  • This outer chamber serves as a pantry. That about the Oil flowing back into the collecting space is sucked out from there and over the cylinder head cover, which contains an air separation labyrinth, into the Pantry returned.
  • the oil is transferred from the pantry to the known way by means of a pump to the bearings and in the cooling jacket pumped. Since the pantry encloses all noise-emitting parts, further vibration and sound absorption is achieved.
  • the entire outer surface of the engine is used for cooling and radiation Engine heat, which is a small size of the external radiator enables.
  • the outer supply chamber becomes the lubrication and Cooling required fresh oil via a pump to the supply points promoted. Because of the outer chambers surrounding the motor as a whole, the engine can also be operated in extreme inclined positions without the Oil supply is affected.
  • a major advantage of this engine is the high temperature operation that is achieved the waiver of water as a cooling medium becomes possible.
  • oil cooling came an average operating temperature of about 150 ° C to be approved.
  • Around to be able to operate the engine at this operating temperature is limited to Classic cylinder head gasket dispensed with and only one in a groove inserted metal ring seal used.
  • This metal ring is also through a circumferential gap oil-cooled and therefore mechanically and thermally resilient.
  • the ring seals the upper edge of the cylinder against the cylinder head from.
  • Other seals are only for the four main housing parts and the Crankshaft required and correspond to known silicone or Shaft seals.
  • the high-temperature operation favors the thermal budget of the engine and leads to better combustion processes, as well as to a more effective one Use of fuel and, consequently, lower pollutant emissions.
  • a diesel engine reaches Noise and vibration values that come close to an Otto engine.
  • the described construction which has a significant improvement in rigidity compared to the classic engine design, will also be a higher one Lifetime of the moving parts achieved. Also the oil tightness after Outside is influenced favorably.
  • the engine block shown in Figure 1 is known to consist of four Components together. So it has a central cylinder housing 1 and a cylinder head 2 covering the cylinder housing. Under the Cylinder housing 1, a crankcase 3 is arranged and on the A valve cover 4 is placed on cylinder head 2. A piston 5 runs within the Cylinder housing 1 in a cylinder liner 6 and is is known to be sealed by piston rings against the liner 6. The Liner 6 thus encloses the displacement of the piston 5. Also shown are the valves 7 known from conventional engines and the connecting rod 8, which engages the crankshaft 9.
  • the liner 6 and thus the displacement of the piston 5 surrounded by a coaxial annulus 10 which is from an oil flow to For cooling purposes.
  • the annular space 10 settles in one Head space 11 continues, which is introduced into the cylinder head 2 and which Combustion chamber covered on the face.
  • Form head space 11 and annular space 10 one the cylinder up to the bushings of the valves 7 and not shown injector completely comprehensive cooling jacket, being by a cylinder head gasket 12 designed as a combustion chamber gasket (see FIG. 3) made of metal is avoided that oil from the cooling jacket in the Combustion chamber enters.
  • the oil used for cooling will later become too descriptively from a reservoir to the bottom of the annulus 10 fed through an inlet opening, rises in the annular space 10 with removal of the Heat generated in the cylinder to the cylinder head 2 and occurs in the Headspace 11 a.
  • the annular spaces 10 in FIG in this case, three cylinders connected to each other.
  • An outlet opening 13 is made in the dome of the head space 11, through which the oil escapes into the valve cover 4 along arrow A.
  • Valve cover 4 runs the oil from gravity into a return chamber 14, the completely surrounds the cylinder including the annular space 10.
  • To the Walls of this return space 14 runs down the oil, cools and collects on the floor in a provided in the crankcase 3 Collecting space 15.
  • the collecting space 15 also collects the oil that emerges from the piston cooling nozzles and the plain bearings.
  • the return space 14 is composed of merging chambers, which in the Cylinder head 2, the cylinder housing 1 and the crankcase 3 introduced are. It therefore completely surrounds the cylinder and the piston drive. How from As can be seen in FIG. 2, the return spaces 14 of the cylinders are located one below the other Connection and form a return chamber 14 surrounding the three cylinders.
  • the oil is electrically or mechanically operated pump 16 via a return line 17 into a storage chamber 18th pumped, it first freed of residues in a filter 19 and is additionally cooled by an oil cooler 20.
  • the pantry 18 stands with the annular space 10 via a line, not shown, in connection, so that the oil by the pressure built up by the pump 16 from the Storage chamber 18 is pressed into the annular space 10.
  • the pantry 18 is also housed in the engine block and in turn surrounds the complete Return space 14. It is made up of individual compartments both in the Crankcase 3, in the cylinder housing 1, in the cylinder head 2 and in the valve cover 4 continues.
  • the oil collected in the storage chamber 18 is used for both Lubrication as well as used for cooling.
  • the pantry 18 is via seals 23, which are made of rubber in this case, opposite sealed the outside space. Otherwise there are annular space 10, return space 14 and pantry 18 at the joints between the components of the Engine block in a connection caused by the gap.
  • a bypass line 21 which from the return line 17 directly into the Annulus 10 leads and switched on by means of a three-way valve 22 is, the processed oil can be directly from the collecting space 15 in the annular space 10 pumps. This reduced oil volume heats up faster, so that the Engine quickly reaches its operating temperature.
  • the temperature of the engine is in a known manner from temperature sensors, not shown supervised. Due to the delivery rate of the pump 16 and the use of Bypass line 21 can then control the temperature of the motor well.
  • the return line 17 continued behind the three-way valve 22 opens into an inlet 26 in the cylinder head. From the outside, the oil is above the system an inlet 27 can be supplied.
  • the operating temperature can be so in the engine according to the invention adjust so that it goes well above 100 ° C and can reach about 150 °.
  • the metal seal is on Sealing ring 12 ( Figure 3), which in a corresponding the cylinder bore surrounding annular groove 24 is inserted in the abutting surface of the cylinder housing 1.
  • the sealing ring is squeezed directly by the screwed-on cylinder head 2 acted upon and thereby deformed.
  • Aluminum is pressed in at the appropriate point.
  • the cooling jacket forms a cooling chamber 25 through which the Oil flow can be brought up to the sealing ring 12.
  • the cooling chamber 25 is in this case of widening the gap between the Cylinder housing 1 and the cylinder head 2 are formed.

Abstract

Brennkraftmaschine mit einem Motorblock, der ein Zylindergehäuse und einen das Zylindergehäuse abdeckenden Zylinderkopf aufweist und der einen von Öl durchflossenen Kühlmantel aufweist, wobei der Kühlmantel, einen den Arbeitsraum eines Kolbens 5 axial zumindest teilweise umgebenden Ringraum 10 und einen den Arbeitsraum stirnseitig nahezu vollständig bedeckenden Kopfraum 11 aufweist, wobei der Kopfraum 11 und der Ringraum 10 in unmittelbarer Verbindung miteinander stehen und wobei der Ölstrom über eine in den Kopfraum 11 eingebrachte Austrittsöffnung 13 aus dem Kühlmantel heraus in einen Rücklaufraum 14 eintritt, der mindestens einen Zylinder 6 unter Einschluß des Ringraumes 10 vollständig umgibt und/oder wobei der Zylinderkopf gegenüber dem Zylindergehäuse über eine Metalldichtung abgedichtet ist.

Description

Die Erfindung betrifft eine Brennkraftmaschine mit einem Motorblock, der ein Zylindergehäuse und einen das Zylindergehäuse abdeckenden Zylinderkopf sowie einen von Öl durchflossenen Kühlmantel hat, wobei der Kühlmantel, einen den Arbeitsraum eines Kolbens axial zumindest teilweise umgebenden Ringraum und einen den Arbeitsraum stirnseitig nahezu vollständig bedeckenden Kopfraum aufweist, wobei der Kopfraum und der Ringraum in unmittelbarer Verbindung miteinander stehen.
Derartige ölgekühlte Verbrennungsmotoren sind insbesondere unter den Dieselmotoren bekannt. Bei den bekannten Motoren ist der Zylinderblock in unmittelbarer Umgebung der Zylinder mit Kühlräumen versehen, die zur Abfuhr der Verbrennungswärme von einem Strom von Öl durchflossen werden. Die Verwendung von Öl als Kühlmittel hat dabei vor allem den Vorteil, daß auf Kühlwasser vollständig verzichtet werden kann. Der Verzicht auf Kühlwasser geht mit der Lösung vieler Probleme einher, die das eigentlich
Figure 00010001
motorfremde" Wasser mit sich bringt. Außerdem ist die Betriebstemperatur wassergekühlter Motoren wegen der physikalischen Eigenschaften des Kühlmittels auf etwa 95°C begrenzt, was den Grad der Energieumsetzung und der Schadstoffreduzierung limitiert.
Nachteilig an den bislang bekannten ölgekühlten Motoren ist, daß sich die Kühlung verhältnismäßig schlecht kontrollieren läßt. So kann es bei den bekannten Motoren zu unterschiedlicher Erwärmung der einzelnen Teile und damit zu Spannungen und sogar Rissen im Motorblock kommen. Gleichzeitig kann es wegen lokal auftretender hot spots" zu einer teilweisen Verkokung und damit zur Verunreinigung des Kühlöles kommen, was zu einer Beeinträchtigung der Kühlleistung führt.
Aufgabe der vorliegenden Erfindung ist es, eine ölgekühlte Brennkraftmaschine zu schaffen, die sich auch bei vergleichsweise hohen Temperaturen betreiben läßt. Zudem ist es die Aufgabe der Erfindung eine Brennkraftmaschine von einfacher Konstruktion und hoher Zuverlässigkeit zu schaffen, die eine gute Wärmeregulierung durch Kontrolle des Kühlölstromes ermöglicht und damit eine Optimierung der Energieumsetzung erlaubt.
Diese Aufgaben werden durch die Brennkraftmaschinen nach Anspruch 1 und Anspruch 7 gelöst.
Ein zentraler Gedanke der Erfindung liegt darin, daß der erfindungsgemäße Motor mit seinem die Zylinder umgebenden Mehrkammersystem zur Ölführung und Ölaufnahme eine präzise Kontrolle der Temperatur durch kontrollierten Ölfluß und eine gute Wärmeabfuhr ermöglicht. Diese Besonderheit des Motors erlaubt es, vergleichsweise hohe Betriebstemperaturen von bis zu 140°C oder darüber zuzulassen. Für derart hohe Betriebstemperaturen ist jedoch der Einsatz einer Metalldichtung als Zylinderkopfdichtung unabdingbar.
Für die Realisierung der kontrollierten Kühlung ist es zunächst wichtig, den Arbeitsraum (Hubraum) des Zylinders möglichst vollständig mit einem Kühlmantel zu umhüllen. Dazu weist der Kühlmantel einerseits einen den Hubraum der Zylinder koaxial zumindest teilweise umgebenden Ringraum auf, der sich in einem den Verbrennungsraum stirnseitig bedeckenden Kopfraum fortsetzt. Dabei ist der Kopfraum ist so ausgelegt, daß er den jeweiligen Zylinderkopf und die darin angeordnete Brennkammer nahezu vollständig bedeckt. Der Kopfraum ist lediglich von den notwendigen Durchführungen für die Einspritzdüse oder die Ventile durchbrochen. Erfindungsgemäß tritt der Ölstrom über eine in den Kopfraum eingebrachte Austrittsöffnung aus dem Kühlmantel heraus in einen Rücklaufraum ein, wobei der Rücklaufraum den Zylinder unter Einschluß des Ringraumes vollständig umgibt. So ist eine optimal Kontrolle der Wärmeabfuhr möglich. Zudem tragen der einhüllende Kühlmantel und der Rücklaufraum zu einer Geräuschreduzierung bei.
In einer besonders einfachen Ausführungsform gehen der Ringraum und der Kopfraum an der Stelle der Zylinderkopfdichtung unmittelbar ineinander über und bilden einen geschlossenen Kühlmantel etwa gleichbleibender Weite. So wird ein homogener Durchstrom des Öles ohne starke Druckschwankungen aufgrund von Engpässen erreicht. Der Rücklaufraum ist vorteilhafterweise parallel zu den Kolben angeordnet und bildet an seiner tiefsten Stelle den Ölsumpf. An seinen senkrechten Wänden läuft das Öl herunter und kühlt dabei ab, bevor aufgrund der Schwerkraft am tiefsten Punkt in einen Sammelraum, insbesondere in den Ölsumpf, läuft. In einer hydrodynamisch besonders günstigen und einfach zu realisierenden Ausführungsform sind alle Zylinder des Motors von einem gemeinsamen Rücklaufraum umgeben. Im Rücklaufraum strömen gleichzeitig Gase aus Kompressionsverlusten nach oben bis in die Ventildeckel und können von dort abgeführt werden.
In einer besonders vorteilhaften Ausführungsform wird das Öl von einer insbesondere elektrisch betriebenen Pumpe gefördert. Dabei tritt der Ölstrom von unten über eine in der Nähe des Boden des Ringraumes vorgesehene Eintrittsöffnung in den Kühlmantel ein und wird gegen die Schwerkraft hinauf in den Kopfraum gefördert, wo er diesen über eine möglichst hoch liegende Austrittsöffnung verläßt. Für das Kühlöl kann einerseits ein besonderer Kreislauf vorgesehen sein, so daß Öl mit besonderen Eigenschaften zur Kühlung verwendet werden kann. Es ist jedoch besonders einfach und damit vorteilhaft, das zur Schmierung des Motors vorgesehene Motoröl gleichfalls zur Kühlung zu verwenden.
Ein weiterer wesentlicher Gedanke der Erfindung ist es, das in einem gemeinsamen Sammelraum gesammelte Öl in einen in den Motorblock integrierten Vorratsbehälter zu befördern. Erfindungsgemäß ist dieser Vorratsbehälter als Kammer im Motorblock ausgebildet und nicht wie bekannt als separat angeordneter Behälter, beispielsweise als Ölwanne, außerhalb des Motorblockes angeordnet. Es ist vorteilhaft, wenn die Vorratskammer alle Zylinder als durchgängiger Raum umgibt. Dabei kann eine Vorratskammer für Kühlöl und/oder eine andere Vorratskammer für Schmieröl vorgesehen sein. Bei der Verwendung des Schmieröles als Kühlöl reicht eine gemeinsame Vorratskammer aus. Vorteilhafter Weise setzt sich auch die Vorratskammer im Zylinderkopf, im Ventildeckel und im Kurbelgehäuse fort und umgibt damit die Zylinder vollständig.
Die in den Motorblock integrierte und die Zylinder umgebende Vorratskammer kann auch bei herkömmlichen Motoren mit Wasserkühlung eingesetzt werden. Generell bietet eine solche Vorratskammer mehrere Vorteile. Zunächst wird durch die erfindungsgemäße Anordnung Bauraum eingespart. Ein weiterer Vorteil ist, daß der den Rücklaufraum umgebende Kühlmittelmantel, den die Vorratskammer bildet, zur Dämpfung beiträgt und damit die Laufgeräusche und Vibrationen des Motors reduziert werden. Auf diese Weise kann die Geräuschentwicklung von Dieselmotoren auf das Niveau von Benzinmotoren reduziert werden.
Außerdem gewährleistet eine solche Vorratskammer, daß auch bei starken Querbeschleunigungen, wie sie beispielsweise bei extremen Kurvenfahrten auftreten, immer ausreichend Kühlmittel an der Ansaugöffnung vorhanden ist. Damit ist die Gefahr des Trockenlaufes gebannt. Auch bei mitunter schrägstehenden Fahrzeugen wie Baumaschinen und Segelbooten bringt die erfindungsgemäße Vorratskammer erhebliche Vorteile. Dabei dienen die Außenflächen der Vorratskammer zur Kühlung des darin befindlichen Öles.
Um diesen Motor bei hohen Temperaturen betreiben zu können ist ein weiterer zentraler Gedanke der Erfindung, die Zylinderkopfdichtung aus Metall zu fertigen. Die Metalldichtung stellt dabei auch unabhängig von der genauen Ausbildung des Kühlmantels einen besonderen Teil der Erfindung dar. Durch die erfindungsgemäße Metalldichtung ist gewährleistet, daß der Motor auch bei Temperaturen über 100°C, bei denen die Zylinderkopfdichtungen aus herkömmlichen Material verbrennen oder verglühen, betrieben werden kann. Ein mit der metallenen Dichtung abgedichteter ölgekühlter Motor, der zudem mit dem vollständig umgebenden Kühlmantel ausgerüstet ist, läßt sich bei Temperaturen von 150°C betreiben. Bei diesen Betriebstemperaturen läßt sich eine Reduzierung des Kraftstoffverbrauches von bis zu 25% mit einer entsprechend geringeren Abgasemission erreichen. Die wegen der höheren Temperaturen vollständigere Verbrennung bedingt dabei eine geringere Partikelemission insbesondere bei Dieselmotoren. Schließlich ist einerseits bei der hohen Temperatur von über 140°C der Ablauf der Verbrennung signifikant verbessert und andererseits bedeutet der geringere Temperaturunterschied, d.h. die geringerer Energieabfuhr, eine bessere Ausnutzung der Energie.
Vorteilhafterweise wird die Metalldichtung von einzelnen Metallringen gebildet, die aus Draht geformt und in einer entsprechenden Nut um die Öffnung des Zylinders gelegt sind. Auf diese Weise wird jeder Zylinder separat gegen den Zylinderkopf abgedichtet. Die Metallringe lassen sich dabei einfach und kostengünstig maschinell herstellen und montieren. Beim Aufschrauben des Zylinderkopfes werden sie zusammengedrückt und dabei verformt. Wenn der Zylinderkopf aus Aluminium ist, drücken sich die vergleichsweise härteren Metallringe in das Material ein
Vorteilhafter Weise wird die Metalldichtung gekühlt. Diese Kühlung läßt sich besonders einfach mit den Dichtringen realisieren, indem im Kühlmantel eine besondere insbesondere keilförmige Kühlkammer vorgesehen ist, über die der Ölstrom an den Dichtring heranführbar ist. Besonders einfach ist es, wenn die Dichtringe so dimensioniert sind, daß ein gewisser Abstand zwischen dem Zylindergehäuse und dem Zylinderkopf verbleibt, so daß das Öl in dem Zwischenraum den Dichtring umströmen kann. In dieser Ausführungsform ist die Kühlkammer von den gegeneinander gerichteten Stirnflächen des Zylinderkopfes und des Zylinderblockes oben und unten und von dem Dichtring seitlich begrenzt.
Zusammenfassend läßt sich die Erfindung und ihre Vorteile folgendermaßen darstellen: Der Motor besteht im wesentlichen aus vier Teilen, nämlich dem Zylinderkurbelgehäuse, dem Kurbelgehäuseunterteil, dem Zylinderkopf und der Zylinderkopfhaube. Er unterscheidet sich von herkömmlichen Motoren dadurch, daß die vier Bauteile von zwei zusätzlichen Kammern allseitig umschlossen sind. Die erste innere Kammer, die den Kühlmantel der Zylinder und den Zylinderkopf umschließt, bildet den Rücklaufraum für das im Zylinderkopf austretende heiße Kühlöl. Diese Kammer mündet im Oelsumpf. Eine weitere Funktion dieser Kammer ist die Entlüftung des Kurbelgehäuses von durchtretenden Verbrennungsgasen, die in dieser Kammer nach oben steigen und im Bereich der Zylinderkopfhaube im beruhigten Zustand nach Außen geleitet werden. Durch die große Fläche der Kammer ergeben sich geringe Strömungsgeschwindigkeiten, die eine Verwirbelung und Vermischung der Gase mit dem Motoröl verhindern. Das an der inneren und äußeren Kammerwand ablaufende Kühlöl gibt einen Teil seiner mitgeführten Wärme ab, bevor es im Kurbelgehäuseunterteil abgesaugt wird. Der Rücklaufraum umschließt erfindungsgemäß den Bereich des Motors vollständig, in dem die mechanisch erzeugten Geräusche sowie die Verbrennungsgeräusche entstehen, und bewirkt damit eine akustische Trennung nach Außen.
Der Rücklaufraum wird als innere Kammer von einer äußeren Kammer allseitig umschlossen. Diese äußere Kammer dient als Vorratskammer. Das über den Rücklaufraum in den Sammelraum laufende Öl wird von dort abgesaugt und über die Zylinderkopfhaube, die ein Luftabscheidelabyrint enthält, in die Vorratskammer zurückgeführt. Von der Vorratskammer wird das Öl auf die bekannte Weise vermittels einer Pumpe zu den Lagern und in den Kühlmantel gepumpt. Da die Vorratskammer alle geräuschemittierenden Teile umschließt, wird eine weitere Vibrations- und Schalldämpfung erreicht.
Die gesamte äußere Fläche des Motors dient zu Kühlung und Abstrahlung der Motorwärme, was eine geringe Baugröße der außenliegenden Kühler ermöglicht. Durch die den Motor umschließenden Kammern mit ihren inneren und äußeren Wänden, wird eine große Stabilität und Steifigkeit der gesamten Motorkonstruktion erreicht. Alle Bauteile können mit geringeren Wandstärken konstruiert werden, ohne daß die Verwindungssteifigkeit beeinträchtigt wird. Aus der äußeren Versorgungskammer wird das für die Schmierung und Kühlung erforderliche Frischöl über eine Pumpe zu den Versorgungsstellen gefördert. Durch die den Motor insgesamt umschließenden äußeren Kammern, kann der Motor auch in extremen Schräglagen betrieben werden, ohne daß die Ölversorgung beeinträchtigt wird.
Ein wesentlicher Vorteil dieses Motors ist der Hochtemperaturbetrieb, der durch den Verzicht auf Wasser als Kühlmedium möglich wird. Durch die Ölkühlung kam eine mittlere Betriebstemperatur von ca. 150°C zugelassen werden. Um den Motor mit dieser Betriebstemperatur betreiben zu können, wird auf die klassische Zylinderkopfdichtung verzichtet und lediglich eine, in eine Nut eingelegte Metallringdichtung verwendet. Dieser Metallring ist zusätzlich durch einen umlaufenden Spalt ölgekühlt und dadurch mechanisch und thermisch belastbar. Der Ring dichtet den oberen Zylinderrand gegen den Zylinderkopf ab. Weitere Dichtungen sind lediglich für die vier Hauptgehäuseteile und die Kurbelwelle erforderlich und entsprechen bekannten Silikon bzw. Wellendichtungen.
Der Hochtemperaturbetrieb begünstigt den thermischen Haushalt des Motors und führt zu besseren Verbrennungsabläufen, sowie zu einer effektiveren Kraftstoffnutzung und damit einhergehend zu einer geringeren Schadstoff-Emission. In Verbindung mit dem Mehrkammersystem erreicht ein Dieselmotor Geräusch- und Vibrationswerte, die einem Otto-Motor nahekommen. Durch die beschriebene Konstruktion, die eine erhebliche Steifigkeitsverbesserung gegenüber der klassischen Motorkonstruktion aufweist, wird auch eine höhere Lebensdauer der beweglichen Bauteile erzielt. Auch die Öldichtigkeit nach Außen wird dadurch günstig beeinflußt.
Ein Ausführungsbeispiel des erfindungsgemäßen Motors wird im folgenden anhand der Figuren 1 bis 3 näher beschrieben. Es zeigen:
Figur 1
einen vertikalen Schnitt durch einen ölgekühlten Motorblock,
Figur 2
einen horizontalen Schnitt durch einen Zylinderkopf und
Figur 3
eine Zylinderkopfdichtung.
Der in Figur 1 gezeigte Motorblock setzt sich bekanntermaßen aus vier Komponenten zusammen. So weist er ein zentrales Zylindergehäuse 1 und einen das Zylindergehäuse abdeckenden Zylinderkopf 2 auf. Unter dem Zylindergehäuse 1 ist ein Kurbelgehäuse 3 angeordnet und auf den Zylinderkopf 2 ist ein Ventildeckel 4 aufgesetzt. Ein Kolben 5 läuft innerhalb des Zylindergehäuses 1 in einer den Zylinder bildenden Laufbuchse 6 und ist bekanntermaßen durch Kolbenringe gegen die Laufbuchse 6 abgedichtet. Die Laufbuchse 6 umschließt damit den Hubraum des Kolbens 5. Weiterhin gezeigt sind die von herkömmlichen Motoren bekannten Ventile 7 und die Pleuelstange 8, die an der Kurbelwelle 9 angreift.
Erfindungsgemäß ist die Laufbuchse 6 und damit der Hubraum des Kolbens 5 von einem koaxialen Ringraum 10 umgeben, der von einem Ölstrom zum Zwecke der Kühlung beaufschlagt wird. Der Ringraum 10 setzt sich in einem Kopfraum 11 fort, der in den Zylinderkopf 2 eingebracht ist und der den Verbrennungsraum stirnseitig bedeckt. Kopfraum 11 und Ringraum 10 bilden einen den Zylinder bis auf die Durchführungen der Ventile 7 und der nicht dargestellten Einspritzdüse komplett umfassenden Kühlmantel, wobei durch eine als Brennraumdichtung ausgebildete Zylinderkopfdichtung 12 (s. Figur 3) aus Metall vermieden wird, daß Öl aus dem Kühlmantel in den Verbrennungsraum eintritt. Das für die Kühlung eingesetzte Öl wird in später zu beschreibender Weise von einem Vorratsbehälter dem Boden des Ringraumes 10 durch eine Eintrittsöffnung zugeführt, steigt im Ringraum 10 unter Abfuhr der im Zylinder entstandenen Wärme zum Zylinderkopf 2 auf und tritt in den Kopfraum 11 ein. Wie aus Figur 2 ersichtlich stehen die Ringräume 10 der in diesem Falle drei Zylinder untereinander in Verbindung.
In die Kuppel des Kopfraumes 11 ist eine Austrittsöffnung 13 eingebracht, durch die das Öl in den Ventildeckel 4 entlang Pfeil A entweicht. Aus dem Ventildeckel 4 läuft das Öl von der Schwerkraft in einen Rücklaufraum 14, der den Zylinder unter Einschluß des Ringraumes 10 vollständig umgibt. An den Wänden dieses Rücklaufraumes 14 rinnt das Öl herunter, kühlt ab und sammelt sich am Boden in einem im Kurbelgehäuse 3 vorgesehenen Sammelraum 15. Indem Sammelraum 15 sammelt sich außerdem das Öl, das aus den Kolbenkühldüsen und den Gleitlagern austritt. Der Rücklaufraum 14 setzt sich aus ineinander übergehenden Kammern zusammen, die in den Zylinderkopf 2, das Zylindergehäuse 1 und das Kurbelgehäuse 3 eingebracht sind. Er umgibt somit den Zylinder und den Kolbenantrieb komplett. Wie aus Figur 2 ersichtlich, stehen die Rücklaufräume 14 der Zylinder untereinander in Verbindung und bilden einen die drei Zylinder umgebenden Rücklaufraum 14.
Von dem Sammelraum 15 wird das Öl mittels einer elektrisch oder mechanisch betriebenen Pumpe 16 über eine Rückführleitung 17 in eine Vorratskammer 18 gepumpt, wobei es zunächst in einem Filter 19 von Rückständen befreit und von einen Ölkühler 20 zusätzlich gekühlt wird. Die Vorratskammer 18 steht mit dem Ringraum 10 über eine nicht dargestellte Leitung in Verbindung, so daß das Öl durch den von der Pumpe 16 aufgebauten Druck von der Vorratskammer 18 in den Ringraum 10 gedrückt wird. Die Vorratskammer 18 ist ebenfalls im Motorblock untergebracht und umgibt ihrerseits den kompletten Rücklaufraum 14. Sie setzt sich aus einzelnen Kompartementen sowohl im Kurbelgehäuse 3, im Zylindergehäuse 1, im Zylinderkopf 2 und im Ventildeckel 4 fort. Das in der Vorratskammer 18 gesammelte Öl wird sowohl für die Schmierung als auch für die Kühlung verwendet. Die Vorratskammer 18 ist über Dichtungen 23, die in diesem Falle aus Gummi gefertigt sind, gegenüber dem Außenraum abgedichtet. Ansonsten stehen Ringraum 10, Rücklaufraum 14 und Vorratskammer 18 an den Stößen zwischen den Komponenten des Motorblockes in einer durch den Spalt bedingten Verbindung.
Über eine Bypaßleitung 21, die von der Rückführleitung 17 direkt in den Ringraum 10 führt und die mittels eines Drei-Wege-Ventiles 22 zugeschaltet wird, läßt sich das aufbereitete Öl direkt vom Sammelraum 15 in den Ringraum 10 pumpen. Dieses reduzierte Ölvolumen heizt sich schneller auf, so daß der Motor schnell seine Betriebstemperatur erreicht. Die Temperatur des Motors wird auf bekannte Weise von nicht dargestellten Temperatursensoren überwacht. Durch die Förderleistung der Pumpe 16 und den Einsatz der Bypaßleitung 21 kann dann die Temperatur des Motors gut kontrolliert werden. Die hinter dem Drei-Wege-Ventiles 22 fortgesetzte Rückführleitung 17 mündet in einen Einlaß 26 im Zylinderkopf. Von Außen ist das Öl dem System über einen Einlaß 27 zuführbar.
Die Betriebstemperatur läßt sich bei dem erfindungsgemäßen Motor so einstellen, daß sie weit über 100°C hinausgeht und etwa 150° erreichen kann. Das ist möglich durch den Einsatz von Metalldichtungen für die Abdichtung zwischen Zylinderkopf und Zylinder. In diesem Fall ist die Metalldichtung ein Dichtring 12 (Figur 3), der in eine entsprechende die Zylinderbohrung umgebende Ringnut 24 in der Stoßfläche des Zylindergehäuses 1 eingelegt ist. Der Dichtring wird direkt von dem aufgeschraubten Zylinderkopf 2 quetschend beaufschlagt und dadurch verformt. Im Falle eines Zylinderkopfes aus Aluminium wird dieser an der entsprechen Stelle eingedrückt. Um die Dichtung 12 zu kühlen, bildet der Kühlmantel eine Kühlkammer 25 aus, über die der Ölstrom an den Dichtring 12 heranführbar ist. Die Kühlkammer 25 wird in diesem Falle von einer Verbreiterung des Spaltes zwischen dem Zylindergehäuse 1 und dem Zylinderkopf 2 gebildet.

Claims (13)

  1. Brennkraftmaschine mit einem Motorblock, der ein Zylindergehäuse und einen das Zylindergehäuse abdeckenden Zylinderkopf aufweist und der einen von Öl durchflossenen Kühlmantel aufweist, wobei der Kühlmantel, einen den Arbeitsraum eines Kolbens (5) axial zumindest teilweise umgebenden Ringraum (10) und einen den Arbeitsraum stirnseitig nahezu vollständig bedeckenden Kopfraum (11) aufweist, wobei der Kopfraum (11) und der Ringraum (10) in unmittelbarer Verbindung miteinander stehen,
    dadurch gekennzeichnet,
    der Ölstrom über eine in den Kopfraum (11) eingebrachte Austrittsöffnung (13) aus dem Kühlmantel heraus in einen Rücklaufraum (14) eintritt, der mindestens einen Zylinder (6) unter Einschluß des Ringraumes (10) vollständig umgibt.
  2. Brennkraftmaschine nach Anspruch 1,
    dadurch gekennzeichnet, daß der Rücklaufraum (14) in einem im Kurbelgehäuseunterteil (3) angeordneten Sammelraum (15) mündet, wobei der Ölstrom von der Schwerkraft getrieben in den Sammelraum (15) läuft.
  3. Brennkraftmaschine nach einem der Ansprüche 2 oder 3,
    dadurch gekennzeichnet, daß mehrere die einzelnen Zylinder (6) umgebende Rücklaufräume (14) untereinander in Verbindung stehen und einen gemeinsamen Rücklaufraum bilden.
  4. Brennkraftmaschine nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, daß im Motorblock eine Vorratskammer (18) vorgesehen ist, die einen Vorrat an Frischöl aufnimmt und die mindestens einen Zylinder (6) und insbesondere alle Zylinder vollständig umgibt.
  5. Brennkraftmaschine nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, daß die Pumpe (16) das Öl über eine Rückführleitung (17) aus dem Sammelraum (15) in die Vorratskammer (18) pumpt.
  6. Brennkraftmaschine nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, daß das Öl über eine Bypaßleitung (21) von der Rückführleitung (17) direkt in den Ringraum (10) förderbar ist.
  7. Brennkraftmaschine nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, daß das zur Kühlung verwendete Öl außerdem zur Schmierung der beweglichen Teile eingesetzt wird.
  8. Brennkraftmaschine mit einem Motorblock, der ein Zylindergehäuse und einen das Zylindergehäuse abdeckenden Zylinderkopf aufweist und der einen von Öl durchflossenen Kühlmantel aufweist, wobei der Kühlmantel, einen den Arbeitsraum eines Kolbens (5) axial zumindest teilweise umgebenden Ringraum (10) und einen den Arbeitsraum stirnseitig nahezu vollständig bedeckenden Kopfraum (11) aufweist, wobei der Kopfraum (11) und der Ringraum (10) in unmittelbarer Verbindung miteinander stehen,
    dadurch gekennzeichnet, daß
    daß der Zylinderkopf gegenüber dem Zylindergehäuse über eine Metalldichtung abgedichtet ist.
  9. Brennkraftmaschine nach Anspruch 8,
    dadurch gekennzeichnet, daß die Metalldichtung ein Dichtring (12), insbesondere ein O-Ring, ist, der in einer in den stirnseitigen Rand des Zylindergehäuses (1) eingebrachten Nut (24) einliegt.
  10. Brennkraftmaschine nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, daß der Kühlmantel eine Kühlkammer (25) aufweist, über die der Ölstrom an den Dichtring (12) heranführbar ist.
  11. Brennkraftmaschine nach Anspruch 10,
    dadurch gekennzeichnet, daß die Kühlkammer (25) von den gegeneinandergerichteten Stirnflächen des Zylinderkopfes (2) und des Zylindergehäuses (1) und von dem Dichtring (12) begrenzt ist.
  12. Brennkraftmaschine nach einem der Ansprüche 8 bis 11,
    dadurch gekennzeichnet, daß der Ringraum (10) und der Kopfraum (11) an der Stelle der Brennraumdichtung bzw. der Zylinderkopfdichtung (12) fluchtend ineinander übergehen und einen geschlossenen, den Arbeitsraum des Zylinders einschließenden Kühlmantel bilden.
  13. Brennkraftmaschine nach einem der Ansprüche 8 bis 12,
    dadurch gekennzeichnet, daß der Ölstrom über eine am Boden des Ringraumes (10) vorgesehene Eintrittsöffnung in den Kühlmantel eintritt und diesen über eine in den Kopfraum (11) eingebrachte Austrittsöffnung (13) verläßt.
EP00117193A 1999-08-24 2000-08-11 Ölgekühlte Brennkraftmaschine Expired - Lifetime EP1079080B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19940144A DE19940144A1 (de) 1999-08-24 1999-08-24 Ölgekühlte Brennkraftmaschine
DE19940144 1999-08-24

Publications (3)

Publication Number Publication Date
EP1079080A2 true EP1079080A2 (de) 2001-02-28
EP1079080A3 EP1079080A3 (de) 2002-07-24
EP1079080B1 EP1079080B1 (de) 2006-06-21

Family

ID=7919451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00117193A Expired - Lifetime EP1079080B1 (de) 1999-08-24 2000-08-11 Ölgekühlte Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP1079080B1 (de)
AT (1) ATE331125T1 (de)
DE (2) DE19940144A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030353A1 (de) * 2004-06-23 2006-01-19 Dr.Ing.H.C. F. Porsche Ag Brennkraftmaschine mit Druckumlaufschmierung nach dem Trockensumpfprinzip
US7798289B2 (en) 2004-06-23 2010-09-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal-combustion engine having a pressure lubrication system according to the dry-sump principle
CN103221672A (zh) * 2010-11-22 2013-07-24 瓦锡兰芬兰有限公司 发动机缸体装置和用于防止磨蚀的方法
AU2006349461B2 (en) * 2006-10-05 2014-04-03 Mitja Victor Hinderks Improved reciprocating devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084632B4 (de) 2011-10-17 2015-03-05 Ford Global Technologies, Llc Verfahren zum Erwärmen einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE102016200269A1 (de) 2016-01-13 2017-07-13 Ford Global Technologies, Llc Verfahren zum Betreiben einer flüssigkeitsgekühlten Vier-Takt-Brennkraftmaschine und Vier-Takt-Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
CN106050352B (zh) * 2016-08-15 2019-02-12 潍柴动力股份有限公司 一种内燃机及其主轴承润滑系统
DE102020115166A1 (de) 2020-06-08 2021-12-09 Audi Aktiengesellschaft Antriebseinrichtung für ein Kraftfahrzeug sowie Verfahren zum Betreiben einer Antriebseinrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385273A (en) * 1965-09-10 1968-05-28 White Motor Corp Cooling system for internal combustion engine
FR2329852A1 (fr) * 1975-11-03 1977-05-27 Brighigna Mario Moteur a combustion interne a refroidissement par circulation d'un seul liquide
DE3508405A1 (de) * 1984-03-13 1985-10-03 Günter Elsbett Brennkraftmaschine mit reduzierter schall- und waermeemission
US4834030A (en) * 1986-11-20 1989-05-30 Kloeckner-Humboldt-Deutz Ag Diesel internal combustion engine
US4854276A (en) * 1986-11-11 1989-08-08 Elsbett L Internal combustion engine with combined cooling and lubricating system
DE4029427A1 (de) * 1989-09-27 1991-04-04 Volkswagen Ag Zylinder fuer eine fluessigkeitsgekuehlte, schmieroelbehaelter aufweisende hubkolben-brennkraftmaschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1115349B (it) * 1977-06-13 1986-02-03 Brighigna Mario Motore a combustione interna raffreddato mediante l'olio di lubrificazione
JPS5837920U (ja) * 1981-09-04 1983-03-11 三菱自動車工業株式会社 エンジンの冷却装置
DE3509095A1 (de) * 1984-04-11 1985-10-17 Volkswagenwerk Ag, 3180 Wolfsburg Anordnung zur kuehlung und schmierung einer hubkolben-brennkraftmaschine
JPH03264721A (ja) * 1990-03-14 1991-11-26 Hino Motors Ltd 断熱エンジン用ブロック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385273A (en) * 1965-09-10 1968-05-28 White Motor Corp Cooling system for internal combustion engine
FR2329852A1 (fr) * 1975-11-03 1977-05-27 Brighigna Mario Moteur a combustion interne a refroidissement par circulation d'un seul liquide
DE3508405A1 (de) * 1984-03-13 1985-10-03 Günter Elsbett Brennkraftmaschine mit reduzierter schall- und waermeemission
US4854276A (en) * 1986-11-11 1989-08-08 Elsbett L Internal combustion engine with combined cooling and lubricating system
US4834030A (en) * 1986-11-20 1989-05-30 Kloeckner-Humboldt-Deutz Ag Diesel internal combustion engine
DE4029427A1 (de) * 1989-09-27 1991-04-04 Volkswagen Ag Zylinder fuer eine fluessigkeitsgekuehlte, schmieroelbehaelter aufweisende hubkolben-brennkraftmaschine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030353A1 (de) * 2004-06-23 2006-01-19 Dr.Ing.H.C. F. Porsche Ag Brennkraftmaschine mit Druckumlaufschmierung nach dem Trockensumpfprinzip
US7798289B2 (en) 2004-06-23 2010-09-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal-combustion engine having a pressure lubrication system according to the dry-sump principle
US7819227B2 (en) 2004-06-23 2010-10-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal combustion engine with pressure lubrication by the dry sump principle
AU2006349461B2 (en) * 2006-10-05 2014-04-03 Mitja Victor Hinderks Improved reciprocating devices
CN103221672A (zh) * 2010-11-22 2013-07-24 瓦锡兰芬兰有限公司 发动机缸体装置和用于防止磨蚀的方法

Also Published As

Publication number Publication date
DE50013028D1 (de) 2006-08-03
EP1079080B1 (de) 2006-06-21
EP1079080A3 (de) 2002-07-24
DE19940144A1 (de) 2001-03-01
ATE331125T1 (de) 2006-07-15

Similar Documents

Publication Publication Date Title
EP2305975B1 (de) Brennkraftmaschine mit Pumpe zur Förderung von Motoröl und Verfahren zur Erwärmung des Motoröls einer derartigen Brennkraftmaschine
DE3241723A1 (de) Drehschieberanordnung zur steuerung des ladungswechsels einer brennkraftmaschine
DE3832013C2 (de) Hubkolben-Brennkraftmaschine mit Kurbelgehäuse-Ladeluftpumpen
DE3731250C1 (en) Reciprocating piston internal combustion engine with crankcase charge air pumps
EP1079080B1 (de) Ölgekühlte Brennkraftmaschine
DE102008053423A1 (de) Ölabweisblech
DE60031343T2 (de) Brennkraftmaschine mit rotierender zylinderbüchse
WO2006002791A1 (de) Kurbelgehäuseentlüftungsleitung
DE1526434A1 (de) Kreiskolben-Brennkraftmaschine
EP0873468B1 (de) Drehschiebersteuerung für verbrennungsmaschinen und kolbenpumpen
EP2672082A1 (de) Schmiermittelsammelvorrichtung
DE4137279C2 (de) Hubkolbenbrennkraftmaschine
DE2910822C2 (de) Luftgekühlter, drehschiebergesteuerter Viertakt-Verbrennungsmotor
US20120240892A1 (en) Efficient oil treatment for radial engine
DE3509095A1 (de) Anordnung zur kuehlung und schmierung einer hubkolben-brennkraftmaschine
DE102006053923A1 (de) Kolbenarbeitsmaschine
DE19834398B4 (de) Viertakt-Hubkolbenbrennkraftmaschine
DE4243255A1 (de) Verbrennungsmotor mit zwei Kolben pro Arbeitsraum, insbesondere Zweitaktmotor mit Gleichstromspülung
DE3622301A1 (de) Verbrennungsmotor
DE102004004050A1 (de) Kühlmittelpumpenanordnung für eine Brennkraftmaschine
DE102016100411A1 (de) Hubkolbenvorrichtung sowie Brennkraftmaschine mit einer solchen Hubkolbenvorrichtung
DE19727987C2 (de) Zweitakt-Taumelscheiben-Brennkraftmaschine
DE102013219264B4 (de) Verbrennungsmotor mit Ölaufnahmesystem
DE2508381A1 (de) Verfahren und vorrichtung zur verbrennung von brennstoffen, insbesondere kohlenwasserstoffen
DE3621478A1 (de) Industriemotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030124

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50013028

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061121

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060621

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060811

BERE Be: lapsed

Owner name: SUTTNER, REINHARD

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070827

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070821

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081030

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302