EP1077747B1 - Verfahren zum stofflichen aufschluss von kunstharz enthaltenden verbundwerkstoffen - Google Patents

Verfahren zum stofflichen aufschluss von kunstharz enthaltenden verbundwerkstoffen Download PDF

Info

Publication number
EP1077747B1
EP1077747B1 EP98941357A EP98941357A EP1077747B1 EP 1077747 B1 EP1077747 B1 EP 1077747B1 EP 98941357 A EP98941357 A EP 98941357A EP 98941357 A EP98941357 A EP 98941357A EP 1077747 B1 EP1077747 B1 EP 1077747B1
Authority
EP
European Patent Office
Prior art keywords
reaction
components
alkali
printed circuit
circuit boards
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98941357A
Other languages
English (en)
French (fr)
Other versions
EP1077747A1 (de
Inventor
Frank Detlef
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1077747A1 publication Critical patent/EP1077747A1/de
Application granted granted Critical
Publication of EP1077747B1 publication Critical patent/EP1077747B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/32Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by treatment in molten chemical reagent, e.g. salts or metals
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/36Detoxification by using acid or alkaline reagents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances

Definitions

  • PCBs belong due to their complex structure and the ones they contain Pollutants among the most problematic in terms of recycling technology Components of the electronic scrap, and the contained in them Recyclable materials are a scarcely developed resource.
  • the common disposal methods such as landfill or Burns are extremely problematic because they are either toxic Heavy metals such as copper, tin or lead occur in the leachate or when burning because of the content of bromine Flame retardants both aggressive acids as well aromatic dioxins and furans can arise.
  • a circuit board is usually made up of numerous components equipped, of which particularly problematic such as batteries, Capacitors, rectifiers and mercury switches be removed before processing. This also happens with particularly valuable components such as gold-plated connector strips.
  • the partial denaturation is environmentally friendly Utilization or disposal absolutely necessary, since All processes that have been carried out so far have at least a rough crushing is connected upstream. Otherwise it would become one Distribution of pollutants and recyclables, which come recovery is difficult as well as possible Pollutant release leads. The risk of one Pollutant emissions could only be reduced by: all process stages in hermetically sealed devices be carried out, which is of course expensive.
  • the proportions of components and detached circuit board are approximately the same size (45%: 55%). It is advisable to separate all components from the circuit board beforehand, since the components contain about 95% of chromium and 85% of nickel and iron, while around 80% of tin, copper and lead can be found in the circuit board. As a rule, such complete dismantling is not yet carried out in practice, although the necessary methods are known (DE-PS 42 05 405, DE-OS 41 31 620). Component-free printed circuit boards are therefore usually production waste.
  • a printed circuit board is mainly made of metal (30% by weight), glass fiber (50% by weight) and polymer resin (20% by weight), so far only the metals are considered as valuable materials. To regain them, they first need to be enriched and separated from the residues as much as possible become. There are several procedures for this, which also work together can be combined.
  • US Pat. No. 5,580,905 describes a method for hydrolytic Cleavage of polyesters, namely polyalkylene terephthalates using caustic solutions of alkali hydroxides, in which the mixture is heated and the polyester to underlying salt and polyol is broken down. The reaction always takes place at temperatures up to the boiling point of the Polyols, so up to about 200 ° C to evaporate and cut off.
  • the use described in column 6 / 30-32 of powdery or melted hydroxides is related to see with the overall disclosure of the aforementioned U.S.
  • DE-OS 4 001 897 describes a method for Dissolution of circuit boards (printed circuit boards) known, in which this with the exclusion of oxygen at temperatures above 400 ° C introduced into a melt of alkali hydroxide and alkali oxide become.
  • the alkali oxide converted into peroxide which is then converted into the Melt diffuses and oxidizable components such as carbon or hydrogen-containing compounds from the boards breaks down.
  • the melt of alkali hydroxide and alkali oxide used as a matrix for the oxidation in this mode of operation (Column 1 / 25-32) and prevents the occurrence of toxic gases, how they would be created by combustion.
  • column 1 / 29-34 is a raw material recovery and Can not be used for the synthetic resin or for the glass fibers.
  • the object of the invention is now to develop a method that the material bond between metal, glass and Polymer dissolves.
  • isolating largely pure Metal, glass and polymer fractions are said to be further processed and thus a substantial reduction or one largely avoidance of residual fractions to be disposed of become.
  • the invention now relates to a method for material Digestion of composite materials containing synthetic resin, in which the high molecular structure of the synthetic resin chemical reaction in melts of alkali metal hydroxides is broken down at temperatures of 250 ° to 370 ° C.
  • the hydroxides of the alkali metals are preferred NaOH or KOH and particularly preferably mixtures of NaOH and KOH.
  • the proportion is: Potassium hydroxide for example 3 to 60% by weight, preferably 5 up to 20% by weight - the relatively small amount of potassium hydroxide is also due to the higher price Substance-related.
  • the reaction temperatures are generally in the range between 260 ° and 370 ° C, preferably in the range between 280 ° and 370 ° C and particularly preferably in the range between 300 and 350 ° C.
  • the choice of the most suitable temperature depends naturally on the type and composition of the starting materials from, it should be borne in mind that at higher temperatures both the speed of reaction and the danger the thermal formation of unwanted degradation products increased becomes. In general, can also within the above Temperature ranges when using potassium hydroxide work at a lower temperature than at of sodium hydroxide, and when using mixtures of Sodium and potassium hydroxide at even lower temperatures.
  • reaction can be carried out using reaction aids are supported, which the wettability of the Improve the composite material with alkali metal hydroxides, lower or lower the melting point of the alkali metal hydroxides the reaction conditions a solvent or swelling power for the Have synthetic resin or its degradation products.
  • the wettability of the composite improve come for example with the Reaction temperatures resistant surfactants into consideration.
  • the alkali metal hydroxides e.g. B. inorganic salts of alkali, alkaline earth or earth metals or of metals of the fourth group of the periodic Systems or of metals of subgroups with strong or weak inorganic acids.
  • the use of salts from Metals already contained in the raw materials can also support the reaction. This also has the advantage that no foreign elements in the system be introduced.
  • the one Dissolving or swelling capacity for the synthetic resin or its degradation products own come z.
  • B. oligomeric fragments or Base body of the synthetic resin into consideration under the reaction conditions are stable. In the event of digestion come from starting materials containing epoxy resin, for example the phenolic bases bisphenol A and F (4,4 ' Diphenylol-2,2-propane or -methane) into consideration.
  • the synthetic resins are networked or uncrosslinked Polymers that are chemically cleavable in the main chain contain functional groups, such as polyesters, polyamides, Polyethers, polyurethanes, but preferably polyimides such as Polyphthalimides and poly-bimalinimides, polyaramides and polycyanate esters, but especially epoxy resins. These consist of usually from condensation products of bisphenols, such as Bisphenol A and bisphenol F, and epichlorohydrin. This list is to be understood as exemplary and not restrictive. Restrictions result from the type of chemical Disclosure and are obvious to the expert.
  • the amount of alkali metal hydroxide used for digestion can be varied within wide limits.
  • the in the amount applied in practice must be at least sufficient to to ensure that the procedure is carried out. For example but 50% by weight, based on the synthetic resin content, is sufficient out. But is useful for easier handling a significantly larger amount of alkali metal hydroxide is used.
  • the prior art also produces dust-like ones Shares that are separated and disposed of as filter dust.
  • the method according to the invention now has the advantage that such dusts by themselves or in combination with the comminuted reaction material to be subjected to the digestion can. It is a particular advantage of the invention that it is also suitable for processing such dusts, which contain flame retardants and / or metals as they do especially when shredding in electrical engineering usual composite materials.
  • the crushed Laminate was made with the same weight percentage Added alkali hydroxide and in a tempered metal bath implemented. According to Example 1 was with NaOH at 340 ° C, according to Example 2 with KOH at 320 ° C and according to Example 3 with a Mixture of equal parts by weight of NaOH and KOH at 300 ° C implemented. The reaction was in less than 5 minutes each finished with gas evolution. The resulting gas could be used as Water to be condensed. After the reaction was over Cooled reaction mixture and washed with cold water, until the wash water was about neutral. After separating the dismantled Polymers and subsequent drying made metal and glass fraction are simply separated from one another.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing Of Solid Wastes (AREA)

Description

EINLEITUNG
In Deutschland fallen derzeit jährlich ca. 1,5 Mio. Tonnen Elektronikschrott an, worin etwa 200.000 Tonnen Leiterplattenschrott enthalten sind. Leiterplatten gehören aufgrund ihres komplexen Aufbaus sowie der in ihnen enthaltenen Schadstoffe zu den verwertungstechnisch problematischsten Bestandteilen des Elektronikschrotts, und die in ihnen enthaltenen Wertstoffe bilden eine noch kaum erschlossene Ressource. Die gängigen Entsorgungsmethoden wie Deponierung oder Verbrennung sind äußerst problematisch, da entweder toxische Schwermetalle wie Kupfer, Zinn oder Blei im Sickerwasser auftreten oder bei der Verbrennung wegen des Gehalts an bromhaltigen Flammschutzmitteln sowohl aggressive Säuren als auch aromatische Dioxine und Furane entstehen können. Für die Rückgewinnung der Metalle aus dem Leiterplattenschrott sind nach den bisher angewendeten Methoden zum Teil aufwendige und umwelttechnisch problematische Verfahren notwendig.
STAND DER TECHNIK
Eine Leiterplatte ist in der Regel mit zahlreichen Bauelementen bestückt, von denen besonders problematische wie Batterien, Kondensatoren, Gleichrichter und Quecksilberschalter vor der Aufarbeitung entfernt werden. Dies geschieht auch mit besonders wertvollen Bauelementen wie vergoldeten Steckerleisten. Die teilweise Entstückung ist für eine umweltverträgliche Verwertung oder Entsorgung unbedingt notwendig, da bei allen bislang durchgefuhrten Verfahren zumindest eine Grobzerkleinerung vorgeschaltet ist. Anderenfalls würde es zu einer Verteilung von Schad- und Wertstoffen kommen, welche sowohl die Rückgewinnung erschwert als auch zu einer möglichen Schadstoff-Freisetzung führt. Das Risiko einer Schadstoffemission könnte nur dadurch vermindert werden, daß sämtliche Prozeßstufen in hermetisch abgeschlossenen Vorrichtungen durchgeführt werden, was natürlich aufwendig ist.
Gewichtsmäßig sind die Anteile an Bauelementen und entstückter Leiterplatte etwa gleich groß (45% : 55%). Eine vorherige Trennung aller Bauelemente von der Leiterplatte ist sinnvoll, da die Bauelemente etwa 95% des Chroms und 85% des Nickels und Eisens enthalten, während man in der Leiterplatte etwa 80% des Zinns, Kupfers und Bleis findet. In der Regel wird eine solche vollständige Entstückung in der Praxis noch nicht vorgenommen, obwohl die notwendigen Verfahren bekannt sind (DE-PS 42 05 405,
DE-OS 41 31 620). Bei bauelementfreien Leiterplatten handelt es sich daher in der Regel um Produktionsabfälle.
Eine entstückte Leiterplatte besteht hauptsächlich aus Metall (30 Gew.%), Glasfaser (50 Gew.%) und Polymerharz (20 Gew.%), wobei bisher nur die Metalle als Wertstoffe betrachtet werden. Um sie zurückzugewinnen, müssen sie zunächst angereichert und so gut wie möglich von den Reststoffen getrennt werden. Hierzu existieren mehrere Verfahren, die auch miteinander kombiniert werden können.
Nach einer Arbeitsweise wird die Leiterplatte zur besseren Handhabung mechanisch grob zerkleinert (geschreddert) und mittels Magnetabscheider von ferromagnetischen Teilen befreit. Im Anschluß hieran folgt eine Feinzerkleinerung, welche auf verschiedene Arten ausgeführt werden kann:
  • Beim Standard-Mahlverfahren kann es durch thermische Belastungen zur Bildung von polybromierten aromatischen Dibenzodioxinen (PBDD) und polybromierten Dibenzofuranen (PBDF) aus dem Flammschutzmittel kommen.
  • Beim Kryo-Mahlverfahren wird bei so tiefen Temperaturen gemahlen, daß das Material versprödet. Dabei wird die Bildung thermischer Abbauprodukte vermieden. Diesen Vorteilen stehen jedoch höhere Energiekosten gegenüber, wobei unerheblich ist, ob die Kühlung direkt, z.B. mit flüssigem Stickstoff, oder indirekt über eine Kältekaskade erfolgt.
  • Durch teilweise Kühlung wird der Bereich zwischen Normal- und Kryoverfahren abgedeckt.
  • Beim Ultraschall-Verfahren wird das Verbundmaterial mittels Ultraschall zertrümmert, wobei materialspezifische Korngrößenverteilungen auftreten. Dieses Verfahren ist sehr teuer, erlaubt jedoch die Isolierung von bis zu vier verschiedenen Metallfraktionen.
Nach der Zerkleinerung werden die Bestandteile nach Dichte, Korngröße oder magnetischen bzw. elektrischen Eigenschaften getrennt. Hierzu werden Sieb- und Sichtanlagen sowie Magnetscheider, Wirbelstromscheider und elektrostatische Separatoren eingesetzt. Wertstoffverluste sind nicht zu verhindern, da sich die feinen Metallteilchen über alle Fraktionen verteilen. Besonders problematisch sind die in erheblichen Mengen anfallenden schwermetallhaltigen Stäube, da sie teilweise bis in die Lunge gelangen und gesundheitliche Schäden verursachen.
  • Nach einer anderen Arbeitsweise, dem Naßzerkleinerungs-Verfahren werden feuchte Leiterplatten gemahlen, wodurch sowohl das Mahlgut vor thermischer Belastung geschützt als auch eine Staubentwicklung vermieden wird. Die anschlies-sende Wertstofftrennung erfolgt gewöhnlich über ein flotationsähnliches Verfahren mit anschließender Trocknung.
Die metallreiche Fraktion wird auf chemischem oder thermischem Weg weiter aufgearbeitet.
  • Liegt der Edelmetallgehalt über 0,02 %, so lohnt sich die Aufarbeitung für Edelmetallscheideanstalten. Hierbei werden die Edelmetalle entweder mit einer schwach alkalischen Cyanidlösung ausgelaugt und anschließend reduktiv zurückgewonnen oder thermometallurgisch bei 1000-1200 °C im Schachtofen mit Blei extrahiert. Im Anschluß hieran wird das Blei im Treibofen als Bleiglätte wieder entfernt. Die Aufarbeitung erfolgt in beiden Fällen elektrolytisch, und die edelmetallfreien Rückstände werden an Kupferhütten weitergegeben.
  • Liegt der Edelmetallgehalt unter 0,02 Gew.%, so wird das Material in die zweite Stufe des Kupferherstellungsprozesses eingeschleust. Hierbei wird das Rohkupfer in einem Drehrohrofen (Peirce Smith Konverter) unter Silikatzusatz vom Eisen befreit, wobei sich eine Eisensilikatschlacke bildet, welche andere Schwermetalle dauerhaft einschließt und als Baumaterial Verwendung findet (Kopfsteinpflaster) . Das Kupfer wird anschließend elektrolyrisch gereinigt, wobei sich die Edelmetalle im Anodenschlamm wiederfinden.
Die chemische Aufarbeitung durch eine Solvolyse des Polymers scheiterte bislang an den langen Reaktionszeiten und den hohen Kosten des Verfahrens, ist jedoch sowohl mit konzentrierter Salpetersäure bei Raumtemperatur als auch mit geeigneten Lösemitteln bei höheren Temperaturen im Autoklaven möglich.
Alle genannten physikalischen Verfahren weisen die gleichen generellen Zielkonflikte auf. Zum einen muß das Material sehr fein zerkleinert werden, um die einzelnen Komponenten voneinander trennen zu können; doch je feiner das Pulver wird, um so schwieriger wird seine Trennung, da Oberflächeneffekte die Materialunterschiede nivellieren. Zum anderen geht die Reinheit einer Fraktion zwangsläufig zu Lasten der Ausbeute. Ein weiteres Problem besteht darin, daß die metallarme Fraktion gemeinsam mit der Staubfraktion entsorgt werden muß und mehr als 2/3 der Gesamtmenge umfaßt. Dies geschieht in der Regel durch Ablagerung in einer normalen Deponie, obwohl ihre Pulverform und die verbleibende Schwermetallbelastung eigentlich eine Entsorgung auf einer Sondermüll-Deponie bzw. durch eine Sondermüllverbrennungsanlage erforderlich machen.
Bei allen genannten Aufarbeitungsverfahren stellt die Verunreinigung der Metallfraktion mit Polymer und Glas ein Problem dar. Hierdurch wird ein aufwendiger Aufschluß des Materials notwendig, bevor das Metall elektrolytisch gereinigt werden kann. Außerdem verhindert der Metallgehalt der Restfraktion deren weitere Verwendung bzw. erschwert deren Entsorgung.
In der US-PS 5 580 905 wird ein Verfahren zur hydrolytischen Spaltung von Polyestern, und zwar Polyalkylenterephthalaten mittels kaustischen Lösungen von Alkalihydroxiden beschrieben, bei dem das Gemisch erhitzt und der Polyester zum zugrundeliegenden Salz und Polyol abgebaut wird. Die Reaktion erfolgt grundsätzlich bei Temperaturen bis zum Siedepunkt des Polyols, also bis ca. 200°C, um dieses zu verdampfen und abzutrennen. Die in Spalte 6/30-32 beschriebene Verwendung von pulvrigen oder geschmolzenen Hydroxiden ist im Zusammenhang mit der Gesamtoffenbarung der genannten US-PS zu sehen, nämlich daß hieraus direkt im Reaktionsgemisch die benötigten Lösungen der Alkalihydroxide gebildet werden und daß bei solchen Temperaturen zu arbeiten ist, bei denen das Polyol unzersetzt verdampft und abdestilliert werden kann. Das in Spalte 4/7-11 ebenfalls beschriebene spätere Erhitzen auf deutlich höhere Temperaturen bezieht sich eindeutig nicht mehr auf den stofflichen Aufschluß des Polyesters, sondern auf die thermische Zersetzung von Verunreinigungen unter Bedingungen, bei denen das Alkaliterephthalat noch stabil ist.
Weiterhin ist aus der DE-OS 4 001 897 ein Verfahren zur Auflösung von Platinen (Leiterplatten) bekannt, bei dem diese unter Ausschluß von Sauerstoff bei Temperaturen oberhalb von 400°C in eine Schmelze aus Alkalihydroxid und Alkalioxid eingebracht werden. Durch Aufgabe von Sauerstoff wird das Alkalioxid in Peroxid umgewandelt, welches anschließend in die Schmelze diffundiert und oxidierbare Bestandteile wie kohlenstoff- oder wasserstoffhaltige Verbindungen aus den Platinen abbaut. Die Schmelze aus Alkalihydroxid und Alkalioxid wird bei dieser Arbeitsweise als Matrix für die Oxidation genutzt (Spalte 1/25-32) und verhindert das Auftreten toxischer Gase, wie sie bei einer Verbrennung entstehen würden. Wie in Spalte 1/29-34 offenbart, ist eine rohstoffliche Rückgewinnung und Nutzung weder für das Kunstharz noch für die Glasfasern möglich.
ERFINDUNG
Aufgabe der Erfindung ist nun die Entwicklung eines Verfahrens, das den stofflichen Verbund zwischen Metall, Glas und Polymer auflöst. Durch die Isolierung von weitgehend reinen Metall-, Glas- und Polymer-Fraktionen soll deren weitere Aufarbeitung und damit eine wesentliche Reduktion oder eine weitgehende Vermeidung von zu entsorgenden Restfraktionen ermöglicht werden.
Gegenstand der Erfindung ist nun ein Verfahren zum stofflichen Aufschluß von Kunstharz enthaltenden Verbundwerkstoffen, bei dem die hochmolekulare Struktur des Kunstharzes durch chemische Reaktion in Schmelzen von Alkalimetallhydroxiden bei Temperaturen von 250° bis 370° C abgebaut wird.
Bei den Hydroxiden der Alkalimetalle handelt es sich bevorzugt um NaOH oder KOH und besonders bevorzugt um Gemische aus NaOH und KOH. In derartigen Gemischen beträgt der Anteil an Kaliumhydroxid zum Beispiel 3 bis 60 Gew.%, vorzugsweise 5 bis 20 Gew.%- Die verhältnismäßig geringe Menge des Kaliumhydroxids ist unter anderem auch durch den höheren Preis dieses Stoffes bedingt.
Die Reaktionstemperaturen liegen im allgemeinen im Bereich zwischen 260° und 370 °C, bevorzugt im Bereich zwischen 280° und 370 °C und besonders bevorzugt im Bereich zwischen 300 und 350 °C. Die Auswahl der geeignetsten Temperatur hängt naturgemäß von der Art und Zusammensetzung der Ausgangsmaterialien ab, wobei zu bedenken ist, daß bei höheren Temperaturen sowohl die Reaktionsgeschwindigkeit als auch die Gefahr der thermischen Bildung unerwünschter Abbauprodukte gesteigert wird. Im allgemeinen kann auch innerhalb der genannten Temperaturbereiche bei der Verwendung von Kaliumhydroxid bei einer niedrigeren Temperatur gearbeitet werden als bei der von Natriumhydroxid, und bei der Verwendung von Gemischen von Natrium- und Kaliumhydroxid bei noch niedrigeren Temperaturen.
Die Reaktion kann durch die Verwendung von Reaktionshilfsmitteln unterstützt werden, welche die Benetzbarkeit des Verbundwerkstoffes durch Alkalimetallhydroxide verbessern, den Schmelzpunkt der Alkalimetllhydroxide senken oder unter den Reaktionsbedingungen ein Löse- oder Quellvermögen für das Kunstharz oder dessen Abbauprodukte besitzen.
Als Reaktionshilfsmittel, die die Benetzbarkeit des Verbundwerkstoffes verbessern, kommen zum Beispiel bei den Reaktionstemperaturen beständige Tenside in Betracht. Solche, die den Schmelzpunkt der Alkalimetallhydroxide senken, sind z. B. anorganische Salze von Alkali-, Erdalkali- oder Erdmetallen oder von Metallen der vierten Gruppe des Periodischen Systems oder von Metallen der Nebengruppen mit starken oder schwachen anorganischen Säuren. Die Verwendung von Salzen von Metallen, die bereits in den Ausgangsmaterialien enthalten sind, kann auch für die Reaktion unterstützend wirken. Dies hat außerdem den Vorteil, daß keine Fremdelemente in das System eingebracht werden. Als Reaktionshilfsmittel, die ein Löse- oder Quellvermögen für das Kunstharz oder dessen Abbauprodukte besitzen, kommen z. B. oligomere Bruchstücke bzw. Grundkörper der Kunstharze in Betracht, die unter den Reaktionsbedingungen beständig sind. Für den Fall des Aufschlusses von epoxidharzhaltigen Ausgangsmaterialen kommen beispielsweise die phenolischen Grundkörper Bisphenol A und F (4,4' Diphenylol-2,2-propan bzw. -methan) in Betracht.
Bei den Kunstharzen handelt es sich um vernetzte oder unvernetzte Polymere, welche in der Hauptkette chemisch spaltbare funktionelle Gruppen enthalten, wie Polyester, Polyamide, Polyether, Polyurethane, bevorzugt aber Polyimide wie Polyphthalimide und Poly-bimalinimide, Polyaramide und Polycyanatester, insbesondere aber Epoxidharze. Diese bestehen in der Regel aus Kondensationsprodukten von Bisphenolen, wie Bisphenol A und Bisphenol F, und Epichlorhydrin. Diese Aufzählung ist beispielhaft und nicht einschränkend zu verstehen. Einschränkungen ergeben sich aus der Art des chemischen Aufschlusses und sind für den Fachmann offensichtlich.
Die zum Aufschluß verwendete Menge an Alkalimetallhydroxid kann in weiten Grenzen variiert werden. Natürlich muß die in der Praxis angewandte Menge mindestens ausreichend sein, um eine Durchführung des Verfahrens zu gewährleisten. Beispielsweise reichen aber schon 50 Gew.%, bezogen auf den Kunstharzanteil aus. Zweckmäßig wird aber zwecks leichterer Handhabung eine deutlich größere Menge Alkalimetallhydroxid verwendet.
Da das Verfahren sehr einfach ist, kann es leicht auf andere Verbundwerkstoffe übertragen werden. Besonders vorteilhaft ist die Anwendung des Verfahrens auf metallische Komponenten enthaltende, in der Elektrotechnik übliche Verbundwerkstoffe, wie sie beispielsweise, aber nicht ausschließlich in Leiterplatten, Bauelementen oder Produktionsabfällen bei der Herstellung von Leiterplatten und Bauelementen vorliegen. Unter Bauelementen werden dabei insbesondere alle Bauteile verstanden, die auf Leiterplatten benutzt werden oder benutzt werden können, wie Prozessoren, Speicherchips, Widerstände und Kondensatoren. Diese Aufzählung ist beispielhaft und nicht einschränkend zu verstehen. Hierbei ist es sinnvoll, aber nicht notwendig, daß die Leiterplatten und die darauf befindlichen Bauelemente vor der Reaktion getrennt und gegebenenfalls ganz oder zum Teil gesondert aufgearbeitet werden, was nach üblichen Verfahren geschehen kann. Die Trennung kann z. B. nach chemischen (Zinn/Blei-Strippen), thermischen (Entlöten) und mechanischen ("Abhobeln") Verfahren erfolgen.
Für die Zerkleinerung der Verbundwerkstoffe wie Leiterplatten können handelsübliche Schredderanlagen eingesetzt werden. Da keine Feinzerkleinerung notwendig ist, wird an diesen Teilprozeß keine hohe Anforderung gestellt. Die maximal tolerierbare Stückgröße ergibt sich für den Fachmann aus den Verfahrensanforderungen der Folgestufen.
Bei der trockenen Zerkleinerung der Verbundwerkstoffe gemäß dem Stand der Technik entstehen bekanntlich auch staubförmige Anteile, die als Filterstäube abgetrennt und entsorgt werden. Das erfindungsgemäße Verfahren beinhaltet nun den Vorteil, daß derartige Stäube für sich oder in Kombination mit dem zerkleinerten Reaktionsgut dem Aufschluß unterworfen werden können. Es ist ein besonderer Vorteil der Erfindung, daß sie auch für die Aufarbeitung von solchen Stäuben geeignet ist, die Flammschutzmittel und/oder Metalle enthalten, wie sie insbesondere bei der Zerkleinerung von in der Elektrotechnik üblichen Verbundwerkstoffen anfallen.
Für den chemischen Abbau des Kunstharzes können handelsübliche Reaktoren eingesetzt werden. Hierbei handelt es sich im wesentlichen um Rührkessel und Rührkesselkaskaden bei diskontinuierlicher, oder um Extruder und Extruderkaskaden, z.B. einem Zweischneckenextruder bei kontinuierlicher Arbeitsweise. Der wesentliche Vorteil des Extruders liegt in der kurzen und definierten Reaktionszeit. Die Gefahr der Bildung thermischer Abbauprodukte (Dioxine und Verkohlungen) ist daher wesentlich geringer als bei der Verwendung eines Rührkessels. Andererseits sind lange Verweilzeiten mit einem Extruder nicht oder nur durch aufwendige Extruderkaskaden zu realisieren. Versuche ergaben Reaktionszeiten (Beispiele 1 bis 3), welche sich mit einem Extruder erreichen lassen. Da auch die Reinigung des Reaktionsraumes beim Extruder einfacher und bei kontinuierlicher Arbeitsweise nicht mehr notwendig ist, ist der Extrusionsprozess bevorzugt, wobei aufgrund der besseren Durchmischung der Zweischneckenextruder besonders geeignet ist.
Um die Bestandteile der Verbundwerkstoffe wiederverwerten zu können, müssen sie nach erfolgtem Aufschluß voneinander getrennt werden, was in üblicher Weise erfolgen kann, z. B. nach trockenen (Windsichten/Elektrostatik) oder nassen (Flotation) Verfahren. In beiden Fällen ist der Einsatz handelsüblicher Anlagen möglich. Der Vorteil der trockenen Verfahren besteht vor allem im geringeren Wasser- und Energieverbrauch, während bei dem nassen Verfahren die Emission von Stäuben einfacher zu vermeiden ist. Für die Abtrennung der Abbauprodukte des Kunstharzes und die Rückgewinnung von überschüssigem Reagenz sind Extraktionsprozesse mit organischen und wäßrigen Lösemitteln bevorzugt. Auch hierbei können handelsübliche Anlagen verwendet werden. Die Auswahl geeigneter Extraktionsverfahren und Extraktionsmittel ist für den Fachmann ohne Schwierigkeiten möglich.
BEISPIELE 1 BIS 3
Ein unbestücktes, d. i. von Bauelementen freies Leiterplattenlaminat auf Epoxidharzbasis der Klasse FR-4, d. i. ein flammwidrig ausgerüstetes Produkt, wurde grob zerkleinert, wobei die entstehenden Bruchstücke eine Größe von 20x20 mm bei einer Dicke von 1,6 mm aufwiesen. Das zerkleinerte Laminat wurde mit dem gleichen Gewichtsanteil an Alkalihydroxid versetzt und in einem temperierten Metallbad umgesetzt. Gemäß Beispiel 1 wurde mit NaOH bei 340° C, gemäß Beispiel 2 mit KOH bei 320° C und gemäß Beispiel 3 mit einem Gemisch von gleichen Gewichtsteilen NaOH und KOH bei 300° C umgesetzt. Die Reaktion war jeweils in weniger als 5 Minuten unter Gasentwicklung beendet. Das entstandene Gas konnte als Wasser kondensiert werden. Nach beendeter Reaktion wurde das Reaktionsgemisch abgekühlt und mit kaltem Wasser gewaschen, bis das Waschwasser etwa neutral war. Nach Abtrennung des abgebauten Polymers und anschließender Trocknung konnten Metall und Glasfraktion einfach voneinander getrennt werden.

Claims (10)

  1. Verfahren zum stofflichen Aufschluß von Kunstharz enthaltenden Verbundwerkstoffen,
    dadurch gekennzechnet, daß
    die hochmolekulare Struktur des Kunstharzanteils durch chemische Reaktion mit Hydroxiden der Alkalimetalle bei Temperaturen von 250° bis 370° C, zweckmäßig bei Temperaturen zwischen 260° und 370° C, bevorzugt im Bereich zwischen 280° und 370° C, besonders bevorzugt im Bereich zwischen 300° und 350° C abgebaut wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß
    als Hydroxid der Alkalimetalle NaOH oder KOH, bevorzugt aber Gemische aus NaOH und KOH verwendet werden.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß
    Reaktionshilfsmittel verwendet werden, welche die Benetzbarkeit des Verbundwerkstoffes durch Alkalimetallhydroxide verbessern, den Schmelzpunkt der Alkalimetallhydroxide senken oder unter den Reaktionsbedingungen ein Lösevermögen für das Kunstharz oder dessen Abbauprodukte besitzen.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 - 3,
    dadurch gekennzeichnet, daß
    es sich bei den Kunstharzen um vernetzte oder unvernetzte Polymere handelt, welche in der Hauptkette chemisch spaltbare funktionelle Gruppen enthalten wie Polyester, Polyamide, Polyether, Polyurethane, vorzugsweise Polyimide, Polyaramide und Polycyanatester und insbesondere Epoxidharze.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 - 4,
    dadurch gekennzeichnet, daß
    der Verbundwerkstoff metallische Komponenten enthält.
  6. Verfahren nach einem oder mehreren der Ansprüche 1 - 5,
    dadurch gekennzeichnet, daß
    das Ausgangsmaterial ein in der Elektrotechnik üblicher Verbundwerkstoff ist und insbesondere aus Leiterplatten, Bauelementen oder Produktionsabfall bei der Herstellung von Leiterplatten oder Bauelementen besteht, wobei vorzugsweise die Leiterplatten und die darauf befindlichen Bauelemente vor der Reaktion getrennt werden.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet, daß
    das Ausgangsmaterial aus bei der Zerkleinerung anfallenden Stäuben besteht oder solche enthält, insbesondere solche, die Flammschutzmittel und/oder Metalle enthalten.
  8. Verfahren nach einem oder mehreren der Ansprüche 1 - 7,
    dadurch gekennzeichnet, daß
    die Reaktion diskontinuierlich in einem Rührkessel, bevorzugt in einer Rührkesselkaskade, oder kontinuierlich in einem Extruder oder einer Extruderkaskade, bevorzugt in einem Zweischneckenextruder durchgeführt wird.
  9. Verfahren nach einem oder mehreren der Ansprüche 1 - 8,
    dadurch gekennzeichnet, daß
    die Menge des Alkalimetallhydroxids mindestens 50 Gew.%, bezogen auf den Kunstharzanteil beträgt.
  10. Weitere Ausgestaltung des Verfahrens nach einem oder mehreren der Ansprüche 1 - 9,
    dadurch gekennzeichnet, daß
    die Bestandteile der Verbundwerkstoffe nach der Reaktion voneinander getrennt und gegebenenfalls teilweise oder ganz aufgearbeitet werden.
EP98941357A 1998-07-17 1998-07-17 Verfahren zum stofflichen aufschluss von kunstharz enthaltenden verbundwerkstoffen Expired - Lifetime EP1077747B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1998/004467 WO2000003764A1 (de) 1998-07-17 1998-07-17 Verfahren zum stofflichen aufschluss von kunstharz enthaltenden verbundwerkstoffen

Publications (2)

Publication Number Publication Date
EP1077747A1 EP1077747A1 (de) 2001-02-28
EP1077747B1 true EP1077747B1 (de) 2001-12-12

Family

ID=8167006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98941357A Expired - Lifetime EP1077747B1 (de) 1998-07-17 1998-07-17 Verfahren zum stofflichen aufschluss von kunstharz enthaltenden verbundwerkstoffen

Country Status (6)

Country Link
EP (1) EP1077747B1 (de)
JP (1) JP2002520196A (de)
AT (1) ATE210482T1 (de)
AU (1) AU8976798A (de)
DE (1) DE59802480D1 (de)
WO (1) WO2000003764A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849854B1 (fr) * 2003-01-09 2006-12-15 Electricite De France Procede de valorisation de dechets de materiaux a base de resine epoxyde.
DE102010050153B4 (de) * 2010-11-02 2012-10-25 Adam Handerek Reaktor und Verfahren zum zumindest teilweisen Zersetzen und/oder Reinigen von Kunststoffmaterial
DE102010050152B4 (de) * 2010-11-02 2016-02-11 Adam Handerek Reaktor und Verfahren zum zumindest teilweisen Zersetzen, insbesondere Depolymerisieren, und/oder Reinigen von Kunststoffmaterial

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2509634B1 (fr) * 1981-07-20 1986-10-10 Cirta Ct Int Rech Tech Appliqu Procede de destruction de produits a base de matieres organiques contenant du soufre et/ou des halogenes et applications de celui-ci
DE4001897C2 (de) * 1990-01-21 1999-11-25 Atp Arbeit Tech Photosynthese Verfahren zur umweltfreundlichen Auflösung von Platinen
EP0554761A1 (de) * 1992-02-04 1993-08-11 MENGES, Georg, Prof. Dr.-Ing. Verfahren zum Recycling von Polymerwerkstoffen
CA2140822A1 (en) * 1994-07-21 1996-01-22 Gary D. Schnittgrund Molten salt destruction of composite materials

Also Published As

Publication number Publication date
AU8976798A (en) 2000-02-07
DE59802480D1 (de) 2002-01-24
EP1077747A1 (de) 2001-02-28
ATE210482T1 (de) 2001-12-15
JP2002520196A (ja) 2002-07-09
WO2000003764A1 (de) 2000-01-27

Similar Documents

Publication Publication Date Title
EP3517641B1 (de) Verfahren zum verwerten von lithium-batterien
EP2376597B1 (de) Verfahren zur aufbereitung von abfällen
EP1727629B1 (de) Verfahren zur verarbeitung von mehrkomponenten-, verbund- und kombinierten materialien und verwendung so getrennter komponenten
CN102191383A (zh) 一种处理废旧印刷电路板的方法
EP2367903A1 (de) Verfahren zur herstellung von synthesegas und/oder flüssigen rohstoffen und/oder energieträgern aus abfällen und/oder biomassen
EP1725345B9 (de) Verwendung von flüssigkristall-displays sowie verfahren zu deren verwertung
DE69307515T2 (de) Behandlung von polyvinylchloriden
EP0244901B1 (de) Verfahren zur Aufarbeitung von Kleinbatterien
DE10304641A1 (de) System zur Entgiftung toxischer chlorierter organischer Verbindungen und Verfahren zum Rezyklieren des entgifteten Abfalls
EP1077747B1 (de) Verfahren zum stofflichen aufschluss von kunstharz enthaltenden verbundwerkstoffen
DE2916203C2 (de)
EP2547452B1 (de) Verfahren zum zerkleinern von elektronikschrott und technischem glas für die wiederverwertung
DE19712521C2 (de) Verfahren zum stofflichen Aufschluß von Kunstharz und metallische Komponenten enthaltenden Verbundwerkstoffen
DE69905309T2 (de) Müllverbrennungsanlage
DE10206347A1 (de) Verfahren zur Gewinnung von Phosphatverbindungen aus Verbrennungsrückständen
DE2825266C2 (de) Verfahren zum Verarbeiten von Bleiakkumulatorenschrott
DE19605242A1 (de) Verfahren zum Erzeugen von reinem metallischem Blei aus verbrauchten Batterien
EP1017502B1 (de) Verfahren zur verwertung von altautos
DE19522064C2 (de) Verfahren und Vorrichtung zum Wiedergewinnen von Metallen aus Elektronikschrott
EP0554761A1 (de) Verfahren zum Recycling von Polymerwerkstoffen
DE69503363T2 (de) Extraktion von schwermetallen, die in der flugasche und den reinigungsrückstanden von abgasen eines verbrennungsofens enthalten sind.
DE69504707T2 (de) Verfahren zur wiederverwendung von verbundwerkstoffen
EP0942070A1 (de) Rückgewinnung von Wertmetallen aus Polyester-Leiterplatten durch Aufbereitung in einer alkalischen Lösung mehrwertiger Alkohole
DE102012213457A1 (de) Verfahren und Vorrichtung zur Rückgewinnung von seltenen Erden aus Abfällen
DE69606431T2 (de) Behandlung von abfallprodukten, die organische substanzen enthalten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FI FR GB IE IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010402

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FI FR GB IE IT LI NL SE

REF Corresponds to:

Ref document number: 210482

Country of ref document: AT

Date of ref document: 20011215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011212

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59802480

Country of ref document: DE

Date of ref document: 20020124

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020717

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020717

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020717

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: *DETLEF FRANK

Effective date: 20020731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020717

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050717