EP1075963B1 - Feuille pour transfert thermique pour l'enregistrement induit par laser d'un cylindre pour l'impression lithographique - Google Patents

Feuille pour transfert thermique pour l'enregistrement induit par laser d'un cylindre pour l'impression lithographique Download PDF

Info

Publication number
EP1075963B1
EP1075963B1 EP00116753A EP00116753A EP1075963B1 EP 1075963 B1 EP1075963 B1 EP 1075963B1 EP 00116753 A EP00116753 A EP 00116753A EP 00116753 A EP00116753 A EP 00116753A EP 1075963 B1 EP1075963 B1 EP 1075963B1
Authority
EP
European Patent Office
Prior art keywords
thermal
transfer film
film according
polymer
pigments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00116753A
Other languages
German (de)
English (en)
Other versions
EP1075963A3 (fr
EP1075963A2 (fr
Inventor
Josef Dr. Schneider
Thomas Dr. Hartmann
Andrea Dr. Fuchs
Hans-Christoph Beltle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manroland AG
Original Assignee
MAN Roland Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Roland Druckmaschinen AG filed Critical MAN Roland Druckmaschinen AG
Publication of EP1075963A2 publication Critical patent/EP1075963A2/fr
Publication of EP1075963A3 publication Critical patent/EP1075963A3/fr
Application granted granted Critical
Publication of EP1075963B1 publication Critical patent/EP1075963B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38207Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1091Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by physical transfer from a donor sheet having an uniform coating of lithographic material using thermal means as provided by a thermal head or a laser; by mechanical pressure, e.g. from a typewriter by electrical recording ribbon therefor

Definitions

  • the invention relates to a generic thermal transfer film, the as a donor element for imaging a lithographic printing form cylinder, is particularly suitable for offset printing, by laser-induced transmission.
  • the invention also relates to a method for producing the film and Intermediates for it.
  • a printing method is known in which a printing form cylinder is punctiform and figuratively provided with plastic. This printing form cylinder is then coated with printing inks for an offset process and the Printing ink of the ink-guiding areas is picked up by a rubber roller and transferred to the substrate to be printed. For a quick one Changing the print motifs, especially for short runs, it is desirable the process within a device is computer-controlled if possible and on the other hand to perform without changing moving parts. The one in EP-B-0 698 488 presented printing device meets this need.
  • the printing form cylinder used in the above device is made with a polymer made by a thermal transfer ribbon comes, punctiform and pictorial.
  • suitable lithographic printing form that means on the printing form cylinder clear separation of the hydrophilic areas (those not with polymer occupied parts on the printing form cylinder) and hydrophobic areas (the polymer-coated parts on the printing form cylinder, which are used later in the printing process represent the color-carrying areas) - certain physical and chemical parameters of the thermal transfer film, in particular for a Thermal transfer ribbon, set and optimized. It has been shown that usual thermal transfer foils and tapes do not meet the requirements or only partly do justice.
  • EP-A1-0 727 321 relates to an image-forming material a support and an imaging layer thereon, the one Contains colorant, the imaging layer being hardened was used to determine the adhesive force between the imaging layer and diminish the support, thereby causing an image to pass through imagewise exposing the imaging layer with a Light of high energy density is formed.
  • the thermal transfer film according to the invention consists of a substrate layer 1, e.g. a carrier film or a carrier tape, from one if possible heat-resistant plastic and a donor layer 2, i.e. the heat-sensitive transferable layer as defined in the main claim.
  • a substrate layer e.g. a carrier film or a carrier tape
  • a donor layer i.e. the heat-sensitive transferable layer as defined in the main claim.
  • the transfer process is irreversible and directed Plastic cools due to the high heat capacity of e.g. made of metal Cylinder immediately and adheres to the printing form cylinder.
  • the transferred layer is essentially in two steps aftertreated, namely in a first step a fixing step is carried out, where, due to the effects of heat, the plastic layer better adheres to the material of the printing form and in a second step in which hydrophilizes will, i.e.
  • hydrophilicity means water friendliness as a measure for wetting with water under dynamic conditions.
  • the substrate layer must withstand mechanical stresses during the course of the transport device, e.g. the band station and under local Be resistant to heat.
  • the substrate layer must also be related on the chemicals used in the manufacture of the thermal transfer ribbon be chemically inert.
  • the substrate is preferably used for imaging used wavelength optically transparent.
  • the substrate should also be against electrostatic charge be neutral, but be an electrical insulator.
  • the thickness of the substrate layer is 50 ⁇ m to 4 ⁇ m or up to 5 ⁇ m, especially 12 to 6 ⁇ m. An optimum is 7.5 ⁇ m.
  • the parameters are essentially the optical transmission (permeability), the mechanical strength even at higher temperatures, the thermal conductivity and the thermal stability and dimensional stability at higher temperatures, a compromise must be sought between these parameters.
  • the optical transmission increases with decreasing thickness of the substrate layer.
  • the mechanical strength in turn improves with increasing thickness of the Substrate layer.
  • the passage of heat increases on the one hand with decreasing thickness to.
  • the mechanical stability increases with increasing thickness the substrate layer.
  • the thickness of the substrate layer should be sufficient that with the action of a laser with a power of 300 mJ for transmission necessary material is generated by material of the donor layer and thus a effective transfer of material of the donor layer takes place.
  • the tensile strength at break also plays a role.
  • the tensile strength at break in the machine direction should be greater than 200 N / mm 2 , preferably greater than 250 N / mm 2 , particularly preferably greater than 270 N / mm 2 .
  • the transverse direction is greater than 180 N / mm 2 , preferably greater than 220 N / mm 2 , in particular greater than 270 N / mm 2 .
  • the tensile strength is essentially determined by the mechanical stresses caused by the belt station and - depending on the width of the belt - by the local heat.
  • the shrinkage should be less than 8%, in particular less than 6.5%, particularly preferred less than 5%.
  • the substrate is made of a plastic that the mechanical properties mentioned above also at a temperature of 150 ° C or greater. Therefore come in particular optically clear, heat-resistant and high-strength plastics.
  • polypropylene and PVCP can be used.
  • the ones that can be used Plastics but polyester, polyaryl ether ether ketone (PEEK), polyphenylene ether (PPE) and / or polycarbonates.
  • Polyesters are preferred, among them polyesters are preferred, those of dicarboxylic acids and diols and / or of hydroxycarboxylic acids or the corresponding lactones are derived, such as Polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethylolcyclohexane terephthalate and polyhydroxybenzoates and block copolyether esters, derived from polyethers with hydroxyl end groups and also polyester, modified with polycarbonates. Polyethylene naphthalenedicarboxylates are also suitable. Commercial PET products are e.g. Hostaphan® and Mylar®.
  • the plastic for the substrate layer should have little preferably contain no plasticizer.
  • Plasticizers are essentially of low molecular nature and can therefore be used in the conversion of the Vaporize the energy of the laser light in heat and lead to a plasma effect. Occurring plasma reflects the penetrating laser beam, so that in the donor layer is used to soften and eject the one to be transferred Material heat required is no longer achieved. Plasticizers that are used Exposure to a laser with a power of 300 mJ with the above Films or tapes that do not produce a plasma effect can be tolerated become. The same applies to concentrations of common plasticizers.
  • the optical transmission is usually determined by the thickness of the tape and the choice of material certainly.
  • the optical transmission depends on the wavelength.
  • the wavelength range for IR semiconductor lasers is between 700 and 1600 nm.
  • the ranges are preferably 800 to 900 nm, in particular 850 to 820 nm on the one hand and 1000 to 1200 nm or 1070 to 1030 nm on the other hand.
  • the wavelength is approximately 1064 nm.
  • the transmission for the substrate layer of> 70% IR light is in the wavelength range from 700 to 1600 nm, more preferably> 85%. Transmission of IR light in the wavelength range is particularly preferred from 800 to 1100 nm from> 85%.
  • a point laser can be used as the laser be used. However, IR semiconductor laser diode arrays are preferred.
  • the substrate must be chemically inert, i.e. the chemicals used in the manufacturing process of the thermal transfer ribbon are used, must not adversely affect the substrate.
  • these are organic solvents, preferably ketones, aliphatic and cycloaliphatic hydrocarbons as well as acids and bases.
  • the width of the Tape on 3 mm to 50 mm, preferably 8 mm to 30 mm, preferably 10 mm up to 15 mm.
  • the polymer to be transferred contains an auxiliary, who supports this process.
  • These substances can organic dyes or organic coloring agents, provided that that they do not decompose when light energy is converted into heat energy.
  • organic dyes or pigments examples include Benzothiazoles, quinolines, cyanine dyes or pigments, perylene dyes or pigments, polymethine dyes and pigments, such as oxonol dyes and - pigments and merocyanine dyes and pigments.
  • KF 805 PINA from Riedl de Haen a benzothiazole compound
  • KF 810 PINA from Riedl de Haen a quinoline compound
  • ADS840MI, ADS840MT, ADS840AT, ADS890MC, ADS956BI, ADS800WS, ADS96HO from American Dye Source Inc. 3,3'-diethylthiatricarbocyanine p-toluenesulfonate (Cyanine dye compounds), perylene-3,4,8,10-tetracarboxylic anhydride (a perylene compound) as well as Epolite V-63 and Epolite III-178 from Epolin Inc., Newmark.
  • the organic dyes or pigments are in an amount of 5 to 40 wt .-%, preferably 10 to 30 wt .-%, the dry mass of the donor layer used. These dyes can be used individually or applied in a mixture to the absorption maximum in to shift the wavelength range of the laser used.
  • inorganic substances are of interest, in particular those which do not decompose when light energy is converted into heat energy.
  • Such substances are, for example, titanium dioxide, aluminum oxide and other metal oxides and inorganic color pigments.
  • Magnetite can be mentioned here: Fe 3 O 4 ; Spinel black: Cu (Cr, Fe) 2 O 4 , Co (Cr, Fe) 2 O 4 ; Manganese ferrite: MnFe 2 O 4 . These substances are used in an amount of up to 20% by weight.
  • the aforementioned substances, namely organic dyes or Colorant, inorganic substance involved in the conversion of light energy not decomposed in thermal energy, and soot can be used individually or in a mixture become.
  • the amount of heat sensitive and / or laser sensitive Substance depends on the ability to convert light energy into sufficient thermal energy to transfer that located on the substrate layer to be transferred.
  • the polymer of the donor layer performs the following functions in particular out. Firstly, it will soften quickly under the influence of the laser beam, develop the required pressure at the interface of the substrate layer and transferred to the printing form cylinder as a semi-solid graft. Is liable there the plastic thus transferred due to hydrophilic groups on the hydrophilic Surface of the printing form cylinder. Finally, the polymer should be first a fixing step by heating and then a hydrophilization step of the survive the finished printing form cylinder. In this step, the free ones Metal surfaces of the printing form cylinder hydrophilized and the plastic areas profiled on the printing form cylinder. In addition, it should now be on the printing form cylinder plastic, printing ink and a have the longest possible service life.
  • the polymer is aqueous at a pH greater than 10 Solution soluble but insoluble in the fountain solution that is normally used in Offset paper printing is used. This is achieved in that the polymer is water-soluble for a pH greater than 10 deviating from the fountain solution designed.
  • An alkaline range with a pH is preferred greater than 10.5, in particular greater than 11.
  • its number average molecular weight should preferably not be 20,000 exceed.
  • its number average molecular weight should be preferred Do not fall below 1000, otherwise there is insufficient water resistance is achieved.
  • the range is preferably between 1000 and 15,000, especially between 1,000 and 10,000.
  • the polymers have to accept printing ink.
  • a surface tension preferably between 50 and 10 mN / m, in particular between 40 and 23 mN / m, particularly preferably in the range of 28 and 32 mN / m, significant.
  • the surface tension is measured via contact angle measurement with 3 + n test liquids and is according to Wendt, Own and Rabel evaluated.
  • the transferred polymer In order for the transferred polymer to adhere sufficiently to the hydrophilic printing form cylinder, it has acidic groups. These groups can be selected from the groups -COOH, -SO 3 H, -OSO 3 H and -OPO 3 H 2 as well as the optionally alkyl- or aryl-substituted amides thereof.
  • the alkyl group can have 1 to 6, preferably 1 to 4, carbon atoms, the aryl group can have 6 to 10, preferably 6, carbon atoms.
  • the polymer also contains an aromatic group. Phenyl groups are preferred.
  • the polymer preferably originates from the polymerization of ⁇ , ⁇ -unsaturated carboxylic, sulfonic, sulfuric and phosphoric acids or esters or their amides and styrene as defined above, and also their derivatives and optionally ⁇ , ⁇ -unsaturated carboxylic esters.
  • the acidic monomers and the aromatic vinyl monomers should be selected such that the polymer has a glass transition temperature T g between 30 and 100 ° C., in particular 30 and 90 ° C., preferably between 55 and 65 ° C.
  • the polymer preferably has a ceiling temperature in the range of the melting point, the melting range being between 80 and 150, in particular 90 and 140, preferably 105 to 115 ° C., particularly preferably around 110 ° C. Copolymers which contained substantial amounts of ⁇ -methylstyrene proved to be less advantageous.
  • Suitable polymers can be found in US-A-4 013 607, US-A-4 414 370 and in U.S.-A-4,529,787. Resins disclosed therein can e.g. essentially be completely solved if a sufficient part, for example 80-90 % of these groups with an aqueous solution of basic substances such as borax, Amines, ammonium hydroxide, NaOH and / or KOH is neutralized.
  • basic substances such as borax, Amines, ammonium hydroxide, NaOH and / or KOH is neutralized.
  • styrene-acrylic acid resin with an acid number of about 190 not less than contain about 0.0034 equivalents of -COOH groups per gram of resin and would essentially be solved completely if a minimum of about 80-90% of the -COOH groups neutralized by an aqueous alkaline solution become.
  • the acid number can range between 120 and 550, 150 and 300, e.g. 150 to 250 lie.
  • the combinations of Monomers are preferably styrene-acrylic acid, styrene-maleic anhydride, Methyl methacrylate-butyl acrylate-methacrylic acid, ⁇ -methylstyrene / styrene-ethyl acrylate-acrylic acid, Styrene-butyl acrylate-acrylic acid, styrene-methyl acrylate-butyl acrylate-methyl acrylic acid.
  • An alkali-soluble resin with 68% styrene / 32% acrylic acid with a molecular weight of 500-10000 can be mentioned.
  • Other Resins have an acid number of about 200 and a molecular weight of about 1400.
  • styrene ( ⁇ -methylstyrene) acrylic acid (acrylic acid ester) resins a number average molecular weight of 2500-4500 and a weight average molecular weight of 6500-9500. The acid number is included 170-200.
  • Exemplary polymers have 60-80% by weight of aromatic monoalkenyl monomers and 40-20% by weight of (meth) acrylic acid monomers and optionally 0-20% by weight of acrylic monomer containing no carboxyl groups. Mixtures from 10: 1 to 1: 2 or 1: 1, preferably 8: 1 to 1: 2, for example 2: 1 up to 1: 2 styrene / ⁇ -methylstyrene can be used. Not very advantageous However, copolymers have been found to contain substantial amounts of ⁇ -methylstyrene contained.
  • the thermal transfer ribbon used for the method has a coating weight in the range from 0.8 to 5 g / m 2 +/- 0.2 and is preferably in the range from 1.6 to 2.0 g / m 2 .
  • the wetting aid has various functions.
  • the wetting aid lies after the transfer also at the border area between the metal surface and transferred polymer, so that there increases the adhesion becomes. Finally, it smoothes when fixing, i.e. with a subsequent heating of the transferred polymer, the surface of the transferred polymer, so that the structure of the pixel is improved.
  • the wetting aid will selected from solvents such as alcohols, ketones, esters of phosphoric acid, Glycol ethers and anionic surfactants, especially alcohols and ketones, are preferred Ketones, particularly preferably methyl ethyl ketone.
  • solvents used as a wetting aid originate from the manufacturing step of the thermal transfer ribbon.
  • wetting aids can be used in small amounts (e.g. 0.05-8% by weight, preferably 0.5-5% by weight of the dry mass of the donor layer) by the Manufacturing process are introduced. Another advantage of being present A wetting aid is an intrinsic temperature control during the transfer process and thermal post-treatment. About the properties Boiling point, range, enthalpy of vaporization and heat capacity are at a maximum upper limit temperature for both processes for the necessary time window Are defined. For example, microscopic desorption processes in the In the case of a formulation based on carbon black, an upper limit temperature pretend. Overheating of the transferred mass can be caused by both external control of the heat sources as well as by the composition of the Mass itself can be influenced and thus creates a high level of security in the Process management.
  • the thermal transfer ribbon is produced in the usual way.
  • the Mass is then applied with a Meyer bar or by the engraving process.
  • the thickness of the transfer layer is 0.5 to 5 ⁇ m, preferably 0.8 to 4 ⁇ m, in particular 1 to 3 ⁇ m, preferably 1.5 to 2.5 ⁇ m, dry layer thickness.
  • the tape is on a Coil wound and inserted in a tape station.
  • the pixel transmission unit receives data for the from a data memory Illustration of the printing form cylinder.
  • the thermal transfer ribbon moves with it Help a tape station relative to yourself during the transition process itself but independently moving pressure cylinder. This relative speed and the chronological sequence of the data controls the mapping on the printing cylinder.
  • the radiated light energy is converted into thermal energy, which at the interface between the substrate layer and the donor layer of the Thermal transfer ribbon causes a particularly sharp rise in temperature. This increase in temperature causes the above-mentioned boundary layer Generates gases that counter the now softened material of the donor layer spin the metal of the printing form cylinder.
  • the substance parts of the transferred Mark material on the surface of the printing form cylinder due to the oleophilic property of the ink-guiding areas during later printing.
  • a polyethylene terephthalate film (PET) Hostaphan® from Hoechst with a thickness of 7.5 ⁇ m is coated with a Meyer bar with a mass of the following composition to a dry layer weight of 1.8 g / m 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)

Claims (23)

  1. Feuille pour transfert thermique comprenant une couche de substrat et, apposée sur celle-ci, une couche donneuse,
    caractérisée en ce que
    a) la couche de substrat se compose d'au moins une masse polymère qui présente au moins les propriétés suivantes : stabilité mécanique à une température > 150°C ; transmission > 70 % pour une lumière d'une longueur d'onde de 700 à 1600 nm ;
    b) la couche donneuse comprend au moins les composants suivants :
    i) une substance qui peut convertir l'énergie de rayonnement d'une lumière laser survenant en énergie thermique,
    ii) un polymère qui comprend des groupes acides et/ou leurs groupes amides substitués le cas échéant, et se dissout à une valeur de pH supérieure à 10 dans l'eau mais pas dans la solution de mouillage et
    iii) le cas échéant un adjuvant de mouillage.
  2. Feuille pour transfert thermique selon la revendication 1,
    caractérisée en ce que
    la couche de substrat présente une épaisseur de 50 µm à 4 µm, une résistance de traction à la rupture supérieure à 270 N/mm2 dans la direction de la machine et supérieure à 180 N/mm2 en direction transversale et une contraction thermique à 150°C inférieure à 5 %.
  3. Feuille pour transfert selon la revendication 1 ou 2,
    caractérisée en ce que
    la masse polymère est un polyester, une polyaryléther éther cétone, un éther de polyphénylène et/ou un polycarbonate.
  4. Feuille pour transfert thermique selon la revendication 3,
    caractérisée en ce que
    le polyester est choisi parmi des polyesters qui sont dérivés des acides dicarboniques et des diols et/ou des acides hydroxycarboniques ou des lactones correspondantes ; tels que le polyéthylène téréphtalate, le polybutylène téréphtalate, le poly-1,4-diméthylolcyclo-hexane téréphtalate, le polyhydroxybenzoate et le polyéthylène-naphtalène dicarboxylate ; ainsi que des esters de copolymère séquencé dérivés à partir de polyéthers avec des groupes terminaux hydroxyles et des polyesters modifiés avec des polycarbonates.
  5. Feuille pour transfert thermique selon la revendication 4,
    caractérisée en ce que
    le polyester est un polyéthylène téréphtalate.
  6. Feuille pour transfert thermique selon l'une quelconque des revendications 1 à 5,
    caractérisée en ce que
    le composant i) est
    a) un colorant organique ou une teinture organique avec au moins les propriétés suivantes :
    aa) un maximum d'absorption dans la plage des longueurs d'onde de 700 à 1600 nm,
    ab) une résistance thermique supérieure à 150°C,
    et/ou
    b) une substance inorganique qui peut convertir l'énergie de rayonnement en énergie thermique sans se décomposer,
    et/ou
    c) est un type de carbone.
  7. Feuille pour transfert thermique selon la revendication 6,
    caractérisée en ce que
    le colorant organique ou la teinture organique comprennent des colorants ou des pigments organiques stables d'un point de vue thermique choisis parmi les benzothiazoles, les quinolines, des colorants ou des pigments à base de cyanine, des colorants ou des pigments de pérylène et des colorants ou des pigments de polyméthine tels que des colorants ou des pigments d'oxonol et des colorants ou des pigments de mérocyanine.
  8. Feuille pour transfert thermique selon la revendication 6,
    caractérisée en ce que
    le colorant inorganique ou le pigment inorganique est choisi parmi TiO2, Al2O3, la magnétite Fe3O4 ; le noir de spinelle : Cu(Cr,Fe)2O4, Co(Cr,Fe)2O4 et le ferrite de manganèse MnFe2O4.
  9. Feuille pour transfert thermique selon la revendication 6,
    caractérisée en ce que
    le carbone est sélectionné à partir d'un noir de carbone avec une taille particulaire intermédiaire de 5 à 100 nm.
  10. Feuille pour transfert thermique selon la revendication 9,
    caractérisée en ce que
    le noir de carbone présente un indice de noir selon la norme DIN 55979 entre 200 et 290.
  11. Feuille pour transfert thermique selon l'une quelconque des revendications 1 à 10,
    caractérisée en ce que
    le polymère ii) présente des groupes acides sélectionnés à partir de -COOH, -SO3H, -OSO3H et de -OPO3H2 et/ou le cas échéant des groupes amides substitués avec des restes alkyles en C1-C6 ou des restes aryles en C6-C10.
  12. Feuille pour transfert thermique selon l'une quelconque des revendications 1 à 11,
    caractérisée en ce que
    le polymère présente une solution de comptage d'un poids moléculaire de 1 000 à 20 000.
  13. Feuille pour transfert thermique selon l'une quelconque des revendications 1 à 12,
    caractérisée en ce que
    le polymère appliqué présente une tension de surface de 50 à 20 mN/m déterminée par la mesure de l'angle de contact.
  14. Feuille pour transfert thermique selon l'une quelconque des revendications 1 à 13,
    caractérisée en ce que
    le polymère présente une température de transition vitreuse s'inscrivant dans une plage de 30 à 100°C.
  15. Feuille pour transfert thermique selon l'une quelconque des revendications 1 à 14,
    caractérisée en ce que
    le polymère présente une température de polymérisation critique dans le domaine du point de fusion pour l'ensemble des composants entre 80 et 150°C.
  16. Feuille pour transfert thermique selon l'une quelconque des revendications 1 à 15,
    caractérisée en ce que
    l'adjuvant de mouillage iii) présent le cas échéant est choisi parmi les solvants organiques qui sont en mesure de dissoudre les composants ii).
  17. Feuille pour transfert thermique selon la revendication 16,
    caractérisée en ce que
    le solvant est une cétone, notamment une méthyl-éthyl-cétone.
  18. Feuille pour transfert thermique selon la revendication 16 ou 17,
    caractérisée en ce que
    le solvant est contenu en une proportion qui est suffisante pour générer, après le transfert du polymère de la couche donneuse sur l'impression lors d'une étape de fixation sous l'influence thermique au-delà de la période d'influence thermique, l'évaporation des solvants à un réglage de température intrinsèque.
  19. Feuille pour transfert thermique selon l'une quelconque des revendications 1 à 18 sous la forme d'une bande présentant une largeur s'inscrivant dans une plage de 3 mm à 50 mm.
  20. Procédé pour la fabrication d'une feuille par transfert thermique selon l'une quelconque des revendications 1 à 19, selon lequel une substance i) qui peut convertir l'énergie de rayonnement de la lumière laser survenant en énergie thermique, un polymère ii) qui comprend un groupe acide et/ ou leurs groupes amides substitués le cas échéant et se dissout à une valeur de pH supérieure à 10 dans l'eau mais pas dans la solution de mouillage, et le cas échéant, un adjuvant de mouillage iii) ainsi qu'un solvant, lesquels peuvent être identiques, sont mélangés soigneusement et de façon homogène, la masse est ensuite appliquée avec un étaleur d'encres ou selon un procédé de gravure sur la couche de substrat, l'épaisseur de la couche de transmission s'élevant de 0,5 à 5 µm d'épaisseur à sec, et ensuite, le solvant étant évaporé jusqu'à solidification essentielle de la masse appliquée.
  21. Masse de la couche donneuse selon la revendication 1, comprenant:
    i) une substance qui peut convertir l'énergie de rayonnement d'une lumière laser survenant en énergie thermique,
    ii) un polymère qui comprend des groupes acides et/ou leurs groupes amides substitués le cas échéant, et se dissout à une valeur de pH supérieure à 10 dans l'eau mais pas dans la solution de mouillage et
    iii) le cas échéant un adjuvant de mouillage.
  22. Impression qui est formée par la transmission induite par laser d'une masse selon la revendication 21.
  23. Impression selon la revendication 22 qui est fabriquée à partir de céramique projetée à la flamme ou au plasma et/ou de surface métallique telle que le chrome, le laiton (Cu52-65 %, Zn48-35 %, par exemple Boltomet L® Cu63Zn37) et/ou des aciers précieux dans le sens d'acier fortement allié (selon la norme DIN 17440 : 1,43xx (xx = 01, 10, ...), 1,4568, 1,44xx (xx = 04, 35, 01 ...)).
EP00116753A 1999-08-07 2000-08-03 Feuille pour transfert thermique pour l'enregistrement induit par laser d'un cylindre pour l'impression lithographique Expired - Lifetime EP1075963B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19937478A DE19937478B4 (de) 1999-08-07 1999-08-07 Thermotransferfolie zur laserinduzierten Beschichtung einer Metalloberfläche
DE19937478 1999-08-07

Publications (3)

Publication Number Publication Date
EP1075963A2 EP1075963A2 (fr) 2001-02-14
EP1075963A3 EP1075963A3 (fr) 2001-05-16
EP1075963B1 true EP1075963B1 (fr) 2004-05-26

Family

ID=7917681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00116753A Expired - Lifetime EP1075963B1 (fr) 1999-08-07 2000-08-03 Feuille pour transfert thermique pour l'enregistrement induit par laser d'un cylindre pour l'impression lithographique

Country Status (5)

Country Link
US (1) US6677010B1 (fr)
EP (1) EP1075963B1 (fr)
JP (1) JP2001096920A (fr)
CA (1) CA2315536C (fr)
DE (2) DE19937478B4 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10045774C2 (de) * 2000-09-15 2002-08-14 Roland Man Druckmasch Thermotransferfolie mit reaktiver Polymermasse zur laserinduzierten Beschichtung, deren Herstellung und Verwendung
DE10063819B4 (de) * 2000-12-21 2006-02-02 Man Roland Druckmaschinen Ag Maskenerstellung zur Herstellung einer Druckform
NL1017752C2 (nl) * 2001-03-30 2002-10-01 Dsm Nv Werkwijze voor het maken van een kunststof vormdeel met een gedecoreerd oppervlak.
JP2002370465A (ja) * 2001-06-14 2002-12-24 Konica Corp 印刷版材料、印刷版材料の画像形成方法及び印刷方法
DE102005046863A1 (de) * 2005-09-30 2007-06-14 Man Roland Druckmaschinen Ag Druckform
DE102007007183A1 (de) * 2007-02-14 2008-08-21 Man Roland Druckmaschinen Ag Verfahren zur Herstellung von Druckformen
DE102008025583A1 (de) 2008-01-11 2009-07-16 Tesa Ag Pigmentschicht und Verfahren zur dauerhaften Beschriftung eines Substrats mittels energiereicher Strahlung
PL2078614T3 (pl) 2008-01-11 2014-10-31 Tesa Se Warstwa pigmentowa i metoda trwałego znakowania substratu za pomocą promieniowania wysokoenergetycznego
CN102516822B (zh) * 2011-11-04 2014-08-06 昆明理工大学 一种表面功能化Fe3O4纳米粒子及其制备方法和应用
US20200324564A1 (en) * 2017-12-28 2020-10-15 Institute Of Communication And Computer Systems (Iccs) - Ntua Dual beam laser transfer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3941303C1 (fr) 1989-12-14 1990-12-13 Man Roland Druckmaschinen Ag, 6050 Offenbach, De
GB9215003D0 (en) * 1992-07-15 1992-08-26 Courtaulds Plc Coloured film
JPH07256907A (ja) * 1994-03-25 1995-10-09 Fuji Photo Film Co Ltd カラー画像形成装置
EP0689940B1 (fr) 1994-06-30 1997-09-10 E.I. Du Pont De Nemours And Company Elément donneur pour transfert thermique par laser
DE4430555C1 (de) * 1994-08-27 1996-04-04 Roland Man Druckmasch Verfahren und Vorrichtung zur Herstellung einer Druckform
US5691103A (en) * 1995-02-17 1997-11-25 Konica Corporation Image forming material, method of preparing the same and image forming method employing the same
WO1997000295A1 (fr) 1995-06-14 1997-01-03 Nippon Shokubai Co., Ltd. Polymere greffe a base de noir de carbone, son procede de production et son utilisation
US5698363A (en) 1995-07-10 1997-12-16 Konica Corporation Image forming method
US5691098A (en) * 1996-04-03 1997-11-25 Minnesota Mining And Manufacturing Company Laser-Induced mass transfer imaging materials utilizing diazo compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices

Also Published As

Publication number Publication date
CA2315536C (fr) 2005-06-28
US6677010B1 (en) 2004-01-13
DE50006568D1 (de) 2004-07-01
EP1075963A3 (fr) 2001-05-16
DE19937478A1 (de) 2001-02-15
JP2001096920A (ja) 2001-04-10
DE19937478B4 (de) 2004-08-19
EP1075963A2 (fr) 2001-02-14
CA2315536A1 (fr) 2001-02-07

Similar Documents

Publication Publication Date Title
DE69935934T2 (de) Positiv arbeitendes thermisches bilderzeugendes Element und positiv arbeitender lithographischer Druckplattenvorläufer
DE69700397T2 (de) Vorläufer einer lithographischen druckform und ihre verwendung bei der bebilderung durch wärme
DE69708120T2 (de) Laser-absorbierende, lichtbleichbare zusammensetzungen
DE60024190T2 (de) Infrarotlaser-bebilderbare Flachdruckplatte und Verfahren zu ihrer Herstellung
DE69132508T2 (de) Bilderzeugung/aufzeichnung durch verbesserte abtragungs-übertragung
DE69703245T2 (de) Laserinduziertes filmübertragungssystem
DE69722396T2 (de) Mit einem laser ansprechbares thermisches übertragungselement zur bildaufzeichnung mit einer zwischenschicht
DE69912921T2 (de) Lithographische druckplatten zum gebrauch in einem laser-bilderzeugungsgerät
DE60315692T2 (de) Verfahren zur herstellung eines lithographischen druckplattenvorläufers
EP1075963B1 (fr) Feuille pour transfert thermique pour l'enregistrement induit par laser d'un cylindre pour l'impression lithographique
DE60218005T2 (de) Strahlungsempfindliches Produkt, Verfahren zur Herstellung eines strahlungsempfindlichen Produkts und Verfahren zum Drucken oder Formen eines Bildes mit dem Produkt
EP1188560B1 (fr) Feuille ayant une composition d'un polymère réactif pour la formation d'images par transfert induit par laser,composition,méthode de fabrication de la feuille et plaque d'impression
DE602004007007T2 (de) Thermisch reaktive, nah-infrarot absorbierende Polymere und ihre Verwendung in wärmeempfindlichen lithographischen Druckplatten
DE69612272T2 (de) Lithographische Druckplatte mit Anpassung zur Bilderzeugung durch Ablation
DE60316826T2 (de) Verfahren zur herstellung eines lithographischen druckplattenvorläufers
DE60318600T2 (de) Verfahren zur herstellung einer lithografischen druckplatte
DE2928396C2 (de) Lichtempfindliche, vorsensibilisierte Druckplatte und Verfahren zu ihrer Herstellung
EP0913730A1 (fr) Procédé pour fabriquer un cliché d'impression
DE2543820A1 (de) Verfahren zur herstellung von flachdruckformen mittels laserstrahlen
DE60008306T2 (de) Flachdruckplattenvorstufe die Metallverbindungen enthält und Verfahren zur Herstellung von Flachdruckplatten
EP0900653B1 (fr) Matériau pour formation d'image par voie thermique avec couche contenant une composition sensible à l'infra rouge de type positif et procédé pour la fabrication d'un cliché pour impression offset
DE60021459T2 (de) Flachdruckplatte und Bebilderungsverfahren
DE69703344T2 (de) Wärmeempfindliches Aufzeichnungselement und Verfahren zur Herstellung von Flachdruckplatten damit
DE69908725T2 (de) Abbildungselement mit wärmeempfindlichem Thiosulfatpolymer und Verfahren zu dessen Gebrauch
DE19850181C2 (de) Strahlungsempfindliche Zusammensetzung und deren Verwendung für thermisch bebilderbare Druckplatten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011113

AKX Designation fees paid

Free format text: CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20030611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50006568

Country of ref document: DE

Date of ref document: 20040701

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040906

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MAN ROLAND DRUCKMASCHINEN AG

Free format text: MAN ROLAND DRUCKMASCHINEN AG#POSTFACH 10 12 64#63012 OFFENBACH (DE) -TRANSFER TO- MAN ROLAND DRUCKMASCHINEN AG#POSTFACH 10 12 64#63012 OFFENBACH (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MANROLAND AG

Free format text: MAN ROLAND DRUCKMASCHINEN AG#POSTFACH 10 12 64#63012 OFFENBACH (DE) -TRANSFER TO- MANROLAND AG#MUEHLHEIMER STRA?E 341#63075 OFFENBACH (DE)

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: MANROLAND AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080814

Year of fee payment: 9

Ref country code: NL

Payment date: 20080813

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080821

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: NL

Ref legal event code: V1

Effective date: 20100301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100901

Year of fee payment: 11

Ref country code: DE

Payment date: 20100823

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50006568

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301