EP1059342B1 - Mixtures of fluoropolymer dispersion - Google Patents
Mixtures of fluoropolymer dispersion Download PDFInfo
- Publication number
- EP1059342B1 EP1059342B1 EP00111159A EP00111159A EP1059342B1 EP 1059342 B1 EP1059342 B1 EP 1059342B1 EP 00111159 A EP00111159 A EP 00111159A EP 00111159 A EP00111159 A EP 00111159A EP 1059342 B1 EP1059342 B1 EP 1059342B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dispersion
- equal
- weight
- dispersions
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/244—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
- D06M15/256—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09D127/18—Homopolymers or copolymers of tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
Definitions
- the present invention relates to aqueous fluoropolymer dispersions to be used in coating for surfaces, preferably metal and ceramic surfaces, and in the textile impregnation and cast film manufacture.
- the present invention relates to aqueous fluoropolymer dispersions able to give films having an high critical thickness and an acceptable shelf life for industrial cycles, not lower than 6 months.
- the films obtained from these dispersions show good mechanical properties also at high temperatures, good optical properties, as well as reduced porosity and roughness of the film surface.
- a higher critical thickness allows greater freedom degrees in formulating and applying formulations with the various technologies and a higher reliability of the product in the transformation process.
- An higher critical thickness means high productivity in coating industrial cycles for metal surfaces, impregnation and cast films. This feature however must not decrease the mechanical and optical properties.
- SBR styrene-butadiene rubber latexes
- ABS acrylonitrile-butadiene-styrene
- rubber latex blends see USP 4,334,039 .
- J. of Applied Polymer Sci., 70, 2667-2677 (1998) , Colloid Polymer Sci. 276, 305-312 (1998) , Colloid Polymer Sci. 275, 986-991 (1997) , J. of Rheology 32, 751-771 (1988) can be mentioned.
- the amount of the component having the smaller diameter compared with the component with the greater diameter is in the range 5-50% by weight, preferably 5-20% by weight.
- the examples reported in this patent substantially relate to the textile impregnation and show that, by using an amount of 10% and 18% by weight of the component having a smaller size, cracks are eliminated and the fluoropolymer amount applied in each passage increases. If amounts other than these two values are used, cracks are noticed.
- the polymer having a smaller size has particle sizes in the range 100-110 nm and the above mentioned ratio ranges from 0.45 to 0.5.
- the only example given on the metal coating shows that with an amount equal to 10% of the fluoropolymer having smaller size particles, the film hardness increases compared with the case where the film is obtained by solely using the fluoropolymer having the high sizes as above defined.
- the Applicant has tried to reproduce the Examples by using the small particle sizes towards the lowest value mentioned in the patent, also by using for example a larger amount of surfactant with respect to the patent teaching and to the amounts mentioned in the patent Examples.
- the Applicant has also made other attempts to reproduce the patent by extrapolating the teachings beyond the lowest ratio limit between small and great particles indicated in the patent (lower than 0.3). All these attempts of the Applicant have caused instability phenomena of the latex, both as such and stabilized with non ionic surfactants, as well as a global property worsening, such as for example critical thickness, mechanical properties, film gloss, after a storage of even 1-2 days or 1-2 weeks.
- aqueous fluoropolymer dispersions capable to give films having an high critical thickness combined with good optical and mechanical properties also at high temperatures, reduced porosity and roughness and having an industrially acceptable shelf life, i.e., such as to maintain said properties after a prolonged dispersion storage of at least 6 months.
- the Applicant has unexpectedly and surprisingly found that the instability (shelf-life) problems and the non obtainment of the desirable film performances (see above) are correlated to the presence of fibrils in the small size particle population.
- the Applicant has found that it is possible to solve the above mentioned technical problem by using the dispersions as defined hereinunder.
- fluoropolymer dispersion mixtures comprising:
- the dispersion mixture formed by a) and b) generally shows composition and viscosity of the melt such as to be non thermoprocessable.
- the dispersion b) contains a fibril number lower than 10% of the particle total number, preferably lower than 5%, still more preferably lower than 1%. It has been found by the Applicant that the dispersions containing said fibrils in higher amounts, even though said dispersions are initially effective in increasing the critical thickness, show during the time, from few days to 1-2 months depending on the cases, a decrease of the critical thickness increase, as well as of the other performances until elimination of the advantages deriving from the use of a bimodal (polydispersed) mixture. Besides, instability problems of the dispersion and formulations obtained therefrom during the coating application arise, problems which makes the dispersions unusable.
- the Applicant thinks that the fibrils present in the dispersion tend to form separated phase and to link each other and with the spheroidal particles of the larger particle dispersion, giving rise to instability sites which obstacle a correct application of the dispersion to give good quality coatings having the combination of the above mentioned properties.
- These separation and aggregation phenomena take place both when the dispersion is that directly obtained from the polymerization, and when it is further stabilized with surfactants.
- the weight ratio between component a) and component b) as dry product ranges between 99/1 and 80/20, preferably between 99/1 and 90/10, more preferably between 92/8 and 95/5.
- the dispersion are usually used at a concentration of the dry product in the range 25%-75% by weight and preferably 40%-65% by weight.
- the mixture can be obtained by simple mixing the component a) previously concentrated by the known methods (addition of non ionic surfactant and heating or ultrafiltration) with the component b) so as it is obtained from the polymerization autoclave or concentrated as above for component a) or it can be obtained by coconcentration of the two latexes.
- the ratio between the dispersion b) particle sizes compared with those of the dispersion a) is preferably lower than 0.3, more preferably in the range 0.1-0.25.
- the Applicant has found that the widening of the dispersion b) particle size distribution until comprising the population tails of the dispersion a), leads to a more constant increase of critical thickness in a wider range of compositions. Said widening can be obtaind by mixing more dispersions of type b) having a different average diameter.
- TFE comonomers one can cite the fluorinated ones. Examples of the latter are:
- the comonomer amount in the polymer of dispersion b) is of 1,1-3% by weight.
- the skilled in the field is easily capable by routine tests to determine the comonomer amount to have a non thermoprocessable polymer, that is, not workable from the melt (non thermomouldable by extrusion in manufactured articles).
- the preferred comonomers according to the present invention are those which do not substantially lower the PTFE thermal stability and the molecular weight.
- the dioxole class (I) allows to obtain dispersions with average dimension, measured by PCS, from 20 nm to 80 nm, practically free from fibrils and with polymer dry fractions higher than 20% by weight, preferably higher than 25% by weight.
- the polymer forming the dispersions b) contains an amount of comonomer (I) in the range of 1.1%-3% by weight, more preferably 1.5-2.5% by weight.
- a further advantage of the perfluorinated comonomer class (I) is the capability not to give monomolecular termination reactions when the comonomer has entered the macromolecular chain and therefore to allow the obtainment of high molecular weights, such as to guarantee improved mechanical properties, especially at high temperatures, even higher than 200°C.
- the Applicant has found that it is possible to limit the fibril formation under the mentiond values, also by polymerizing under such conditions so as to obtain the dispersion b) with average size particles over 100 nm. However these dispersions do not produce the positive effects combined with the bimodal (polydispersed) distributions.
- the molecular weight of the polymer of dispersion b) can be regulated by conventional transfer agents, for example ethane.
- the molecular weight can also be regulated through the polymerization initiator amount.
- transfer agents for example ethane.
- the molecular weight can also be regulated through the polymerization initiator amount.
- the viscosity of the melt is generally higher than 10 9 Pas.
- copolymers having a viscosity in the range 10 3 -10 9 Pas can be used, provided that the composition is such to make the copolymer non thermoprocessable.
- the type a) aqueous dispersions are obtainable with the conventional emulsion polymerization processes.
- microemulsion feeding mentioned at point b) can also be carried out after feeding of the reation medium and of the other ingredients mentioned at point c).
- microemulsions used in the process of the present invention are described in USP 4,864,006 and USP 4,990,283 , herein incorporated by reference, wherein instead of the mentioned perfluoropolyethers having non reactive end groups, also hydrofluoropolyethers having one or both end groups containing one hydrogen atom or having one or more chlorine atoms instead of fluorine in the chain end groups, can be used.
- the surfactants which can be used both for preparing the microemulsion and during the polymerization are those described in the mentioned patents or those having an end group wherein one or more fluorine atoms are substituted by chlorine and/or hydrogen.
- the PFPE molecular weight which can be used can also be lower than 500, for example even 300, as average molecular weight by number.
- the nanoemulsions obtained by the use of PFPE having a low molecular weight, in the range 350-600, preferably 350-500, can more advantageously be used in the applications wherein their quantitative removal is required.
- the total surfactant amount used is such that the weight ratio between surfactant and TFE converted into polymer is preferably lower than 1.
- the copolymer molecular weight of the dispersion b) obtained by the present invention process is such as to give a good chemical and thermal stability of the polymer. Generally the obtained molecular weights are higher than 50,000, for example 500,000-5,000,000.
- the invention dispersions the gloss and the scratch resistance of the obtained films, also at temperatures higher than 200°C, have improved.
- Particularly high gloss values are also obtainable by increasing the comonomer amounts in the small particle (b) populations, as well as in the great particle (a) populations.
- the dioxoles of formula (I) which allow to obtain high molecular weights (in the range 500,000-5,000,000) are used.
- the obtained dispersion mixture can be suitably formulated in connection with the specific application with the addition of other aqueous resin dispersions, such as, acrylic resins, silicone resins, polyamidoamide resins, imide resins; pigments, surfactants, inorganic fillers and other additives, such as antifoam agents, extending agents.
- aqueous resin dispersions such as, acrylic resins, silicone resins, polyamidoamide resins, imide resins; pigments, surfactants, inorganic fillers and other additives, such as antifoam agents, extending agents.
- the total surfactant amount necessary to stabilize the invention dispersion mixture generally ranges from 2 to 10% by weight, and it is preferably in the range 3-6% on the dispersion weight.
- the fluoropolymer aqueous dispersions of the present invention can also be used for ceramic surfaces and in the textile impergnation and for obtaining cast films.
- the invention dispersions as said allow a remarkable improvement in the film formation without the presence of cracks (greater critical thickness).
- this higher property is not fully exploitable in the case of coatings of a vertical support, as it is the typical case of the textile impregnation, the cast film manufacture.
- the total amount of deposited solid depends on the wetting capability and on the rheological properties of the dispersion.
- R f and R f ' perfluoropolyether radicals comprise a T end group and repeating units statistically distributed along the polymer chain selected from:
- the perfluoropolyether radical T terminal is selected from: -CF 3 , -C 2 F 5 , -C 3 F 7 , ClCF 2 CF(CF 3 )-, CF 3 CFClCF 2 -, ClCF 2 CF 2 - and ClCF 2 -, CF 3 CFHCF 2 -, HCF 2 CF 2 - and HCF 2 -.
- the preferred perfluoropolyether radicals of the present invention have the following structures: R f'' -O-(CF(CF 3 )CF 2 O) a (CF 2 O) b and ClC 3 F 6 O(CF(CF 3 )CF 2 O) a (CF 2 O) b wherein the a/b ratio ranges from 20 to 40, and R f'' has the above defined meaning.
- the surfactant of formula (Ia) allows to improve rheology and wettability of the support.
- the formulation can be additivated with a fluorinated non ionic surfactant having formula (Ib).
- M H, CH 3 ; R f , L, R 1 , R 2 , n have the above mentioned meaning for the surfactant (Ia).
- the surfactant amount of the formula (Ia) must be such as to lead to the suitable viscosity for the application.
- the surfactant amount depends on the component b) and on the optional components present in the dispersion. For example by using as component b) of 50 nm, present in an amount of 5% by weight (95% by weight of the component a), the effective surfactant amount is in the range of 0.1% by weight.
- the non ionic compounds having formulas (Ia) and (Ib) can be added to the dispersion in amounts generally in the range 0.1-5% by weight. When both the surfactants are additivated, the total amount must be lower than 5% by weight.
- a dispersion sample is deposited under the form of a thin film (about 10 ⁇ m) on a glass or metal plate and dried at room temperature.
- the photos are carried out by using an atomic force microscope and the fibril number percentage has been calculated on a total calculation of at least 250-300 particles.
- TFE Tetrafluoroethylene
- aqueous solution of ammonium perfluorooctanoate APFO
- APFO ammonium perfluorooctanoate
- MDO perfluoro-5-methoxy-1,3-dioxole
- TFE is fed by means of a compressor so as to maintain a constant pressure of 20 bar inside the reactor.
- the reactor internal temperature is increased up to 92°C at a rate equal to 0.7°C/min.
- the reactor is evacuated and cooled.
- the polymer primary particle diameter measured by Laser Light Scattering (LLS) is equal to 114 nm.
- the infrared spectroscopy analaysis (FTIR) shows a MDO content in the polymer equal to 1% by weight.
- melt flow index (MFI), according to the ASTM D1238-52T method, was not measurable: this shows that the polymer is not processable from the melt.
- 16,500 grams of the preceding microemulsion are added to 275 litres of suitably degassed water in a 440 litres autoclave equipped with a mechanical stirrer and previously put under vacuum.
- 1000 grams of paraffin with softening point in the range 52-54°C and 2,150 grams of perfluoro-5-methoxy-1,3-dioxole (MDO) were previously introduced.
- the autoclave is kept under mechanical stirring and is pressurized with TFE up to a 20 bar pressure at a temperature of 78°C.
- TFE perfluoro-5-methoxy-1,3-dioxole
- TFE is fed by means of a compressor so as to maintain a constant pressure of 20 bar inside the reactor.
- the reactor internal temperature is increased up to 91°C at a rate equal to 0.6°C/min.
- the TFE feeding is stopped and the reactor is evacuated and cooled.
- the polymer primary particle diameter measured by Laser Light Scattering (LLS) is equal to 40 nm.
- the FTIR analysis shows a MDO content in the polymer equal to 1.67% by weight and the calorimetric analysis (DSC) shows a first melting point equal to 326°C.
- melt flow index (MFI), according to the ASTM D1238-52T method, was not measurable: this shows that the polymer is not processable from the melt.
- the fibril number determined as mentioned is lower than 5%.
- the autoclave is kept under mechanical stirring and is pressurized with TFE up to a 20 bar pressure at a temperature of 75°C. At this point in the autoclave 500 cc of a (NH 4 ) 2 S 2 O 8 (APS) solution corresponding to 1500 mg of APS are fed.
- TFE is fed by means of a compressor so as to maintain a constant pressure of 20 bar inside the reactor.
- the reactor internal temperature is increased up to 85°C at a rate equal to 0.2°C/min.
- the reactor is evacuated and cooled. An aqueous dispersion containing 225 g/kg of polymeric resin is obtained.
- the polymer primary particle diameter measured by Laser Light Scattering (LLS) is equal to 108 nm. After ultracentrifugation at 5,000 rpm for 1 hour, a solid amount (coarse particles) equal to 23.2% by weight of the total is separated and the LLS measurement on the surnatant phase gives a 35 nm value.
- the fibril number determined as mentioned is higher than 50%.
- the autoclave is kept under mechanical stirring and is pressurized with TFE up to a 20 bar pressure at a temperature of 75°C. At this point in the autoclave 500 cc of a (NH4) 2 S 2 O 8 (APS) solution corresponding to 2,500 mg of APS are fed.
- a (NH4) 2 S 2 O 8 (APS) solution corresponding to 2,500 mg of APS are fed.
- TFE is fed by means of a compressor so as to maintain a constant pressure of 20 bar inside the reactor.
- the reactor internal temperature is increased up to 85°C at a rate equal to 0.2°C/min.
- the reactor is evacuated and cooled. An aqueous dispersion containing 100 g/kg of polymeric resin is obtained.
- the polymer contains 0.4% by weight of HFP.
- the polymer primary particle diameter measured by Laser Light Scattering (LLS) is equal to 55 nm.
- the fibril number determined as mentioned is higher than 50%.
- 16,500 grams of the microemulsion of Example 2 are added to 275 litres of suitably degassed water into a 440 litres autoclave equipped with a mechanical stirrer and previously put under vacuum.
- 1,000 grams of paraffin with softening point in the range 52-54°C and 3,200 grams of perfluoro-5-methoxy-1,3-dioxole (MDO) were previously introduced.
- the autoclave is kept under mechanical stirring and is pressurized with TFE up to a 20 bar pressure at a temperature of 78°C.
- cc of a (NH 4 ) 2 S 2 O 8 (APS) solution corresponding to 18 grams of APS, are fed.
- TFE is fed by means of a compressor so as to maintain a constant pressure of 20 bar inside the reactor.
- the reactor internal temperature is increased up to 91°C at a rate equal to 0.6°C/min.
- the TFE feeding is stopped, when 90 kg of TFE have reacted, the reactor is evacuated and cooled.
- the polymer primary particle diameter measured by Laser Light Scattering (LLS) is equal to 46 nm.
- the FTIR analysis shows a MDO content in the polymer equal to 2.22% by weight and the DSC analysis shows a first melting point equal to 326.4°C.
- melt flow index (MFI), according to the ASTM D1238-52T method, was not measurable: this shows that the polymer is not processable from the melt.
- the fibril number determined as indicated is lower than 1%.
- Example 2 4,000 grams of the microemulsion of Example 2 are added to 30 litres of suitably degassed water into a 50 litres autoclave equipped with a mechanical stirrer and previously put under vacuum. In the reactor also 122 grams of perfluoro-5-methoxy-1,3-dioxole (MDO) were previously introduced.
- MDO perfluoro-5-methoxy-1,3-dioxole
- the autoclave is kept under mechanical stirring and is pressurized with TFE up to a 20 bar pressure at a temperature of 95°C. At this point in the autoclave 1,500 cc of a (NH 4 ) 2 S 2 O 8 (APS) solution corresponding to 10 grams of APS, are fed.
- TFE is fed by means of a compressor so as to maintain a constant pressure of 20 bar inside the reactor.
- the reactor internal temperature is increased up to 110°C.
- the TFE feeding is stopped, and the reactor is evacuated and cooled.
- the polymer primary particle diameter measured by Laser Light Scattering (LLS) is equal to 20 nm.
- the FTIR analysis shows a MDO content in the polymer equal to 0.9% by weight.
- melt flow index (MFI), according to the ASTM D1238-52T method, was not measurable: this shows that the polymer is not processable from the melt.
- the fibril number determined as indicated is lower than 10%.
- Example 2 1,800 grams of the microemulsion of Example 2 are added to 30 litres of suitably degassed water into a 50 litres autoclave equipped with a mechanical stirrer and previously put under vacuum. In the reactor also 125 grams of perfluoro-5-methoxy-1,3-dioxole (MDO) and 140 grams of paraffin with softening point in the range 52°C-54°C, were previously introduced.
- MDO perfluoro-5-methoxy-1,3-dioxole
- the autoclave is kept under mechanical stirring and is pressurized with TFE up to a pressure of 20 bar at a temperature of 82°C. At this point in the autoclave 500 cc of a (NH 4 ) 2 S 2 O 8 (APS) solution corresponding to 2,000 mg of APS, are fed.
- TFE is fed by means of a compressor so as to maintain a constant pressure of 20 bar inside the reactor.
- the reactor internal temperature is increased up to 95°C.
- the reactor is evacuated and cooled. An aqueous dispersion containing 291 g/kg of polymeric resin is obtained.
- the polymer primary particle diameter measured by Laser Light Scattering (LLS) is equal to 47 nm.
- the MDO content in the polymer is equal to 0.75% by weight obtained by the mass balance.
- melt flow index (MFI), according to the ASTM D1238-52T method, was not measurable: this shows that the polymer is not processable from the melt.
- the fibril number determined as indicated is higher than 15%.
- Example 2 200 grams of the microemulsion of Example 2 are added to 30 litres of suitably degassed water into a 50 litres autoclave equipped with a mechanical stirrer and previously put under vacuum. In the reactor also 150 grams of perfluoro-5-methoxy-1,3-dioxole (MDO) and 140 grams of paraffin with softening point in the range 52°C-54°C, were previously introduced.
- MDO perfluoro-5-methoxy-1,3-dioxole
- the autoclave is kept under mechanical stirring and is pressurized with TFE up to a pressure of 20 bar at a temperature of 77°C. At this point in the autoclave 500 cc of a (NH 4 ) 2 S 2 O 8 (APS) solution corresponding to 1,000 mg of APS, are fed.
- TFE is fed by means of a compressor so as to maintain a constant pressure of 20 bar inside the reactor.
- the reactor internal temperature is incresed up to 95°C.
- the reactor is evacuated and cooled. An aqueous dispersion containing 304 g/kg of polymeric resin is obtained.
- the polymer primary particle diameter measured by Laser Light Scattering (LLS) is equal to 77 nm.
- the MDO content in the polymer is equal to 1.1% by weight obtained by the mass balance.
- melt flow index (MFI), according to the ASTM D1238-52T method, was not measurable: this shows that the polymer is not processable from the melt.
- the fibril number determined as indicated is lower than 5%.
- Example 2 2,000 grams of the microemulsion of Example 2 are added to 30 litres of suitably degassed water into a 50 litres autoclave equipped with a mechanical stirrer and previously put under vacuum. In the reactor also 160 grams of perfluoro-5-methoxy-1,3-dioxole (MDO), 140 grams of paraffin with softening point in the range 52°C-54°C and 400 mbar of ethane (C 2 H 6 ) were previously introduced. The autoclave is kept under mechanical stirring and is pressurized with TFE up to a 20 bar pressure at a temperature of 85°C. At this point in the autoclave 500 cc of a (NH 4 ) 2 S 2 O 8 (APS) solution corresponding to 2,500 mg of APS, are fed.
- MDO perfluoro-5-methoxy-1,3-dioxole
- TFE is fed by means of a compressor so as to maintain a constant pressure of 20 bar inside the reactor.
- the reactor internal temperature is incresed up to 95°C.
- the reactor is evacuated and cooled. An aqueous dispersion containing 220 g/kg of polymeric resin is obtained.
- the polymer primary particle diameter measured by Laser Light Scattering (LLS) is equal to 20 nm.
- the MDO content in the polymer is equal to 1.3% by weight obtained by the mass balance.
- the DSC analysis shows a first melting point equal to 320°C.
- the melt flow index (MFI), according to the ASTM D1238-52T method, at 380°C with a 3 kg load and nozzle having 1 mm diameter is 0.55 g/10 minutes.
- the product, after passage in the extruder (vertical head and calendering) Profile Dies (I) has not led to the manufacture of finished manufactured articles due to the low mechanical properties during the recrystallization phase from the melt. Therefore the product, notwithstanding the low melt viscosity, is not thermoprocessable.
- the fibril number determined as indicated is lower than 5%.
- the autoclave was heated up to a constant temperature of 75°C and pressurized with MVE up to 2.7 absolute bar, then the autoclave was pressurized to 21 absolute bar with a TFE and MVE mixture the molar ratio of which is 27.6.
- a potassium persulphate solution having a molar concentration equal to 0.0028 was fed in a continuous way.
- the reaction was stopped after 65 minutes when 400 g of the TFE and MVE monomer mixture were fed.
- a latex characterized by a 53 nm particle size is discharged.
- the PVE amount is 0.9% by weight
- the MVE amount is 5.6% by weight.
- melt flow index (MFI), according to the ASTM D1238-52T method, was not measurable: this shows that the polymer is not processable from the melt.
- the fibril number determined as indicated is lower than 5%.
- Mixtures consisting of two polytetrafluoroethylene (-PTFE) dispersions are prepared, having a final solid percentage of 59% by weight with a weight ratio between the component a) and component b) of the mixture equal to 98/2, 96.5/3.5, 95/5, 92.5/7.5, 90/10.
- -PTFE polytetrafluoroethylene
- the mixture component a) is a commercial product Ausimont Algoflon® D60 EXP96 having a 260 nm average diameter, while the component b) is the dispersion described in Example 1.
- the particle diameters, measured by the Laser Light Scattering method, are respectively 260 and 114 nm with a ratio between the particle diameters between component a) and component b) equal to 0.438.
- the mixtures of the two dispersions contain 3% by weight of Triton X100 and are additivated with an acrylic paste so that the final composition of the formulation is that described hereinafter and sprayed on primerized aluminum sheets, dried at 100°C for two minutes and then sintered at 420°C for 10 minutes.
- the final composition of the applied acrylic formulation is constituted by the following parts by weight of the various components: 45% of PTFE, 1.5% of the Rhodopas D906 acrylic resin, 3.5% of Triton X100, 1.2% of sodium and triethanolamine lauryl acid salt, 2% of xylene, 2% of butylcellosolve and the complement to 100 is water.
- the critical thickness is determined by optical microscopy. Such critical thickness is compared with that measured on the film obtained by the single component a) equal to 28 ⁇ m.
- Mixtures consisting of two polytetrafluoroethylene (-PTFE) dispersions are prepared, having a final solid percentage of 59% by weight with a weight ratio between the component a) and component b) equal to 96.5/3.5, 95/5, 92.5/7.5.
- -PTFE polytetrafluoroethylene
- the mixture component a) is a commercial product Ausimont Algoflon® D60 EXP96 while the component b) is the polymer described in Example 4.
- the particle diameters measured by the Laser Light Scattering method, are respectively 260 and 46 nm with a ratio between the particle diameters between component a) and component b) equal to 0.177.
- the mixtures of the two dispersions contain 3% by weight of Triton X100 and are additivated with the acrylic paste so that the final formulation of the composition is that described in Example 10 and sprayed on primerized aluminum sheets, dried at 100°C for two minutes and then sintered at 420°C for 10 minutes.
- the critical thickness is determined by optical microscopy.
- the critical thickness is compared with that measured on the film obtained by the single component a) equal to 30 ⁇ m. Furthermore the gloss is determined.
- the scratch resistance on the films obtained from the mixtures of the a)+b) components has furthermore been measured in comparison with the film obtained by the single component a).
- the experimental method to evaluate the scratch resitance consists in measuring the load weight connected to a sharp tip, necessary to cause a cut in the film. The test is carried out in air at room temperature and with the sheet dipped in water at 100°C and in oil at 180°C.
- Mixtures consisting of two polytetrafluoroethylene (PTFE) dispersions are prepared, having a final solid percentage of 59% by weight with a weight ratio between the component a) and component b) equal to 96.5/3.5, 95/5, 92.5/7.5.
- PTFE polytetrafluoroethylene
- the mixture component a) is a commercial product Ausimont Algoflon® D60 EXP96, while the component b) is the polymer described in Example 2.
- the particle diameters measured by the Laser Light Scattering method, are respectively 260 and 40 nm with a ratio between the particle diameters between component a) and component b) equal to 0.154.
- the mixtures of the two dispersions contain 3% by weight of Triton X100 and are additivated with the acrylic paste so that the final formulation of the composition is that described in Example 10 and sprayed on primerized aluminum sheets, dried at 100°C for two minutes and then sintered at 420°C for 10 minutes.
- Two mixtures consisting of two polytetrafluoroethylene (PTFE) dispersions are prepared, having a final solid percentage of 59% by weight with a weight ratio between the component a) and component b) equal to 95.2/4.8.
- PTFE polytetrafluoroethylene
- the mixture component a) is constituted for both mixtures by a commercial product Ausimont Algoflon® D60 EXP96 having a particle average diameter equal to 260 mm while the component b) is constituted by the dispersions respectively described in Examples 2 and 4.
- the particle average diameter of component b) and the per cent MDO content are shown in Table 5.
- the prepared mixtures of the dispersions a) and b) contain 3% by weight of Triton X100 and are additivated with the acrylic paste described in Example 10 and sprayed on primerized aluminum sheets, dried at 100°C for two minutes and then sintered at 420°C for 10 minutes. On the sintered films the critical thickness is determined by optical microscopy.
- the film critical thickness is determined in subsequent times (1 month, 2 months, 4 and 5 months) in order to evaluate if the critical thickness remains high in the time.
- Two mixtures consisting of two polytetrafluoroethylene (PTFE) dispersions are prepared, having a final solid percentage of 59% by weight with a weight ratio between the component a) and component b) equal to 95.2/4.8.
- PTFE polytetrafluoroethylene
- the component a) of the mixture is formed for both mixtures by a commercial product Ausimont Algoflon® D60 EXP96 having a particle average diameter equal to 260 nm while the component b) is constituted respectively by the dispersions described in Example 3A (latex after ultracentrifugation having average diameter 35 nm) and in Example 6 (not centrifuged latex).
- the prepared mixtures of the dispersions a) and b) contain 3% by weight of Triton X100 and are additivated with the acrylic paste described in Example 10 and sprayed on primerized aluminum sheets, dried at 100°C for two minutes and then sintered at 420°C for 10 minutes. On the sintered films the critical thickness is determined by optical microscopy.
- the film critical thickness is determined in subsequent times (1 month, 2 and 4 months) in order to evaluate if the critical thickness remains high in the time.
- Mixtures consisting of two polytetrafluoroethylene (PTFE) dispersions are prepared, having a final solid percentage of 59% by weight with different ratios by weight between the component a) and component b).
- PTFE polytetrafluoroethylene
- the component a) of the mixture is constituted by a commercial product Ausimont Algoflon® D60 EXP96 having a diameter, determined by the Laser Light Scattering method, equal to 260 nm, while the component b) is a mixture of the following dispersions:
- the average diameter of A+B+C is shown in Table 7.
- the fibril number determined as indicated is lower than 5%.
- the formulations of the mixtures a) + b) contain 3% by weight of Triton X100 and are charged with the acrylic paste described in Example 10 and sprayed on primerized aluminum sheets, dried at 100°C for two minutes and then sintered at 420°C for 10 minutes. On the sintered films the critical thickness is determined by optical microscopy. Such critical thickness is compared with that determined on the film obtained by the single component a) corresponding to 20 ⁇ m. The results are summarized in Table 7.
- Mixtures consisting of two polytetrafluoroethylene (PTFE) dispersions are prepared, having a final solid percentage of 59% by weight with a ratio by weight between the component a) and component b) equal to 96.5/3.5 and 95/5.
- PTFE polytetrafluoroethylene
- the component a) of the mixture is a commercial product Ausimont Algoflon® D60 EXP96 having an average diameter of 260 nm.
- the component b) of the mixture is the polymer described in Example 8, which even though is within the viscosity limits of the thermoprocessable products (see Example 8), is not processable from the melt since its low molecular weight gives very poor mechanical properties in the recrystallization phase from the melt.
- the particle diameters, determined by the Laser Light Scattering method, are respectively 260 and 20 nm with a ratio among the particle diameters between the component a) and the component b) equal to 0.077.
- the mixtures of the two dispersions contain 3% by weight of Triton X100 and are additivated with the acrylic paste described in Example 10 and sprayed on primerized aluminum sheets, dried at 100°C for two minutes and then sintered at 420°C for 10 minutes. On the sintered films the critical thickness is determined by optical microscopy. Such critical thickness is compared with that determined on the film obtained by the single component a). The results are summarized in Table 8. TABLE 8 component b) % Critical thickness increase ( ⁇ m) 3.5 22 5 22
- the scratch resistance has moreover been determined on the films obtained from the mixtures of components a)+b) compared with the film obtained by the single component a).
- Mixtures consisting of two polytetrafluoroethylene (-PTFE) dispersions are prepared, having a final solid percentage of 59% by weight with a ratio by weight between the polymers equal to 95/5.
- -PTFE polytetrafluoroethylene
- the mixture component a) is a commercial product Ausimont Algoflon® D60 EXP96 having an average diameter of 260 nm.
- the mixture component b) is the polymer obtained in Example 9.
- the particle diameters, determined by the Laser Light Scattering method, are respectively 260 and 53 with a ratio among the particle diameters between the component a) and the component b) equal to 0.2.
- the mixtures of the two dispersions contain 3% by weight of Triton X100 and are additivated with the acrylic paste described in Example 10 and sprayed on primerized aluminum sheets, dried at 100°C for two minutes and then sintered at 420°C for 10 minutes. On the sintered films the critical thickness is determined by optical microscopy. Such critical thickness is compared with that determined on the film obtained by the single component a).
- the gloss measurements are furthermore reported in Table 10. TABLE 10 component b) (% by wt) Critical thickness increase vs component a) ( ⁇ m) Gloss 5 22 25
- the scratch resistance has moreover been determined on the films obtained from the mixtures a)+b) compared with the film obtained by the single component a).
- a dispersion a) consisting of the commercial product Ausimont Algoflon® D1010 having an average diameter of 260 nm and a mixture of a) with the dispersion b) obtained in Example 2 and present in an amount of 5% by weight, are compared. The tests show that the amount of product deposited by each passage does not change in both cases.
- the addition of the type b) dispersion gives a critical thickness increase also on the film as such (i.e. not formulated with acrylic resins) and this can avoid the formation of cracks on the single impregnation steps.
- Example 18 In the impregnation tests of Example 18 the effect of the addition of the thicknening additive of formula (Ia) both to the dispersion of the single component a), and to the mixture a) + b) defined in Example 18, has been controlled.
- Such thickening agent added in an amount of 0.1% by weight, is a fluorinated derivative having structure (Ia) wherein
- a mixture consisting of two dispersions is prepared, having a final solid total percentage of 57% by weight with a ratio by weight between the polymers of the two dispersions respectively equal to 95.2/4.8.
- the mixture component a) is a commercial product Ausimont Algoflon® D60 EXP96 while component b) is obtained by Example 3B.
- the particle diameters, determined by the Laser Light Scattering method, are respectively 260 and 55 nm with a ratio of the particle diameters between the component b) and the component a) equal to 0.21.
- the above mentioned dispersion mixture containing the total 3% of non ionic surfactant Triton X100 shows polymer sedimentation (4.5% by weight sedimented) in a time lower than 24 hours. Said mixture is charged with the acrylic paste of Example 10 and sprayed on a primerized aluminum sheet, dried at 100°C for two minutes and then sintered at 420°C for 10 minutes.
- the critical thickness is determined by optical microscopy. Such critical thickness is determined immediately after the application and after 24 hours. It is compared with that determined on the film obtained by the sole component a). A critical thickness of 42 ⁇ m is determined for the mixture with component b) at 4.8% by weight in comparison with the critical thickness of the single component a) equal to 28 ⁇ m.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Textile Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Paints Or Removers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT1999MI001269A ITMI991269A1 (it) | 1999-06-08 | 1999-06-08 | Miscele di dispersioni di fluoropolimeri |
ITMI991269 | 1999-06-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1059342A1 EP1059342A1 (en) | 2000-12-13 |
EP1059342B1 true EP1059342B1 (en) | 2010-07-28 |
Family
ID=11383128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00111159A Expired - Lifetime EP1059342B1 (en) | 1999-06-08 | 2000-05-24 | Mixtures of fluoropolymer dispersion |
Country Status (6)
Country | Link |
---|---|
US (1) | US6660798B1 (ja) |
EP (1) | EP1059342B1 (ja) |
JP (1) | JP4564134B2 (ja) |
AT (1) | ATE475695T1 (ja) |
DE (1) | DE60044735D1 (ja) |
IT (1) | ITMI991269A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7776946B2 (en) | 2005-07-15 | 2010-08-17 | 3M Innovative Properties Company | Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant |
US7838608B2 (en) | 2005-12-21 | 2010-11-23 | 3M Innovative Properties Company | Fluorinated surfactants for making fluoropolymers |
US8119750B2 (en) | 2006-07-13 | 2012-02-21 | 3M Innovative Properties Company | Explosion taming surfactants for the production of perfluoropolymers |
US8222322B2 (en) | 2005-07-15 | 2012-07-17 | 3M Innovative Properties Company | Method of making fluoropolymer dispersion |
US8404790B2 (en) | 2005-07-15 | 2013-03-26 | 3M Innovative Properties Company | Aqueous emulsion polymerization process for producing fluoropolymers |
US8598267B2 (en) | 2001-09-05 | 2013-12-03 | 3M Innovative Properties Company | Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002258596A1 (en) | 2001-03-13 | 2002-09-24 | E.I. Dupont De Nemours And Company | High build dispersions |
WO2003006565A1 (fr) * | 2001-06-15 | 2003-01-23 | Daikin Industries, Ltd. | Composition de revetement de fluororesine, film de revetement et objet revetu |
EP1364972B1 (en) | 2002-05-22 | 2006-08-30 | 3M Innovative Properties Company | Process for reducing the amount of fluorinated surfactant in aqueous fluoropolymer dispersions |
RU2004135531A (ru) * | 2002-06-21 | 2005-07-10 | ЗМ Инновейтив Пропертиз Компани (US) | Процесс получения фторполимеров с пониженным содержанием полярных концевых групп |
ATE302243T1 (de) | 2003-02-28 | 2005-09-15 | 3M Innovative Properties Co | Fluoropolymerdispersion enthaltend kein oder wenig fluorhaltiges netzmittel mit niedrigem molekulargewicht |
US6837923B2 (en) * | 2003-05-07 | 2005-01-04 | David Crotty | Polytetrafluoroethylene dispersion for electroless nickel plating applications |
DE60336400D1 (de) | 2003-10-24 | 2011-04-28 | 3M Innovative Properties Co | Wässrige Dispersionen von Polytetrafluorethylenteilchen |
EP1533325B1 (en) | 2003-11-17 | 2011-10-19 | 3M Innovative Properties Company | Aqueous dispersions of polytetrafluoroethylene having a low amount of fluorinated surfactant |
EP1561729A1 (en) | 2004-02-05 | 2005-08-10 | 3M Innovative Properties Company | Removal of fluorinated surfactants from waste water |
EP1561742B1 (en) | 2004-02-05 | 2012-11-21 | 3M Innovative Properties Company | Method of recovering fluorinated acid surfactants from adsorbent particles loaded therewith |
DE602004016136D1 (de) | 2004-07-05 | 2008-10-09 | 3M Innovative Properties Co | Grundierung aus PTFE für Metallsubstrate |
EP1630179B1 (en) * | 2004-08-25 | 2007-10-31 | Asahi Glass Company Ltd. | Fluorocopolymer |
WO2006086081A1 (en) * | 2004-12-30 | 2006-08-17 | 3M Innovative Properties Company | Fluoropolymer nanoparticle coating composition |
JP4766044B2 (ja) * | 2005-03-10 | 2011-09-07 | ダイキン工業株式会社 | ポリテトラフルオロエチレン水性分散液組成物、ポリテトラフルオロエチレン樹脂フィルム及びポリテトラフルオロエチレン樹脂含浸体 |
EP1700869A1 (en) * | 2005-03-11 | 2006-09-13 | 3M Innovative Properties Company | Recovery of fluorinated surfactants from a basic anion exchange resin having quaternary ammonium groups |
GB0523853D0 (en) | 2005-11-24 | 2006-01-04 | 3M Innovative Properties Co | Fluorinated surfactants for use in making a fluoropolymer |
GB2432836A (en) * | 2005-12-01 | 2007-06-06 | 3M Innovative Properties Co | Fluorinated surfactant |
US20070141306A1 (en) * | 2005-12-21 | 2007-06-21 | Toshihiro Kasai | Process for preparing a superhydrophobic coating |
US20070141305A1 (en) * | 2005-12-21 | 2007-06-21 | Toshihiro Kasai | Superhydrophobic coating |
US7728087B2 (en) | 2005-12-23 | 2010-06-01 | 3M Innovative Properties Company | Fluoropolymer dispersion and method for making the same |
US7754795B2 (en) | 2006-05-25 | 2010-07-13 | 3M Innovative Properties Company | Coating composition |
JP2010528159A (ja) | 2007-05-23 | 2010-08-19 | スリーエム イノベイティブ プロパティズ カンパニー | フッ素化界面活性剤の水性組成物、及びその使用方法 |
CN101679569A (zh) | 2007-06-06 | 2010-03-24 | 3M创新有限公司 | 氟化醚组合物以及使用该组合物的方法 |
US20100256412A1 (en) * | 2007-09-27 | 2010-10-07 | Werner Schwertfeger | Fluorinated polyethers and polyether oils and methods of preparation |
WO2009042853A2 (en) * | 2007-09-27 | 2009-04-02 | 3M Innovative Properties Company | Fluorinated oxy-carboxylic acids, derivatives, and methods of preparation |
JP2011528659A (ja) | 2008-07-18 | 2011-11-24 | スリーエム イノベイティブ プロパティズ カンパニー | フッ素化エーテル化合物及びその使用方法 |
WO2010080473A1 (en) | 2008-12-18 | 2010-07-15 | 3M Innovative Properties Company | Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions |
US20110248223A1 (en) | 2008-12-31 | 2011-10-13 | Essilor International (Compagnie Generale D'optique) | Additives for Enhancing the Antistatic Properties of Conductive Polymer-Based Coatings |
EP2248865A1 (en) | 2009-05-07 | 2010-11-10 | Essilor International (Compagnie Générale D'Optique) | Antistatic sol/gel compositions and optical articles coated therewith |
EP2450193B1 (en) | 2010-11-09 | 2015-05-06 | ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) | A process for tinting articles, and tintable compositions for use in said process |
JP2012082438A (ja) * | 2011-12-22 | 2012-04-26 | Daikin Industries Ltd | 含フッ素オレフィン重合体粒子 |
CN103214769B (zh) * | 2013-04-16 | 2015-07-22 | 中昊晨光化工研究院有限公司 | 一种改性聚四氟乙烯分散树脂及其制备方法 |
KR20180099886A (ko) | 2016-01-21 | 2018-09-05 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 플루오로탄성중합체의 적층 가공 |
CN110997779B (zh) | 2017-07-19 | 2022-12-06 | 3M创新有限公司 | 含氟聚合物的增材加工 |
TW201908426A (zh) | 2017-07-19 | 2019-03-01 | 美商3M新設資產公司 | 藉由加成性加工製造聚合物物品及聚合物複合物之方法以及聚合物及複合物品 |
JPWO2020050178A1 (ja) * | 2018-09-05 | 2021-08-26 | Agc株式会社 | 分散液の製造方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242218A (en) | 1961-03-29 | 1966-03-22 | Du Pont | Process for preparing fluorocarbon polyethers |
GB1104482A (en) | 1964-04-09 | 1968-02-28 | Montedison Spa | Perfluoro-olefin derivatives |
DE1745169B2 (de) | 1967-02-09 | 1977-04-21 | Montecatini Edison S.P.A., Mailand (Italien) | Fluorierte lineare polyaether und verfahren zu ihrer herstellung |
US3665041A (en) | 1967-04-04 | 1972-05-23 | Montedison Spa | Perfluorinated polyethers and process for their preparation |
US4523039A (en) | 1980-04-11 | 1985-06-11 | The University Of Texas | Method for forming perfluorocarbon ethers |
US4334039A (en) | 1981-03-23 | 1982-06-08 | Monsanto Company | Process for preparing polymeric polyblends having a rubber phase as particles with a bimodal particle size distribution |
US4385157A (en) | 1981-11-27 | 1983-05-24 | Monsanto Company | Emulsion polymerization process for ABS polyblends |
CA1195038A (en) | 1983-04-25 | 1985-10-08 | Polysar Limited | Carboxylated latex |
DE3485616D1 (de) | 1983-12-26 | 1992-05-07 | Daikin Ind Ltd | Verfahren zur herstellung von halogen enthaltenden polyathern |
EP0248446A3 (en) | 1986-06-06 | 1990-01-03 | E.I. Du Pont De Nemours And Company | Anisotropic, liquid crystalline, polytetrafluoroethylene and tetrafluoroethylene copolymer aqueous dispersions |
IT1204903B (it) | 1986-06-26 | 1989-03-10 | Ausimont Spa | Processo di polimerizzazione in dispersione acquosa di monomeri florati |
IL82308A (en) | 1986-06-26 | 1990-11-29 | Ausimont Spa | Microemulsions containing perfluoropolyethers |
JPH0733451B2 (ja) | 1988-11-18 | 1995-04-12 | ダイキン工業株式会社 | ポリテトラフルオロエチレン多孔膜およびその製法 |
IT1241679B (it) | 1990-03-06 | 1994-01-31 | Ausimont Spa | Perfluoropolieteri e processi per la loro preparazione |
IT1264662B1 (it) | 1993-07-05 | 1996-10-04 | Ausimont Spa | Perflurodiossoli loro omopolimeri e copolimeri e loro impiego per il rivestimento di cavi elettrici |
DE4340943A1 (de) * | 1993-12-01 | 1995-06-08 | Hoechst Ag | Wäßrige Dispersion von Fluorpolymerisaten, ihre Herstellung und Verwendung für Beschichtungen |
JP3336839B2 (ja) * | 1995-04-10 | 2002-10-21 | ダイキン工業株式会社 | 電池用撥水性付与剤および電池 |
IT1283136B1 (it) * | 1996-07-09 | 1998-04-07 | Ausimont Spa | Lattici acquosi a base di fluoropolimeri |
DE19726802C1 (de) * | 1997-06-24 | 1998-06-10 | Dyneon Gmbh | Wäßrige Dispersion von Fluorpolymeren unterschiedlicher Teilchengröße |
ITMI981519A1 (it) * | 1998-07-02 | 2000-01-02 | Ausimont Spa | Processodi polimerizzazione del tfe |
ITMI981520A1 (it) * | 1998-07-02 | 2000-01-02 | Ausimont Spa | Dispersioni di fluoropolimeri |
-
1999
- 1999-06-08 IT IT1999MI001269A patent/ITMI991269A1/it unknown
-
2000
- 2000-05-24 DE DE60044735T patent/DE60044735D1/de not_active Expired - Lifetime
- 2000-05-24 AT AT00111159T patent/ATE475695T1/de not_active IP Right Cessation
- 2000-05-24 EP EP00111159A patent/EP1059342B1/en not_active Expired - Lifetime
- 2000-06-06 JP JP2000169625A patent/JP4564134B2/ja not_active Expired - Fee Related
- 2000-06-07 US US09/588,625 patent/US6660798B1/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8598267B2 (en) | 2001-09-05 | 2013-12-03 | 3M Innovative Properties Company | Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant |
US7776946B2 (en) | 2005-07-15 | 2010-08-17 | 3M Innovative Properties Company | Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant |
US8222322B2 (en) | 2005-07-15 | 2012-07-17 | 3M Innovative Properties Company | Method of making fluoropolymer dispersion |
US8404790B2 (en) | 2005-07-15 | 2013-03-26 | 3M Innovative Properties Company | Aqueous emulsion polymerization process for producing fluoropolymers |
US8614265B2 (en) | 2005-07-15 | 2013-12-24 | 3M Innovative Properties Company | Method of making fluoropolymer dispersion |
US7838608B2 (en) | 2005-12-21 | 2010-11-23 | 3M Innovative Properties Company | Fluorinated surfactants for making fluoropolymers |
US8119750B2 (en) | 2006-07-13 | 2012-02-21 | 3M Innovative Properties Company | Explosion taming surfactants for the production of perfluoropolymers |
Also Published As
Publication number | Publication date |
---|---|
ITMI991269A0 (it) | 1999-06-08 |
JP2001064466A (ja) | 2001-03-13 |
JP4564134B2 (ja) | 2010-10-20 |
ATE475695T1 (de) | 2010-08-15 |
US6660798B1 (en) | 2003-12-09 |
ITMI991269A1 (it) | 2000-12-08 |
EP1059342A1 (en) | 2000-12-13 |
DE60044735D1 (de) | 2010-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1059342B1 (en) | Mixtures of fluoropolymer dispersion | |
EP0969055B2 (en) | Fluoropolymer dispersions | |
US6576703B2 (en) | Process for the preparation of aqueous dispersions of fluoropolymers | |
US6297334B1 (en) | TFE polymerization process | |
EP0225792B1 (en) | Blends of fluoroplastics and fluoroelastomers | |
US20210155790A1 (en) | Fluoropolymers, Fluoropolymer Compositions and Fluoropolymer Dispersions | |
KR101556806B1 (ko) | 플루오로엘라스토머 조성물 | |
EP1710276A1 (en) | Fluorelastomer compositions | |
KR20190130135A (ko) | 플루오로중합체의 입자를 포함하는 수성 라텍스의 제조 방법 | |
JP7311790B2 (ja) | 非水系分散体 | |
US9290624B2 (en) | Process for manufacturing fluoroelastomer compositions containing fluoroplastic fibrils | |
EP1464660B1 (en) | Chlorotrifluoroethylene-based thermoprocessable compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR GB IE IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010529 |
|
AKX | Designation fees paid |
Free format text: AT DE FR GB IE IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGORA' S.P.A. |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOLVAY SOLEXIS S.P.A. |
|
17Q | First examination report despatched |
Effective date: 20090115 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOLVAY SOLEXIS S.P.A. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB IE IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60044735 Country of ref document: DE Date of ref document: 20100909 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110429 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60044735 Country of ref document: DE Effective date: 20110429 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140521 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140521 Year of fee payment: 15 Ref country code: FR Payment date: 20140509 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60044735 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150524 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150524 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150601 |