EP1055692B1 - Méthode de fabrication en continu de polyuréthanes façonnables sous forme thermoplastique - Google Patents

Méthode de fabrication en continu de polyuréthanes façonnables sous forme thermoplastique Download PDF

Info

Publication number
EP1055692B1
EP1055692B1 EP00110187A EP00110187A EP1055692B1 EP 1055692 B1 EP1055692 B1 EP 1055692B1 EP 00110187 A EP00110187 A EP 00110187A EP 00110187 A EP00110187 A EP 00110187A EP 1055692 B1 EP1055692 B1 EP 1055692B1
Authority
EP
European Patent Office
Prior art keywords
mol
diisocyanate
hydrogen atoms
active hydrogen
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00110187A
Other languages
German (de)
English (en)
Other versions
EP1055692A3 (fr
EP1055692A2 (fr
Inventor
Wolfgang Dr. Bräuer
Wolfgang Dr. Kaufhold
Friedemann Dr. Müller
Jürgen Winkler
Herbert Heidingsfeld
Wolfgang Röhrig
Hans-Georg Hoppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1055692A2 publication Critical patent/EP1055692A2/fr
Publication of EP1055692A3 publication Critical patent/EP1055692A3/fr
Application granted granted Critical
Publication of EP1055692B1 publication Critical patent/EP1055692B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203

Definitions

  • the invention relates to a process for the continuous production of thermoplastic processable polyurethanes (with improved softening behavior) in a pipe mixer.
  • Thermoplastic polyurethane elastomers have long been known. They are due the combination of high quality mechanical properties with the well-known advantages the cost-effective thermoplastic processability of technical importance. By using different chemical components a wide range of mechanical properties can be achieved.
  • a Overview of TPUs, their properties and applications is described e.g. in plastics 68 (1978), pages 819 to 825 or rubber, rubber, plastics 35 (1982), pages 568 to 584 given.
  • TPUs are made from linear polyols, usually polyester or polyether polyols, organic diisocyanates and short-chain diols (chain extenders) constructed.
  • catalysts may be added to accelerate the formation reaction become.
  • thermoplastically processable polyurethane elastomers can either stepwise (Prepolymerdosierphal) or by the simultaneous Reaction of all components in one step (one-shot dosing) done.
  • the TPUs can be produced continuously or discontinuously.
  • the most known technical production methods are the tape method (GB-A 1,057,018) and the extruder method (DE-A 19 64 834, DE-A 23 02 564 and DE-A 20 59 570).
  • the extruder process the starting materials are transformed into a screw reactor metered, there polyaddiert and transferred into a uniform granular form.
  • the extruder process is relatively simple, but has the disadvantage that the Homogeneity of the products thus produced due to the simultaneous expiration of Mixing and reacting is not sufficient for many applications.
  • the softening behavior of the TPUs and the moldings produced therefrom Melt-melting TPUs, e.g. for melting films or sintered products can be used by this method is not or only partially produce.
  • the Mischund Reaction zone are preferably formed as a static mixer.
  • homogeneous products are obtained by the one-shot process receive.
  • EP-A 747 409 metered by the prepolymer process and obtains homogeneous TPUs with improved mechanical properties.
  • the task was therefore to provide a simple procedure with which it is possible, homogeneous TPUs with improved softening cost and technically easy to manufacture.
  • Suitable organic diisocyanates (A) are, for example, aliphatic, cycloaliphatic, araliphatic, heterocyclic and aromatic diisocyanates, as they are e.g. in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136, to be discribed.
  • aliphatic diisocyanates such as hexamethylene diisocyanate
  • cycloaliphatic diisocyanates such as isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 1-methyl-2,4- and -2,6-cyclohexane diisocyanate and the corresponding isomer mixtures
  • 4,4'-, 2,4'- and 2,2'-dicyclohexylinethane diisocyanate and the corresponding isomer mixtures and aromatic diisocyanates such as 2,4-tolylene diisocyanate, mixtures of 2,4- and 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate and 2,2'-diphenylmethane diisocyanate, Mixtures of 2,4'-diphenylmethane diisocyanate and 4,4'-diphenylme
  • 1,6-hexamethylene diisocyanate Isophorone diisocyanate, dicyclohexylmethane diisocyanate, Diphenylmethane diisocyanate isomer mixtures with a 4,4'-Diphenylmethandiisocyanatgehalt greater than 96% by weight and especially 4,4'-diphenylmethane diisocyanate and 1,5-naphthylene diisocyanate.
  • the diisocyanates mentioned can used individually or in the form of mixtures with one another.
  • thermoplastically processable Product may also be used together with up to 15% by weight (calculated on total diisocyanate), but at most as much of a polyisocyanate that a thermoplastically processable Product is created, used.
  • examples are triphenylmethane-4,4 ', 4 "-triisocyanate and polyphenyl polymethylene polyisocyanates.
  • component B1 are preferably linear, hydroxyl-terminated polyols with on average 1.8 to 3.0, preferably up to 2.2 Zerewitinoff-active hydrogen atoms per Molecule and having an average molecular weight of 450 to 5,000 used. Due to production, these often contain small amounts of nonlinear compounds. Therefore, one often speaks of "substantially linear polyols". Preference is given to polyester, polyether, polycarbonate diols or mixtures of these.
  • Suitable polyether diols can be prepared by adding one or more a plurality of alkylene oxides having 2 to 4 carbon atoms in the alkylene radical with a Starter molecule, which contains two active hydrogen atoms bound, converts.
  • Alkylene oxides are e.g. called: ethylene oxide, 1,2-propylene oxide, epichlorohydrin and 1,2-butylene oxide and 2,3-butylene oxide.
  • Preferably used are ethylene oxide, Propylene oxide and mixtures of 1,2-propylene oxide and ethylene oxide.
  • the Alkylene oxides can be used individually, alternately in succession or as mixtures become.
  • Suitable starter molecules are, for example: water, Amino alcohols, such as N-alkyl-diethanolamine, for example N-methyl-diethanolamine and diols such as ethylene glycol, 1,3-propylene glycol, 1,4-butanediol and 1,6-hexanediol.
  • Suitable polyetherols are also the hydroxyl-containing polymerization of tetrahydrofuran. It can also be trifunctional polyethers in proportions of 0 to 30 wt .-%, based on the bifunctional polyether used be, but at most in such amount that a thermoplastically processable Product is created.
  • the substantially linear polyether diols are preferably Molecular weights from 450 to 5,000. They can be used individually as well as also be used in the form of mixtures with each other.
  • Suitable polyester diols may be, for example, from dicarboxylic acids having 2 to 12 Carbon atoms, preferably 4 to 6 carbon atoms, and polyvalent ones Alcohols are produced.
  • suitable dicarboxylic acids are: aliphatic dicarboxylic acids, such as succinic acid, glutaric acid, adipic acid, Suberic acid, azelaic acid and sebacic acid and aromatic dicarboxylic acids, such as Phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids can be used individually or as mixtures, e.g. in the form of an amber, glutaric and adipic acid mixture, be used.
  • the corresponding dicarboxylic acid derivatives such as Carboxylic acid diesters having 1 to 4 carbon atoms in the alcohol radical, carboxylic anhydrides or to use carboxylic acid chlorides.
  • Examples of multivalent Alcohols are glycols having 2 to 10, preferably 2 to 6 carbon atoms, such as Ethylene glycol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,10-decanediol, 2,2-dimethyl-1,3-propanediol, 1,3-propanediol and dipropylene glycol.
  • the polyhydric alcohols alone or optionally used in mixture with each other.
  • Esters of carbonic acid with the diols mentioned in particular those with 4 to 6 Carbon atoms, such as 1,4-butanediol and / or 1,6-hexanediol, condensation products of ⁇ -hydroxycarboxylic acids, for example ⁇ -hydroxycaproic acid and preferably Polymerization products of lactones, for example, if appropriate substituted ⁇ -caprolactones.
  • polyester diols Ethanediol polyadipates, 1,4-butanediol polyadipates, ethanediol-1,4-butanediol polyadipates, 1,6-hexanediol neopentyl glycol polyadipate, 1,6-hexanediol-1,4-butanediol polyadipate and poly-caprolactones.
  • the polyester diols have average molecular weights from 450 to 5,000 and can be used individually or in the form of mixtures with each other come into use.
  • component B2 are preferably diols or diamines with an average of 1.8 to 3.0, preferably up to 2.2 Zerewitinoff-active hydrogen atoms per molecule and used an average molecular weight of 60 to 400, preferably aliphatic Diols having 2 to 14 carbon atoms, e.g. Ethanediol, 1,6-hexanediol, Diethylene glycol, dipropylene glycol and especially 1,4-butanediol.
  • Diols having 2 to 14 carbon atoms e.g. Ethanediol, 1,6-hexanediol, Diethylene glycol, dipropylene glycol and especially 1,4-butanediol.
  • diesters of terephthalic acid with glycols having 2 to 4 carbon atoms such as.
  • Terephthalic acid bis-ethylene glycol or terephthalic acid bis-1,4-butanediol Hydroxyalkylene ethers of hydroquinone, e.g. 1,4-di ( ⁇ -hydroxyethyl) hydroquinone, ethoxylated bisphenols, e.g. 1,4-di ( ⁇ -hydroxyethyl) bisphenol A, (cyclo) aliphatic diamines, e.g. Isophoronediamine, ethylenediamine, 1,2-propylenediamine, 1,3-propylene-diamine, N-methyl-propylene-1,3-diamine, N, N'-dimethyl-ethylenediamine and aromatic diamines, e.g.
  • hydroquinone e.g. 1,4-di ( ⁇ -hydroxyethyl) hydroquinone, ethoxylated bisphenols, e.g. 1,4-di ( ⁇ -hydroxyethyl) bisphenol A, (
  • 2,4-toluylene-diamine and 2,6-tolylene-diamine 3,5-diethyl-2,4-toluenediamine diamine and / or 3,5-diethyl-2,6-tolylene diamine and primary mono-, di-, tri- and / or tetraalkyl substituted 4,4'-diaminodiphenylmethanes. It can also be mixtures of the above Chain extenders are used. In addition, smaller quantities can also be purchased Triols are added.
  • conventional monofunctional compounds z. B. as chain terminators or demolding aids are used.
  • examples include alcohols such as octanol and stearyl alcohol or amines such as Butylamine and stearylamine.
  • the structural components optionally in Presence of catalysts, auxiliaries and / or additives preferably in be reacted such that the equivalence ratio of NCO groups A) to the sum of the NCO-reactive groups, in particular the OH groups low molecular weight diols / triols B2) and polyols B1) 0.9: 1.0 to 1.1: 1.0, preferably 0.95: 1.0 to 1.10: 1.0.
  • Suitable catalysts of the invention are known in the art and conventional tertiary amines, e.g. Triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethyl-piperazine, 2- (dimethylamino-ethoxy) -ethanol, Diazabicyclo- (2,2,2) octane and in particular organic Metal compounds such as titanic acid esters, iron compounds, tin compounds, e.g. Tin diacetate, tin dioctoate, tin dilaurate or the Zinndialkylsalze aliphatic Carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate.
  • preferred Catalysts are organic metal compounds, in particular titanic acid esters, Iron and / or tin compounds.
  • TPU components and the catalysts can also aids and / or additives C) up to 20% by weight, based on the total amount of TPU, be added.
  • examples include lubricants, such as fatty acid esters, their metal soaps, fatty acid amides, fatty acid ester amides and silicone compounds, Antiblocking agents, inhibitors, stabilizers against hydrolysis, light, Heat and discoloration, flame retardants, dyes, pigments, inorganic and / or organic fillers and reinforcing agents.
  • Reinforcing agents are in particular fibrous reinforcing materials, e.g. inorganic fibers after The prior art can be prepared and also acted upon with a sizing could be. Further details of the auxiliaries and additives mentioned are the Specialist literature, for example the monograph by J.H. Saunders and K.C. Fresh "High Polymers", Volume XVI, Polyurethanes, Parts 1 and 2, Interscience Publishing Publishers 1962 and 1964, the paperback for plastic additives of R.Gumbleter u. H. Müller (Hanser Verlag Kunststoff 1990) or DE-A 29 01 774 to remove.
  • thermoplastics For example, polycarbonates and acrylonitrile / butadiene / styrene terpolymers, in particular SECTION.
  • elastomers such as rubber, ethylene / vinyl acetate copolymers, Styrene / butadiene copolymers and other TPUs used become.
  • plasticizers such as Phosphates, phthalates, adipates, sebacates and alkylsulfonic acid esters.
  • the production process according to the invention is preferably carried out as follows:
  • the components A) and B) are separated from each other, preferably in one Heat exchanger, heated to a temperature between 50 ° and 220 ° C and in liquid form at the same time continuously in a non-coercively stirred Pipe (pipe mixer) with a length / diameter ratio of 1: 1 to 50: 1, preferably 2: 1 to 20: 1, metered.
  • a non-coercively stirred Pipe pipe mixer
  • the stirrer mixes the components at a speed of preferably 200 to 5,000 rpm.
  • the speed of the stirrer is inventively adjusted so that the Ratio of peripheral speed of the stirrer diameter in m / sec and Throughput (sum of the component dosages A) + B) and optionally C) in g / sec exceeds 0.03 m / g. A value of greater than 0.06 m / g is preferred.
  • the stirrer is a non-positive, preferably uniaxial rotating mechanical stirrer. It can e.g. Beams, rods, anchors, grids, wings or Propellers are used as mixing elements.
  • the TPU on construction reaction substantially to complete conversion, i. > 90%, based on the insert component A) brought.
  • the residence time required for this is dependent the throughput, the raw materials used, the reaction temperatures and the catalyst 2 sec to 5 min.
  • the mentioned Conditions preferred for a residence time in the tube mixer from 5 to 60 sec.
  • reaction temperatures reach depending on the starting temperature of the starting components Values from 140 ° to 300 ° C, preferably above 220 ° C.
  • the reaction mixture is discharged continuously from the tube mixer. she can be stored directly on a carrier. After heat treatment at temperatures from 60 to 180 ° C and subsequent cooling, the TPU mass granulated become.
  • the carrier is a continuous one transporting conveyor belt.
  • the tubular mixer reaction mixture directly into a continuous kneader and / or extruder (e.g. a twin-screw kneader ZSK), where at temperatures of 120 to 250 ° C. Add additional auxiliaries to the TPU. At the end of the extruder becomes also granulated.
  • a continuous kneader and / or extruder e.g. a twin-screw kneader ZSK
  • the TPU produced by the process according to the invention can be converted into injection-molded articles, Extrusion articles, in particular to melt films, to coating compositions or sintered types and easily melted coextrusion types, e.g. Laminations, calandering u. Powder-slush types are processed. at good homogeneity it stands out, as well as the moldings produced from it, especially by a low softening temperature.
  • Polybutanediol-1,4-adipate (molecular weight about 820) 54 parts by weight 1,4-butanediol 7.4 parts by weight 4,4'-diphenylmethane diisocyanate 37 parts by weight Ethylene bis-stearyl amide 0.2 parts by weight dioctoate 200 ppm
  • the polyester in which 200 ppm (based on polyester) tin dioctoate as a catalyst were dissolved was heated with the butanediol to 145 ° C and continuously into the first housing of a ZSK 83 (Werner / Pfleiderer) metered.
  • ZSK 83 Wang / Pfleiderer
  • the first 9 cases of the ZSK were not heated (quasi-adiabatic).
  • the released heat of reaction reached temperatures of up to 240 ° C.
  • the last 4 cases were cooled.
  • the speed of the screw was 270 rpm, the throughput 10,000 g / min.
  • the hot melt was withdrawn as strand, in Water bath cooled and granulated.
  • the hot melt was withdrawn as a strand, in a water bath cooled and granulated.
  • Example 2 This procedure was carried out analogously to Example 2.
  • the throughput was 520 g / min, the Stirrer speed 500, 1,000 or 3,000 rpm.
  • polyester-butanediol mixture was heated to 170 ° C and the 4,4'-diphenylmethane diisocyanate at 80 ° C.
  • the conversion at the end of the tube mixer was 99 equivalent%, based on the 4,4-diphenylmethane diisocyanate.
  • the TPU was continuously dosed onto a coated metal carrier, Postcured at 110 ° C for 30 min and granulated.
  • TPU granules were in a single-shaft extruder 30 / 25D Plasticorder PL 2000-6 from Brabender melted (dosage 3 kg / h; 185-205 ° C) and extruded through a film blowing head to a tubular film.
  • TPU granules were in an injection molding machine D 60 (32er Screw) of the Mannesmann company melted (melt temperature about 225 ° C) and formed into plates (125mm x 50mm x 2mm).
  • the measurements were carried out with the RDA 700 from Rheometrics with 1 Hz in Temperature range of -125 ° C to 200 ° C performed at a heating rate of 1 ° C / min.
  • the modulus at 100% elongation was replicated on the injection molded specimens DIN 53405 measured.
  • This melting behavior is advantageous in particular for the TPU-Schmelzfolienund Sintering area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Claims (7)

  1. Procédé pour la préparation continue d'élastomères de polyuréthanes homogènes transformables de manière thermoplastique avec un comportement amélioré au ramollissement dans lequel
       un ou plusieurs diisocyanates A) et
       un mélange B) présentant des atomes d'hydrogène Zerewitinoff- actifs constitués
    B1) de 1 à 85 % équivalents, rapportés aux groupes isocyanates dans (A), d'un ou plusieurs composés avec en moyenne au moins 1,8 et au plus 2,2 atomes d'hydrogène Zerewitinoff- actifs par molécule et un poids moléculaire moyen M n de 450 g/mol à 5000 g/mol,
    B2) de 15 à 99 % équivalents, rapportés aux groupes isocyanates dans (A), d'un ou plusieurs agents d'allongement de chaíne avec en moyenne au moins 1,8 et au plus 2,2 atomes d'hydrogène Zerewitinoff- actifs par molécule et un poids moléculaire de 60 g/mol à 400 g/mol, ainsi que
       de 0 à 20 % en poids, rapportés à la quantité totale de TPU, d'autres auxiliaires et additifs (C),
       les constituants (A) et (B) étant utilisés dans un rapport NCO:OH de 0,9:1 à 1,1:1,
       sont amenés à réagir en principe jusqu'à conversion complète dans un réacteur installé en ligne agité sans contrainte, caractérisé en ce que le rapport de la vitesse de rotation de l'agitateur (en m/s) dans le réacteur installé en ligne au débit (en g/s) dépasse la valeur de 0,03 (m/g).
  2. Procédé selon la revendication 1, caractérisé en ce que le composé contenant des atomes d'hydrogène Zerewitinoff- actifs B1) est un polyesterdiol, un polyétherdiol, un polycarbonatediol ou un mélange de ceux-ci.
  3. Procédé selon la revendication 1, caractérisé en ce que le composé contenant des atomes d'hydrogène Zerewitinoff- actifs B2) est l'éthylèneglycol, le butanediol, l'hexanediol, la 1,4-di-(β-hydroxyéthyl)-hydroquinone, le 1,4-di-(β-hydroxyéthyl)bisphénol A ou un mélange de ceux-ci.
  4. Procédé selon la revendication 1, caractérisé en ce que le diisocyanate A) est le diisocyanate de 1,6-hexaméthylène, le diisocyanate d'isophorone, le diisocyanate de dicyclohexylméthane ou un mélange d'isomères de diisocyanate de diphénylméthane avec une teneur en diisocyanate de 4,4'-diphénylméthane supérieure à 96 % en poids.
  5. Procédé selon l'une ou plusieurs quelconques des revendications 1 à 4, caractérisé en ce que le mélange réactionnel préparé dans le réacteur installé en ligne est dosé dans une extrudeuse et des auxiliaires et/ou d'autres constituants y sont éventuellement mélangés.
  6. Procédé selon l'une ou plusieurs quelconques des revendications 1 à 5, caractérisé en ce que les constituants A), B1), B2) formant des TPU sont amenés à réagir dans un réacteur installé en ligne agité en l'espace de 60 secondes jusqu'à une conversion > 90 % rapportée au constituant A) utilisé.
  7. Utilisation des polyuréthanes préparés selon le procédé selon les revendications 1 à 6 pour la préparation d'articles coulés par injection et d'articles d'extrusion.
EP00110187A 1999-05-26 2000-05-15 Méthode de fabrication en continu de polyuréthanes façonnables sous forme thermoplastique Expired - Lifetime EP1055692B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924090A DE19924090C1 (de) 1999-05-26 1999-05-26 Verfahren zur kontinuierlichen Herstellung von thermoplastisch verarbeitbaren Polyurethanen mit verbessertem Erweichungsverhalten
DE19924090 1999-05-26

Publications (3)

Publication Number Publication Date
EP1055692A2 EP1055692A2 (fr) 2000-11-29
EP1055692A3 EP1055692A3 (fr) 2001-10-04
EP1055692B1 true EP1055692B1 (fr) 2005-03-23

Family

ID=7909221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00110187A Expired - Lifetime EP1055692B1 (fr) 1999-05-26 2000-05-15 Méthode de fabrication en continu de polyuréthanes façonnables sous forme thermoplastique

Country Status (12)

Country Link
US (1) US6930163B2 (fr)
EP (1) EP1055692B1 (fr)
JP (1) JP2000351826A (fr)
KR (1) KR100613314B1 (fr)
CN (1) CN1134476C (fr)
AT (1) ATE291598T1 (fr)
BR (1) BR0001908B1 (fr)
CA (1) CA2308923C (fr)
DE (2) DE19924090C1 (fr)
ES (1) ES2238951T3 (fr)
HK (1) HK1033146A1 (fr)
TW (1) TW521079B (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19924089C1 (de) * 1999-05-26 2001-01-25 Bayer Ag Verfahren zur kontinuierlichen Herstellung von thermoplastisch verarbeitbaren Polyurethanen mit verbessertem Erweichungsverhalten
DE10013186A1 (de) * 2000-03-17 2001-09-20 Basf Ag Polyisocyanate
WO2002086208A1 (fr) * 2001-04-19 2002-10-31 Kolon Industries, Inc Fibre elastique de type polyurethane, et procede de preparation de la fibre
US7015299B2 (en) 2001-04-30 2006-03-21 Wilkinson W Kenneth Melt spun thermoplastic polyurethanes useful as textile fibers
EP1264863A1 (fr) * 2001-06-08 2002-12-11 Ciba Spezialitätenchemie Pfersee GmbH Compositions contenant des polysiloxanes et d'autres polymères
DE10345099A1 (de) * 2003-09-26 2005-04-21 Basf Ag Verfahren zur Herstellung von Mischungen zur Polyurethan-Herstellung
DE102004062476A1 (de) * 2004-12-24 2006-07-06 Bayer Materialscience Ag Aliphatische sinterfähige thermoplastische Polyurethane und deren Verwendung
DE102005004967A1 (de) * 2005-02-03 2006-08-10 Basf Ag Verfahren zur kontinuierlichen Herstellung thermoplastisch verarbeitbarer Polyurethan-Elastomere
DE102005028056A1 (de) 2005-06-16 2006-12-21 Basf Ag Thermoplastisches Polyurethan enthaltend Isocyanat
US7435787B2 (en) * 2005-09-14 2008-10-14 Momentive Performance Materials Inc. Process for the continuous production of silylated resin
US20070135536A1 (en) * 2005-12-14 2007-06-14 Board Of Trustees Of Michigan State University Biobased compositions from distillers' dried grains with solubles and methods of making those
DE102007051274A1 (de) 2007-10-26 2009-04-30 Construction Research & Technology Gmbh Kontinuierliche Herstellung von Polyurethanen/Polyharnstoffen
WO2009033975A1 (fr) * 2007-09-12 2009-03-19 Construction Research & Technology Gmbh Production continue de polyuréthanes/polyurées
EP2313445B1 (fr) * 2008-08-08 2011-11-02 Construction Research & Technology GmbH Production de polyurées et/ou de polyuréthanes silylés
US9181382B2 (en) * 2010-05-10 2015-11-10 Basf Se Thermoplastic polyurethane comprising, as plasticizer, glycerol esterified with at least one aliphatic carboxylic acid
CN103275290A (zh) * 2013-05-30 2013-09-04 中国人民解放军总后勤部建筑工程研究所 热塑性聚氨酯的制备方法
WO2015185659A1 (fr) * 2014-06-06 2015-12-10 Covestro Deutschland Ag Procédé de fabrication en continu de prépolymères stables
US20180312623A1 (en) * 2017-04-28 2018-11-01 Liang Wang Polyurethane Elastomer with High Ultimate Elongation
US20220380516A1 (en) * 2021-05-12 2022-12-01 International Business Machines Corporation Synthesis of polyurethane polymers in flow reactors

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE673744A (fr) 1964-12-14
BE759829A (fr) 1969-12-03 1971-06-03 Upjohn Co Preparation de polyurethanes
DE1964834A1 (de) 1969-12-24 1971-07-01 Bayer Ag Verfahren zur Herstellung von Polyurethan-Elastomeren
US3963679A (en) 1973-01-19 1976-06-15 Bayer Aktiengesellschaft Process for the production of polyurethane elastomers
AT350269B (de) 1977-06-01 1979-05-25 Plate Bonn Gmbh Verfahren zur kontinuierlichen herstellung von thermoplastischen polyurethanen
DE2842806A1 (de) * 1978-09-30 1980-04-10 Bayer Ag Verfahren zur herstellung von polyurethan-elastomeren
DE2901774A1 (de) 1979-01-18 1980-07-24 Elastogran Gmbh Rieselfaehiges, mikrobenbestaendiges farbstoff- und/oder hilfsmittelkonzentrat auf basis eines polyurethan-elastomeren und verfahren zu seiner herstellung
DE3001462A1 (de) * 1980-01-17 1981-09-10 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von urethan- und/oder isocyanuratgruppenhaltigen schaumstoffen
IT1196527B (it) * 1986-07-21 1988-11-16 Ausimont Spa Procedimento per la preparazione di poliuretani termoplastici
DE4132015A1 (de) * 1991-09-26 1993-04-01 Basf Ag Thermoplastische polyurethan-elastomere mit einem geringen organischen kohlenstoffabgabewert, verfahren zu ihrer herstellung und ihre verwendung
DE4217364A1 (de) * 1992-05-26 1993-12-02 Bayer Ag Verfahren zur Herstellung von thermoplastisch verarbeitbaren Polyurethan-Elastomeren durch einen mehrstufigen Prozeß
US5795948A (en) 1992-05-26 1998-08-18 Bayer Aktiengesellschaft Multistage process for production of thermoplastic polyurethane elastomers
DE4217365A1 (de) * 1992-05-26 1993-12-02 Bayer Ag Verfahren zur Herstellung von thermoplastisch verarbeitbaren Polyurethan-Elastomeren durch einen mehrstufigen Prozeß
DE4406948A1 (de) * 1994-03-03 1995-09-07 Bayer Ag Verfahren zur Herstellung von thermoplastischen Polyurethanelastomeren (TPU)
DE19520732A1 (de) * 1995-06-07 1996-12-12 Bayer Ag Thermoplastische Polyurethan-Elastomere
DE19625987A1 (de) * 1996-06-28 1998-01-02 Bayer Ag Verfahren zur kontinuierlichen Herstellung von thermoplastisch verarbeitbaren Polyurethanen mit verbessertem Verarbeitungsverhalten
DE19738498A1 (de) * 1997-09-03 1999-03-04 Bayer Ag Verfahren zur kontinuierlichen Herstellung von thermoplastisch verarbeitbaren Polyurethanen in einem Zweiwellenextruder mit spezieller Temperaturführung
DE19924089C1 (de) * 1999-05-26 2001-01-25 Bayer Ag Verfahren zur kontinuierlichen Herstellung von thermoplastisch verarbeitbaren Polyurethanen mit verbessertem Erweichungsverhalten

Also Published As

Publication number Publication date
CA2308923A1 (fr) 2000-11-26
KR20000077419A (ko) 2000-12-26
KR100613314B1 (ko) 2006-08-21
US6930163B2 (en) 2005-08-16
BR0001908A (pt) 2001-01-02
HK1033146A1 (en) 2001-08-17
EP1055692A3 (fr) 2001-10-04
US20020058777A1 (en) 2002-05-16
ES2238951T3 (es) 2005-09-16
CN1134476C (zh) 2004-01-14
TW521079B (en) 2003-02-21
EP1055692A2 (fr) 2000-11-29
CN1275584A (zh) 2000-12-06
DE50009834D1 (de) 2005-04-28
ATE291598T1 (de) 2005-04-15
BR0001908B1 (pt) 2009-05-05
JP2000351826A (ja) 2000-12-19
CA2308923C (fr) 2009-05-12
DE19924090C1 (de) 2001-01-25

Similar Documents

Publication Publication Date Title
DE102005039933B4 (de) Verfahren zur Herstellung von thermoplastisch verarbeitbaren Polyurethanen
EP1055692B1 (fr) Méthode de fabrication en continu de polyuréthanes façonnables sous forme thermoplastique
EP1826225B1 (fr) Polyuréthane pouvant être traité de manière thermoplastique, son procédé de fabrication et son utilisation
EP0900812B1 (fr) Procédé de production en continu de polyurethanes thermoplastiques dans une extrudeuse à deux arbres avec réglage special de température
EP1338614B1 (fr) Procédé de production des elastomères de polyuréthane thermoplastiques, mous, facilement démoulables et à retrait minime
EP0816407B1 (fr) Procédé en continu pour la preparation de polyuréthanes thermoplastiques avec processabilité améliorée
EP0571831B1 (fr) Procédé en plusieurs étapes de préparation d'élastomères de polyuréthane thermoplastiquement façonnables
EP1101784B1 (fr) Polyuréthanes aliphatiques thermoplastiques, procédé pour leur préparation et leur utilisation
EP1068250B1 (fr) Procede pour la production d'elastomeres polyurethanes thermoplastiques
EP0670339B1 (fr) Procédé de préparation d'élastomères de polyuréthanes thermoplastiques (TPU)
EP1055691B1 (fr) Méthode de fabrication en continu de polyuréthanes façonnables sous forme thermoplastique
EP1927608B1 (fr) Polyuréthanes thermoplastiques auto extinguibles, procédé pour leur fabrication et leur utilisation
DE102011085944A1 (de) Verfahren zur kontinuierlichen Herstellung von thermoplastisch verarbeitbaren Polyurethanen
EP1213307B1 (fr) Procédé continu de préparation d'élastomères de polyuréthane à thermostabilité élevée et à viscosité constante
EP1967537A1 (fr) Procédé de fabrication de corps de moulage à mémoire de forme dotés d'une grande zone d'utilisation
EP0845492B1 (fr) Polyuréthanes thermoplastiques contenant de mélanges spéciaux de cires
EP1391472B1 (fr) Préparation continue de polyuréthanes thermoplastiques
EP1031588B1 (fr) Compositions de moulage de polyurethane thermoplastiques, souples
EP1153951B1 (fr) Pièce moulée à partir d'un polyuréthane thermoplastique ne donnant pas lieu à la formation de brouillard
EP0792917A1 (fr) Polyuréthanes thermoplastiques contenant de la cire
EP0571828B1 (fr) Procédé en plusieurs étapes de préparation d'élastomères de polyuréthane thermoplastiquement façonnables
DE102009055735A1 (de) Verfahren zur kontinuierlichen Herstellung von thermoplastisch verarbeitbaren Polyurethanen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020404

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR THE CONTINUOUS PREPARATION OF THERMOPLASTICALLY PROCESSIBLE POLYURETHANES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009834

Country of ref document: DE

Date of ref document: 20050428

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050515

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050623

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050623

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2238951

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050623

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090504

Year of fee payment: 10

Ref country code: ES

Payment date: 20090605

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090515

Year of fee payment: 10

Ref country code: IT

Payment date: 20090519

Year of fee payment: 10

Ref country code: DE

Payment date: 20090423

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090525

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090513

Year of fee payment: 10

BERE Be: lapsed

Owner name: *BAYER MATERIALSCIENCE A.G.

Effective date: 20100531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100515

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100515

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100515

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100516