EP0571831B1 - Procédé en plusieurs étapes de préparation d'élastomères de polyuréthane thermoplastiquement façonnables - Google Patents

Procédé en plusieurs étapes de préparation d'élastomères de polyuréthane thermoplastiquement façonnables Download PDF

Info

Publication number
EP0571831B1
EP0571831B1 EP93107823A EP93107823A EP0571831B1 EP 0571831 B1 EP0571831 B1 EP 0571831B1 EP 93107823 A EP93107823 A EP 93107823A EP 93107823 A EP93107823 A EP 93107823A EP 0571831 B1 EP0571831 B1 EP 0571831B1
Authority
EP
European Patent Office
Prior art keywords
diisocyanate
prepolymer
reaction
chain extenders
polyurethane elastomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93107823A
Other languages
German (de)
English (en)
Other versions
EP0571831A2 (fr
EP0571831A3 (fr
Inventor
Herbert Dipl.-Ing. Heidingsfeld
Wolfgang Dr. Bräuer
Friedemann Dr. Müller
Willi Dr. Meister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6459737&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0571831(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0571831A2 publication Critical patent/EP0571831A2/fr
Publication of EP0571831A3 publication Critical patent/EP0571831A3/xx
Application granted granted Critical
Publication of EP0571831B1 publication Critical patent/EP0571831B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes

Definitions

  • the invention relates to a process for the continuous production of thermoplastically processable polyurethane elastomers by a multi-stage prepolymer / belt process.
  • TPU Thermoplastic polyurethane elastomers
  • TPUs are made up of linear polyols, mostly polyester or polyether, organic diisocyanates and short-chain diols (chain extenders). They can be produced continuously or batchwise. As the best known manufacturing process, the so-called belt process and the extruder process are also used industrially.
  • a prepolymer is produced from an essentially linear polyhydroxyl compound and excess organic diisocyanate at temperatures ⁇ 100 ° C., cooled and fed to a mixing head via a metering pump. There you mix it with a certain amount of a low molecular weight diol.
  • the reaction mixture obtained is transferred to a conveyor belt with heating up to 130 ° C.
  • the reaction product is comminuted and tempered. The long reaction time required for prepolymer formation of 1 to 2 hours is economically disadvantageous in this process.
  • the structural components polyhydroxyl compound, diisocyanate and low molecular weight glycols are introduced into the extruder. These are premixed individually or metered directly into the extruder as a pre-adduct of polyhydroxyl compound and diisocyanate, and the reaction is carried out in the extruder under certain process conditions.
  • the thermoplastic polyurethane thus produced is extruded, cooled and shredded as a strand. Disadvantageous is that the TPUs produced by this process do not have consistently good properties for all fields of application. TPUs of the same composition are transparent by the extrusion process, while they show an opaque appearance by the belt process. Opaque TPUs can be easily processed into foils, while transparent TPUs are less suitable because of their tendency to block.
  • Preferred polyols are polyesters, polyethers, polycarbonates or a mixture of these.
  • Suitable polyetherols can be prepared by reacting one or more alkylene oxides with 2 to 4 carbon atoms in the alkylene radical with a starter molecule which contains two active hydrogen atoms bonded.
  • alkylene oxides are: ethylene oxide, 1,2-propylene oxide, epichlorohydrin and 1,2- and 2,3-butylene oxide. Ethylene oxide, propylene oxide and mixtures of 1,2-propylene oxide and ethylene oxide are preferably used.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures.
  • starter molecules examples include water, amino alcohols, such as N-alkyldiethanolamines, for example N-methyldiethanolamine and diols such as ethylene glycol, 1,3-propylene glycol, 1,4-butanediol and 1,6-hexanediol. If appropriate, mixtures of starter molecules can also be used.
  • Suitable polyetherols are also the hydroxyl-containing polymerization products of tetrahydrofuran.
  • the essentially linear polyetherols preferably have molecular weights of 500 to 5000. They can be used both individually and in the form of mixtures with one another.
  • Suitable polyesterols can be prepared, for example, from dicarboxylic acids having 2 to 12 carbon atoms, preferably 4 to 6 carbon atoms, and polyhydric alcohols.
  • suitable dicarboxylic acids are: aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid and sebacic acid and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids can be used individually or as mixtures, for example in the form of a succinic, glutaric and adipic acid mixture.
  • polyesterols it may be advantageous to use the corresponding dicarboxylic acid derivatives, such as carboxylic acid diesters having 1 to 4 carbon atoms in the alcohol radical, carboxylic acid anhydrides or carboxylic acid chlorides, instead of the dicarboxylic acids.
  • dicarboxylic acid derivatives such as carboxylic acid diesters having 1 to 4 carbon atoms in the alcohol radical, carboxylic acid anhydrides or carboxylic acid chlorides, instead of the dicarboxylic acids.
  • polyhydric alcohols are glycols having 2 to 10, preferably 2 to 6, carbon atoms, such as ethylene glycol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,10-decanediol, 2,2- 1,3-dimethylpropanediol, 1,3-propanediol and dipropylene glycol.
  • the polyhydric alcohols can be used alone
  • esters of carbonic acid with the diols mentioned in particular those with 4 to 6 carbon atoms, such as 1,4-butanediol and / or 1,6-hexanediol, condensation products of ⁇ -hydroxycarboxylic acids, for example ⁇ -hydroxycaproic acid, and preferably polymerization products of lactones, for example, optionally substituted ⁇ -caprolactones.
  • polyesterols used are ethanediol polyadipates, 1,4-butanediol polyadipates, ethanediol-butanediol-1,4-polyadipates, 1,6-hexanediol-neopentylglycol polyadipates, 1,6-hexanediol-1,4-butanediol polyadipates and polycaprolactones.
  • the polyesterols have molecular weights from 500 to 5000.
  • Suitable organic diisocyanates are, for example, aliphatic, cycloaliphatic, araliphatic, heterocyclic and aromatic diisocyanates, such as those e.g. in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136.
  • aliphatic diisocyanates such as hexamethylene diisocyanate
  • cycloaliphatic diisocyanates such as isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 1-methyl-2,4- and -2,6-cyclohexane diisocyanate and the corresponding isomer mixtures
  • 4,4'-, 2,4'- and 2,2'-dicyclohexylmethane diisocyanate and the corresponding isomer mixtures and preferably aromatic diisocyanates such as 2,4-tolylene diisocyanate, mixtures of 2,4- and 2,6-tolylene diisocyanate, 4,4'-, 2,4'- and 2,2'-diphenylmethane diisocyanate, mixtures of 2,4'- and 4,4'-diphenylmethane diisocyanate, urethane-modified liquid 4,4'- and / or 2,4'--
  • diisocyanates mentioned can be used together with up to 15% (calculated on diisocyanate), but at most so much of a polyisocyanate that a thermoplastically processable product is formed.
  • Examples are triphenylmethane-4,4 ', 4 "-triisocyanate and polyphenyl-polymethylene-polyisocyanates.
  • Suitable chain extenders with a molecular weight of 62 to 500 are preferably aliphatic diols with 2 to 14 carbon atoms, such as, for example, ethanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol and in particular 1,4-butanediol.
  • diesters of terephthalic acid with glycols having 2 to 4 carbon atoms such as, for example, terephthalic acid bis-ethylene glycol or 1,4-butanediol, hydroxyalkylene ethers of hydroquinone, such as, for example, 1,4-di ( ⁇ -hydroxyethyl) hydroquinone, (cyclo ) aliphatic diamines, such as Isophorone diamine, ethylenediamine, 1,2-, 1,3-propylenediamine, N-methyl-propylenediamine-1,3, N, N'-dimethylethylenediamine and aromatic diamines, such as 2,4- and 2,6- Toluylenediamine, 3,5-diethyl-2,4- and / or -2,6-toluenediamine and primary ortho-, di-, tri- and / or tetraalkyl-substituted 4,4'-diaminodiphenylmethanes.
  • the diol chain extenders can be used together with up to 15% (calculated on chain extenders) but at most as much of a triol with a molecular weight of up to 500 that a thermoplastically processable product is produced.
  • examples are glycerol, trimethylolpropane and their low molecular weight alkylene oxide adducts.
  • the structural components if appropriate in the presence of catalysts, auxiliaries and / or additives, can be reacted in such amounts that the equivalence ratio of NCO groups to the sum of the NCO-reactive groups, in particular the OH groups of the low molecular weight diols / Triplets and macrodiols 0.9: 1 to 1.20: 1, preferably 0.95: 1 to 1.10: 1.
  • Suitable catalysts which in particular accelerate the reaction between the NCO groups of the diisocyanates and the hydroxyl groups of the diol components are the tertiary amines known and customary in the prior art, such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethyl -piperazine, 2- (dimethylaminoethoxy) ethanol, diazabicyclo (2,2,2) octane and the like and in particular organic metal compounds such as titanium acid esters, iron compounds, tin compounds, for example tin diacetate, tin dioctate, tin dilaurate or the tin dialkyl salts of aliphatic carboxylic acids such as dibutyltin diacetate or durutyl tin dilautilate.
  • the catalysts are usually used in amounts of 0.0005 to 0.1 part per 100 parts of polyhydroxy compound.
  • auxiliaries and / or additives can also be incorporated into the structural components.
  • auxiliaries and / or additives can also be incorporated into the structural components. Examples include lubricants, inhibitors, stabilizers against hydrolysis, light, heat and discoloration, flame retardants, dyes, pigments, inorganic and / or organic fillers and reinforcing agents.
  • Reinforcing agents are in particular fibrous reinforcing materials such as e.g. inorganic fibers that are manufactured according to the state of the art and can also be supplied with a size.
  • auxiliaries and additives can be found in the specialist literature, for example the monograph by JH Saunders and KC Frisch "High Polymers", Volume XVI, Polyurethane, Parts 1 and 2, Verlag Interscience Publishers 1962 and 1964 or DE-A 2 901 774.
  • thermoplastics for example polycarbonates, polyesters and acrylonitrile butadiene styrene polymers, in particular ABS.
  • elastomers such as e.g. Rubber, ethylene-vinyl acetate polymers, styrene-butadiene copolymers and other TPU's can be used.
  • plasticizers such as e.g. Phosphates, phthalates, adipates, sebacates.
  • stage A The components of stage A are intimately mixed at temperatures above their melting point. This is preferably carried out in a mixing unit with high shear energy.
  • a mixing head preferably a high-speed spike mixer, or a nozzle can be used.
  • the prepolymer reaction (stage B) should essentially be brought to complete conversion. Preferably, more than 80 mol% of polyol should be reacted in this stage.
  • the reaction temperatures are above 100 ° C, preferably between 100 ° C and 250 ° C.
  • a tubular reactor is used, the length of which is dimensioned such that, in interaction with the reaction temperature, the conversion described above is ensured.
  • the length / diameter ratio is preferably between 2: 1 and 20: 1.
  • the reaction must be controlled, for example via the temperature, in such a way that the conversion mentioned is achieved.
  • stages A and B are carried out in an intensely stirred tubular reactor with a length / diameter ratio of 4: 1 to 15: 1.
  • the combination nozzle / tube reactor optionally with stirring, can also be used.
  • stage C the prepolymer produced in stages A and B is mixed with the low molecular weight diol and optionally triol and / or diamine chain extenders.
  • mixing should take place immediately after the prepolymer reaction has largely ended.
  • a mixing unit working with high shear energy is also preferred for this stage. Examples include a mixing head, a nozzle or a screw extruder.
  • the mixture can also be carried out in the last part of the above-mentioned stirred tube reactor after the prepolymer reaction has taken place.
  • step D the reaction mixture prepared in step C is directly and continuously on a support. preferably a conveyor belt, applied where it is allowed to react until the material solidifies.
  • the conveyor belt is preferably passed through a heating zone with a predetermined temperature> 110 ° C. The speed of the conveyor belt is adjusted depending on the heating temperature so that the chain extension reaction is essentially brought to full conversion.
  • the reaction mixture which has solidified on the conveyor belt can be introduced continuously into an extruder.
  • the known extruders e.g. Single-shaft and twin-screw extruders and bus kneaders are used.
  • the temperatures of the extruder housings are chosen so that the solidified reaction mixture is melted, the chain extension reaction is brought to full conversion and the possible incorporation of the above-mentioned auxiliaries or the other components can be carried out with the greatest possible protection of the product.
  • TPUs can be produced in a targeted and controlled manner with only very small property fluctuations due to the optimal conditions in each process stage in a wide range of properties.
  • the products thus obtained have very good mechanical properties and are suitable for the production of injection molded articles and polyurethane films.
  • a poly-butanediol ether with a molecular weight of approx. 1000 100 parts by weight of a poly-butanediol ether with a molecular weight of approx. 1000 were heated to 180 ° C. and metered into a tube equipped with a spike mixer using a gear pump. Using a second gear pump, 50 parts by weight of molten (50 ° C.) 4,4'-diphenylmethane diisocyanate (MDI) were pumped into the same tube.
  • MDI 4,4'-diphenylmethane diisocyanate
  • the tube has a length / diameter ratio of 8.
  • the speed of the mixer was approximately 1500 rpm.
  • the metering rate was set so that the prepolymer mixture referred to the tubular reactor with a conversion 1) of about 95 mol%. Polyether left.
  • the prepolymer was then continuously and briefly mixed intensively in a directly connected mixing head with 10 parts by weight of butanediol (60 ° C.), which were metered in by means of a gear pump.
  • reaction mixture obtained was applied directly to a conveyor belt which ran continuously for about 1 minute through a zone heated at 130.degree.
  • the moldings produced were easy to remove from the mold.
  • the tubular films obtained from the granules were easy to extrude.
  • Example 2 Analogously to Example 1, the poly-butanediol ether was heated to 200 ° C. and converted into the prepolymer in the tubular reactor. The metering rate was increased so that the prepolymer again left the reactor with about 95% conversion.
  • the moldings produced were easy to remove from the mold.
  • the tubular films obtained from the granules were easy to extrude.
  • Example 2 Analogously to Example 1, 100 parts by weight of a 1,4-poly-butanediol adipate having a molecular weight of approximately 2250 and heated to 140 ° C. were reacted with 114 parts by weight of MDI to form the prepolymer. The sales level achieved in the tubular reactor was 98%.
  • the prepolymer was mixed with a mixture of 35 parts by weight of butanediol, 1.75 parts by weight of hexanediol and 1.27 parts by weight of stearyl alcohol.
  • the melt solidified at the end of the conveyor belt was drawn into a twin-screw extruder with a diameter of 53 mm and housing temperatures from 140 ° C to 200 ° C.
  • 1.5 parts by weight of bis-ethylene-stearylamide and 34 parts by weight of an ABS powder were metered in with metering scales.
  • the hot melt was drawn off as a strand, cooled in a water bath and granulated.
  • the moldings produced were easy to remove from the mold.
  • Example 3 100 parts by weight of a 1,4-polybutanediol adipate having a molecular weight of approximately 2250 were converted to 40% by weight of MDI to form the prepolymer in the tubular reactor up to 97%.
  • the prepolymer was mixed with 10.5 parts by weight of butanediol in the mixing head. After the conveyor belt, the strand was drawn into a single-shaft extruder with a diameter of 60 mm and housing temperatures from 180 ° to 220 ° C. The speed was 60 rpm.
  • the moldings produced were easy to remove from the mold.
  • the tubular films obtained from the granules were easy to extrude.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)

Claims (4)

  1. Procédé pour la fabrication continue d'élastomères de polyuréthannes aptes au travail thermoplastique dans un procédé à plusieurs stades, caractérisé en ce que
    A. on mélange un ou plusieurs polyols essentiellement linéaires, de poids moléculaire 500 à 5000, avec un diisocyanate de formule générale OCN-Z-NCO dans laquelle Z représente un radical organique divalent,
    B. on convertit le mélange obtenu au stade A., dans un réacteur, à des températures de réaction supérieures à 100°C, en le prépolymère, dans une réaction essentiellement complète,
    C. on mélange le prépolymère obtenu au stade B. avec des diols et le cas échéant des triols et/ou des diamines à bas poids moléculaire, de poids moléculaire 62 à 500, servant d'agents d'allongement des chaînes, en réglant au total, tenu compte de tous les composants de réaction des stades A., B. et C., à un rapport NCO/H actif de 0,9:1 à 1,2:1,
    D. on transfère le mélange de réaction préparé au stade C. sur un support où on le laisse réagir jusqu'à solidification,
    E. le cas échéant, on fond le mélange de réaction solidifié obtenu au stade D. dans une extrudeuse dans laquelle on mélange des produits auxiliaires et/ou autres composants.
  2. Procédé pour la fabrication d'élastomères de polyuréthannes aptes au travail thermoplastique selon la revendication 1, caractérisé en ce que
    A. on mélange en continu dans un appareil approprié, à haute énergie de cisaillement un ou plusieurs polyesters, polyéthers, polycarbonates essentiellement linéaires ou un mélange de tels composants, de poids moléculaire 500 à 5 000, avec un ou plusieurs diisocyanates choisis parmi le dicyclohexylméthane-diisocyanate, l'isophoronediisocyanate, l'hexaméthylènediisocyanate, le naphtylènediisocyanate ou un mélange d'isomères du diphénylméthane à une teneur supérieure à 96 % en poids en le 4,4'-diphénylméthanediisocyanate, et plus spécialement le 4,4'-diphénylméthanediisocyanate,
    B. on convertit le mélange obtenu au stade A., en continu, dans un réacteur tubulaire ayant un rapport longueur/diamètre de 2:1 à 20:1, à des températures de réaction de 100 à 250°C, en le prépolymère, dans une réaction essentiellement complète,
    C. on mélange en continu le prépolymère préparé au stade B. avec un ou plusieurs agents d'allongement des chaînes choisis parmi l'éthylèneglycol, le butanediol, l'hexanediol, la 1,4-di-(β-hydroxyéthyl)hydroquinone, et le cas échéant des agents d'allongement des chaînes consistant en triols, dans un appareil approprié à haute énergie de cisaillement, en réglant au total, tenu compte de tous les composants de réaction des stades A., B. et C., à un rapport NCO/H actif de 0,95:1 à 1,1:1,
    D. on envoie en continu le mélange de réaction préparé au stade C. sur une bande transporteuse qui le conduit, jusqu'à solidification de la matière, au travers d'une zone de chauffage présentant une température déterminée supérieure ou égale à 110°C,
    E. le cas échéant, on fond le mélange de réaction solidifié obtenu au stade D. dans une extrudeuse dans laquelle on mélange les produits auxiliaires et/ou d'autres composants.
  3. Procédé de préparation d'élastomères de polyuréthannes aptes au travail thermoplastique selon la revendication 1 ou 2, caractérisé en ce que le mélange et la réaction de formation du prépolymère des stades A. et B. sont réalisés ensemble, dans un réacteur tubulaire agité sous haute énergie de cisaillement à un rapport longueur/diamètre de 4:1 à 15:1, à des températures de réaction de 100 à 250°C et avec un taux de conversion supérieur à 80 mol % par rapport au polyol.
  4. Procédé de préparation d'élastomères de polyuréthannes aptes au travail thermoplastiques selon les revendications 1 à 3, caractérisé en ce que, au stade E., dans l'extrudeuse, on introduit en tant qu'autres composants une résine thermoplastique, en particulier un polycarbonate, un polyester et/ou un polymère ABS, ou une matière renforçante, en particulier une fibre minérale, ou bien d'autres élastomères et des plastifiants.
EP93107823A 1992-05-26 1993-05-13 Procédé en plusieurs étapes de préparation d'élastomères de polyuréthane thermoplastiquement façonnables Expired - Lifetime EP0571831B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4217365 1992-05-26
DE4217365A DE4217365A1 (de) 1992-05-26 1992-05-26 Verfahren zur Herstellung von thermoplastisch verarbeitbaren Polyurethan-Elastomeren durch einen mehrstufigen Prozeß

Publications (3)

Publication Number Publication Date
EP0571831A2 EP0571831A2 (fr) 1993-12-01
EP0571831A3 EP0571831A3 (fr) 1994-04-20
EP0571831B1 true EP0571831B1 (fr) 1996-10-23

Family

ID=6459737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93107823A Expired - Lifetime EP0571831B1 (fr) 1992-05-26 1993-05-13 Procédé en plusieurs étapes de préparation d'élastomères de polyuréthane thermoplastiquement façonnables

Country Status (3)

Country Link
US (1) US5545707A (fr)
EP (1) EP0571831B1 (fr)
DE (2) DE4217365A1 (fr)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406948A1 (de) * 1994-03-03 1995-09-07 Bayer Ag Verfahren zur Herstellung von thermoplastischen Polyurethanelastomeren (TPU)
DE19520732A1 (de) 1995-06-07 1996-12-12 Bayer Ag Thermoplastische Polyurethan-Elastomere
DE19520731A1 (de) * 1995-06-07 1996-12-12 Bayer Ag Thermoplastische Polyurethanharnstoff-Elastomere
US5644015A (en) * 1996-07-24 1997-07-01 Hyosung T & C Co., Ltd. Process of manufacturing improved polyurethane fiber polymer
US6166166A (en) * 1998-08-26 2000-12-26 Bayer Corporation Composition and process for preparation of thermoplastic polyurethanes (TPU based on a polybutadiene soft segment)
DE19924090C1 (de) * 1999-05-26 2001-01-25 Bayer Ag Verfahren zur kontinuierlichen Herstellung von thermoplastisch verarbeitbaren Polyurethanen mit verbessertem Erweichungsverhalten
US6294638B1 (en) * 1999-10-08 2001-09-25 Bayer Corporation Soft, transparent and processable thermoplastic polyurethane
DE19939112A1 (de) * 1999-08-18 2001-02-22 Basf Ag Thermoplastische Polyurethane
AU7254600A (en) * 1999-12-30 2001-07-26 Johnson & Johnson Consumer Companies, Inc. Improved elastomeric valve for spill-proof feeding devices
WO2002004536A2 (fr) * 2000-07-12 2002-01-17 Uniroyal Chemical Company, Inc. Compositions urethane modifiees contenant des adduits de polyols d'ester d'anhydride $i(o)-phtalique
GB0019074D0 (en) * 2000-08-03 2000-09-27 Ranier Ltd Precision polyurethane manufacture
US20070167600A1 (en) * 2004-09-01 2007-07-19 Rukavina Thomas G Polyurethanes prepared from polycaprolactone polyols, articles and coatings prepared therefrom and methods of making the same
US8399559B2 (en) 2004-09-01 2013-03-19 Ppg Industries Ohio, Inc. Polyurethanes, articles and coatings prepared therefrom and methods of making the same
US8859680B2 (en) * 2004-09-01 2014-10-14 Ppg Industries Ohio, Inc Poly(ureaurethane)s, articles and coatings prepared therefrom and methods of making the same
US11591436B2 (en) 2004-09-01 2023-02-28 Ppg Industries Ohio, Inc. Polyurethane article and methods of making the same
US8734951B2 (en) 2004-09-01 2014-05-27 Ppg Industries Ohio, Inc. Polyurethanes, articles and coatings prepared therefrom and methods of making the same
US8349986B2 (en) 2004-09-01 2013-01-08 Ppg Industries Ohio, Inc. Poly(ureaurethane)s, articles and coatings prepared therefrom and methods of making the same
US8399094B2 (en) 2004-09-01 2013-03-19 Ppg Industries Ohio, Inc. Multilayer laminated articles including polyurethane and/or poly(ureaurethane) layers and methods of making the same
US8207286B2 (en) * 2004-09-01 2012-06-26 Ppg Industries Ohio, Inc Methods for preparing polyurethanes
US8653220B2 (en) 2004-09-01 2014-02-18 Ppg Industries Ohio, Inc. Poly(ureaurethane)s, articles and coatings prepared therefrom and methods of making the same
US8889815B2 (en) * 2004-09-01 2014-11-18 Ppg Industries Ohio, Inc. Reinforced polyurethanes and poly(ureaurethane)s, methods of making the same and articles prepared therefrom
US9598527B2 (en) 2004-09-01 2017-03-21 Ppg Industries Ohio, Inc. Polyurethanes, articles and coatings prepared therefrom and methods of making the same
US20070225468A1 (en) * 2004-09-01 2007-09-27 Rukavina Thomas G Polyurethanes prepared from polyester polyols and/or polycaprolactone polyols, articles and coatings prepared therefrom and methods of making the same
US9464169B2 (en) 2004-09-01 2016-10-11 Ppg Industries Ohio, Inc. Polyurethanes, articles and coatings prepared therefrom and methods of making the same
US11008418B2 (en) 2004-09-01 2021-05-18 Ppg Industries Ohio, Inc. Polyurethanes, articles and coatings prepared therefrom and methods of making the same
US11149107B2 (en) 2004-09-01 2021-10-19 Ppg Industries Ohio, Inc. Polyurethanes, articles and coatings prepared therefrom and methods of making the same
US8927675B2 (en) 2004-09-01 2015-01-06 Ppg Industries Ohio, Inc. Poly(ureaurethane)s, articles and coatings prepared therefrom and methods of making the same
US8604153B2 (en) 2004-09-01 2013-12-10 Ppg Industries Ohio, Inc. Poly(ureaurethane)s, articles and coatings prepared therefrom and methods of making the same
US20090280709A1 (en) 2004-09-01 2009-11-12 Ppg Industries Ohio, Inc. Polyurethanes, Articles and Coatings Prepared Therefrom and Methods of Making the Same
US8933166B2 (en) 2004-09-01 2015-01-13 Ppg Industries Ohio, Inc. Poly(ureaurethane)s, articles and coatings prepared therefrom and methods of making the same
US20090280329A1 (en) 2004-09-01 2009-11-12 Ppg Industries Ohio, Inc. Polyurethanes, Articles and Coatings Prepared Therefrom and Methods of Making the Same
ATE402211T1 (de) * 2004-12-13 2008-08-15 Basf Se Verfahren zur herstellung von farblosen, lagerstabilen biuretgruppenhaltigen polyisocyanaten
ATE543849T1 (de) 2006-04-19 2012-02-15 Basf Se Thermoplastische polyurethane
JP5684227B2 (ja) 2009-03-18 2015-03-11 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド ブルームする傾向が低下した熱可塑性ポリウレタン
US20150141609A1 (en) * 2012-06-28 2015-05-21 Dow Global Technologies Llc Polyester - polyurethane elastomers from renewable sources
JP2023519814A (ja) 2020-02-28 2023-05-15 ビーエーエスエフ ソシエタス・ヨーロピア 非一級ヒドロキシル基をベースとするフォーム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE673744A (fr) * 1964-12-14
BE759829A (fr) * 1969-12-03 1971-06-03 Upjohn Co Preparation de polyurethanes
DE1964834A1 (de) * 1969-12-24 1971-07-01 Bayer Ag Verfahren zur Herstellung von Polyurethan-Elastomeren
US3963656A (en) * 1972-10-03 1976-06-15 Bayer Aktiengesellschaft Thermoplastic polyurethanes and a two-stage process for their preparation
US4098772A (en) * 1976-03-11 1978-07-04 The Upjohn Company Thermoplastic polyurethanes prepared with small amounts of monohydric alcohols
DE2610980B2 (de) * 1976-03-16 1978-01-12 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von thermoplastischen polyurethan-elastomeren
DE2719970A1 (de) * 1977-05-04 1978-11-16 Bayer Ag Verfahren zur herstellung von polyisocyanat-polyadditionsprodukten
DE2817456A1 (de) * 1978-04-21 1979-10-31 Bayer Ag Verfahren zur herstellung von thermoplastischen polyurethanelastomeren
DE2817457A1 (de) * 1978-04-21 1979-10-31 Bayer Ag Thermoplastische polyurethane fuer die verarbeitung in extrudern oder/und auf kalandern
DE2842806A1 (de) * 1978-09-30 1980-04-10 Bayer Ag Verfahren zur herstellung von polyurethan-elastomeren
DE3224324A1 (de) * 1982-06-30 1984-01-05 Basf Ag, 6700 Ludwigshafen Zweistufenverfahren zur herstellung von thermoplastischen polyurethan-elastomeren
DE3329775A1 (de) * 1983-08-18 1985-02-28 Bayer Ag, 5090 Leverkusen Thermoplastische polyurethane hoher waermestandfestigkeit auf basis von naphthylendiisocyanat, verfahren zu ihrer herstellung und ihre verwendung
US4608418A (en) * 1985-02-22 1986-08-26 Gensco Inc. Hot melt composition and process for forming the same
US4948860A (en) * 1989-05-01 1990-08-14 Becton, Dickinson And Company Melt processable polyurethaneurea copolymers and method for their preparation
EP0480588B1 (fr) * 1990-10-12 1998-05-20 Imperial Chemical Industries Plc Procédé pour la production en continu de prépolymères contenant d'isocyanates et leur utilization pour la préparation de mousses de polyuréthane
US5096993A (en) * 1990-11-02 1992-03-17 Olin Corporation Thermoplastic polyurethane elastomers and polyurea elastomers made using low unsaturation level polyols prepared with double metal cyanide catalysts
WO1993001222A1 (fr) * 1991-07-03 1993-01-21 Kanebo, Ltd. Elastomere de polyurethane thermoplastique, procede et dispositif de production, et fibre elastique realisee a partir de cet elastomere

Also Published As

Publication number Publication date
EP0571831A2 (fr) 1993-12-01
US5545707A (en) 1996-08-13
EP0571831A3 (fr) 1994-04-20
DE4217365A1 (de) 1993-12-02
DE59304248D1 (de) 1996-11-28

Similar Documents

Publication Publication Date Title
EP0571831B1 (fr) Procédé en plusieurs étapes de préparation d'élastomères de polyuréthane thermoplastiquement façonnables
EP0816407B1 (fr) Procédé en continu pour la preparation de polyuréthanes thermoplastiques avec processabilité améliorée
EP0900812B1 (fr) Procédé de production en continu de polyurethanes thermoplastiques dans une extrudeuse à deux arbres avec réglage special de température
DE102005039933B4 (de) Verfahren zur Herstellung von thermoplastisch verarbeitbaren Polyurethanen
EP0598283B1 (fr) Procédé en continu pour le contrÔle de la conversion de prépolymères de polyuréthane par mélange partiel des prépolymères avec des monomères
EP1338614B1 (fr) Procédé de production des elastomères de polyuréthane thermoplastiques, mous, facilement démoulables et à retrait minime
EP0097899B1 (fr) Procédé en deux stades pour la préparation d'élastomères thermoplastiques de polyuréthane
EP0670339B1 (fr) Procédé de préparation d'élastomères de polyuréthanes thermoplastiques (TPU)
EP1068250B1 (fr) Procede pour la production d'elastomeres polyurethanes thermoplastiques
EP1927608B1 (fr) Polyuréthanes thermoplastiques auto extinguibles, procédé pour leur fabrication et leur utilisation
EP1213307B1 (fr) Procédé continu de préparation d'élastomères de polyuréthane à thermostabilité élevée et à viscosité constante
EP1055691B1 (fr) Méthode de fabrication en continu de polyuréthanes façonnables sous forme thermoplastique
EP1055692B1 (fr) Méthode de fabrication en continu de polyuréthanes façonnables sous forme thermoplastique
EP1031588B1 (fr) Compositions de moulage de polyurethane thermoplastiques, souples
EP0571828B1 (fr) Procédé en plusieurs étapes de préparation d'élastomères de polyuréthane thermoplastiquement façonnables
EP1391472B1 (fr) Préparation continue de polyuréthanes thermoplastiques
EP0571830B1 (fr) Elastomères de polyuréthanes thermoplastiquement façonnables et leur procédé de préparation
EP0922719A1 (fr) Procédé de préparation de produits de polyaddition d'isocyanates
EP0111682B1 (fr) Elastomères de polyuréthane facilement démoulables, exempts de blocking, procédé pour leur fabrication et leur utilisation
DE2850608A1 (de) Hydrolyse- und mikrobenbestaendige, thermoplastisch verarbeitbare polyurethan- elastomere, deren herstellung und verwendung als beschichtungsmassen und zur herstellung von formkoerpern
EP0571833B1 (fr) Elastomères de polyuréthanes thermoplastiquement façonnables et leur procédé de préparation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19940915

17Q First examination report despatched

Effective date: 19960115

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961104

REF Corresponds to:

Ref document number: 59304248

Country of ref document: DE

Date of ref document: 19961128

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: BASF AKTIENGESELLSCHAFT, LUDWIGSHAFEN

Effective date: 19970709

NLR1 Nl: opposition has been filed with the epo

Opponent name: BASF AKTIENGESELLSCHAFT, LUDWIGSHAFEN

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19990502

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090504

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090521

Year of fee payment: 17

Ref country code: FR

Payment date: 20090515

Year of fee payment: 17

Ref country code: DE

Payment date: 20090423

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090525

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090513

Year of fee payment: 17

BERE Be: lapsed

Owner name: *BAYER A.G.

Effective date: 20100531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100513

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100513

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100513