EP1053343A2 - Ciblage de vecteurs de vaccins genetiques - Google Patents
Ciblage de vecteurs de vaccins genetiquesInfo
- Publication number
- EP1053343A2 EP1053343A2 EP99906949A EP99906949A EP1053343A2 EP 1053343 A2 EP1053343 A2 EP 1053343A2 EP 99906949 A EP99906949 A EP 99906949A EP 99906949 A EP99906949 A EP 99906949A EP 1053343 A2 EP1053343 A2 EP 1053343A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- recombinant
- cells
- cell
- library
- nucleic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000002068 genetic effect Effects 0.000 title claims abstract description 169
- 229960005486 vaccine Drugs 0.000 title claims abstract description 142
- 239000013598 vector Substances 0.000 title claims description 229
- 230000008685 targeting Effects 0.000 title description 11
- 238000000034 method Methods 0.000 claims abstract description 211
- 238000012384 transportation and delivery Methods 0.000 claims abstract description 67
- 230000001965 increasing effect Effects 0.000 claims abstract description 25
- 210000004027 cell Anatomy 0.000 claims description 401
- 150000007523 nucleic acids Chemical class 0.000 claims description 148
- 108090000623 proteins and genes Proteins 0.000 claims description 147
- 102000039446 nucleic acids Human genes 0.000 claims description 142
- 108020004707 nucleic acids Proteins 0.000 claims description 142
- 230000027455 binding Effects 0.000 claims description 128
- 238000009739 binding Methods 0.000 claims description 128
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 118
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 110
- 108091007433 antigens Proteins 0.000 claims description 107
- 102000036639 antigens Human genes 0.000 claims description 106
- 229920001184 polypeptide Polymers 0.000 claims description 106
- 239000000427 antigen Substances 0.000 claims description 103
- 108091033319 polynucleotide Proteins 0.000 claims description 90
- 102000040430 polynucleotide Human genes 0.000 claims description 90
- 239000002157 polynucleotide Substances 0.000 claims description 90
- 102000004169 proteins and genes Human genes 0.000 claims description 76
- 238000012216 screening Methods 0.000 claims description 62
- 230000006798 recombination Effects 0.000 claims description 56
- 238000005215 recombination Methods 0.000 claims description 56
- 210000001519 tissue Anatomy 0.000 claims description 51
- 230000014509 gene expression Effects 0.000 claims description 43
- 231100000655 enterotoxin Toxicity 0.000 claims description 39
- 241001465754 Metazoa Species 0.000 claims description 38
- 239000000147 enterotoxin Substances 0.000 claims description 37
- 241001515965 unidentified phage Species 0.000 claims description 37
- 210000000612 antigen-presenting cell Anatomy 0.000 claims description 36
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 claims description 31
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 claims description 30
- 238000012360 testing method Methods 0.000 claims description 30
- 230000009870 specific binding Effects 0.000 claims description 26
- 102000005962 receptors Human genes 0.000 claims description 25
- 108020003175 receptors Proteins 0.000 claims description 25
- 108020001507 fusion proteins Proteins 0.000 claims description 24
- 102000037865 fusion proteins Human genes 0.000 claims description 24
- 238000001727 in vivo Methods 0.000 claims description 24
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 23
- 210000004443 dendritic cell Anatomy 0.000 claims description 23
- 239000002773 nucleotide Substances 0.000 claims description 23
- 125000003729 nucleotide group Chemical group 0.000 claims description 23
- 108091007494 Nucleic acid- binding domains Proteins 0.000 claims description 22
- 241000588724 Escherichia coli Species 0.000 claims description 21
- 230000004927 fusion Effects 0.000 claims description 21
- 101710146739 Enterotoxin Proteins 0.000 claims description 20
- 241000124008 Mammalia Species 0.000 claims description 20
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 19
- 230000001580 bacterial effect Effects 0.000 claims description 19
- 239000003446 ligand Substances 0.000 claims description 18
- 239000003550 marker Substances 0.000 claims description 18
- 101710198693 Invasin Proteins 0.000 claims description 16
- 210000001616 monocyte Anatomy 0.000 claims description 14
- 230000001717 pathogenic effect Effects 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 13
- 210000003491 skin Anatomy 0.000 claims description 12
- 108010001857 Cell Surface Receptors Proteins 0.000 claims description 11
- 102000000844 Cell Surface Receptors Human genes 0.000 claims description 11
- 230000001939 inductive effect Effects 0.000 claims description 11
- 244000052769 pathogen Species 0.000 claims description 11
- 230000004568 DNA-binding Effects 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 108010033040 Histones Proteins 0.000 claims description 8
- 241000607626 Vibrio cholerae Species 0.000 claims description 8
- 238000001990 intravenous administration Methods 0.000 claims description 8
- 210000001821 langerhans cell Anatomy 0.000 claims description 8
- 210000000663 muscle cell Anatomy 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 7
- 210000005260 human cell Anatomy 0.000 claims description 7
- 230000035755 proliferation Effects 0.000 claims description 7
- 230000030741 antigen processing and presentation Effects 0.000 claims description 6
- 230000001404 mediated effect Effects 0.000 claims description 6
- 210000002510 keratinocyte Anatomy 0.000 claims description 5
- 230000002934 lysing effect Effects 0.000 claims description 5
- 210000002540 macrophage Anatomy 0.000 claims description 5
- 210000000952 spleen Anatomy 0.000 claims description 5
- 230000000699 topical effect Effects 0.000 claims description 5
- 241000282693 Cercopithecidae Species 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 230000016396 cytokine production Effects 0.000 claims description 4
- 210000001165 lymph node Anatomy 0.000 claims description 4
- 230000001926 lymphatic effect Effects 0.000 claims description 4
- 210000003126 m-cell Anatomy 0.000 claims description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 230000003472 neutralizing effect Effects 0.000 claims description 3
- 231100000252 nontoxic Toxicity 0.000 claims description 3
- 230000003000 nontoxic effect Effects 0.000 claims description 3
- 108010029697 CD40 Ligand Proteins 0.000 claims description 2
- 102100032937 CD40 ligand Human genes 0.000 claims description 2
- 108010021064 CTLA-4 Antigen Proteins 0.000 claims description 2
- 102000008203 CTLA-4 Antigen Human genes 0.000 claims description 2
- 229940045513 CTLA4 antagonist Drugs 0.000 claims description 2
- 230000004543 DNA replication Effects 0.000 claims description 2
- 108010049003 Fibrinogen Proteins 0.000 claims description 2
- 102000008946 Fibrinogen Human genes 0.000 claims description 2
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 claims description 2
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 claims description 2
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 claims description 2
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 claims description 2
- 102000007327 Protamines Human genes 0.000 claims description 2
- 108010007568 Protamines Proteins 0.000 claims description 2
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 claims description 2
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 230000001461 cytolytic effect Effects 0.000 claims description 2
- 229940012952 fibrinogen Drugs 0.000 claims description 2
- 229940027941 immunoglobulin g Drugs 0.000 claims description 2
- 230000002103 transcriptional effect Effects 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229940124856 vaccine component Drugs 0.000 claims 2
- 230000004570 RNA-binding Effects 0.000 claims 1
- 230000037406 food intake Effects 0.000 claims 1
- 210000004400 mucous membrane Anatomy 0.000 claims 1
- 229940048914 protamine Drugs 0.000 claims 1
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 13
- 108020004414 DNA Proteins 0.000 description 75
- 235000018102 proteins Nutrition 0.000 description 63
- 239000003981 vehicle Substances 0.000 description 42
- 230000001976 improved effect Effects 0.000 description 34
- 239000000203 mixture Substances 0.000 description 29
- 241000282414 Homo sapiens Species 0.000 description 23
- 150000001413 amino acids Chemical group 0.000 description 21
- 238000000338 in vitro Methods 0.000 description 19
- 239000013612 plasmid Substances 0.000 description 19
- 230000028993 immune response Effects 0.000 description 18
- 238000012546 transfer Methods 0.000 description 18
- 239000003053 toxin Substances 0.000 description 15
- 231100000765 toxin Toxicity 0.000 description 15
- 108700012359 toxins Proteins 0.000 description 15
- 235000001014 amino acid Nutrition 0.000 description 14
- 229940024606 amino acid Drugs 0.000 description 14
- 238000009396 hybridization Methods 0.000 description 14
- 230000006872 improvement Effects 0.000 description 14
- 102000004127 Cytokines Human genes 0.000 description 13
- 108090000695 Cytokines Proteins 0.000 description 13
- 239000002253 acid Substances 0.000 description 13
- 150000007513 acids Chemical class 0.000 description 13
- 210000004369 blood Anatomy 0.000 description 13
- 239000008280 blood Substances 0.000 description 13
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000000684 flow cytometry Methods 0.000 description 12
- 238000009472 formulation Methods 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 238000001890 transfection Methods 0.000 description 12
- 238000003556 assay Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 102000009016 Cholera Toxin Human genes 0.000 description 10
- 108010049048 Cholera Toxin Proteins 0.000 description 10
- 108020004705 Codon Proteins 0.000 description 10
- 241000700605 Viruses Species 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 108010055409 ganglioside receptor Proteins 0.000 description 9
- 102000044158 nucleic acid binding protein Human genes 0.000 description 9
- 108700020942 nucleic acid binding protein Proteins 0.000 description 9
- 229920001817 Agar Polymers 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 8
- 239000008272 agar Substances 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 239000005090 green fluorescent protein Substances 0.000 description 8
- 238000002703 mutagenesis Methods 0.000 description 8
- 231100000350 mutagenesis Toxicity 0.000 description 8
- 238000002823 phage display Methods 0.000 description 8
- 230000028327 secretion Effects 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 108010041986 DNA Vaccines Proteins 0.000 description 7
- 229940021995 DNA vaccine Drugs 0.000 description 7
- 101710096438 DNA-binding protein Proteins 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 7
- 238000005457 optimization Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000003389 potentiating effect Effects 0.000 description 7
- 102000019034 Chemokines Human genes 0.000 description 6
- 108010012236 Chemokines Proteins 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 6
- 208000014197 Fetal anticonvulsant syndrome Diseases 0.000 description 6
- 230000000890 antigenic effect Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 239000002502 liposome Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 231100000617 superantigen Toxicity 0.000 description 6
- 230000032258 transport Effects 0.000 description 6
- 101710132601 Capsid protein Proteins 0.000 description 5
- 101710094648 Coat protein Proteins 0.000 description 5
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 108091054438 MHC class II family Proteins 0.000 description 5
- 101710125418 Major capsid protein Proteins 0.000 description 5
- 101710141454 Nucleoprotein Proteins 0.000 description 5
- 101710083689 Probable capsid protein Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000013602 bacteriophage vector Substances 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000004520 electroporation Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000011239 genetic vaccination Methods 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 235000002639 sodium chloride Nutrition 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 208000035473 Communicable disease Diseases 0.000 description 4
- 101000867232 Escherichia coli Heat-stable enterotoxin II Proteins 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 4
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 4
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 4
- 108090000978 Interleukin-4 Proteins 0.000 description 4
- 108010002616 Interleukin-5 Proteins 0.000 description 4
- 102000047918 Myelin Basic Human genes 0.000 description 4
- 101710107068 Myelin basic protein Proteins 0.000 description 4
- 108091005461 Nucleic proteins Proteins 0.000 description 4
- 101710160107 Outer membrane protein A Proteins 0.000 description 4
- 241000607142 Salmonella Species 0.000 description 4
- 108091023040 Transcription factor Proteins 0.000 description 4
- 102000040945 Transcription factor Human genes 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 229920006008 lipopolysaccharide Polymers 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 238000004091 panning Methods 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 238000011179 visual inspection Methods 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 241000724791 Filamentous phage Species 0.000 description 3
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 3
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 3
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 3
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 102100037850 Interferon gamma Human genes 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 108090000176 Interleukin-13 Proteins 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 3
- 240000007472 Leucaena leucocephala Species 0.000 description 3
- 239000004367 Lipase Substances 0.000 description 3
- 102000004882 Lipase Human genes 0.000 description 3
- 108090001060 Lipase Proteins 0.000 description 3
- 108091054437 MHC class I family Proteins 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- -1 e.g. Proteins 0.000 description 3
- 230000000688 enterotoxigenic effect Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 230000002519 immonomodulatory effect Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 230000003308 immunostimulating effect Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 210000004347 intestinal mucosa Anatomy 0.000 description 3
- 230000009545 invasion Effects 0.000 description 3
- 235000019421 lipase Nutrition 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000010187 selection method Methods 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 229940118696 vibrio cholerae Drugs 0.000 description 3
- 206010069754 Acquired gene mutation Diseases 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000589876 Campylobacter Species 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 2
- 101001082397 Human adenovirus B serotype 3 Hexon-associated protein Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 102000043129 MHC class I family Human genes 0.000 description 2
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 108091061960 Naked DNA Proteins 0.000 description 2
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 101001120093 Pseudoalteromonas phage PM2 Protein P8 Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 108010079723 Shiga Toxin Proteins 0.000 description 2
- 102100038803 Somatotropin Human genes 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 108010022394 Threonine synthase Proteins 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009824 affinity maturation Effects 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 201000002491 encephalomyelitis Diseases 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 238000005462 in vivo assay Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000003471 mutagenic agent Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002853 nucleic acid probe Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 210000003935 rough endoplasmic reticulum Anatomy 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 230000037439 somatic mutation Effects 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002511 suppository base Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- AWNBSWDIOCXWJW-WTOYTKOKSA-N (2r)-n-[(2s)-1-[[(2s)-1-(2-aminoethylamino)-1-oxopropan-2-yl]amino]-3-naphthalen-2-yl-1-oxopropan-2-yl]-n'-hydroxy-2-(2-methylpropyl)butanediamide Chemical compound C1=CC=CC2=CC(C[C@H](NC(=O)[C@@H](CC(=O)NO)CC(C)C)C(=O)N[C@@H](C)C(=O)NCCN)=CC=C21 AWNBSWDIOCXWJW-WTOYTKOKSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- VGONTNSXDCQUGY-RRKCRQDMSA-N 2'-deoxyinosine Chemical group C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC2=O)=C2N=C1 VGONTNSXDCQUGY-RRKCRQDMSA-N 0.000 description 1
- 101150090724 3 gene Proteins 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108091023043 Alu Element Proteins 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 206010003267 Arthritis reactive Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- CXRFDZFCGOPDTD-UHFFFAOYSA-M Cetrimide Chemical compound [Br-].CCCCCCCCCCCCCC[N+](C)(C)C CXRFDZFCGOPDTD-UHFFFAOYSA-M 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-YMDCURPLSA-N D-galactopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-YMDCURPLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 238000011238 DNA vaccination Methods 0.000 description 1
- 101100239628 Danio rerio myca gene Proteins 0.000 description 1
- 208000034423 Delivery Diseases 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 241000605721 Dichelobacter nodosus Species 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 108700028018 Drosophila prd Proteins 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 1
- 101800001467 Envelope glycoprotein E2 Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102100039869 Histone H2B type F-S Human genes 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101001109800 Homo sapiens Pro-neuregulin-1, membrane-bound isoform Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 201000008225 Klebsiella pneumonia Diseases 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 101150039798 MYC gene Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000011202 Member 2 Subfamily B ATP Binding Cassette Transporter Human genes 0.000 description 1
- 108010023335 Member 2 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 241000588622 Moraxella bovis Species 0.000 description 1
- 101000686985 Mouse mammary tumor virus (strain C3H) Protein PR73 Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 102000007999 Nuclear Proteins Human genes 0.000 description 1
- 108010089610 Nuclear Proteins Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 241000701980 Phage 434 Species 0.000 description 1
- 206010035717 Pneumonia klebsiella Diseases 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 102000044126 RNA-Binding Proteins Human genes 0.000 description 1
- 108700020471 RNA-Binding Proteins Proteins 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000701835 Salmonella virus P22 Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 108010056079 Subtilisins Proteins 0.000 description 1
- 102000005158 Subtilisins Human genes 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 101800001271 Surface protein Proteins 0.000 description 1
- 108010008038 Synthetic Vaccines Proteins 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 108010068068 Transcription Factor TFIIIA Proteins 0.000 description 1
- 102100028509 Transcription factor IIIA Human genes 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 244000274883 Urtica dioica Species 0.000 description 1
- 235000009108 Urtica dioica Nutrition 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 108070000030 Viral receptors Proteins 0.000 description 1
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 1
- 101100459258 Xenopus laevis myc-a gene Proteins 0.000 description 1
- 229920000392 Zymosan Polymers 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 238000002266 amputation Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000008952 bacterial invasion Effects 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 1
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 1
- AEMOLEFTQBMNLQ-UHFFFAOYSA-N beta-D-galactopyranuronic acid Natural products OC1OC(C(O)=O)C(O)C(O)C1O AEMOLEFTQBMNLQ-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 108010079292 betaglycan Proteins 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000012219 cassette mutagenesis Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 210000000285 follicular dendritic cell Anatomy 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 1
- 210000001280 germinal center Anatomy 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000012145 high-salt buffer Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 102000055691 human APC Human genes 0.000 description 1
- 102000055650 human NRG1 Human genes 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000014828 interferon-gamma production Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 230000004073 interleukin-2 production Effects 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 235000020130 leben Nutrition 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 108091005485 macrophage scavenger receptors Proteins 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 230000033607 mismatch repair Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007193 modulation by symbiont of host erythrocyte aggregation Effects 0.000 description 1
- 238000011527 multiparameter analysis Methods 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000002023 papillomaviral effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940116317 potato starch Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229940070353 protamines Drugs 0.000 description 1
- 229940023143 protein vaccine Drugs 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 208000002574 reactive arthritis Diseases 0.000 description 1
- 101150079601 recA gene Proteins 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 229940124551 recombinant vaccine Drugs 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000032537 response to toxin Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 102000014452 scavenger receptors Human genes 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000024033 toxin binding Effects 0.000 description 1
- 108091008023 transcriptional regulators Proteins 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 230000009677 vaginal delivery Effects 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/02—Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
- C12N15/1027—Mutagenizing nucleic acids by DNA shuffling, e.g. RSR, STEP, RPR
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1037—Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/74—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2730/00—Reverse transcribing DNA viruses
- C12N2730/00011—Details
- C12N2730/10011—Hepadnaviridae
- C12N2730/10111—Orthohepadnavirus, e.g. hepatitis B virus
- C12N2730/10122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16211—Human Immunodeficiency Virus, HIV concerning HIV gagpol
- C12N2740/16222—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- This invention pertains to the field of genetic vaccines. Specifically, the invention provides methods for improving the efficacy of genetic vaccines by providing materials that facilitate targeting of a genetic vaccine to a particular tissue or cell type of interest.
- Vectors for genetic vaccinations generally consist of DNA that includes a promoter/enhancer sequence operably linked to a gene of interest (which often encodes an antigen) and a polyadenylation/transcriptional terminator sequence. After intramuscular or intradermal injection, the gene of interest is expressed followed by recognition of the resulting protein by the cells of the immune system. Genetic immunizations provide means to induce protective immunity even in situations when the pathogens are poorly characterized or cannot be isolated or cultured in laboratory environment.
- Antigen is expressed in the host cell cytoplasm (for example, in muscle cells) or, by inclusion of a signal secretion sequence, is expressed on the surface of the host cell or secreted from the host cell.
- the antigen is processed by endogenous processes of the host cell transfected by the genetic vaccine vector. When expressed cytoplasmically, the antigen is thought to be targeted to the proteasome for proteolysis.
- the peptides so derived are sorted by endogenous TAP-1 and TAP -2 and transported into the lumen of the rough endoplasmic reticulum (RER), where they associate with MHC Class I molecules for eventual trafficking to the cell surface as a molecular complex of Class I, ⁇ 2-microglobulin and peptide.
- the antigen When the antigen is released intact from transfected cells, it is thought to be taken up by endocytic pathways in APC and processed internally in them by endogenous pathways for eventual presentation on their cell surface as peptide fragments in complex with MHC Class I or II molecules.
- the efficacy of genetic vaccination is often limited by inefficient uptake of genetic vaccine vectors into cells. Generally, less than 1% of the muscle or skin cells at the sites of injections express the gene of interest. Even a small improvement in the efficiency of genetic vaccine vectors to enter the cells can result in a dramatic increase in the level of immune response induced by genetic vaccination. A vector typically has to cross many barriers which can result in only a very minor fraction of the DNA ever being expressed.
- Limitations to immunogenicity include: loss of vector due to nucleases present in blood and tissues; inefficient entry of DNA into a cell; inefficient entry of DNA into the nucleus of the cell and preference of DNA for other compartments; lack of DNA stability in the nucleus (factor limiting nuclear stability may differ from those affecting other cellular and extracellular compartments), and, for vectors that integrate into the chromosome, the efficiency of integration and the site of integration. Moreover, for many applications of genetic vaccines, it is preferable for the genetic vaccine to enter a particular target tissue or cell.
- the present invention provides methods for obtaining a cell-specific binding molecule that is useful for increasing uptake or specificity of a genetic vaccine to a target cell.
- the methods involve: creating a library of recombinant polynucleotides that by recombining a nucleic acid that encodes a polypeptide that comprises a nucleic acid binding domain and a nucleic acid that encodes a polypeptide that comprises a cell-specific binding domain; and screening the library to identify a recombinant polynucleotide that encodes a binding molecule that can bind to a nucleic acid and to a cell-specific receptor.
- Target cells of particular interest include antigen-presenting and antigen-processing cells, such as muscle cells, monocytes, dendritic cells, B cells, Langerhans cells, keratinocytes, and M-cells.
- the methods of the invention for obtaining a cell- specific binding moiety useful for increasing uptake or specificity of a genetic vaccine to a target cell involve: (1) recombining at least first and second forms of a nucleic acid which comprises a polynucleotide that encodes a nucleic acid binding domain and at least first and second forms of a nucleic acid which comprises a cell-specific ligand that specifically binds to a protein on the surface of a cell of interest, wherein the first and second forms differ from each other in two or more nucleotides, to produce a library of recombinant binding moiety- encoding nucleic acids; (2) transfecting into a population of host cells a library of vectors, each of which comprises: a) a binding site specific for the
- the methods can further involve: (6) recombining at least one optimized recombinant binding moiety-encoding nucleic acid with a further form of the polynucleotide that encodes a nucleic acid binding domain and/or a further form of the polynucleotide that encodes a cell-specific ligand, which are the same or different from the first and second forms, to produce a further library of recombinant binding moiety-encoding nucleic acids; (7) transfecting into a population of host cells a library of vectors that comprise: a) a binding site specific for the nucleic acid binding domain and 2) the recombinant binding moiety-encoding nucleic acids, wherein the recombinant binding moiety is expressed and binds to the binding site to form a vector-binding moiety complex; (8) lysing the host cells under conditions that do not disrupt binding of the vector-binding moiety complex; (9) contacting the vector-binding moiety complex with a
- the invention also provides cell-specific recombinant binding moieties produced by expressing in a host cell an optimized recombinant binding moiety-encoding nucleic acid obtained by the methods of the invention.
- the invention provides genetic vaccines that include: a) an optimized recombinant binding moiety that comprises a nucleic acid binding domain and a cell-specific ligand, and b) a polynucleotide sequence that comprises a binding site, wherein the nucleic acid binding domain is capable of specifically binding to the binding site.
- a further embodiment of the invention provides methods for obtaining an optimized cell-specific binding moiety useful for increasing uptake, efficacy, or specificity of a genetic vaccine for a target cell by: (1) recombining at least first and second forms of a nucleic acid that comprises a polynucleotide which encodes a non-toxic receptor binding moiety-of an enterotoxin or other toxin, wherein the first and second forms differ from each other in two or more nucleotides, to produce a library of recombinant nucleic acids; (2) transfecting vectors that contain the library of nucleic acids into a population of host cells, wherein the nucleic acids are expressed to form recombinant cell-specific binding moiety polypeptides; (3) contacting the recombinant cell-specific binding moiety polypeptides with a cell surface receptor of a target cell; and (4) determining which recombinant cell-specific binding moiety polypeptides exhibit enhanced ability to bind to the target cell.
- the present invention also provides methods for evolving a vaccine delivery vehicle, genetic vaccine vector, or a vector component to obtain an optimized delivery vehicle or component that has, or confers upon a vector, enhanced ability to enter a selected mammalian tissue upon administration to a mammal.
- These methods involve: (1) recombining members of a pool of polynucleotides to produce a library of recombinant polynucleotides; (2) administering to a test animal a library of replicable genetic packages, each of which comprises a member of the library of recombinant polynucleotides operably linked to a polynucleotide that encodes a display polypeptide, wherein the recombinant polynucleotide and the display polypeptide are expressed as a fusion protein which is which is displayed on the surface of the replicable genetic package; and (3) recovering replicable genetic packages that are present in the selected tissue of the test animal at a suitable time after administration, wherein recovered replicable genetic packages have enhanced ability to enter the selected mamm
- the methods of the invention further involve: (4) recombining a nucleic acid that comprises at least one recombinant polynucleotide obtained from a replicable genetic package recovered from the selected tissue with a further pool of polynucleotides to produce a further library of recombinant polynucleotides; (5) administering to a test animal a library of replicable genetic packages, each of which comprises a member of the further library of recombinant polynucleotides operably linked to a polynucleotide that encodes a display polypeptide, wherein the recombinant polynucleotide and the display polypeptide are expressed as a fusion protein which is which is displayed on the surface of the replicable genetic package; (6) recovering replicable genetic packages that are present in the selected tissue of the test animal at a suitable time after administration; and (7) repeating (4) through (6), as necessary, to obtain a further optimized recombinant delivery vehicle that
- the invention provides methods for evolving a vaccine delivery vehicle, genetic vaccine vector, or a vector component to obtain an optimized delivery vehicle or component to obtain an optimized delivery vehicle or vector component that has, or confers upon a vector containing the component, enhanced specificity for antigen-presenting cells by: (1) recombining members of a pool of polynucleotides to produce a library of recombinant polynucleotides; (2) producing a library of replicable genetic packages, each of which comprises a member of the library of recombinant polynucleotides operably linked to a polynucleotide that encodes a display polypeptide, wherein the recombinant polynucleotide and the display polypeptide are expressed as a fusion protein which is which is displayed on the surface of the replicable genetic package;
- the invention provides methods for evolving a vaccine delivery vehicle, genetic vaccine vector, or a vector component to obtain an optimized delivery vehicle or component to obtain an optimized delivery vehicle or vector component that has, or confers upon a vector containing the component, an enhanced ability to enter a target cell by: (1) recombining at least first and second forms of a nucleic acid which encodes an invasin polypeptide, wherein the first and second forms differ from each other in two or more nucleotides, to produce a library of recombinant invasin nucleic acids; (2) producing a library of recombinant bacteriophage, each of which displays on the bacteriophage surface a fusion polypeptide encoded by a chimeric gene that comprises a recombinant invasin nucleic acid operably linked to a polynucleotide that encodes a display polypeptide; (3) contacting the library of recombinant bacteriophage with a population of target cells; (4) removing unbound phage and
- the optimized recombinant genetic vaccine vectors, delivery vehicles, or vector components obtained using these methods exhibit improved ability to enter an antigen presenting cell.
- These methods can involve washing the cells after the transfection step to remove vectors which did not enter an antigen presenting cell; culturing the cells for a predetermined time after transfection; lysing the antigen presenting cells; and isolating the optimized recombinant genetic vaccine vector from the cell lysate.
- Antigen presenting cells that contain an optimized recombinant genetic vaccine vectors can be identified by, for example, detecting expression of a marker gene that is included in the vectors.
- the genetic vaccine vector comprises a nucleotide sequence that encodes an immunogenic antigen and optimized recombinant genetic vaccine vectors are identified by: transfecting individual library members into separate cultures of antigen presenting cells; co-culturing transfected APCs with T lymphocytes obtained from the same individual as the APCs; and identifying transfected APC cultures which are capable of inducing a T lymphocyte response.
- the T lymphocyte response in these methods can be selected from the group consisting of increased T lymphocyte proliferation, increased T lymphocyte-mediated cytolytic activity against a target cell, and increased cytokine production.
- the genetic vaccine vector can be capable of inducing a T H I response as evidenced by the transfected APCs inducing a T lymphocyte response that involves one or more of proliferation, IL-2 production, and interferon- ⁇ production.
- Additional embodiments of these methods involve the use of genetic vaccine vectors or delivery vehicles that include a nucleotide sequence that encodes an antigen; optimized recombinant vaccine vectors can be identified by: injecting the library of recombinant genetic vaccine vectors into a test animal; obtaining lymphatic cells (e.g., dendritic cells) from the test animal; and recovering recombinant genetic vaccine vectors from the lymphatic cells, wherein the recovered recombinant genetic vaccine vectors exhibit improved ability to enter lymphatic cells.
- lymphatic cells e.g., dendritic cells
- the antigen is a cell surface antigen
- cells that contain an optimized recombinant vector are purified by binding to an affinity reagent which selectively binds to the cell surface antigen.
- the invention also provides methods of evolving a bacteriophage-derived vaccine delivery vehicle to obtain a delivery vehicle having enhanced ability to enter a target cell. These methods involve the steps of: (1) recombining at least first and second forms of a nucleic acid which encodes an invasin polypeptide, wherein the first and second forms differ from each other in two or more nucleotides, to produce a library of recombinant invasin nucleic acids; (2) producing a library of recombinant bacteriophage, each of which displays on the bacteriophage surface a fusion polypeptide encoded by a chimeric gene that comprises a recombinant invasin nucleic acid operably linked to a polynucleotide that encodes a display polypeptide; (3) contacting the library of recombinant bacteriophage with a population of target cells; (4) removing unbound phage and phage which is bound to the surface of the target cells; and (5) recovering phage which are present within the
- the methods can include the further steps of: (6) recombining a nucleic acid which comprises at least one recombinant invasin nucleic acid obtained from a bacteriophage which is recovered from a target cell with a further pool of polynucleotides to produce a further library of recombinant invasin polynucleotides; (7) producing a further library of recombinant bacteriophage, each of which displays on the bacteriophage surface a fusion polypeptide encoded by a chimeric gene that comprises a recombinant invasin nucleic acid operably linked to a polynucleotide that encodes a display polypeptide; (8) contacting the library of recombinant bacteriophage with a population of target cells; (9) removing unbound phage and phage which is bound to the surface of the target cells; and (10) recovering phage which are present within the target cells; and (11) repeating
- the methods of evolving a bacteriophage-derived vaccine delivery vehicle to obtain a delivery vehicle having enhanced ability to enter a target cell can include the additional steps of: (12) inserting into the optimized recombinant delivery vehicle a polynucleotide which encodes an antigen of interest, wherein the antigen of interest is expressed as a fusion polypeptide which comprises a second display polypeptide; (13) administering the delivery vehicle to a test animal; and (14) determining whether the delivery vehicle is capable of inducing a CTL response in the test animal.
- the following steps can be employed: (12) inserting into the optimized recombinant delivery vehicle a polynucleotide which encodes an antigen of interest, wherein the antigen of interest is expressed as a fusion polypeptide which comprises a second display polypeptide; (13) administering the delivery vehicle to a test animal; and (14) determining whether the delivery vehicle is capable of inducing neutralizing antibodies against a pathogen which comprises the antigen of interest.
- a target cell of interest for these methods is an antigen-presenting cell.
- Figure 1 illustrates a strategy for obtaining and using nucleic acid binding proteins that facilitate entry of genetic vaccines, in particular, naked DNA, into target cells.
- Members of a library obtained by DNA shuffling are linked to a coding region of Ml 3 protein VIII so that a fusion protein is displayed on the surface of the phage particles.
- Phage that efficiently enter the desired target tissue are identified, and the fusion protein is then used to coat a genetic vaccine nucleic acid.
- Figure 2 illustrates a strategy for screening of M13 libraries for desired targeting of various tissues.
- the particular example illustrated relates to screening for improved oral delivery, but the same principle applies to libraries given by other means, including intravenously, intramuscularly, intradermally, anally, vaginally, or topically.
- the Ml 3 phage is recovered from the tissue of interest. The procedure can be repeated to obtain further optimization.
- Figure 3 is an alignment of nucleotide sequences encoding bacterial enterotoxins from two strains of Escherichia coli and cholera toxin B. Shown are nucleotide sequences for E. coli enterotoxin B (S ⁇ Q ID NO: 1), E. coli enterotoxin B (porcine) (S ⁇ Q ID NO: 2), and Cholera toxin subunit B (S ⁇ Q ID NO: 3).
- Figure 4A and Figure 4B show a protocol for the generation and transfection of human dendritic cells.
- Figure 4A shows the phenotype of freshly isolated monocytes (left) and cultured dendritic cells obtained by culturing the blood monocytes in the presence of ⁇ - 4 and GM-CSF for seven days.
- Figure 4B shows a flow cytometry analysis of cultured dendritic cells after transfection by a plasmid that encodes GFP.
- cytokine includes, for example, interleukins, interferons, chemokines, hematopoietic growth factors, tumor necrosis factors and fransforming growth factors. In general these are small molecular weight proteins that regulate maturation, activation, proliferation and differentiation of the cells of the immune system.
- screening describes, in general, a process that identifies optimal antigens.
- properties of the antigen can be used in selection and screening including antigen expression, folding, stability, immunogenicity and presence of epitopes from several related antigens.
- Selection is a form of screening in which identification and physical separation are achieved simultaneously by expression of a selection marker, which, in some genetic circumstances, allows cells expressing the marker to survive while other cells die (or vice versa).
- Screening markers include, for example, luciferase, beta-galactosidase and green fluorescent protein. Selection markers include drug and toxin resistance genes, and the like. Because of limitations in studying primary immune responses in vitro, in vivo studies are particularly useful screening methods.
- the antigens are first introduced to test animals, and the immune responses are subsequently studied by analyzing protective immune responses or by studying the quality or strength of the induced immune response using lymphoid cells derived from the immunized animal.
- spontaneous selection can and does occur in the course of natural evolution, in the present methods selection is performed by man.
- a "exogenous DNA segment”, “heterologous sequence” or a “heterologous nucleic acid”, as used herein, is one that originates from a source foreign to the particular host cell, or, if from the same source, is modified from its original form.
- a heterologous gene in a host cell includes a gene that is endogenous to the particular host cell, but has been modified. Modification of a heterologous sequence in the applications described herein typically occurs through the use of DNA shuffling.
- the terms refer to a DNA segment which is foreign or heterologous to the cell, or homologous to the cell but in a position within the host cell nucleic acid in which the element is not ordinarily found. Exogenous DNA segments are expressed to yield exogenous polypeptides.
- genes are used broadly to refer to any segment of DNA associated with a biological function. Thus, genes include coding sequences and/or the regulatory sequences required for their expression. Genes also include nonexpressed DNA segments that, for example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information, and may include sequences designed to have desired parameters.
- isolated when applied to a nucleic acid or protein, denotes that the nucleic acid or protein is essentially free of other cellular components with which it is associated in the natural state. It is preferably in a homogeneous state although it can be in either a dry or aqueous solution.
- Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography.
- a protein which is the predominant species present in a preparation is substantially purified.
- an isolated gene is separated from open reading frames which flank the gene and encode a protein other than the gene of interest.
- the term "purified” denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Particularly, it means that the nucleic acid or protein is at least about 50% pure, more preferably at least about 85% pure, and most preferably at least about 99% pure.
- naturally-occurring is used to describe an object that can be found in nature as distinct from being artificially produced by man.
- a polypeptide or polynucleotide sequence that is present in an organism including viruses, bacteria, protozoa, insects, plants or mammalian tissue
- an organism including viruses, bacteria, protozoa, insects, plants or mammalian tissue
- nucleic acid refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g. degenerate codon substitutions) and complementary sequences and as well as the sequence explicitly indicated.
- degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al. ( 1991 ) Nucleic Acid Res. 19: 5081; Ohtsuka et al. (1985) J Biol. Chem. 260: 2605-2608; Cassol et al. (1992) ; Rossolini et al. (1994) Mol. Cell. Probes 8: 91-98).
- nucleic acid is used interchangeably with gene, cDNA, and mRNA encoded by a gene.
- Nucleic acid derived from a gene refers to a nucleic acid for whose synthesis the gene, or a subsequence thereof, has ultimately served as a template.
- an mRNA, a cDNA reverse transcribed from an mRNA, an RNA transcribed from that cDNA, a DNA amplified from the cDNA, an RNA transcribed from the amplified DNA, etc. are all derived from the gene and detection of such derived products is indicative of the presence and/or abundance of the original gene and/or gene transcript in a sample.
- a nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence.
- a promoter or enhancer is operably linked to a coding sequence if it increases the transcription of the coding sequence.
- Operably linked means that the DNA sequences being linked are typically contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame.
- enhancers generally function when separated from the promoter by several kilobases and intronic sequences may be of variable lengths, some polynucleotide elements may be operably linked but not contiguous.
- a specific binding affinity between two molecules means a preferential binding of one molecule for another in a mixture of molecules.
- the binding of the molecules can be considered specific if the binding affinity is about 1 x 10 4 M _1 to about 1 x 10 6 M " ' or greater.
- Recombinant when used with reference to a cell indicates that the cell replicates a heterologous nucleic acid, or expresses a peptide or protein encoded by a heterologous nucleic acid.
- Recombinant cells can contain genes that are not found within the native (non-recombinant) form of the cell.
- Recombinant cells can also contain genes found in the native form of the cell wherein the genes are modified and re-introduced into the cell by artificial means.
- the term also encompasses cells that contain a nucleic acid endogenous to the cell that has been modified without removing the nucleic acid from the cell; such modifications include those obtained by gene replacement, site-specific mutation, and related techniques.
- a “recombinant expression cassette” or simply an “expression cassette” is a nucleic acid construct, generated recombinantly or synthetically, with nucleic acid elements that are capable of effecting expression of a structural gene in hosts compatible with such sequences.
- Expression cassettes include at least promoters and optionally, transcription termination signals.
- the recombinant expression cassette includes a nucleic acid to be transcribed (e.g., a nucleic acid encoding a desired polypeptide), and a promoter.
- an expression cassette can also include nucleotide sequences that encode a signal sequence that directs secretion of an expressed protein from the host cell. Transcription termination signals, enhancers, and other nucleic acid sequences that influence gene expression, can also be included in an expression cassette.
- a "multivalent antigenic polypeptide” or a “recombinant multivalent antigenic polypeptide” is a non-naturally occurring polypeptide that includes amino acid sequences from more than one source polypeptide, which source polypeptide is typically a naturally occurring polypeptide.
- At least some of the regions of different amino acid sequences constitute epitopes that are recognized by antibodies found in a mammal that has been injected with the source polypeptide.
- the source polypeptides from which the different epitopes are derived are usually homologous (i.e., have the same or a similar structure and/or function), and are often from different isolates, serotypes, strains, species, of organism or from different disease states, for example.
- nucleic acid or polypeptide sequences refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection.
- substantially identical in the context of two nucleic acids or polypeptides, refers to two or more sequences or subsequences that have at least 60%, preferably 80%, most preferably 90-95% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection.
- the substantial identity exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably the sequences are substantially identical over at least about 150 residues. In some embodiments, the sequences are substantially identical over the entire length of the coding regions.
- sequence comparison typically one sequence acts as a reference sequence to which test sequences are compared.
- test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated.
- sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.
- Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc.
- This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence.
- T is referred to as the neighborhood word score threshold (Altschul et al, supra).
- a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
- the BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
- the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl Acad. Sci. USA 89:10915).
- W wordlength
- E expectation
- BLOSUM62 scoring matrix see Henikoff & Henikoff (1989) Proc. Natl Acad. Sci. USA 89:10915.
- the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul (1993) Proc. Nat 7. Acad. Sci. USA 90:5873-5787).
- P( ⁇ ) the smallest sum probability
- a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.
- hybridizing specifically to refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) DNA or RNA.
- Bod(s) substantially refers to complementary hybridization between a probe nucleic acid and a target nucleic acid and embraces minor mismatches that can be accommodated by reducing the stringency of the hybridization media to achieve the desired detection of the target polynucleotide sequence.
- Stringent hybridization conditions and “stringent hybridization wash conditions” in the context of nucleic acid hybridization experiments such as Southern and northern hybridizations are sequence dependent, and are different under different environmental parameters. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology— Hybridization with Nucleic Acid Probes part I chapter 2 “Overview of principles of hybridization and the strategy of nucleic acid probe assays", Elsevier, New York. Generally, highly stringent hybridization and wash conditions are selected to be about 5° C lower than the thermal melting point (T m ) for the specific sequence at a defined ionic strength and pH. Typically, under “stringent conditions” a probe will hybridize to its target subsequence, but to no other sequences.
- T m thermal melting point
- the Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
- Very stringent conditions are selected to be equal to the T m for a particular probe.
- An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is 50% formamide with 1 mg of heparin at 42°C, with the hybridization being carried out overnight.
- An example of highly stringent wash conditions is 0.15M NaCl at 72°C for about 15 minutes.
- An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (see, Sambrook, infra., for a description of SSC buffer).
- a high stringency wash is preceded by a low stringency wash to remove background probe signal.
- An example medium stringency wash for a duplex of, e.g., more than 100 nucleotides, is lx SSC at 45°C for 15 minutes.
- An example low stringency wash for a duplex of, e.g., more than 100 nucleotides is 4-6x SSC at 40°C for 15 minutes.
- stringent conditions typically involve salt concentrations of less than about 1.0 M Na + ion, typically about 0.01 to 1.0 M Na + ion concentration (or other salts) at pH 7.0 to 8.3, and the temperature is typically at least about 30°C.
- Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide.
- destabilizing agents such as formamide.
- a signal to noise ratio of 2x (or higher) than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization.
- Nucleic acids which do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code.
- polypeptide encoded by the first nucleic acid is immunologically cross reactive with, or specifically binds to, the polypeptide encoded by the second nucleic acid.
- a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions.
- immunoreactive with when referring to a protein or peptide, refers to a binding reaction which is determinative of the presence of the protein, or an epitope from the protein, in the presence of a heterogeneous population of proteins and other biologies.
- the specified antibodies bind to a particular protein and do not bind in a significant amount to other proteins present in the sample.
- the antibodies raised against a multivalent antigenic polypeptide will generally bind to the proteins from which one or more of the epitopes were obtained. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein.
- a variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein.
- solid-phase ELISA immunoassays Western blots, or immunohistochemistry are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York “Harlow and Lane”), for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.
- a specific or selective reaction will be at least twice backgroimd signal or noise and more typically more than 10 to 100 times background.
- Consatively modified variations of a particular polynucleotide sequence refers to those polynucleotides that encode identical or essentially identical amino acid sequences, or where the polynucleotide does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given polypeptide. For instance, the codons CGU, CGC, CGA, CGG, AGA, and AGG all encode the amino acid arginine. Thus, at every position where an arginine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide.
- nucleic acid variations are "silent variations," which are one species of “conservatively modified variations.” Every polynucleotide sequence described herein which encodes a polypeptide also describes every possible silent variation, except where otherwise noted.
- each codon in a nucleic acid except AUG, which is ordinarily the only codon for methionine
- each "silent variation" of a nucleic acid which encodes a polypeptide is implicit in each described sequence.
- G Glycine
- A Alanine
- V Valine
- V Valine
- L Leucine
- I Isoleucine
- Aromatic Phenylalanine (F), Tyrosine (Y), Tryptophan (W); Sulfur-containing: Methionine (M), Cysteine (C);
- Acidic Aspartic acid (D), Glutamic acid (E), Asparagine (N), Glutamine (Q). See also, Creighton (1984) Proteins, W.H. Freeman and Company, for additional groupings of amino acids. In addition, individual substitutions, deletions or additions which alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence are also “conservatively modified variations".
- a “subsequence” refers to a sequence of nucleic acids or amino acids that comprise a part of a longer sequence of nucleic acids or amino acids (e.g., polypeptide) respectively.
- the present invention provides reagents for facilitating the ability of a genetic vaccine to specifically bind to and enter a target cell or tissue of interest, and methods of obtaining such agents.
- the invention provides methods for obtaining binding peptides and delivery vehicles that, when used in conjunction with a genetic vaccine, increase the specificity of the genetic vaccine for a particular type of target cell.
- the methods are also useful for obtaining genetic vaccine components that can confer a desired targeting specificity when used in conjunction with a genetic vaccine vector.
- the invention involves creating recombinant libraries of polynucleotides that are then screened to identify those library members that exhibit a desired property.
- the recombinant libraries can be created using any of various methods.
- the substrate nucleic acids used for the recombination can vary depending upon the particular application. For example, where a polynucleotide that encodes a nucleic acid binding domain or a ligand for a cell-specific receptor is to be optimized, different forms of nucleic acids that encode all or part of the nucleic acid binding domain or a ligand for a cell-specific receptor are subjected to recombination.
- the methods require at least two variant forms of a starting substrate.
- the variant forms of candidate substrates can show substantial sequence or secondary structural similarity with each other, but they should also differ in at least two positions.
- the initial diversity between forms can be the result of natural variation, e.g., the different variant forms (homologs) are obtained from different individuals or strains of an organism (including geographic variants) or constitute related sequences from the same organism (e.g., allelic variations).
- the initial diversity can be induced, e.g., the second variant form can be generated by error-prone transcription, such as an error-prone PCR or use of a polymerase which lacks proof-reading activity (see Liao (1990) Gene 88:107-111), of the first variant form, or, by replication of the first form in a mutator strain (mutator host cells are discussed in further detail below).
- the initial diversity between substrates is greatly augmented in subsequent steps of recursive sequence recombination.
- Recursive sequence recombination can be employed to achieve still further improvements in a desired property. Sequence recombination can be achieved in many different formats and permutations of formats, as described in further detail below. These formats share some common principles. Recursive sequence recombination entails successive cycles of recombination to generate molecular diversity. That is, one creates a family of nucleic acid molecules showing some sequence identity to each other but differing in the presence of mutations. In any given cycle, recombination can occur in vivo or in vitro, intracellular or extracellular.
- diversity resulting from recombination can be augmented in any cycle by applying prior methods of mutagenesis (e.g., error-prone PCR or cassette mutagenesis) to either the substrates or products for recombination.
- mutagenesis e.g., error-prone PCR or cassette mutagenesis
- a new or improved property or characteristic can be achieved after only a single cycle of in vivo or in vitro recombination, as when using different, variant forms of the sequence, as homologs from different individuals or strains of an organism, or related sequences from the same organism, as allelic variations.
- the recombinant libraries are prepared using DNA shuffling.
- the shuffling and screening or selection can be used to "evolve" individual genes, whole plasmids or viruses, multigene clusters, or even whole genomes (Stemmer (1995) Bio/Technology 13:549-553). Reiterative cycles of recombination and screening/selection can be performed to further evolve the nucleic acids of interest. Such techniques do not require the extensive analysis and computation required by conventional methods for polypeptide engineering. Shuffling allows the recombination of large numbers of mutations in a minimum number of selection cycles, in contrast to traditional, pairwise recombination events.
- sequence recombination techniques described herein provide particular advantages in that they provide recombination between mutations in any or all of these, thereby providing a very fast way of exploring the manner in which different combinations of mutations can affect a desired result. In some instances, however, structural and/or functional information is available which, although not required for sequence recombination, provides opportunities for modification of the technique.
- Kits for mutagenesis are commercially available (e.g., Bio-Rad, Amersham International, Yalen Biotechnology).
- a recombination cycle is usually followed by at least one cycle of screening or selection for molecules having a desired property or characteristic. If a recombination cycle is performed in vitro, the products of recombination, i.e., recombinant segments, are sometimes introduced into cells before the screening step. Recombinant segments can also be linked to an appropriate vector or other regulatory sequences before screening. Alternatively, products of recombination generated in vitro are sometimes packaged as viruses before screening. If recombination is performed in vivo, recombination products can sometimes be screened in the cells in which recombination occurred. In other applications, recombinant segments are extracted from the cells, and optionally packaged as viruses, before screening.
- a genetic vaccine vector can have many component sequences each having a different intended role (e.g., coding sequence, regulatory sequences, targeting sequences, stability-conferring sequences, immunomodulatory sequences, sequences affecting antigen presentation, and sequences affecting integration). Each of these component sequences can be varied and recombined simultaneously. Screening/selection can then be performed, for example, for recombinant segments that have increased episomal maintenance in a target cell without the need to attribute such improvement to any of the individual component sequences of the vector.
- initial round(s) of screening can sometimes be performed in bacterial cells due to high transfection efficiencies and ease of culture.
- Later rounds, and other types of screening which are not amenable to screening in bacterial cells are performed in mammalian cells to optimize recombinant segments for use in an environment close to that of their intended use.
- Final rounds of screening can be performed in the precise cell type of intended use (e.g., a human antigen-presenting cell). In some instances, this cell can be obtained from a patient to be treated with a view, for example, to minimizing problems of immunogenicity in this patient.
- the screening or selection step identifies a subpopulation of recombinant segments that have evolved toward acquisition of a new or improved desired property or properties useful in genetic vaccination.
- the recombinant segments can be identified as components of cells, components of viruses or in free form. More than one round of screening or selection can be performed after each round of recombination.
- At least one and usually a collection of recombinant segments surviving a first round of screening/selection are subject to a further round of recombination.
- These recombinant segments can be recombined with each other or with exogenous segments representing the original substrates or further variants thereof. Again, recombination can proceed in vitro or in vivo. If the previous screening step identifies desired recombinant segments as components of cells, the components can be subjected to further recombination in vivo, or can be subjected to further recombination in vitro, or can be isolated before performing a round of in vitro recombination.
- the previous screening step identifies desired recombinant segments in naked form or as components of viruses, these segments can be introduced into cells to perform a round of in vivo recombination.
- the second round of recombination irrespective how performed, generates further recombinant segments which encompass additional diversity than is present in recombinant segments resulting from previous rounds.
- the second round of recombination can be followed by a further round of screening/selection according to the principles discussed above for the first round.
- the stringency of screening selection can be increased between rounds.
- the nature of the screen and the property being screened for can vary between rounds if improvement in more than one property is desired or if acquiring more than one new property is desired. Additional rounds of recombination and screening can then be performed until the recombinant segments have sufficiently evolved to acquire the desired new or improved property or function.
- screening involves expressing the recombinant peptides or polypeptides encoded by the recombinant polynucleotides of the library as fusions with a protein that is displayed on the surface of a replicable genetic package.
- phage display can be used. See, e.g, Cwirla et al, Proc. Natl Acad. Sci. USA 87: 6378-6382 (1990); Devlin et al, Science 249: 404-406 (1990), Scott & Smith, Science 249: 386-388 (1990); Ladner et al, US 5,571,698.
- replicable genetic packages include, for example, bacteria, eukaryotic viruses, yeast, and spores.
- the genetic packages most frequently used for display libraries are bacteriophage, particularly filamentous phage, and especially phage Ml 3, Fd and FI.
- Most work has involved inserting libraries encoding polypeptides to be displayed into either gffl or gVTfl of these phage forming a fusion protein. See, e.g., Dower, WO 91/19818; Devlin, WO 91/18989; MacCafferty, WO 92/01047 (gene III); Huse, WO 92/06204; Kang, WO 92/18619 (gene VILI).
- Such a fusion protein comprises a signal sequence, usually but not necessarily, from the phage coat protein, a polypeptide to be displayed and either the gene in or gene VIII protein or a fragment thereof. Exogenous coding sequences are often inserted at or near the N-terminus of gene El or gene VIII although other insertion sites are possible.
- Eukaryotic viruses can be used to display polypeptides in an analogous manner. For example, display of human heregulin fused to gp70 of Moloney murine leukemia virus has been reported by Han et al, Proc. Natl. Acad. Sci. USA 92: 9747-9751 (1995). Spores can also be used as replicable genetic packages. In this case, polypeptides are displayed from the outer surface of the spore. For example, spores from B. subtilis have been reported to be suitable. Sequences of coat proteins of these spores are provided by Donovan et al, J. Mol. Biol. 196, 1-10 (1987). Cells can also be used as replicable genetic packages.
- Polypeptides to be displayed are inserted into a gene encoding a cell protein that is expressed on the cells surface.
- Bacterial cells including Salmonella typhimurium, Bacillus subtilis, Pseudomonas aeruginosa, Vibrio cholerae, Klebsiella pneumonia, Neisseria gonorrhoeae, Neisseria meningitidis, Bacteroides nodosus, Moraxella bovis, and especially Escherichia coli are preferred. Details of outer surface proteins are discussed by Ladner et al., US 5,571,698 and references cited therein. For example, the lam protein of E. coli is suitable.
- a basic concept of display methods that use phage or other replicable genetic package is the establishment of a physical association between DNA encoding a polypeptide to be screened and the polypeptide. This physical association is provided by the replicable genetic package, which displays a polypeptide as part of a capsid enclosing the genome of the phage or other package, wherein the polypeptide is encoded by the genome.
- the establishment of a physical association between polypeptides and their genetic material allows simultaneous mass screening of very large numbers of phage bearing different polypeptides. Phage displaying a polypeptide with affinity to a target, e.g., a receptor, bind to the target and these phage are enriched by affinity screening to the target.
- polypeptides displayed from these phage can be determined from their respective genomes. Using these methods a polypeptide identified as having a binding affinity for a desired target can then be synthesized in bulk by conventional means, or the polynucleotide that encodes the peptide or polypeptide can be used as part of a genetic vaccine.
- Recombinant nucleic acid libraries that are obtained by the methods described herein are screened to identify those DNA segments that have a property which is desirable for genetic vaccination.
- the particular screening assay employed will vary, as described below, depending on the particular property for which improvement is sought.
- the shuffled nucleic acid library is introduced into cells prior to screening. If the DNA shuffling format employed is an in vivo format, the library of recombinant DNA segments generated already exists in a cell. If the sequence recombination is performed in vitro, the recombinant library is preferably introduced into the desired cell type before screening/selection.
- the members of the recombinant library can be linked to an episome or virus before introduction or can be introduced directly.
- Cells of particular interest include many bacterial cell types that are used to deliver vaccines or vaccine antigens (Courvalin et ⁇ /.(1995) C. R. Acad. Sci. Ill 18: 1207-12), both gram- negative and gram-positive, such as salmonella (Attridge et al. (1997) Vaccine 15: 155-62), closrridium (Fox et al. (1996) Gene Ther. 3: 173-8), lactobacillus, sbigella (Sizemore et al. (1995) Science 270: 299-302), E.
- the library is amplified in a first host, and is then recovered from that host and introduced to a second host more amenable to expression, selection, or screening, or any other desirable parameter.
- the manner in which the library is introduced into the cell type depends on the DNA-uptake characteristics of the cell type, e.g., having viral receptors, being capable of conjugation, or being naturally competent. If the cell type is unsusceptible to natural and chemical-induced competence, but susceptible to electroporation, one would usually employ electroporation.
- biolistics are unsusceptible to electroporation as well.
- the biolistic PDS-1000 Gene Gun uses helium pressure to accelerate DNA-coated gold or tungsten microcarriers toward target cells.
- the process is applicable to a wide range of tissues, including plants, bacteria, fungi, algae, intact animal tissues, tissue culture cells, and animal embryos.
- Genetic vaccine vectors of all kinds can include a selectable marker gene. Under selective conditions, only those cells that express the selectable marker will survive.
- suitable markers include, the dihydrofolate reductase gene (DHFR), the thymidine kinase gene (TK), or prokaryotic genes conferring drug resistance, gpt (xanthine- guanine phosphoribosyltransferase, which can be selected for with mycophenolic acid; neo (neomycin phosphotransferase), which can be selected for with G418, hygromycin, or puromycin; and DHFR (dihydrofolate reductase), which can be selected for with methotrexate (Mulligan & Berg (1981) Proc. Natl Acad. Sci. USA 78: 2072; Southern & Berg (1982) J. Mol Appl Genet. 1: 327).
- DHFR dihydrofolate reductase gene
- TK
- a genetic vaccine vector can include a screenable marker which, when expressed, confers upon a cell containing the vector a readily identifiable phenotype.
- a screenable marker which, when expressed, confers upon a cell containing the vector a readily identifiable phenotype.
- gene that encodes a cell surface antigen that is not normally present on the host cell is suitable.
- the detection means can be, for example, an antibody or other ligand which specifically binds to the cell surface antigen.
- suitable cell surface antigens include any CD (cluster of differentiation) antigen (CD1 to CD 163) from a species other than that of the host cell which is not recognized by host-specific antibodies.
- GFP green fluorescent protein
- Crameri et al. (1996) N ⁇ twre Biotechnol 14: 315-319; Chalfie et al. (1995) Photochem. Photobiol. 62:651-656; Olson et al. (1995) J. Cell. Biol. 130:639-650) and related antigens, several of which are commercially available.
- the invention provides methods for identifying those vectors in a genetic vaccine population that exhibit not only the desired tissue localization and longevity of DNA integrity in vivo, but retention of maximal antigen expression (or expression of other genes such as cytokines, chemokines, cell surface accessory molecules, MHC, and the like).
- the methods involve in vitro identification of cells which express the desired molecule using cells purified from the tissue of choice, under conditions that allow recovery of very small numbers of cells and quantitative selection of those with different levels of antigen expression as desired.
- the recombinant library represents a population of vectors that differ in known ways (e.g., a combinatorial vector library of different functional modules), or has randomly generated diversity generated either by insertion of random nucleotide stretches, or has been shuffled in vitro to introduce low level mutations across all or part of the vector.
- the invention method involves selection for expression of cell surface-localized antigen.
- the antigen gene is engineered in the vaccine plasmid library such that it has a region of amino acids which is targeted to the cell membrane.
- the region can encode a hydrophobic stretch of C-terminal amino acids which signals the attachment of a phosphoinositol-glycan (PIG) terminus on the expressed protein and directs the protein to be expressed on the surface of the transfected cell.
- PAG phosphoinositol-glycan
- an antigen that is naturally a transmembrane protein e.g., a surface membrane protein on pathogenic viruses, bacteria, protozoa or tumor cells
- the extracellular domain can be engineered to be in fusion with the C-terminal sequence for signaling PIG-linkage.
- the protein can be expressed in toto relying on the signalling of the host cell to direct it efficiently to the cell surface.
- the antigen for expression will have an endogenous PIG terminal linkage (e.g., some antigens of pathogenic protozoa) .
- the vector library is delivered in vivo and, after a suitable interval of time tissue and/or cells from diverse target sites in the animal are collected.
- Cells can be purified from the tissue using standard cell biological procedures, including the use of cell specific surface reactive monoclonal antibodies as affinity reagents. It is relatively facile to purify isolated epithelial cells from mucosal sites where epithelium may have been inoculated or myoblasts from muscle. In some embodiments, minimal physical purification is performed prior to analysis. It is sometimes desirable to identify and separate specific cell populations from various tissues, such as spleen, liver, bone marrow, lymph node, and blood. Blood cells can be fractionated readily by FACS to separate B cells, CD4 + or CD8 + T cells, dendritic cells, Langerhans cells, monocytes, and the like, using diverse fluorescent monoclonal antibody reagents.
- Those cells expressing the antigen can be identified with a fluorescent monoclonal antibody specific for the C-terminal sequence on PIG-linked forms of the surface antigen. FACS analysis allows quantitative assessment of the level of expression of the correct form of the antigen on the cell population. Cells expressing the maximal level of antigen are sorted and standard molecular biology methods used to recover the plasmid DNA vaccine vector that conferred this reactivity.
- An alternative procedure that allows purification of all those cells expressing the antigen is to rosette or pan-purify the cells expressing surface antigen.
- Rosettes can be formed between antigen expressing cells and erythrocytes bearing covalently coupled antibody to the relevant antigen. These are readily purified by unit gravity sedimentation. Panning of the cell population over petri dishes bearing immobilized monoclonal antibody specific for the relevant antigen can also be used to remove unwanted cells.
- Cells expressing the required conformational structure of the target antigen can be identified using specific conformationally-dependent monoclonal antibodies that are known to react specifically with the same structure as expressed on the target pathogen. Because one monoclonal antibody cannot define all aspects of correct folding of the target antigen, one can minimize the possibility of an antigen which reacts with high affinity to the diagnostic antibody but does not yield the correct conformation as defined by that in which the antigen is found on the surface of the target pathogen or as secreted from the target pathogen. One way to minimize this possibility is to use several monoclonal antibodies, each known to react with different conformational epitopes in the correctly folded protein, in the selection process. This can be achieved by secondary FACS sorting for example.
- the enriched plasmid population that successfully expressed sufficient of the antigen in the correct body site for the desired time is then used as the starting population for another round of selection, incorporating gene shuffling to expand the diversity. In this manner, one recovers the desired biological activity encoded by plasmid from tissues in DNA vaccine-immunized animals.
- This method can also provide the best in vivo selected vectors that express immune accessory molecules that one may wish to incorporate into DNA vaccine constructs. For example, if it is desired to express the accessory protein B7.1 or B7.2 in antigen- presenting-cells (APC) (to promote successful presentation of antigen to T cells) one can sort APC isolated from different tissues (at or different to the inoculation site) using commercially available monoclonal antibodies that recognize functional B7 proteins. (b) Selection for expression of secreted antigen/ cytokine/ chemokine
- Another method for screening is to identify plasmids in a genetic vaccine vector population that are optimal in inducing secretion of soluble proteins that can affect the qualitative and quantitative nature of an elicited immune response. For example, one can select vectors that are optimal for inducing secretion of particular cytokines, growth factors and chemokines.
- the first step in these methods is to generate vectors that are contain the members of the library of recombinant nucleic acids. These vectors can then be tested individually for in vivo efficacy.
- the vector library is delivered to a test animal and, after a chosen interval of time, tissue and/or cells from diverse sites on the animal are collected.
- Cells are purified from the tissue using standard cell biological procedures, which often include the use of cell specific surface reactive monoclonal antibodies as affinity reagents.
- cell specific surface reactive monoclonal antibodies as affinity reagents.
- physical purification of separate cell populations can be performed prior to identification of cells which express the desired protein.
- the target cells for expression of cytokines will most usually be APC or B cells or T cells rather than muscle cells or epithelial cells.
- FACS sorting by established methods will be preferred to separate the different cell types.
- the different cell types described above may also be separated into relatively pure fractions using affinity panning, rosetting or magnetic bead separation with panels of existing monoclonal antibodies known to define the surface membrane phenotype of murine immune cells.
- Purified cells are plated onto agar plates under conditions that maintain cell viability.
- Cells expressing the required conformational structure of the target antigen are identified using conformationally-dependent monoclonal antibodies that are known to react specifically with the same structure as expressed on the target pathogen. Release of the relevant soluble protein from the cells is detected by incubation with monoclonal antibody, followed by a secondary reagent that gives a macroscopic signal (gold deposition, color development, fluorescence, luminescence).
- Cells expressing the maximal level of antigen can be identified by visual inspection, the cell or cell colony picked and standard molecular biology methods used to recover the plasmid DNA vaccine vector that conferred this reactivity.
- flow cytometry can be used to identify and select cells harboring plasmids that induce high levels of gene expression.
- the enriched plasmid population that successfully expressed sufficient of the soluble factor in the correct body site for the desired time is then used as the starting population for another round of selection, incorporating gene shuffling to expand the diversity, if further improvement is desired.
- monoclonal antibodies each known to react with different conformational epitopes in the correctly folded cytokine, chemokine or growth factor, can be used to confirm that the initial results from screening with one monoclonal antibody reagent still hold when several conformational epitopes are probed.
- the primary probe for functional cytokine released from the cell/cell colony in agar could be a soluble domain of the cognate receptor.
- Flow cytometry provides a means to efficiently analyze the functional properties of millions of individual cells.
- the cells are passed through an illumination zone, where they are hit by a laser beam; the scattered light and fluorescence is analyzed by computer-linked detectors.
- Flow cytometry provides several advantages over other methods of analyzing cell populations. Thousands of cells can be analyzed per second, with a high degree of accuracy and sensitivity. Gating of cell populations allows multiparameter analysis of each sample. Cell size, viability, and morphology can be analyzed without the need for staining. When dyes and labeled antibodies are used, one can analyze DNA content, cell surface and intracytoplasmic proteins, and identify cell type, activation state, cell cycle stage, and detect apoptosis.
- Genetic vaccine vectors and vector modules can be screened for improved vaccination properties using various in vitro testing methods that are known to those of skill in the art.
- the optimized genetic vaccines can be tested for their effect on induction of proliferation of the particular lymphocyte type of interest, e.g., B cells, T cells, T cell lines, and T cell clones.
- This type of screening for improved adjuvant activity and immunostimulatory properties can be performed using, for example, human or mouse cells.
- a library of genetic vaccine vectors obtained either from shuffling of random DNA or of vectors harboring genes encoding cytokines, costimulatory molecules etc.
- cytokine production e.g., IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-15,
- IFN- ⁇ , TNF- ⁇ by B cells, T cells, monocytes/macrophages, total human PBMC, or (diluted) whole blood.
- Cytokines can be measured by ELISA or and cytoplasmic cytokine staining and flow cytometry (single-cell analysis). Based on the cytokine production profile, one can screen for alterations in the capacity of the vectors to direct T H 1/T H 2 differentiation (as evidenced, for example, by changes in ratios of IL-4/IFN- ⁇ , IL-4/IL-2, IL-5/TFN- ⁇ , IL-5/IL- 2, IL-13/IFN- ⁇ , IL-13/LL-2).
- Induction of APC activation can be detected based on changes in surface expression levels of activation antigens, such as B7-1 (CD80), B7-2 (CD86), MHC class I and II, CD14, CD23, and Fc receptors, and the like.
- activation antigens such as B7-1 (CD80), B7-2 (CD86), MHC class I and II, CD14, CD23, and Fc receptors, and the like.
- genetic vaccine vectors are analyzed for their capacity to induce T cell activation. More specifically, spleen cells from injected mice can be isolated and the capacity of cytotoxic T lymphocytes to lyse infected, autologous target cells is studied. The spleen cells are reactivated with the specific antigen in vitro.
- T helper cell differentiation is analyzed by measuring proliferation or production of T H I (IL-2 and LFN- ⁇ ) and T H 2 (IL-4 and IL-5) cytokines by ELISA and directly in CD4 + T cells by cytoplasmic cytokine staining and flow cytometry.
- Genetic vaccines and vaccine components can also be tested for ability to induce humoral immune responses, as evidenced, for example, by induction of B cell production of antibodies specific for an antigen of interest.
- These assays can be conducted using, for example, peripheral B lymphocytes from immunized individuals. Such assay methods are known to those of skill in the art.
- Other assays involve detection of antigen expression by the target cells.
- FACS selection provides the most efficient method of identifying cells which produce a desired antigen on the cell surface.
- Another advantage of FACS selection is that one can sort for different levels of expression; sometimes lower expression may be desired.
- Another method involves panning using monoclonal antibodies on a plate. This method allows large numbers of cells to be handled in a short time, but the method only selects for highest expression levels. Capture by magnetic beads coated with monoclonal antibodies provides another method of identifying cells which express a particular antigen.
- An indication of the efficacy of a genetic vaccine against, for example, cancer or an autoimmune disorder is the degree of skin inflammation when the vector is injected into the skin of a patient or test animal. Strong inflammation is correlated with strong activation of antigen-specific T cells. Improved activation of tumor-specific T cells may lead to enhanced killing of the tumors.
- immunomodulators that skew the responses towards T H 2. Skin biopsies can be taken, enabling detailed studies of the type of immune response that occurs at the sites of each injection (in mice large numbers of injections/vectors can be analyzed)
- Suitable screening methods can involve detection of changes in expression of cytokines, chemokines, accessory molecules, and the like, by cells upon challenge by a library of genetic vaccine vectors.
- the methods involve subjecting to DNA shuffling polynucleotides which are involved in cell entry. Such polynucleotides are referred to herein as "transfer sequences" or “transfer modules.” Transfer modules can be obtained which increase transfer in a cell- specific manner, or which act in a more general manner. Because the exact sequences that affect DNA binding and transfer are not often known, DNA shuffling may be the only efficient method to improve the capacity of DNA to enter the cytoplasm and subsequently the nucleus of human cells.
- the methods involve recombining at least first and second forms of a nucleic acid that comprises a transfer sequence. The first and second forms differ from each other in two or more nucleotides.
- Suitable substrates include, for example, transcription factor binding sites, CpG sequences, poly A, C, G, T oligonucleotides, and random DNA fragments such as, for example, genomic DNA, from human or other mammalian species. It has been suggested that cell surface proteins, such as the macrophage scavenger receptor, may act as receptors for specific DNA binding (Pisetsky (1996) Immunity 5: 303). It is not known whether these receptors recognize specific DNA sequences or whether they bind DNA in a sequence non-specific manner. However, GGGG tetrads have been shown to enhance DNA binding to cell surfaces (Id.).
- the three-dimensional structure of the plasmids may play a role in the capacity of these plasmids to enter cells.
- the DNA shuffling methods of the invention provide means for optimizing such sequences for ability to confer upon a vector the ability to enter a cell even in the absence of detailed information as to the mechanism by which this effect is achieved.
- the resulting library of recombinant transfer modules are screened to identify at least one optimized recombinant transfer module that enhances the capability of a vector comprising the transfer module to enter a cell of interest.
- vectors that include a recombinant transfer module can be contacted with a population of cells under conditions conducive to entry of the vector into the cells, after which the percentage of cells in the population which contain the nucleic acid vector is determined.
- the vector will contain a selectable or screenable marker to facilitate identification of cells which contain the vector.
- clonal isolates of vectors bearing recombinant segments are used to infect separate cultures of cells. The percentage of vectors which enter cells can then be determined by, for example, counting cells expressing a marker expressed by the vectors in the course of transfection.
- the recombination process is repeated by recombining at least one optimized transfer sequence with a further form of the transfer sequence to produce a further library of recombinant transfer modules.
- the further form can be the same or different from the first and second forms.
- the new library is screened to identify at least one further optimized recombinant vector module that exhibits an enhancement of the ability of a genetic vaccine vector that includes the optimized transfer module to enter a cell of interest.
- the recombination and rescreening process can be repeated as necessary, until a transfer module that has sufficient ability to enhance transfer is obtained.
- vector modules are obtained which are capable of conferring upon a nucleic acid vector the ability to enter at least about 50 percent more target cells than a control vector which does not contain the optimized module, more preferably at least about 75 percent more, and most preferably at least about 95 or 99 percent more target cells than a control vector.
- non-integrating vectors are generally preferred, for some applications it may be desirable to use an integrating vector; for these applications DNA sequences that directly or indirectly affect the efficiency of integration can be included in the genetic vaccine vector.
- DNA sequences that directly or indirectly affect the efficiency of integration can be included in the genetic vaccine vector.
- homologous recombination important factors are the degree and length of homology to chromosomal sequences, as well as the frequency of such sequences in the genome (e.g., Alu repeats).
- the specific sequence mediating homologous recombination is also important, since integration occurs much more easily in transcriptionally active DNA. Methods and materials for constructing homologous targeting constructs are described by e.g., Mansour (1988) Nature 336:348; Bradley (1992) Bio/Technology 10:534.
- recombination is mediated by specific sites on the therapy vector which interact with cell encoded recombination proteins, e.g., Cre/Lox and Flp/Frt systems. See, e.g., Baubonis (1993) Nucleic Acids Res. 21 :2025-2029, which reports that a vector including a LoxP site becomes integrated at a LoxP site in chromosomal DNA in the presence of Cre recombinase enzyme.
- the present invention also provides methods for obtaining recombinant nucleic acids that encode polypeptides which can enhance the ability of genetic vaccines to enter target cells. Although the mechanisms involved in DNA uptake are not well understood, the methods of the invention enable one to obtain genetic vaccines that exhibit enhanced entry to cells, and to appropriate cellular compartments.
- the invention provides methods of enhancing the efficiency and specificity of a genetic vaccine nucleic acid uptake by a given cell type by coating the nucleic acid with an evolved protein that binds to the genetic vaccine nucleic acid, and is also capable of binding to the target cell.
- the vector can be contacted with the protein in vitro or in vivo. In the latter situation, the protein is expressed in cells containing the vector, optionally from a coding sequence within the vector.
- the nucleic acid binding proteins to be evolved usually have nucleic acid binding activity but do not necessarily have any known capacity to enhance or alter nucleic acid DNA uptake.
- DNA binding proteins which can be used in these methods include, but are not limited to, transcriptional regulators, enzymes involved in DNA replication (e.g., recA) and recombination, and proteins that serve structural functions on DNA (e.g., histones, protamines).
- Other DNA binding proteins that can be used include the phage 434 repressor, the lambda phage cl and cro repressors, the E.
- coli CAP protein myc, proteins with leucine zippers and DNA binding basic domains such as fos and jun; proteins with TOU' domains such as the Drosophila paired protein; proteins with domains whose structures depend on metal ion chelation such as Cys 2 His 2 zinc fingers found in TFIIIA, Zn 2 (Cys) 6 clusters such as those found in yeast GalA, the Cys 3 His box found in retroviral nucleocapsid proteins, and the Zn 2 (Cys) 8 clusters found in nuclear hormone receptor-type proteins; the phage P22 Arc and Mnt repressors (see Knight et al. (1989) J. Biol. Chem. 264: 3639-3642 and Bowie &
- RNA binding proteins are reviewed by Burd & Dreyfuss (1994) Science 265: 615-621, and include HIV Tat and Rev.
- the starting substrates can be nucleic acid segments encoding natural or induced variants of one or nucleic acid binding proteins, such as those mentioned above.
- the nucleic acid segments can be present in vectors or in isolated form for the recombination step. Recombination can proceed through any of the formats described herein. For screening purposes, the recombined nucleic acid segments are typically inserted into a vector, if not already present in such a vector during the recombination step.
- the vector generally encodes a selective marker capable of being expressed in the cell type for which uptake is desired.
- the vector can contain multiple binding sites in tandem.
- the vectors containing different recombinant segments are transformed into host cells, usually E. coli, to allow recombinant proteins to be expressed and bind to the vector encoding their genetic material. Most cells take up only a single vector and so transformation results in a population of cells, most of which contain a single species of vector. After an appropriate period to allow for expression and binding, cells are lysed under mild conditions that do not disrupt binding of vectors to DNA binding proteins.
- a lysis buffer of 35mM H ⁇ P ⁇ S pH 7.5 with KOH
- O.lmM ⁇ DTA O.lmM ⁇ DTA
- lOOmM Na glutamate 5% glycerol
- 5% glycerol 0.3mg/ml BSA
- lmM DTT 5% glycerol
- lysozyme 0.3- ml at 10 mg/ml
- the complexes of vector and nucleic acid binding protein are then contacted with cells of the type for which improved or altered uptake is desired under conditions favoring uptake.
- Suitable recipient cells include the human cell types that are common targets in DNA vaccination.
- These cells include muscle cells, monocytes/macrophages, dendritic cells, B cells, Langerhans cells, keratinocytes, and the M-cells of the gut.
- Cells from mammals including, for example, human, mouse, and monkey can be used for screening. Both primary cells and cells obtained from cell lines are suitable.
- cells are plated with selection for expression of the selective marker present in the vector containing the recombinant segments.
- Cells expressing the marker are recovered. These cells are enriched for recombinant segments encoding nucleic acid binding proteins that enhance uptake of vectors encoding the respective recombinant segments.
- the recombinant segments from cells expressing the marker can then be subjected to a further round of selection. Usually, the recombinant segments are first recovered from cells, e.g., by PCR amplification or by recovery of the entire vectors. The recombinant segments can then be recombined with each other or with other sources of DNA binding protein variants to generate further recombinant segments. The further recombinant segments are screened in the same manner as before.
- Histone-condensed DNA can result in increased gene transfer into cells. See, e.g., Fritz et al. (1996) Human Gene Therapy 7: 1395-1404.
- DNA shuffling can be used to evolve the histone protein, particularly the carboxy- and amino-terminal peptide extensions, to increase the efficiency of DNA transfer into cells.
- the histone is encoded by the DNA to which it will be bound.
- the histone library can be constructed by, for example, 1) shuffling of many related histone genes from natural diversity, 2) addition of random or partially randomized peptide sequences at the N- and C-terminal sequences of the histone, 3) by addition of pre-selected protein-encoding regions to the N- or C-termini, such as whole cDNA libraries, nuclear protein ligand libraries, etc. These proteins can be partially randomized and linked to the histone by a library of linkers.
- a binding site recognized by a nucleic acid binding protein can be evolved instead of, or as well as, the nucleic acid binding protein.
- Nucleic acid binding sites are evolved by an analogous procedure to nucleic acid binding proteins except that the starting substrates contain variant binding sites and recombinant forms of these sites are screened as a component of a vector that also encodes a nucleic acid binding protein.
- Evolved nucleic acid segments encoding DNA binding proteins and/or evolved DNA binding sites can be included in genetic vaccine vectors. If the affinity of the DNA binding protein is specific to a known DNA binding site, it is sufficient to include that binding site and the sequence encoding the DNA binding protein in the genetic vaccine vector together with such other coding and regulatory sequences are required to effect gene therapy. In some instances, the evolved DNA binding protein may not have a high degree of sequence specificity and it may be unknown precisely which sites on the vector used in screening are bound by the protein. In these circumstances, the vector should include all or most of the screening vector sequences together with additional sequences required to effect vaccination or therapy. An exemplary selection scheme which employs Ml 3 protein VIII is shown in Figure 1.
- Target cells of interest include, for example, muscle cells, monocytes, dendritic cells, B cells, Langerhans cells, keratinocytes, M-cells of the gut, and the like.
- Cell-specific ligands that are suitable for use with each of the cell types are known to those of skill in the art.
- suitable proteins to direct binding to antigen presenting cells include CD2, CD28, CTLA-4, CD40 ligand, fibrinogen, factor X, ICAM-1, ⁇ -glycan (zymosan), and the Fc portion of immunoglobulin G.
- LPS lipopolysaccharide
- Enterotoxins produced by certain pathogenic bacteria are useful as agents that bind cells and thus enhance delivery of vaccines, antigens, gene therapy vectors and pharmaceutical proteins.
- receptor binding components of enterotoxins derived from Vibrio cholerae and enterotoxigenic strains of E. coli are evolved for improved attachment to cell surface receptors and for improved entry to and transport across the cells of the intestinal epithelium.
- they can be evolved for improved binding to, and activation of, B cells or other APCs.
- An antigen of interest can be fused to these toxin subunits to illustrate the feasibility of the approach in oral delivery of proteins and to facilitate the screening of evolved enterotoxin subunits.
- Examples of such antigens include growth hormone, insulin, myelin basic protein, collagen and viral envelope proteins. These methods involve recombining at least first and second forms of a nucleic acid which comprises a polynucleotide that encodes a preferably non-toxic receptor binding moiety of an enterotoxin. The first and second forms differ from each other in two or more nucleotides, so the DNA shuffling results in production of a library of recombinant enterotoxin binding moiety nucleic acids.
- Suitable enterotoxins include, for example, a V. cholerae enterotoxin, enterotoxins from enterotoxigenic strains of E. coli, salmonella toxin, shigella toxin and campy lobacter toxin.
- Vectors that contain the library of recombinant enterotoxin binding moiety nucleic acids are transfected into a population of host cells, wherein the recombinant enterotoxin binding moiety nucleic acids are expressed to form recombinant enterotoxin binding moiety polypeptides.
- the recombinant enterotoxin binding moiety polypeptides are expressed as fusion proteins on the surface of bacteriophage particles. The recombinant enterotoxin binding moiety
- SUBSTITUTE SHEET " RULE 26) polypeptides can be screened by contacting the library with a cell surface receptor of a target cell and determining which recombinant enterotoxin binding moiety polypeptides exhibit enhanced ability to bind to the target cell receptor.
- the cell surface receptor can be present on the surface of a target cell itself, or can be attached to a different cell, or binding can be tested using cell surface receptor that is not associated with a cell. Examples of suitable cell surface receptors include, for example, G MI - Similarly, one can evolve bacterial superantigens for altered (increased or decreased) binding to T cell receptor and MHC class II molecules. These superantigens activate T cells in an antigen nonspecific manner.
- Superantigens binding to T cell receptor/MHC class II molecules include Staphylococcal enterotoxin B, Urtica dioica superantigen (Musette et al. (1996) Eur. J. Immunol. 26:618- 22) and Staphylococcal enterotoxin A (Bavari et al. (1996) J. Infect. Dis. 174:338-45). Phage display has been shown to be effective when selecting superantigens that bind MHC class II molecules (Wung and Gascoigne (1997) J. Immunol. Methods. 204:33-41).
- CT Cholera toxin
- CT-A toxic A subunit
- CT-B functions as th&receptor binding component and binds to Gui ganglioside receptors on mammalian cell surfaces.
- the toxic A-subunit is not necessary for the function of CT, and in the absence of CT-A, functional CT-B pentamers can form (Lebens and Holmgren (1994) Dev. Biol. Stand. 82: 215-227). Both CT and CT-B have been shown to have potent adjuvant activities in vivo and they enhance immune responses after oral delivery of antigens and vaccines (Czerkinsky et al.
- CT-B conjugated to myelin basic protein prevented onset of autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (Czerkinsky et al, supra.). Furthermore, feeding animals with myelin basic protein conjugated to CT-B after the onset of clinical symptoms (7 days) attenuated the symptoms in these animals.
- Other bacterial toxins such as enterotoxins of E. coli, Salmonella toxin, Shigella toxin and Campylobacter toxin, have structural similarities with CT. Enterotoxins of E.
- Bacterial enterotoxins can be evolved for improved affinity and entry to cells by gene shuffling.
- the similarity of E. co/t-derived enterotoxin subunit and CT-B is 78%
- SUBSTIfUtE SHEET (RULE 26) and several completely conserved regions of more than eight nucleotides can be found.
- B subunits from two different strains of E. coli are 98% homologous both at sequence and protein levels.
- family DNA shuffling is feasible among enterotoxin-encoding nucleic acids from different bacterial species.
- the libraries of shuffled toxin subunits can be expressed in a suitable host cell, such as V. cholerae.
- V. cholerae a suitable host cell
- An antigen of interest can be fused to the receptor-binding subunit. Secretion of chimeric proteins by V.
- cholerae can be screened by culturing the bacteria in agar in the presence of monoclonal antibodies specific for the antigen that was fused to the toxins and the level of secretion is detected as immunoprecipitation in the agar around the colonies.
- Binding of chimeric fusion proteins to GMI ganglioside receptors on cell surface or in solution can be detected by a monoclonal antibody specific for the antigen that was fused to the toxin.
- the assay using whole cells has the advantage that one may evolve for improved binding also to receptors other than the G MI ganglioside receptor.
- When increasing concentrations of wild-type enterotoxins are added to these assays one can detect mutants that bind to receptors with improved affinities. Affinity and specificity of toxin binding can also be determined by surface plasmon resonance (Kuziemko et al. (1996) Biochemistry 35: 6375-84).
- the advantage of the bacterial expression system is that the fusion protein is secreted by bacteria that could potentially be used in large scale production. Moreover, because the fusion protein is in solution during selection, possible problems associated with expression on phage (such as bias towards selection of mutants that only function on phage) can be avoided.
- phage display is useful for screening to identify enterotoxins with improved affinities.
- a library of shuffled mutants can be expressed on phage, such as Ml 3, and mutants with improved affinity are selected based on binding to, for example, Gui ganglioside receptors in solution or on a cell surface. The advantage of this approach is that the mutants can be easily further selected in in vivo assays as discussed below.
- a screening approach using fusion to Ml 3 protein V ⁇ T is diagrammed in Figure 1.
- the resulting evolved enterotoxin can be fused with DNA binding protein, and genetic vaccine vectors are coated with this fusion protein.
- the DNA shuffling can be done either separately, in which case the two domains are assembled after shuffling, or in a combined reaction.
- Shuffling results in production of a library of recombinant binding moiety nucleic acids which can be screened by transfecting vectors which contain the library, as well as a binding site specific for the nucleic acid binding domain, into a population of host cells.
- the binding moiety is expressed in the cells and binds to the nucleic acid binding domain to form a vector-binding moiety complex.
- Host cells can then be lysed under conditions that do not disrupt binding of the vector-binding moiety complex.
- the vector -binding moiety complex can then be contacted with a cell of interest, after which cells are identified that contain a vector and the optimized recombinant binding moiety nucleic acids are isolated from the cells.
- Another method for obtaining enhanced uptake of a target DNA by mammalian cells is also provided by the invention. Specifically, the method increases the number of copies of target DNA taken into those cells that initially take up the same DNA.
- the method uses cell surface expression of membrane-associated DNA binding domains of, for example, transcription factors, that are encoded in the target DNA sequence, which also includes the cognate recognition sequence for the binding domain.
- Uptake of one molecule of target DNA into a cell will lead to transcription of the gene encoding the polynucleotide binding domain.
- the gene encoding the binding domain is engineered so that the binding domain is expressed in a membrane anchored form.
- a hydrophobic stretch of amino acids can be encoded at the carboxyl terminus of the binding domain, thus leading to phospho- inositol-glycan (PIG) conjugation after partial cleavage of this terminal sequence. This, in turn, leads to trafficking and positioning of the binding domain on the cell surface.
- the target DNA whether a circular or linear plasmid, oligonucleotide, bacterial or mammalian chromosomal fragment, is engineered to bear one or more copies of a DNA recognition sequence for a mammalian or bacterial transcription factor.
- Many target sequences will already bear one or more such motifs; these can be identified by sequence analysis. Endogenous motifs recognized by these factors also can be identified experimentally by demonstrating that the target DNA binds to one or more of a panel of transcription factors in an appropriate assay format. This provides a practical means for determining which factor or combination of factors to use with any particular target DNA.
- motifs can be engineered into the sequence.
- a particular motif can be engineered in one or more copies, in tandem or dispersed in the target sequence.
- a set of different motifs can be engineered, in tandem or separated, in cases where more than one DNA binding protein will be expressed on the cell surface.
- the invention provides methods of obtaining bacteriophage vectors that exhibit desirable properties for use as genetic vaccine vectors.
- the principle behind the approach provided by the invention is to combine the power of DNA shuffling with the extraordinary power of bacteriophage genetics and the wealth of recent advances in phage display technologies to rapidly evolve highly novel, potent, and generic vaccine vehicles.
- the evolved vaccine vehicles can present antigen either (1) in native form on the surface of these APCs for the induction of an antibody response or (2) selectively invade APCs and deliver DNA vaccine constructs to APCs for intracellular expression, processing and presentation to CTL's. More efficient methods for delivery of antigens from pathogens to professional APCs will increase the kinetics and potency of the immune response to the vaccine.
- Genetic vaccine delivery vehicles that are evolved according to the methods of the invention are particularly valuable for the rapid induction of high affinity antibodies which can effectively neutralize viral epitopes or pathogenic toxins such as superantigens or cholera toxin.
- High affinity antibodies are generated by somatic mutation of low affinity primary response antibodies. This so-called affinity maturation process is essential for the generation of antibodies with sufficient affinity to neutralize pathogenic antigens.
- Affinity maturation occurs in the spleen in germinal centers where follicular dendritic cells (FDC's), professional antigen presenting cells, present protein antigens to B cells and processed antigen fragments to T cells. Clonally expanding B cell populations which have undergone somatic mutation are selected for those mutant B cells expressing antibodies with improved affinity for antigen.
- FDC's follicular dendritic cells
- Clonally expanding B cell populations which have undergone somatic mutation are selected for those mutant B cells expressing antibodies with improved affinity for antigen.
- Preferred bacteriophage for these purposes are those that have been genetically well characterized and developed for the display of foreign protein epitopes; these include, for example, lambda, T7, and M13 bacteriophage.
- the filamentous phage M13 is a particularly preferred vector for use in the methods of the invention.
- Ml 3 is a small filamentous bacteriophage that has been used widely to display polypeptide fragments in functional, folded form on the surface of bacteriophage particles. Polypeptides have been fused to both the gene III and gene Vm coat proteins for such display purposes.
- Ml 3 is a versatile, highly evolvable vehicle for efficient and targeted delivery of protein or DNA vaccine vehicles to cellular targets of interest.
- the following three properties are examples of the type of improvements that can be achieved by use of the methods of the invention to evolve bacteriophage genetic vaccine vectors: (1) efficient delivery of phage to the bloodstream by inhalation or oral delivery, (2) efficient homing to APCs, and (3) efficient invasion of target cells using shuffled bacterial invasion proteins. Where M13 is used, fusions can be made to both gene III and gene VIII coat proteins so that two evolved properties can be combined into a single phage particle. These studies can be performed in test animals such as laboratory mice so that the evolved constructs can be rapidly characterized with respect to their potency as vaccine vehicles.
- Evolved inhalable and/or orally deliverable vehicles and evolved invasins will translate directly for use in human cells, while the principles developed in evolving the ability to home to test animal APCs are readily transferable to human cells by performing analogous selections on human APCs. While these methods are exemplified for bacteriophage vectors, the methods are also applicable to other types of genetic vaccine vectors.
- the invention provides methods for obtaining genetic vaccine vectors that are capable of efficient delivery to the bloodstream upon administration by inhalation or by oral administration.
- Methods have been developed for the formulation of proteins into inhalable colloids that can be absorbed into the blood stream through the lung.
- the mechanisms by which proteins are transported into the blood stream are not clearly understood, and thus improvements are readily approached by evolutionary methods.
- Ml 3 the invention involves preparation of a library of, for example, peptide ligands, adhesion molecules, bacterial enterotoxins, and randomly fragmented cDNA, which are fused to gene III, for example, of Ml 3. Libraries of >10 10 individual fusions are readily achievable with this technology.
- Screening involves preparation of high titer stocks (preferably >10 phage particles) in standard colloidal formulations which are delivered intranasally to test animals, such as mice. Blood samples are taken over the course of the ensuing day and circulating phage are amplified in E. coli. It has been established that M13 circulates for long periods in the blood after injection intravenously, and thus it is reasonable to expect that phage that successfully enter the blood stream through the lung can be efficiently recovered and amplified E. coli cells. In a preferred embodiment, several rounds of enrichment are applied to the initial libraries in order to enrich for phage that can efficiently enter the blood stream when delivered intranasally.
- Candidate clones are typically tested individually for their relative efficiency of entry, and the best clones can be further characterized by sequencing to identify the nature of the fusions that confer efficient delivery (of particular interest from the cDNA libraries). Selected clones can be further evolved for improved entry by shuffling the entire phage genome and subjecting the phage to reiterated cycles of delivery, recovery, amplification, and shuffling.
- a genetic vaccine vector library is prepared by DNA shuffling.
- the recombinant vectors are packaged and administered to a test animal.
- Vectors that are stable in the stomach/intestinal environment are recovered, for example, by recovering surviving vectors from the stomach.
- Vectors that efficiently enter the bloodstream and/or lymphatic tissue can be identified by recovering vectors that reach the blood/lymph.
- a schematic of this selection method is shown in Figure 2.
- the invention also provides methods of evolving bacteriophage vectors, as well as other types of genetic vaccine vectors, for efficient homing to professional antigen presenting cells.
- Libraries of random peptide ligands and cDNAs used in (A) above are enriched for phage which selectively bind to APCs by first negatively selecting for binding to non-APC cell types, and then positively selecting for binding to APCs.
- the selections is typically performed by mixing high titer stocks of phage from the libraries (>10 phage particles) with cells ( ⁇ 10 7 cells per selection cycle) and either taking the nonbinding phage (negative selection) or the binding phage from cell pellets (positive selection).
- An alternative selection format consists of injecting phage libraries intravenously, allowing the libraries to circulate for several hours, collecting target organs of interest (lymph node, spleen), and liberating the phage by sonication.
- the positively selected phage can be amplified in E. coli and further rounds of enrichment are performed (3 - 5 rounds) if further optimization is desired. After the chosen number of rounds, individual phage are characterized for their ability to home to lymphoid organs. The best few candidates can be subjected to further evolution through iterated rounds of selection, amplification, and shuffling.
- the methods of the invention are also useful for evolving bacteriophage and other genetic vaccine vehicles for invasion of target cells. This opens up the possibility of targeting the class I MHC antigen processing pathways with either internalized protein antigen or antigen expressed by DNA vaccine vehicles carried in by the evolved vector.
- Invasins comprise a large family of bacterial proteins which interact with integrins and promote the efficient internalization of pathogenic bacteria such as Salmonella.
- This embodiment of the invention involves shuffling different forms of polynucleotides that encode invasins.
- two or more genes which encode the invasin family of proteins can be shuffled.
- the shuffled polynucleotides can be cloned as fusions to the Ml 3 gene VIII coat protein gene, for example, and high titer stock of such libraries will be prepared.
- These libraries of bacteriophage can be mixed with target APCs. After incubation, the cells are exhaustively washed to remove free phage and phage bound to the surface of the cells can be removed by panning against polyclonal anti-M13 antibodies.
- the cells are then sonicated, thus releasing phage that have successfully entered the target cells (thus protecting them from the polyclonal anti-M13 antiserum).
- These phage can, if desired, be amplified, shuffled, and the selective cycle will be iteratively applied for, e.g., 3 - 5 times.
- Individual phage from the final cycle can then be characterized with respect to their relative invasiveness.
- the best candidates can then be combined with gene III fusions that encode pathogenic epitopes of interest.
- These phage can be injected into mice and tested for their relative abilities to induce a CTL response to the pathogenic antigens.
- Bacteriophage vaccine vehicles evolved for activity in mice according to the above methods will establish the principles for the evolution of similar vehicles for potent human vaccines.
- the ability to induce more rapid and potent CTL and neutralizing antibody responses with such vehicles is an important new tool for the evolution of improved countermeasures against pathogens of interest.
- the delivery vehicles, targeted genetic vaccine vectors, and vector components of the invention are useful for treating and/or preventing various diseases and other conditions.
- genetic vaccines that employ the reagents obtained according to the methods of the invention are useful in both prophylaxis and therapy of infectious diseases, including those caused by any bacterial, fungal, viral, or other pathogens of mammals.
- the reagents obtained using the invention can also be used for treatment of autoimmune diseases including, for example, rheumatoid arthritis, SLE, diabetes mellitus, myasthenia gravis, reactive arthritis, anky losing spondylitis, and multiple sclerosis.
- genetic vaccines that include vectors and other components obtained using the methods of the invention.
- Genetic vaccine vectors and other reagents obtained using the methods of the invention can be used to treat allergies and asthma.
- the use of genetic vaccines have great promise for the treatment of cancer and prevention of metastasis. By inducing an immune response against cancerous cells, the body's immune system can be enlisted to reduce or eliminate cancer.
- the reagents obtained using the invention are used in conjunction with a genetic vaccine.
- the choice of vector and components can also be optimized for the particular purpose of treating allergy or other conditions.
- an antigen for a particular condition can be optimized using recombination and selection methods analogous to those described herein. Such methods, and antigens appropriate for various conditions, are described in copending, commonly assigned US
- Patent Application Serial No. entitled “Antigen Library Immunization,” which was filed on February 10, 1999 as TTC Attorney Docket No. 18097-028710US.
- the polynucleotide that encodes the recombinant antigenic polypeptide can be placed under the control of a promoter, e.g., a high activity or tissue-specific promoter.
- the promoter used to express the antigenic polypeptide can itself be optimized using recombination and selection methods analogous to those described herein, as described in International Application No. PCT/US97/17300 (International Publication No. WO 98/13487).
- the vector can contain immunostimulatory sequences such as are described in copending, commonly assigned US
- Vaccine delivery vehicles can be delivered in vivo by administration to an individual patient, typically by systemic administration (e.g., intravenous, intraperitoneal, intramuscular, subdermal, intracranial, anal, vaginal, oral, buccal route or they can be inhaled) or they can be administered by topical application.
- systemic administration e.g., intravenous, intraperitoneal, intramuscular, subdermal, intracranial, anal, vaginal, oral, buccal route or they can be inhaled
- topical application e.g., intravenous, intraperitoneal, intramuscular, subdermal, intracranial, anal, vaginal, oral, buccal route or they can be inhaled
- vectors can be delivered to cells ex vivo, such as cells explanted from an individual patient (e.g., lymphocytes, bone marrow aspirates, tissue biopsy) or universal donor hematopoietic stem cells, followed by reimplantation of the cells into a patient, usually after selection for cells which have incorporated the vector.
- cells explanted from an individual patient e.g., lymphocytes, bone marrow aspirates, tissue biopsy
- tissue biopsy e.g., lymphocytes, bone marrow aspirates, tissue biopsy
- universal donor hematopoietic stem cells e.g., hematopoietic stem cells
- DNA and/or RNA that comprises a genetic vaccine can be introduced directly into a tissue, such as muscle. See, e.g., USPN 5,580,859.
- Other methods such as “biolistic” or particle-mediated transformation (see, e.g., Sanford et al, USPN
- 4,945,050; USPN 5,036,006) are also suitable for introduction of genetic vaccines into cells of a mammal according to the invention. These methods are useful not only for in vivo introduction of DNA into a mammal, but also for ex vivo modification of cells for reintroduction into a mammal. As for other methods of delivering genetic vaccines, if necessary, vaccine administration is repeated in order to maintain the desired level of immunomodulation.
- Genetic vaccine vectors can be administered directly to the mammal for transduction of cells in vivo.
- the genetic vaccines obtained using the methods of the invention can be formulated as pharmaceutical compositions for administration in any suitable manner, including parenteral (e.g., subcutaneous, intramuscular, intradermal, or intravenous), topical, oral, rectal, intrathecal, buccal (e.g., sublingual), or local administration, such as by aerosol or transdermally, for prophylactic and/or therapeutic treatment.
- Pretreatment of skin for example, by use of hair-removing agents, may be useful in transdermal delivery.
- Suitable methods of administering such packaged nucleic acids are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.
- compositions of the present invention are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention.
- aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter.
- These compositions may be sterilized by conventional, well known sterilization techniques.
- the compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering
- SUBSTITUTE SHEET RULE 26 agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
- concentration of genetic vaccine vector in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs.
- Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the packaged nucleic acid suspended in diluents, such as water, saline or PEG 400; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions.
- liquid solutions such as an effective amount of the packaged nucleic acid suspended in diluents, such as water, saline or PEG 400
- capsules, sachets or tablets each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin
- suspensions in an appropriate liquid such as water, saline or PEG 400
- Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, tragacanth, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible carriers.
- Lozenge forms can comprise the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- an inert base such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- the genetic vaccines when administered orally, must be protected from digestion. This is typically accomplished either by complexing the vaccine vector with a composition to render it resistant to acidic and enzymatic hydrolysis or by packaging the vector in an appropriately resistant carrier such as a liposome. Means of protecting vectors from digestion are well known in the art.
- the pharmaceutical compositions can be encapsulated, e.g., in liposomes, or in a formulation
- the packaged nucleic acids can be made into aerosol formulations (e.g., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
- Suitable formulations for rectal administration include, for example, suppositories, which consist of the packaged nucleic acid with a suppository base.
- Suitable suppository bases include natural or synthetic triglycerides or paraffin hydrocarbons.
- gelatin rectal capsules which consist of a combination of the packaged nucleic acid with a base, including, for example, liquid triglycerides, polyethylene glycols, and paraffin hydrocarbons.
- Formulations suitable for parenteral administration include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubihzers, thickening agents, stabilizers, and preservatives.
- compositions can be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or intrathecally.
- Parenteral administration and intravenous administration are the preferred methods of administration.
- the formulations of packaged nucleic acid can be presented in unit-dose or multi-dose sealed containers, such as ampoules and vials.
- injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. Cells transduced by the packaged nucleic acid can also be administered intravenously or parenterally.
- the dose administered to a patient should be sufficient to effect a beneficial therapeutic response in the patient over time.
- the dose will be determined by the efficacy of the particular vector employed and the condition of the patient, as well as the body weight or vascular surface area of the patient to be treated.
- the size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular vector, or transduced cell type in a particular patient.
- the physician evaluates vector toxicities, progression of the disease, and the production of anti- vector antibodies, if any.
- the dose equivalent of a naked nucleic acid from a vector is from about 1 ⁇ g to 1 mg for a typical 70 kilogram patient, and doses of vectors used to deliver the nucleic acid are calculated to yield an equivalent amount of therapeutic nucleic acid. Administration can be accomplished via single or divided doses.
- compositions are administered to a patient suffering from a disease (e.g., an infectious disease or autoimmune disorder) in an amount sufficient to cure or at least partially arrest the disease and its complications.
- a disease e.g., an infectious disease or autoimmune disorder
- An amount adequate to accomplish this is defined as a "therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the proteins of this invention to effectively treat the patient.
- compositions are administered to a human or other mammal to induce an immune response that can help protect against the establishment of an infectious disease or other condition.
- the toxicity and therapeutic efficacy of the genetic vaccine vectors provided by the invention are determined using standard pharmaceutical procedures in cell cultures or experimental animals. One can determine the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population) using procedures presented herein and those otherwise known to those of skill in the art.
- a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day.
- Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is a riiissered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art and are described in more detail in such publications as Remington's Pharmaceutical Science, 15th ed., Mack Publishing Company, Easton, Pennsylvania (1980).
- the multivalent antigenic polypeptides of the invention, and genetic vaccines that express the polypeptides can be packaged in packs, dispenser devices, and kits for administering genetic vaccines to a mammal.
- packs or dispenser devices that contain one or more unit dosage forms are provided.
- SUBSTITUTE SHEET (RULE 26; administration of the compounds will be provided with the packaging, along with a suitable indication on the label that the compound is suitable for treatment of an indicated condition.
- the label may state that the active compound within the packaging is useful for treating a particular infectious disease, autoimmune disorder, tumor, or for preventing or treating other diseases or conditions that are mediated by, or potentially susceptible to, a mammalian immune response.
- This Example describes the use of the DNA shuffling methods to evolve receptor binding components of enterotoxins derived from Vibrio cholerae and enterotoxigenic strains of E. coli for improved attachment to cell surface receptors and for improved entry to and transport across the cells of the intestinal epithelium.
- An antigen of interest can be fused to these toxin subunits to facilitate the screening of evolved enterotoxin subunits, and also to facilitate oral delivery of proteins. Examples of such antigens include growth hormone, insulin, myelin basic protein, collagen and viral envelope proteins.
- Bacterial enterotoxins are evolved for improved affinity and entry to cells by gene shuffling.
- the similarity of E. co/i-derived enterotoxin subunit with cholera toxin CT- B is 78%, and several completely conserved regions of more than 8 nucleotides are present.
- An alignment of DNAs encoding CT-B and enterotoxin B subunits from two E. coli strains is shown in Figure 3 to illustrate the feasibility of family DNA shuffling.
- the libraries of shuffled toxin subunits are expressed in V. cholerae.
- V. cholerae For safety reasons, strains in which the toxic CT-A is deleted are used.
- An antigen of interest is fused to the receptor-binding subunit.
- Secretion of chimeric proteins by V cholerae can be screened by culturing the bacteria in agar in the presence of monoclonal antibodies specific for the antigen that was fused to the toxins, and detecting the level of secretion as immunoprecipitation in the agar around the colonies.
- G MI ganglioside receptors to the agar in order to detect colonies secreting functional enterotoxin subunits.
- Colonies producing significant levels of the fusion protein are then cultured in 96-well plates, and the culture medium is tested for the presence of molecules capable of binding to cells or receptors in solution. Binding of chimeric fusion proteins to G MI ganglioside receptors on cell surface or in solution can be detected by a monoclonal antibody specific for the antigen that was fused to the toxin.
- the assay using whole cells has the advantage that one may evolve for improved binding also to receptors other than the G MI ganglioside receptor. When increasing concentrations of wild-type enterotoxins are added to these assays, one can detect mutants that bind to receptors with improved affinities.
- Enterotoxins with improved affinities can also be screened using phage display methods.
- a library of shuffled mutants can be expressed on phage, such as M13, and mutants with improved affinity are selected based on binding to G MI ganglioside receptors in solution or on cell surfaces. The advantage of this approach is that the mutants can be easily further selected in in vivo assays as discussed below.
- the in vitro method is based on Caco-2 cells (human colon adenocarcinoma) that are cultured in tissue culture. When grown on semipermeable filters, these cells spontaneously differentiate into cells that resemble human small intestine epithelium both structurally and functionally (Hilgers et al. (1990) Pharm. Res. 7:902-910). Shuffled toxin recombinants, fused to an antigen of interest, are placed on the top of this cell layer and beneficial mutant are detected by measuring the level of antigen transport across the cell layer. Both mutants expressed in bacteria and phage can be screened using this method.
- the mutants are screened in vivo.
- a library of shuffled enterotoxin recombinants can be screened for improved entry into intestinal epithelium and blood stream after oral delivery.
- This screening system also allows selection of mutants with the most potent adjuvant activities.
- the advantage of using the phage is that a large pool of phage can be given and successful mutants can be recovered and used in succeeding rounds of shuffling and selection.
- Dendritic cells are the most potent antigen presenting cells known to date. This example illustrates the feasibility of the usage of dendritic cells to screen for genetic vaccine vectors with improved properties, including transfection efficiency, expression of antigen, stability, capacity to present antigen.
- Figure 4A demonstrates the phenotype of freshly isolated monocytes and after a culture period of seven days in the presence of LL-4 (400 U/ml) and GM-CSF (100 ng/ml). The cultured cells were negative for CD14, whereas they expressed CD 1 a, HLA-DR, CD40, CD80 and CD86, which is a characteristic phenotype of dendritic cells (Chapuis et al. (1997) Eur. J. Immunol. 27:431-441).
- the cultured dendritic cells were then transfected with a vector encoding GFP driven by a CMV promoter. As shown in Figure 4B, the transfection efficiency of these cells is very low. However, a small percentage ( ⁇ 1%) of the cells expressed low levels of GFP two days after transfection under conditions shown in the figure.
- the cultured dendritic cells described in this example provide the capability to screen vector libraries described elsewhere.
- This Example describes a protocol for the use of phage display to select for polypeptides that can enter dendritic cells by, for example, receptor-mediated endocytosis.
- a library of recombinant polynucleotides obtained by recombination of a nucleic acid binding domain and a ligand for a dendritic cell receptor is expressed in a phage display format.
- the phage display library is incubated with dendritic cells for a period of time, after which the cells are washed (typically multiple washes are carried out using high salt buffer) to remove phage that remain extracellular.
- the cells are then pelleted and sonicated to liberate phage that have been internalized. Phage that are liberated are then amplified in E. coli, and the polynucleotide that encodes the optimized recombinant binding moiety is obtained. If desired, the optimized polynucleotide is subjected to further recombination to obtain further optimization.
- a phagemid that encodes both the recombinant ligand and a selectable or screenable marker (e.g., a gene encoding green fluorescent protein operably linked to a CMV promoter). Cells that have taken up the phage can then be identified by placing the culture under selective conditions, or by methods such as fluorescence-activated cell sorting.
- a selectable or screenable marker e.g., a gene encoding green fluorescent protein operably linked to a CMV promoter.
- This Example provides a mouse model system that is useful for screening and testing genetic vaccine vectors in human skin in vivo.
- Pieces of human skin are xenofransplanted onto the back of SCLD mice.
- Pieces of human skin can be obtained from infants undergoing circumcision, from skin removal operations due to, for example, cosmetic reasons, or from patients undergoing amputation due to, for example, accidents. These pieces are then transplanted onto the backs of C.B-17 scid/scid (SCID) mice as described by others (Deng et al. (1997) Nature Biotechnology 15: 1388-1391; Khavari et al. (1997) Adv. Clin. Res. 15:27-35; Choate and Khavari (1997) Human Gene Therapy 8:895- 901).
- the vector libraries are selected, for example, after topical application to the skin.
- the evolved vectors can also be selected after i.m., i.v., i.d., oral, anal or vaginal delivery.
- the DNA delivered onto the skin can be in the form of a patch, in a form of a cream, in a form of naked DNA or mixture of DNA and transfection-enhancing agent (such as proteases, lipases or lipids/liposomes), and it can be applied after mechanical abrasion, after removal of the hair, or simply by adding a droplet of DNA or DNA-lipid/liposome mixture onto the skin.
- proteases and lipases that enhance the delivery include, but are not limited to, individuals or mixtures of the following: a protease (such as Alcalase or Savinase) with or without an alpha-amylase, a lipase (such as Lipolase) (Sarlo et al. (1997) J. Allergy Clin. Immunol. 100:480-7).
- a protease such as Alcalase or Savinase
- lipase such as Lipolase
- the recovery of the optimal vectors can be done from the transfected cells by, for example, PCR, or by recovering entire vectors.
- the positive cells can be isolated for example by flow cytometry based cell sorting. This format allows selection of vectors that optimally express antigens in and transfect human cells in vivo.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Immunology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Pulmonology (AREA)
- Gastroenterology & Hepatology (AREA)
- Virology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Oncology (AREA)
- Transplantation (AREA)
- Communicable Diseases (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2176998A | 1998-02-11 | 1998-02-11 | |
US7429498P | 1998-02-11 | 1998-02-11 | |
US74294P | 1998-02-11 | ||
US21769 | 1998-02-11 | ||
PCT/US1999/003023 WO1999041402A2 (fr) | 1998-02-11 | 1999-02-10 | Ciblage de vecteurs de vaccins genetiques |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1053343A2 true EP1053343A2 (fr) | 2000-11-22 |
Family
ID=26695070
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99906949A Withdrawn EP1053343A2 (fr) | 1998-02-11 | 1999-02-10 | Ciblage de vecteurs de vaccins genetiques |
EP99932508A Withdrawn EP1056842A2 (fr) | 1998-02-11 | 1999-02-10 | Vecteurs de vaccins mis au point par genie genetique |
EP99906948A Withdrawn EP1053312A2 (fr) | 1998-02-11 | 1999-02-10 | Optimisation des proprietes immunomodulatrices des vaccins genetiques |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99932508A Withdrawn EP1056842A2 (fr) | 1998-02-11 | 1999-02-10 | Vecteurs de vaccins mis au point par genie genetique |
EP99906948A Withdrawn EP1053312A2 (fr) | 1998-02-11 | 1999-02-10 | Optimisation des proprietes immunomodulatrices des vaccins genetiques |
Country Status (6)
Country | Link |
---|---|
EP (3) | EP1053343A2 (fr) |
JP (3) | JP2002503461A (fr) |
AU (3) | AU2674199A (fr) |
CA (3) | CA2320626A1 (fr) |
MX (3) | MXPA00007891A (fr) |
WO (3) | WO1999041402A2 (fr) |
Families Citing this family (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6537776B1 (en) | 1999-06-14 | 2003-03-25 | Diversa Corporation | Synthetic ligation reassembly in directed evolution |
US6326204B1 (en) | 1997-01-17 | 2001-12-04 | Maxygen, Inc. | Evolution of whole cells and organisms by recursive sequence recombination |
DE69838294T2 (de) | 1997-05-20 | 2009-08-13 | Ottawa Health Research Institute, Ottawa | Verfahren zur Herstellung von Nukleinsäurekonstrukten |
WO1999021979A1 (fr) | 1997-10-28 | 1999-05-06 | Maxygen, Inc. | Vecteurs du papillomavirus humain |
EP1030861A4 (fr) | 1997-10-31 | 2001-09-05 | Maxygen Inc | Modification du tropisme viral et de la diversite d'especes hote par recombinaison du genome viral |
US6908757B1 (en) | 1998-03-26 | 2005-06-21 | The Procter & Gamble Company | Serine protease variants having amino acid deletions and substitutions |
EP1090024A2 (fr) | 1998-06-17 | 2001-04-11 | Maxygen, Inc. | Technique de production de polynucleotides aux caracteristiques souhaitees |
AU5347999A (en) | 1998-08-12 | 2000-03-06 | Maxygen, Inc. | Dna shuffling of monooxygenase genes for production of industrial chemicals |
JP2002526107A (ja) | 1998-10-07 | 2002-08-20 | マキシジェン, インコーポレイテッド | マイコトキシンの解毒のための核酸を生成するためのdnaシャッフリング |
US6913749B2 (en) | 1998-11-02 | 2005-07-05 | Resistentia Pharmaceuticals Ab | Immunogenic polypeptides for inducing anti-self IgE responses |
EP1129184A1 (fr) | 1998-11-10 | 2001-09-05 | Maxygen, Inc. | Adp-glucose pyrophosphorylase modifiee pour l'amelioration et l'optimisation de phenotypes vegetaux |
US6436675B1 (en) | 1999-09-28 | 2002-08-20 | Maxygen, Inc. | Use of codon-varied oligonucleotide synthesis for synthetic shuffling |
US6376246B1 (en) | 1999-02-05 | 2002-04-23 | Maxygen, Inc. | Oligonucleotide mediated nucleic acid recombination |
AU3210100A (en) | 1999-01-19 | 2000-08-01 | Maxygen, Inc. | Methods for making character strings, polynucleotides and polypeptides having desired characteristics |
IL138206A (en) * | 1999-02-04 | 2011-06-30 | Verenium Corp | Methods for non-stochastic generation of progeny polypeptides and hybrid polynucleotides |
IL144657A0 (en) | 1999-02-11 | 2002-06-30 | Maxygen Inc | High throughput mass spectrometry |
US6531316B1 (en) | 1999-03-05 | 2003-03-11 | Maxyag, Inc. | Encryption of traits using split gene sequences and engineered genetic elements |
CN1399677A (zh) | 1999-07-22 | 2003-02-26 | 宝洁公司 | 在确定表位区有氨基酸取代的枯草杆菌蛋白酶变体 |
KR20020021395A (ko) | 1999-07-22 | 2002-03-20 | 데이비드 엠 모이어 | 입체적으로 보호된 clip 부위를 갖는 프로테아제콘쥬게이트 |
US6946128B1 (en) | 1999-07-22 | 2005-09-20 | The Procter & Gamble Company | Protease conjugates having sterically protected epitope regions |
CN1373802A (zh) | 1999-07-22 | 2002-10-09 | 宝洁公司 | 在特定表位区域具有氨基酸缺失和取代的枯草杆菌蛋白酶变体 |
US6686515B1 (en) | 1999-11-23 | 2004-02-03 | Maxygen, Inc. | Homologous recombination in plants |
US7115712B1 (en) * | 1999-12-02 | 2006-10-03 | Maxygen, Inc. | Cytokine polypeptides |
WO2001059071A2 (fr) | 2000-02-09 | 2001-08-16 | Genvec, Inc. | Methodes de preparation et d'utilisation d'une bibliotheque de vecteurs viraux |
AUPQ776100A0 (en) * | 2000-05-26 | 2000-06-15 | Australian National University, The | Synthetic molecules and uses therefor |
AU2001259957B2 (en) * | 2000-05-26 | 2006-06-15 | Savine Therapeutics Pty Ltd | Synthetic peptides and uses therefore |
EP1297146A2 (fr) | 2000-06-23 | 2003-04-02 | Maxygen, Inc. | Nouveaux promoteurs chimeres |
EP1360290A2 (fr) | 2000-06-23 | 2003-11-12 | Maxygen, Inc. | Molecules costimulatrices |
WO2002000232A2 (fr) * | 2000-06-26 | 2002-01-03 | Maxygen, Inc. | Procedes et compositions permettant de developper des systemes de presentation de spores pour des applications medicinales et industrielles |
US6858422B2 (en) | 2000-07-13 | 2005-02-22 | Codexis, Inc. | Lipase genes |
DE10060959A1 (de) * | 2000-12-06 | 2002-06-20 | Aventis Res & Tech Gmbh & Co | Verfahren zur Isolierung und Identifizierung von Effektoren |
EP1358322B1 (fr) * | 2001-02-02 | 2009-10-28 | Large Scale Biology Corporation | Procede destine a ameliorer la complementarite d'un heteroduplex |
WO2002094992A2 (fr) | 2001-05-18 | 2002-11-28 | Rigel Pharmaceuticals, Incorporated | Evolution dirigee de proteine dans des cellules de mammifere |
AU2002326437A1 (en) * | 2001-07-19 | 2003-03-03 | Icogen Corporation | Methods for the identification of peptidyl compounds interacting with extracellular target molecules |
US7544669B2 (en) * | 2001-11-21 | 2009-06-09 | The Board Of Trustees Of The Leland Stanford Junior University | Polynucleotide therapy |
WO2003102166A2 (fr) | 2002-02-26 | 2003-12-11 | Maxygen, Inc. | Nouveaux antigenes de flavivirus |
DK2278509T3 (en) | 2002-03-01 | 2014-12-15 | Codexis Mayflower Holdings Llc | Methods, systems and software for identification of functional biomolecules |
US7620500B2 (en) | 2002-03-09 | 2009-11-17 | Maxygen, Inc. | Optimization of crossover points for directed evolution |
CA2481411C (fr) | 2002-04-19 | 2016-06-14 | Diversa Corporation | Phospholipases, acides nucleiques codant pour ces phosphalipases et methodes de fabrication et d'utilisation |
US7226771B2 (en) | 2002-04-19 | 2007-06-05 | Diversa Corporation | Phospholipases, nucleic acids encoding them and methods for making and using them |
US9321832B2 (en) | 2002-06-28 | 2016-04-26 | Domantis Limited | Ligand |
EP1576151A4 (fr) | 2002-08-06 | 2006-05-17 | Verdia Inc | Variants de l'amine oxydase ap1 |
WO2004058278A1 (fr) | 2002-12-16 | 2004-07-15 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Virus de la vaccine recombinants exprimant il-15 et methodes d'utilisation desdits virus |
EP3508578A1 (fr) | 2003-03-06 | 2019-07-10 | BASF Enzymes, LLC | Amylases, acides nucléiques les codant et leurs procédés de fabrication et d'utilisation |
DK2853593T3 (en) | 2003-03-07 | 2018-01-08 | Dsm Ip Assets Bv | Hydrolases, nucleic acids encoding them, and processes for their preparation and use |
WO2004090099A2 (fr) | 2003-04-04 | 2004-10-21 | Diversa Corporation | Pectate lyases, acides nucleiques codant ces dernieres et procedes de fabrication et d'utilisation |
EP2535414B1 (fr) | 2003-04-29 | 2017-12-13 | Pioneer Hi-Bred International Inc. | Nouveaux gènes de glyphosate-N-acétyltransférase (GAT) |
NZ570709A (en) * | 2003-06-13 | 2010-04-30 | Univ Pennsylvania | Nucleic acid sequences encoding and compositions comprising IgE signal peptide and/or IL-15 and methods for using the same |
US7960148B2 (en) | 2003-07-02 | 2011-06-14 | Verenium Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
CA2535526C (fr) | 2003-08-11 | 2015-09-29 | Diversa Corporation | Laccases, acides nucleiques codant pour ces enzymes et procedes permettant de les produire et de les utiliser |
ATE482281T1 (de) | 2004-06-09 | 2010-10-15 | Pioneer Hi Bred Int | Plastiden transit peptide |
CN103173282A (zh) | 2004-06-16 | 2013-06-26 | 帝斯曼知识产权资产管理有限公司 | 对叶绿素进行酶促脱色的组合物和方法 |
GB0417487D0 (en) | 2004-08-05 | 2004-09-08 | Novartis Ag | Organic compound |
US20090038023A1 (en) | 2005-03-10 | 2009-02-05 | Verenium Corporation | Lyase Enzymes, Nucleic Acids Encoding Them and Methods For Making and Using Them |
JP5343212B2 (ja) | 2005-03-15 | 2013-11-13 | ヴェレニウム コーポレイション | セルラーゼ、それらをコードする核酸、並びにそれらを作製及び使用する方法 |
US8715988B2 (en) | 2005-03-28 | 2014-05-06 | California Institute Of Technology | Alkane oxidation by modified hydroxylases |
WO2007092314A2 (fr) | 2006-02-02 | 2007-08-16 | Verenium Corporation | Estérases, acides nucléiques apparentés et procédés associés |
MY160710A (en) | 2006-02-10 | 2017-03-15 | Verenium Corp | Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them |
CA2638801C (fr) | 2006-02-14 | 2016-12-13 | Verenium Corporation | Xylanases, acides nucleiques codant pour elles et leurs procedes de preparation et d'utilisation |
KR101622894B1 (ko) | 2006-03-07 | 2016-05-19 | 바스프 엔자임스 엘엘씨 | 알돌라제, 이것을 코딩하는 핵산과 그 제조 방법 및 사용 방법 |
CN101437954B (zh) | 2006-03-07 | 2015-09-09 | 嘉吉公司 | 醛缩酶和编码醛缩酶的核酸以及它们的制备和使用方法 |
CN101528766A (zh) | 2006-08-04 | 2009-09-09 | 维莱尼姆公司 | 葡聚糖酶、编码它们的核酸及制备和使用它们的方法 |
MX2009003034A (es) | 2006-09-21 | 2009-11-18 | Verenium Corp | Fosfolipasas, acidos nucleicos que las codifican, y metodos de hacerlas y usarlas. |
EP2617818B1 (fr) | 2006-09-21 | 2016-03-23 | BASF Enzymes LLC | Phytases, acides nucléiques encodant celles-ci et méthodes pour leur fabrication et leur utilisation |
DK2479266T3 (en) | 2006-12-21 | 2016-06-20 | Basf Enzymes Llc | Amylases and glucoamylases, nucleic acids encoding them, and methods of making and using the same |
NZ598285A (en) | 2007-01-30 | 2013-10-25 | Syngenta Participations Ag | Enzymes for the treatment of lignocellulosics, nucleic acids encoding them and methods for making and using them |
NZ601191A (en) | 2007-10-03 | 2014-01-31 | Verenium Corp | Xylanases, nucleic acids encoding them and methods for making and using them |
KR101383476B1 (ko) | 2007-11-01 | 2014-04-11 | 아스테라스 세이야쿠 가부시키가이샤 | 면역억제 폴리펩티드 및 핵산 |
CN104651381A (zh) | 2008-01-03 | 2015-05-27 | 巴斯夫酶有限责任公司 | 转移酶和氧化还原酶、编码它们的核酸以及其制备和应用方法 |
DK2238261T3 (da) | 2008-01-03 | 2014-02-10 | Verenium Corp | Isomeraser, nukleinsyrer der koder for dem og fremgangsmåder til fremstilling og anvendelse deraf |
BRPI0909611B8 (pt) | 2008-05-23 | 2022-12-06 | Pioneer Hi Bred Int | Método de aumento do teor total de ácido graxo de uma célula de oleaginosa, ácido nucleico recombinante, construção de dna recombinante e método de produção de uma semente oleaginosa |
US8198062B2 (en) | 2008-08-29 | 2012-06-12 | Dsm Ip Assets B.V. | Hydrolases, nucleic acids encoding them and methods for making and using them |
EP3502256A3 (fr) | 2008-09-26 | 2019-09-25 | Tocagen Inc. | Vecteurs de recombinaison |
WO2010135588A2 (fr) | 2009-05-21 | 2010-11-25 | Verenium Corporation | Phytases, acides nucléiques codant pour elles et procédés de fabrication et d'utilisation associés |
CA2770854A1 (fr) | 2009-08-20 | 2011-02-24 | Pioneer Hi-Bred International, Inc. | Expression fonctionnelle d'un transporteur de nitrate de levure brasse (ynt1) chez le mais pour ameliorer l'absorption du nitrate dans un environnement pauvre en nitrate |
UA109884C2 (uk) | 2009-10-16 | 2015-10-26 | Поліпептид, що має активність ферменту фосфатидилінозитол-специфічної фосфоліпази с, нуклеїнова кислота, що його кодує, та спосіб його виробництва і застосування | |
UA111708C2 (uk) | 2009-10-16 | 2016-06-10 | Бандж Ойлз, Інк. | Спосіб рафінування олії |
BR112012016290A2 (pt) | 2009-12-31 | 2015-09-01 | Pioneer Hi Bred Int | Ácido nucléico isolado ou recombinante, cassete de expressão, célula hospedeira não humana, planta e semente transgênica, variante de polipeptídeo oxox isolado ou recombinante, método de modulação do nível de proteina oxalato oxidase (oxox) em uma planta ou célula vegetal, método para aumentar a resistência de uma planta a um patógeno, planta resistente a patógeno, método para identificar variantes oxox com atividade de oxox mantida ou aumentada, método para gerar uma planta que tem resistência aumentada a uma patógeno |
WO2012021785A1 (fr) | 2010-08-13 | 2012-02-16 | Pioneer Hi-Bred International, Inc. | Procédés et compositions comprenant des séquences présentant une activité d'hydroxyphénylpyruvate dioxygénase (hppd) |
BR112014027468A2 (pt) | 2012-05-04 | 2017-06-27 | Du Pont | polinucleotídeo isolado ou recombinante, construção de dna recombinante, célula, planta, explante vegetal, semente transgênica, polipeptídeo isolado, composição, métodos de produção de meganuclease, de introdução de rompimento e de integração de um polinucleotídeo. |
AU2014236162A1 (en) | 2013-03-14 | 2015-09-17 | Arzeda Corp. | Compositions having dicamba decarboxylase activity and methods of use |
WO2014153234A1 (fr) | 2013-03-14 | 2014-09-25 | Pioneer Hi-Bred International, Inc. | Compositions ayant une activité de dicamba décarboxylase et procédés d'utilisation |
EP2971000A4 (fr) | 2013-03-15 | 2016-11-23 | Pioneer Hi Bred Int | Polypeptides phi-4 et leurs procédés d'utilisation |
EA030896B1 (ru) | 2013-08-16 | 2018-10-31 | Пайонир Хай-Бред Интернэшнл, Инк. | Инсектицидные белки и способы их применения |
MX359027B (es) | 2013-09-13 | 2018-09-12 | Pioneer Hi Bred Int | Proteinas insecticidas y metodos para su uso. |
EP3102684B1 (fr) | 2014-02-07 | 2020-05-06 | Pioneer Hi-Bred International, Inc. | Protéines insecticides et leurs procédés d'utilisation |
EP3102592B1 (fr) | 2014-02-07 | 2020-05-20 | Pioneer Hi-Bred International, Inc. | Protéines insecticides et leurs procédés d'utilisation |
US10098943B2 (en) * | 2014-09-11 | 2018-10-16 | Vlp Therapeutics, Llc | Flavivirus virus like particle |
EP3207143B1 (fr) | 2014-10-16 | 2023-11-22 | Pioneer Hi-Bred International, Inc. | Protéines insecticides et leurs procédés d'utilisation |
EP3267796B1 (fr) | 2015-03-11 | 2023-08-09 | Pioneer Hi-Bred International, Inc. | Combinaisons de pip-72 insecticides et procédés d'utilisation |
CN108064233B (zh) | 2015-05-19 | 2022-07-15 | 先锋国际良种公司 | 杀昆虫蛋白及其使用方法 |
CN109475096B (zh) | 2015-08-06 | 2022-08-23 | 先锋国际良种公司 | 植物来源的杀昆虫蛋白及其使用方法 |
EP3390431A1 (fr) | 2015-12-18 | 2018-10-24 | Pioneer Hi-Bred International, Inc. | Protéines insecticides et leurs procédés d'utilisation |
EP3960863A1 (fr) | 2016-05-04 | 2022-03-02 | Pioneer Hi-Bred International, Inc. | Protéines insecticides et leurs procédés d'utilisation |
CN109312362B (zh) * | 2016-06-20 | 2022-06-28 | 扬森疫苗与预防公司 | 有效和平衡的双向启动子 |
US11155829B2 (en) | 2016-07-01 | 2021-10-26 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins from plants and methods for their use |
EP3535285B1 (fr) | 2016-11-01 | 2022-04-06 | Pioneer Hi-Bred International, Inc. | Protéines insecticides et leurs procédés d'utilisation |
CA3044404A1 (fr) | 2016-12-14 | 2018-06-21 | Pioneer Hi-Bred International, Inc. | Proteines insecticides et leurs procedes d'utilisation |
CA3046226A1 (fr) | 2016-12-22 | 2018-06-28 | Pioneer Hi-Bred International, Inc. | Proteines insecticides et leurs procedes d'utilisation |
US20190390219A1 (en) | 2017-02-08 | 2019-12-26 | Pioneer Hi-Bred International, Inc. | Insecticidal combinations of plant derived insecticidal proteins and methods for their use |
EP3622076A1 (fr) | 2017-05-11 | 2020-03-18 | Pioneer Hi-Bred International, Inc. | Protéines insecticides et leurs procédés d'utilisation |
EP3764796A4 (fr) | 2018-03-14 | 2021-12-22 | Pioneer Hi-Bred International, Inc. | Protéines insecticides issues de plantes et leurs procédés d'utilisation |
WO2019178042A1 (fr) | 2018-03-14 | 2019-09-19 | Pioneer Hi-Bred International, Inc. | Protéines insecticides issues de plantes et procédés pour leur utilisation |
US20220169706A1 (en) | 2019-03-28 | 2022-06-02 | Danisco Us Inc | Engineered antibodies |
EP4087932A4 (fr) | 2020-01-10 | 2024-01-17 | The Regents of the University of California | Plateforme biosynthétique pour la production d'acide olivétolique et d'analogues d'acide olivétolique |
EP4182466A2 (fr) | 2020-07-14 | 2023-05-24 | Pioneer Hi-Bred International, Inc. | Protéines insecticides et leurs procédés d'utilisation |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4882278A (en) * | 1983-04-29 | 1989-11-21 | President And Fellows Of Harvard College | Non-toxinogenic vibrio cholerae mutants |
IL96475A0 (en) * | 1989-11-29 | 1991-08-16 | Innovative Tech Center | Chimeric proteins |
AU6707194A (en) * | 1993-04-19 | 1994-11-08 | Medisorb Technologies International L.P. | Encapsulation of nucleic acids with conjugates that facilitate and target cellular uptake and gene expression |
SG54115A1 (en) * | 1993-04-27 | 1998-11-16 | Gerber Scient Products Inc | Thermal printing apparatus with improved power supply |
WO1994026787A1 (fr) * | 1993-05-07 | 1994-11-24 | The Board Of Trustees Of The Leland Stanford Junior University | Procede pour generer des bibliotheques d'anticorps de phages specifiques de types cellulaires |
SE9304060D0 (sv) * | 1993-12-06 | 1993-12-06 | Bioinvent Int Ab | Sätt att selektera specifika bakteriofager |
US6117679A (en) * | 1994-02-17 | 2000-09-12 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
CA2201592A1 (fr) * | 1994-10-03 | 1996-04-18 | The Government Of The United States Of America, Represented By The Secre Tary, Department Of Health And Human Services | Reponse immunitaire amelioree par l'introduction par recombinaison du gene de la cytokine et/ou du gene de la proteine co-stimulatrice b7 dans un systeme d'expression virale |
AU4010395A (en) * | 1994-10-27 | 1996-05-23 | Amgen, Inc. | Compositions for increased bioavailability of orally delivered therapeutic agents |
WO1996023882A1 (fr) * | 1995-01-31 | 1996-08-08 | The Rockefeller University | IDENTIFICATION DE LA PROTEINE MEMBRANAIRE, INTEGRALE DEC (CELLULES DENDRITIQUES ET EPITHELIALES, 205 kDa), UN RECEPTEUR A DOMAINES LECTINIQUES DE TYPE C, DES ACIDES NUCLEIQUES CODANT DEC, AINSI QUE SES APPLICATIONS |
EP0863913A4 (fr) * | 1995-08-21 | 2001-04-11 | Univ Duke | Procede pour accroitre la densite d'un antigene sur une cellule presentant un antigene |
SK40198A3 (en) * | 1995-09-28 | 1998-11-04 | Univ Pittsburgh | Stimulation of cell-mediated immune responses by targeted particulate genetic immunization |
US6489145B1 (en) * | 1996-07-09 | 2002-12-03 | Diversa Corporation | Method of DNA shuffling |
AU1865297A (en) * | 1996-03-08 | 1997-09-22 | University Of Toronto, The | Methods and nucleic immunogenic compositions encoding antigens and co-stimulatory molecules for immunization |
US6096548A (en) * | 1996-03-25 | 2000-08-01 | Maxygen, Inc. | Method for directing evolution of a virus |
-
1999
- 1999-02-10 EP EP99906949A patent/EP1053343A2/fr not_active Withdrawn
- 1999-02-10 JP JP2000531550A patent/JP2002503461A/ja not_active Withdrawn
- 1999-02-10 WO PCT/US1999/003023 patent/WO1999041402A2/fr not_active Application Discontinuation
- 1999-02-10 MX MXPA00007891A patent/MXPA00007891A/es unknown
- 1999-02-10 JP JP2000531583A patent/JP2002503478A/ja not_active Withdrawn
- 1999-02-10 EP EP99932508A patent/EP1056842A2/fr not_active Withdrawn
- 1999-02-10 AU AU26741/99A patent/AU2674199A/en not_active Abandoned
- 1999-02-10 AU AU32910/99A patent/AU3291099A/en not_active Abandoned
- 1999-02-10 JP JP2000531549A patent/JP2002507392A/ja not_active Withdrawn
- 1999-02-10 EP EP99906948A patent/EP1053312A2/fr not_active Withdrawn
- 1999-02-10 CA CA002320626A patent/CA2320626A1/fr not_active Abandoned
- 1999-02-10 WO PCT/US1999/003020 patent/WO1999041368A2/fr not_active Application Discontinuation
- 1999-02-10 CA CA002320960A patent/CA2320960A1/fr not_active Abandoned
- 1999-02-10 WO PCT/US1999/003022 patent/WO1999041369A2/fr not_active Application Discontinuation
- 1999-02-10 MX MXPA00007889A patent/MXPA00007889A/es unknown
- 1999-02-10 AU AU26742/99A patent/AU2674299A/en not_active Abandoned
- 1999-02-10 MX MXPA00007893A patent/MXPA00007893A/es unknown
- 1999-02-10 CA CA002320431A patent/CA2320431A1/fr not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO9941402A2 * |
Also Published As
Publication number | Publication date |
---|---|
JP2002503478A (ja) | 2002-02-05 |
WO1999041368A3 (fr) | 1999-12-16 |
AU2674199A (en) | 1999-08-30 |
MXPA00007893A (es) | 2002-10-23 |
WO1999041369A2 (fr) | 1999-08-19 |
EP1053312A2 (fr) | 2000-11-22 |
CA2320431A1 (fr) | 1999-08-19 |
AU3291099A (en) | 1999-08-30 |
WO1999041402A3 (fr) | 1999-11-11 |
MXPA00007891A (es) | 2002-09-18 |
CA2320626A1 (fr) | 1999-08-19 |
CA2320960A1 (fr) | 1999-08-19 |
WO1999041368A2 (fr) | 1999-08-19 |
MXPA00007889A (es) | 2002-09-18 |
JP2002503461A (ja) | 2002-02-05 |
WO1999041369A3 (fr) | 1999-09-23 |
WO1999041402A2 (fr) | 1999-08-19 |
EP1056842A2 (fr) | 2000-12-06 |
JP2002507392A (ja) | 2002-03-12 |
AU2674299A (en) | 1999-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999041402A2 (fr) | Ciblage de vecteurs de vaccins genetiques | |
US20080019988A1 (en) | Targeting of genetic vaccine vectors | |
CA2325351C (fr) | Elaboration non stochastique de vaccins genetiques et d'enzymes | |
JP7370861B2 (ja) | Hlaに基づく方法および組成物ならびにそれらの使用 | |
US20070087373A1 (en) | Optimization of immunomodulatory properties of genetic vaccines | |
US20010006950A1 (en) | Genetic vaccine vector engineering | |
US20110165627A1 (en) | Gene site saturation mutagenesis | |
JP2002507393A (ja) | 抗原ライブラリー免疫 | |
US8754015B2 (en) | Modified phage for displaying post-translationally modified proteins and uses thereof | |
WO2005058006A2 (fr) | Procedes et compositions comprenant des nanoparticules bacteriophages | |
US20020165149A1 (en) | Mutated class II major histocompatibility proteins | |
US20030036506A1 (en) | Mutated class I major histocompatibility proteins and complexes | |
AU2767702A (en) | Targeting of genetic vaccine vectors | |
CN114703229B (zh) | 一种基于人源细胞的表面展示技术及靶向hbv受体的多肽及其应用 | |
CA2492661C (fr) | Elaboration non stochastique de vaccins genetiques et d'enzymes | |
EP1518927A2 (fr) | Optimisation des propriétés immunomodulatrices de vaccins génétiques | |
AU2757902A (en) | Genetic vaccine vector engineering | |
AU2761302A (en) | Optimization of immunomodulatory properties of genetic vaccines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000911 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PATTEN, PHILLIP, A. Inventor name: HOWARD, RUSSELL Inventor name: STEMMER, WILLEM, P., C. Inventor name: PUNNONEN, JUHA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20060901 |