EP1053291B1 - Procede de gazeification de matieres organiques et de melanges de substances - Google Patents

Procede de gazeification de matieres organiques et de melanges de substances Download PDF

Info

Publication number
EP1053291B1
EP1053291B1 EP98966829A EP98966829A EP1053291B1 EP 1053291 B1 EP1053291 B1 EP 1053291B1 EP 98966829 A EP98966829 A EP 98966829A EP 98966829 A EP98966829 A EP 98966829A EP 1053291 B1 EP1053291 B1 EP 1053291B1
Authority
EP
European Patent Office
Prior art keywords
pyrolysis
heat
carrier medium
firing
heat carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98966829A
Other languages
German (de)
English (en)
Other versions
EP1053291A1 (fr
Inventor
Heinz-Jürgen Mühlen
Christoph Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muehlen Heinz-Juergen Dr
Original Assignee
Muehlen Heinz-Juergen Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muehlen Heinz-Juergen Dr filed Critical Muehlen Heinz-Juergen Dr
Publication of EP1053291A1 publication Critical patent/EP1053291A1/fr
Application granted granted Critical
Publication of EP1053291B1 publication Critical patent/EP1053291B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/18Modifying the properties of the distillation gases in the oven
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment

Definitions

  • the invention relates to a method for the gasification of organic Substances and mixtures according to the generic term of Claim 1.
  • the heat transfer medium is combined with the solid carbon Residue partly over the reactor head of the Pyrolysis fluidized bed reactor and the remainder over a line running at the upper fluid bed boundary is arranged, carried out and the fluidized bed combustion fed. There is the solid carbonaceous residue burned and the heat transfer medium heated up.
  • the heated up Heat transfer medium and the ash are together with the exhaust gas discharged from the fluidized bed furnace and in one arranged above the pyrolysis fluidized bed reactor Separated gas-solid separator and the reaction zone of the pyrolysis reactor, from which they are fed back in the fluidized bed of the pyrolysis reactor falls (heat transfer medium circuit).
  • the operation of the fluidized beds is very complex and control of the reactions of the pyrolysis gases in the reaction zone is hardly possible.
  • the invention is based, an easy to perform the task Process for producing a high gas To provide calorific value. A small amount of condensate is preferred. Another object of the invention is a simple device to carry out to provide the procedure.
  • this task is performed by the Combination of features of claim 1 solved.
  • the pyrolysis gases if necessary. a reactant like water vapor, mixed in, and they are in an indirect heat exchanger in which the pyrolysis gases react with the reactant.
  • the solid carbonaceous Residue and the heat transfer medium fed to a furnace.
  • the combustion gases are like this passed through the indirect heat exchanger that their heat content for the reaction of the pyrolysis gases with the reactant is being used.
  • the ash removed from the furnace the solid carbonaceous residues and the heat transfer medium be at the end of the entry for the organic matter returned to the pyrolysis reactor.
  • the invention is based on the basic idea, the gasification process in three simple process steps divide.
  • a rapid pyrolysis of the feed materials In a first process step, a rapid pyrolysis of the feed materials.
  • the goal is as few condensable substances as possible in the pyrolysis gases to obtain.
  • the rapid pyrolysis is ensured that the pyrolysis of the feedstocks at one temperature from 550 ° to 650 ° C is carried out.
  • heating takes place and reaction of the pyrolysis gases with steam to adjust the product gas quality.
  • the reaction of the pyrolysis gases with steam at a temperature of 900 ° to 1000 ° C performed.
  • the combustion takes place in a third process step the solid carbon-containing pyrolysis residues.
  • the one there The resulting heat is used for the pyrolysis and the reaction of the Pyrolysis gases used with water vapor.
  • the furnace also heated the heat transfer medium, which subsequently is conveyed back into the pyrolysis reactor.
  • the heat transfer for the reaction of pyrolysis gases with water vapor takes place in a heat exchanger by the exhaust gases the furnace is heated.
  • the goal in product gas quality is first Line a high calorific value.
  • the second Process step the hydrogen content increased, so that the product gas is very good for use as Syngas is suitable for an energetic use related with a fuel cell is also an option.
  • the Use for energy generation via a gas engine or gas turbine is of course possible.
  • the reactant is water vapor.
  • water vapor On adding water vapor can be dispensed with if there is enough water vapor in the feed is included, for example if one Drying of the feedstock not or only to a small extent he follows. It is also possible that the pyrolysis gases formed contain enough water vapor, if by Art enough steam during pyrolysis arises. It is also possible to add water vapor in the Pyrolysis stage to be provided.
  • the feedstocks must be fed before pyrolysis be pretreated. Pretreatment limited generally focus on drying and if necessary a crushing. The lumpiness of the No great demands were placed on the input material because the Pyrolysis in a moving bed with a heat transfer medium is carried out.
  • a catalyst can be provided with steam.
  • P refers Dolomite, calcite, nickel, nickel oxide, Nickel aluminate or nickel spinel used.
  • the Reaction temperature of 900 ° to 1000 ° C calcined the dolomite and the resulting calcium / magnesium oxide especially has high catalytic activity.
  • reaction temperature of 900 to 1000 ° C for the reaction the pyrolysis gas with water vapor is advantageous because in this temperature range the sulfur sensitivity of the the aforementioned catalysts are already greatly reduced is. There is a possibility of time catalysts at times in situ by adding little air at temperatures to regenerate above 1000 ° C.
  • the catalysts can also be used as a heat transfer medium become. This procedure has the advantage that the Catalysts in the heat transfer circuit are periodically regenerated become.
  • the combustion of part of the pyrolysis gas for heat generation is also required if the pyrolysis coke can be used as a material, e.g. B. for production of activated carbon or charcoal or charcoal briquettes. So that the pyrolysis coke can be easily discharged the grain size of the heat transfer medium chosen so small, that the heat transfer medium easily from the pyrolysis coke can be separated.
  • the pyrolysis takes place in a moving bed reactor with the help a heat transfer medium instead.
  • This is the first option Line the use of a shaft furnace to which the mixture from the feed to be gasified and the heat transfer medium is abandoned from above. The mixture migrates through the shaft furnace. Through the intimate contact of the feed with the heat transfer medium finds the quick one Pyrolysis instead.
  • pyrolysis can also be carried out in a rotating drum or be carried out in a deck oven, however here too the outlay on equipment is greater.
  • the transfer of the mixture of heat transfer medium and Pyrolysis residue in the furnace can be obtained via commercially available Units such as screw conveyors, swivel grates, rotating grates or Cell wheel locks are made.
  • a grate firing is the use of feed tappets prefers.
  • screw conveyors When using underfeed firing, the Use of screw conveyors preferred.
  • firing preference is given to grate firing.
  • the combustion gases are through an indirect, at the same time as a chemical reactor serving heat exchanger in which the pyrolysis gases react with water vapor.
  • Such heat exchangers are e.g. known in refineries as tube cracking furnaces or reformers.
  • the heat transfer medium must have sufficient mechanical, chemical and thermal stability in the temperature range have from 600 to 1000 ° C.
  • fireproof Substances such as sand, gravel, grit, aluminosilicate, corundum, Grauwacke, quartzite or cordierite are used.
  • the heat transfer medium be fine enough to make intimate contact with the feed to be able to enter, so a good heat transfer can take place.
  • the particles of the heat transfer medium should be so large that sufficient gap volume is present through which the pyrolysis gases flow can.
  • the heat transfer medium has a grain size of 1 - 40 mm. This Grain size also has the advantage that the heat transfer medium behind the furnace well from the ashes of the pyrolysis residue can be separated.
  • a catalyst in the reaction of the pyrolysis gases a catalyst can be provided with steam.
  • This can a catalyst bed is arranged in the heat exchanger his.
  • the catalyst bed is inside or arranged outside the tubes of the heat exchanger.
  • a catalytically active material the heat exchanger tubes such as. B. corundum with nickel or To use nickel oxide.
  • a fixed bed reactor with catalyst bed provided.
  • the feed to be gasified 1 is led into a pretreatment 2.
  • This can vary depending A drying and / or shredding device is used be in which the input materials for the subsequent Pyrolysis are processed.
  • the pretreated feed 1 is introduced into a pyrolysis 3. Leave pyrolysis 3 a pyrolysis gas 5 and a pyrolysis coke 5a.
  • the pyrolysis coke 5a is burned in a furnace 6.
  • the Heat from the furnace 6 is generated via a heat coupling 7 the pyrolysis 3 and a heat coupling 7a of a reaction zone 4 supplied for pyrolysis gas.
  • the exhaust gases 18 of the Furnace 6 are in a flue gas cleaning and cooling stage 17 cooled and drained.
  • the one with the flue gas cleaning and Cooling stage 17 waste heat can z. B. for drying be used in pretreatment stage 2.
  • Heat is generated as for the heat coupling 7 and 7a is needed.
  • This heat can be used to generate steam.
  • a feed water 9 is supplied via a water treatment 10 and a pump 11 in a heat exchanger 12, which in the furnace 6 is arranged.
  • the generated steam 16 is in the reaction zone 4 passed.
  • An unneeded part can relaxed via a turbine 13 and further used as exhaust steam 16a become.
  • the pyrolysis gas is in this reaction zone and the cracked products of the condensables Water vapor converted to the desired product gas 15.
  • the Product gas 15 is then in a dedusting 8 and a fine dedusting and Quenche 14 cleaned. It is also possible a part 19 of the product gas 15 of the pyrolysis 3rd supply.
  • combustion and reaction with water vapor can vary in the individual Process stages the addition of air and / or oxygen be provided.
  • Figure 2 shows the mass and energy balance of a pyrolysis stage 101 and a reaction stage 102 using the example of one Wood gasification.
  • wood 104 and Introduced heat transfer medium 104a Furthermore, the heat flow 111a, which is derived from the size and nature of the Material flows from wood 104 and heat transfer medium 104a and the desired pyrolysis temperature is added.
  • the Pyrolysis stage 101 leave a mixture 105 of charcoal and heat transfer medium and the pyrolysis gas 106.
  • the pyrolysis gas 106 enters the reaction stage 102. Heat loss 108 also occurs. In the reaction stage 102 also becomes the heat of reaction of charcoal formation 109 and water vapor 112 out. The product gas 107 leaves the reaction stage 102. In addition, occurs Heat loss 110 on. From the heat input and output Material flows are the amount of heat still to be added 111th
  • FIG 3 is the mass and energy balance of the charcoal 103 shown.
  • the mixture flows 105 (from charcoal and heat transfer medium 104a), water 117 and air 113 into the furnace, as well as the material flows Exhaust gas 116, water vapor 112 and mixture 118 (from heat transfer medium 104a and ash).
  • the Heat flow 111 which is led into the reaction stage 102
  • the heat flow 111a which led to the pyrolysis stage 101 the excess heat 114 and the heat loss 115.
  • FIG. 4 shows a device for performing the inventive method.
  • a feed 401 is over a lock 402 dosed into a shaft furnace 403. simultaneously becomes a heat transfer medium 414 from a promotion 409 fed to the shaft furnace 403 via a lock 410.
  • Heat transfer medium 414 down and mix, being by the heat contained in the heat transfer medium 414
  • Feedstock 401 is pyrolyzed at about 600 ° C.
  • the mixture is expelled at the lower end of the shaft furnace 403 Heat transfer medium 414 and from the feed 401 through Pyrolysis coke 426 was created by a loading 404 on a grate 405 of a bricked furnace 407 guided.
  • the 407 furnace has a start-up burner 406.
  • the pyrolysis coke 426 burns on the grate 405 Heat emission.
  • the heat transfer medium 414 is opened heated to approx. 1000 ° C.
  • the heat transfer medium 414 exists from a coarse-grained material such as sand, gravel or split.
  • the heat transfer medium 414 migrates during the combustion and the pyrolysis coke 426 to a screw 408 at the end the grate 405 with which the ashes of the pyrolysis coke 426 and the heat transfer medium 426 are discharged.
  • the biggest Part of this mixture of heat transfer medium 414 and ash is in the 409 funding and 410 lock in the Shaft furnace 403 returned, in which the heat transfer medium 414 the heat absorbed in the furnace 407 to the feed 401 issues.
  • a small part of the mixture of ash from the pyrolysis coke 426 and heat transfer medium 414 is via a cooling 411 and a sieve 412 discharged.
  • the sieve 412 Ash of pyrolysis coke 426 as fine material 413 from the coarser Heat transfer medium 414 deposited the heat transfer medium 414 is returned to the process. This ejection it is not necessary if the feed to be gasified contains no ash-forming components.
  • the result of pyrolysis in the shaft furnace 403 Pyrolysis gas is produced from the upper area of the shaft furnace 403 withdrawn via a line 403a and into a heat exchanger 417 headed.
  • the pyrolysis gas contains water, carbon monoxide, Carbon dioxide, hydrogen and methane are also higher Hydrocarbons and tars as well as other organic ones, in particular aromatic compounds as condensable constituents.
  • the heat exchanger 417 is the exhaust gases from the Furnace 407 heated to a temperature of approx. 950 ° C. The pyrolysis gas and the condensables react at this temperature Substances with water vapor in the pyrolysis gas is included.
  • water vapor is introduced into line 403a 416 for the reactions in the heat exchanger 417.
  • air 415 for a partial combustion of the Pyrolysis gas are supplied.
  • the tars carried can be in the heat exchanger Catalyst may be provided.
  • the catalyst it is also possible for the catalyst to flow into the pyrolysis gas stream to give up and put it behind the heat exchanger 417 to deposit again and reinstall.
  • This gas is used by a heat exchanger 421 for heat recovery and led into a scrubber 422 for gas cleaning.
  • a product gas 425 is drawn off via an induced draft fan 423.
  • the waste heat from the heat exchanger 421 can be used to heat the Pyrolysis gas to reaction temperature for the reaction with Steam can be used.
  • the exhaust gas from the furnace 407 is after it passes through the heat exchanger 417 is flowed through a heat exchanger 418 Heat recovery directed. After gas cleaning 419 the exhaust gas 424 into the environment via a suction fan 420 issued.
  • Both the furnace 407 and the heat exchanger 417 are operated at a pressure that is only slightly higher than deviates from atmospheric pressure and is usually somewhat lower than this one is.
  • the induced draft fan 423 for the product gas 425 and 420 for the exhaust gas 424 are regulated and matched that the pyrolysis gas through the heat exchanger 417 is carried out and not by the filling of the Shaft furnace is sucked into the furnace 407.
  • Gravel with a grain size of 3 mm to 15 mm is used as the heat transfer medium.
  • the gravel is heated from 600 ° C to 950 ° C. Due to the required heat output of 380 KW, the circulating volume of the heat transfer medium is 5 times the wood input, ie 5000 kg per hour.
  • the shaft furnace has a height of 4.5 m and a diameter of 1.5 m - this corresponds to a moving bed volume of 7.5 m 3 .
  • the dwell time in the shaft furnace is two hours.
  • the enthalpy flow of the charcoal in the furnace is 1.86 MW. This is enough to get a steam flow of 0.45 MW (360 kg / h at 950 ° C and atmospheric pressure) as well the heat requirement of the reaction of the pyrolysis gas with water vapor in the amount of 0.84 MW.
  • the firing efficiency is 85%. There remain after consideration the heat loss and the loss through the exhaust gas flow 0.26 MW. This generated 324 kg / h of superheated steam, which relaxes via a turbine and is used as heating steam has been.
  • the cold gas efficiency is 79%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (20)

  1. Procédé de gazéification de matières organiques et de mélanges de substances, où
    a) les matières organiques sont guidées dans un réacteur de pyrolyse où les matières organiques sont maintenues en contact avec un milieu caloporteur, par quoi a lieu une pyrolyse rapide où les matières organiques sont transformées en produits de pyrolyse, où les produits de pyrolyse sont constitués de gaz de pyrolyse avec des matières aptes à être condensées et avec un résidu solide carboné,
    b) le résidu solide carboné et le milieu caloporteur sont amenés à une combustion où le résidu carboné est brûlé et le milieu caloporteur est chauffé et est ramené au réacteur de pyrolyse (circuit de milieu caloporteur),
    c) les gaz de pyrolyse contenant du goudron sont chauffés de nouveau dans une seconde zone de réaction de façon à obtenir un gaz de produit d'une valeur calorifique élevée,
    caractérisé en ce que
    d) la pyrolyse est exécutée dans un réacteur à lit mouvant ou un tambour tournant,
    e) on ajoute aux gaz de pyrolyse le cas échéant un moyen de réaction, comme la vapeur d'eau et
    f) ils sont guidés dans un échangeur de chaleur indirect dans lequel les gaz de pyrolyse réagissent avec le moyen de réaction,
    g) les gaz d'échappement de combustion sont guidés de telle sorte à travers l'échangeur de chaleur indirect que leur capacité calorique est utilisée pour la réaction des gaz de pyrolyse avec le moyen de réaction et
    h) les cendres retirées de la combustion des résidus carbonés solides et le milieu caloporteur sont ramenés à l'extrémité d'insertion de la matière organique dans le réacteur de pyrolyse.
  2. Procédé selon la revendication 1, caractérisé en ce que la pyrolyse est exécutée à une température de 550° à 650°C.
  3. Procédé selon la revendication 1 et 2, caractérisé en ce que la réaction des gaz de pyrolyse est exécutée avec de la vapeur d'eau à une température de 900°-1000°C.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la réaction des gaz de pyrolyse est exécutée avec de la vapeur d'eau en présence d'un catalyseur.
  5. Procédé selon la revendication 4, caractérisé en ce qu'on utilise comme catalyseur de la dolomie, du calcite, du nickel, de l'oxyde de nickel, de l'aluminate de nickel ou du spinelle de nickel.
  6. Procédé selon la revendication 5, caractérisé en ce que les catalyseurs sont utilisés simultanément comme milieu caloporteur pour le circuit du milieu caloporteur.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que les gaz de pyrolyse chauds, avant l'addition de vapeur d'eau, sont dépoussiérés.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le catalyseur est ajouté selon un écoulement volant aux gaz de pyrolyse chauds, et est séparé après la réaction avec la vapeur d'eau et est rajouté dans le circuit aux gaz de pyrolyse chauds.
  9. Procédé selon l'une ou plusieurs des revendications 1 à 8, caractérisé en ce que les gaz de pyrolyse, après la réaction avec la vapeur d'eau, sont dépoussiérés et refroidis.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'une partie des gaz de pyrolyse est brûlée et que la chaleur est utilisée pour la pyrolyse et/ou la réaction avec la vapeur d'eau.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que le résidu solide carboné et le milieu caloporteur sont amenés à un feu à grille.
  12. Dispositif pour la mise en oeuvre du procédé selon l'une des revendications 1 à 11, avec un réacteur de pyrolyse, un feu pour le résidu de la pyrolyse, une zone de réaction pour les gaz de pyrolyse, un circuit caloporteur entre le réacteur de pyrolyse et le feu, caractérisé en ce qu'un four vertical (403) ou un tambour tournant avec une écluse (402) pour une matière d'utilisation (401) et une écluse (410) pour un milieu caloporteur (414) est disposé à côté d'un feu (407) muni d'une grille (405) et en ce que le four vertical (403) présente à son extrémité inférieure une ouverture d'alimentation (404) pour le feu (407) et que les gaz d'échappement (424) du feu (407) peuvent être amenés à un échangeur de chaleur (417) qui est relié par un conduit (403a) pour les gaz de pyrolyse au four vertical (403), et que le feu (407) est raccordé par une installation d'évacuation, comme une vis sans fin (408), à un dispositif de convoyage (409) du milieu caloporteur (414).
  13. Dispositif selon la revendication 12, caractérisé en ce que le milieu caloporteur est constitué de matières résistant au feu comme le sable, le gravier, des pierres concassées, du silicate d'aluminium, du corindon, de grès des houillères, de quartzite ou de cordiérite.
  14. Dispositif selon la revendication 12, caractérisé en ce que le milieu caloporteur est constitué de corps moulé en des matériaux métalliques ou non métalliques, comme en acier ou en billes céramiques.
  15. Dispositif selon les revendications 13 et 14, caractérisé en ce que le milieu caloporteur a une grandeur de grain de 1 à 40 mm.
  16. Dispositif selon l'une ou plusieurs des revendications 12 à 15, caractérisé en ce que le feu (407) est réalisé comme feu à grille.
  17. Dispositif selon l'une ou plusieurs des revendications 12 à 16, caractérisé en ce que l'échangeur de chaleur (417) présente une ouverture de remplissage de catalyseur.
  18. Dispositif selon l'une ou plusieurs des revendications 10 à 17, caractérisé en ce que les tubes de l'échangeur de chaleur (417) sont constitués d'un matériau catalytiquement actif.
  19. Dispositif selon l'une ou plusieurs des revendications 12 à 18, caractérisé en ce qu'il est associé à l'échangeur de chaleur (417) un réacteur à lit fixe avec un versement de catalyseur.
  20. Dispositif selon l'une ou plusieurs des revendications 12 à 19, caractérisé en ce qu'il est disposé en amont de l'échangeur de chaleur (417) un filtre de dépoussiérage.
EP98966829A 1997-12-16 1998-12-15 Procede de gazeification de matieres organiques et de melanges de substances Expired - Lifetime EP1053291B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19755693 1997-12-16
DE19755693A DE19755693C1 (de) 1997-12-16 1997-12-16 Verfahren zur Vergasung von organischen Stoffen und Stoffgemischen
PCT/EP1998/008217 WO1999031197A1 (fr) 1997-12-16 1998-12-15 Procede de gazeification de matieres organiques et de melanges de substances

Publications (2)

Publication Number Publication Date
EP1053291A1 EP1053291A1 (fr) 2000-11-22
EP1053291B1 true EP1053291B1 (fr) 2003-07-09

Family

ID=7851970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98966829A Expired - Lifetime EP1053291B1 (fr) 1997-12-16 1998-12-15 Procede de gazeification de matieres organiques et de melanges de substances

Country Status (11)

Country Link
EP (1) EP1053291B1 (fr)
JP (1) JP2002508433A (fr)
AT (1) ATE244746T1 (fr)
AU (1) AU2513399A (fr)
BG (1) BG104615A (fr)
CA (1) CA2314094A1 (fr)
DE (2) DE19755693C1 (fr)
HU (1) HUP0101001A3 (fr)
PL (1) PL341225A1 (fr)
TR (1) TR200001777T2 (fr)
WO (1) WO1999031197A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438458A (zh) * 2013-08-21 2013-12-11 陈开宇 新型垃圾焚烧炉
DE102012025478A1 (de) 2012-12-29 2014-07-03 Robert Völkl Verfahren und Vorrichtung zur Verwertung kohlenstoffhaltiger Asche
DE102021134442A1 (de) 2021-12-23 2023-06-29 Concord Blue Patent Gmbh Anlage zur Erzeugung eines Synthesegases und Verfahren zum Betreiben derselben

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930071C2 (de) * 1999-06-30 2001-09-27 Wolfgang Krumm Verfahren und Vorrichtung zur Pyrolyse und Vergasung von organischen Stoffen und Stoffgemischen
DE19945771C1 (de) * 1999-09-24 2001-02-22 Muehlen Gmbh & Co Kg Dr Verfahren zur Vergasung von organischen Stoffen und Stoffgemischen
DE19946381C2 (de) * 1999-09-28 2001-09-06 Zsw Verfahren und Vorrichtung zur Erzeugung eines kohlendioxidarmen, wasserstoffreichen Gases oder eines konditionierten Synthesegases und Verwendung derselben
DE19956560C2 (de) * 1999-11-24 2003-05-22 Bodo Wolf Verfahren zur Erzeugung von erneuerbaren Brenn- und Kraftstoffen
DE10033453B4 (de) * 2000-07-10 2006-11-02 Herhof Verwaltungsgesellschaft Mbh Verfahren und Vorrichtung zur Verwertung von Stoffen und Stoffgemischen, die organische Bestandteile enthalten
DE10055360B4 (de) * 2000-11-08 2004-07-29 Mühlen, Heinz-Jürgen, Dr.rer.Nat. Verfahren zur Vergasung von flüssigen bis pastösen organischen Stoffen und Stoffgemischen
WO2003002691A1 (fr) * 2001-06-27 2003-01-09 Herhof Umwelttechnik Gmbh Procede et dispositif pour pyrolyser et gazeifier des melanges de matieres a composants organiques
DE10228100B4 (de) * 2001-06-27 2008-04-03 Herhof Verwaltungsgesellschaft Mbh Verfahren und Vorrichtung zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten
JP2005247930A (ja) * 2004-03-02 2005-09-15 Takuma Co Ltd ガス化システム、発電システム、ガス化方法および発電方法
DE102005005859B3 (de) * 2005-02-09 2006-09-28 Peter Oehler Verfahren und Vorrichtung zur thermischen Behandlung von Biomasse
JP2006225483A (ja) * 2005-02-16 2006-08-31 Nippon Steel Corp バイオマスの炭化方法
JP4682027B2 (ja) * 2005-11-25 2011-05-11 株式会社キンセイ産業 燃料ガス発生装置
JP2007169534A (ja) * 2005-12-26 2007-07-05 Ube Machinery Corporation Ltd バイオマス炭化装置
DE102007005799B4 (de) 2006-10-18 2018-01-25 Heinz-Jürgen Mühlen Verfahren zur Erzeugung eines wasserstoffreichen Produktgases
DE102007062414B4 (de) 2007-12-20 2009-12-24 Ecoloop Gmbh Autothermes Verfahren zur kontinuierlichen Vergasung von kohlenstoffreichen Substanzen
DE102007062413B3 (de) * 2007-12-20 2009-09-10 Conera Process Solutions Gmbh Verfahren und Vorrichtung zur Wiederaufbereitung von CO2-haltigen Abgasen
GR20080100647A (el) * 2008-10-06 2010-05-13 Διονυσιος Χαραλαμπους Χοϊδας Συσκευη θερμικης αποδομησης ενυδρων ανθρακουχων συμπυκνωματων
EP2233551B1 (fr) 2009-03-26 2012-02-01 Marold, Freimut Joachim Procédé et dispositif de gazage de matériaux organiques
EP2435538A4 (fr) * 2009-05-28 2013-07-03 Thannhaueser Goel Ip Ag Procédé pour générer de l'énergie à partir de matières organiques et/ou de biomasse
JP5512200B2 (ja) * 2009-09-01 2014-06-04 新日鉄住金エンジニアリング株式会社 高効率乾留炉およびガス化剤の調整方法
EP2655552A1 (fr) * 2010-12-20 2013-10-30 Thannhaueser Goel IP AG Procédé de pyrolyse d'une matière d'alimentation organique
JP5756231B2 (ja) 2012-05-18 2015-07-29 株式会社ジャパンブルーエナジー バイオマスのガス化装置
CN103468322B (zh) * 2013-07-25 2015-08-12 易高环保能源研究院有限公司 一种由固体有机物水蒸气气化制取富氢气体的方法
CN106085481A (zh) * 2016-08-11 2016-11-09 北京神雾环境能源科技集团股份有限公司 一种煤热解反应器与气基竖炉联用系统及处理煤的方法
DE102017106347A1 (de) * 2017-03-24 2018-09-27 Universität Stuttgart Verfahren und Vorrichtung zur allothermen Herstellung von Brenngasen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE960892C (de) * 1951-03-25 1957-03-28 Ruhrgas Ag Verfahren zur thermischen Behandlung feinkoerniger bis staubfoermiger, insbesondere backender Kohlen
US4142867A (en) * 1974-07-04 1979-03-06 Karl Kiener Apparatus for the production of combustible gas
DE2537732C3 (de) * 1975-08-25 1981-12-10 Gosudarstvennyj naučno-issledovatel'skij energetičeskij institut imeni G.M. Kržižanovskogo, Moskva Verfahren zur thermischen Verarbeitung von festen bituminösen Stoffen
FR2426079A1 (fr) * 1978-05-17 1979-12-14 Charlier Etienne Procede et installation pour la production de gaz pauvre combustible
FR2535734B1 (fr) * 1982-11-05 1986-08-08 Tunzini Nessi Entreprises Equi Procede de gazeification de produits ligno-cellulosiques et dispositif pour sa mise en oeuvre
DE3611429A1 (de) * 1985-02-15 1986-11-06 SKF Steel Engineering AB, Hofors Verfahren zur abfallzersetzung
EP0271477A1 (fr) * 1986-11-26 1988-06-15 VOEST-ALPINE Aktiengesellschaft Dispositif pour le dégazage et la gazéification de combustible solide
IT1248156B (it) * 1991-05-08 1995-01-05 Daneco Danieli Ecologia Spa Procedimento di conversione del combustibile derivato dai rifiuti (rdf) in gas combustibile.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012025478A1 (de) 2012-12-29 2014-07-03 Robert Völkl Verfahren und Vorrichtung zur Verwertung kohlenstoffhaltiger Asche
CN103438458A (zh) * 2013-08-21 2013-12-11 陈开宇 新型垃圾焚烧炉
DE102021134442A1 (de) 2021-12-23 2023-06-29 Concord Blue Patent Gmbh Anlage zur Erzeugung eines Synthesegases und Verfahren zum Betreiben derselben
DE102021134442B4 (de) 2021-12-23 2023-07-06 Concord Blue Patent Gmbh Anlage zur Erzeugung eines Synthesegases und Verfahren zum Betreiben derselben

Also Published As

Publication number Publication date
ATE244746T1 (de) 2003-07-15
EP1053291A1 (fr) 2000-11-22
JP2002508433A (ja) 2002-03-19
HUP0101001A2 (hu) 2001-09-28
TR200001777T2 (tr) 2000-09-21
DE19755693C1 (de) 1999-07-29
DE59809004D1 (de) 2003-08-14
AU2513399A (en) 1999-07-05
PL341225A1 (en) 2001-03-26
HUP0101001A3 (en) 2002-10-28
BG104615A (en) 2001-03-30
CA2314094A1 (fr) 1999-06-24
WO1999031197A1 (fr) 1999-06-24

Similar Documents

Publication Publication Date Title
EP1053291B1 (fr) Procede de gazeification de matieres organiques et de melanges de substances
EP1226222B1 (fr) Procede de gazeification de matieres organiques et melanges de matieres
EP1192234B1 (fr) Procede et dispositif de pyrolyse et de gazeification de substances organiques ou de melanges de substances organiques
EP0745114B1 (fr) Procede de generation de gaz combustible
DE3310534C2 (fr)
EP1913116B1 (fr) Procede de pyrolyse rapide de lignocellulose
WO1981000112A1 (fr) Procede et installation pour la gazeification de combustibles en morceaux
EP2545142B1 (fr) Procédé et dispositif pour produire du gaz de synthèse et pour faire fonctionner un moteur à combustion interne au moyen de ce gaz
EP1299502B1 (fr) Procede et dispositif pour pyrolyser et gazeifier des melanges de matieres contenant des constituants organiques
WO2008046578A2 (fr) Procédé pour préparer un produit gazeux riche en hydrogène
CH615215A5 (fr)
DE3344847A1 (de) Schnell-pyrolyse von braunkohlen und anordnung zur durchfuehrung dieses verfahrens
DE19925316A1 (de) Verfahren und Anlage zur autothermen Vergasung von festen Brennstoffen
DE202009012833U1 (de) Vorrichtung zur Vergasung fester Brennstoffe
DE10226862B3 (de) Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen
DE102006049781A1 (de) Verfahren und Vorrichtung zur Vergasung von organischen Stoffen mit Hilfe von Luft
EP1399527B1 (fr) Procede et dispositif pour pyrolyser et gazeifier des melanges de matieres a composants organiques
AT520769A1 (de) Verfahren zum betreiben einer Anlage zur Energiegewinnung und Anlage hierfür
EP1134272A2 (fr) Procédé et dispositif pour la gazéification de matière combustible
DE10312603B4 (de) Verfahren und Vorrichtung zur Vergasung und Verbrennung stückiger nachwachsender Rohstoffe in Form tierischer Knochen
DE102005046347B4 (de) Vorrichtung und Verfahren zur Energiegewinnung aus Bioenergieträgern und anderen organischen Stoffen
DE10228100A1 (de) Verfahren und Vorrichtung zur Pyrolyse und Vergasung von Stoffgemischen, die organische Bestandteile enthalten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE LI LU NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE LI LU NL PT SE

17P Request for examination filed

Effective date: 20000905

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

REF Corresponds to:

Ref document number: 59809004

Country of ref document: DE

Date of ref document: 20030814

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031009

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031020

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. R.C. SALGO & PARTNER

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20031223

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031224

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030709

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040525

Year of fee payment: 6

26N No opposition filed

Effective date: 20040414

BERE Be: lapsed

Owner name: *MUHLEN HEINZ-JURGEN

Effective date: 20031231

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL