EP1050713B1 - Procédé de suppression respectivement de contrôle de vibrations thermoacoustiques dans une chambre de combustion ainsi que chambre de combustion pour la mise en oeuvre du procédé - Google Patents
Procédé de suppression respectivement de contrôle de vibrations thermoacoustiques dans une chambre de combustion ainsi que chambre de combustion pour la mise en oeuvre du procédé Download PDFInfo
- Publication number
- EP1050713B1 EP1050713B1 EP00810369A EP00810369A EP1050713B1 EP 1050713 B1 EP1050713 B1 EP 1050713B1 EP 00810369 A EP00810369 A EP 00810369A EP 00810369 A EP00810369 A EP 00810369A EP 1050713 B1 EP1050713 B1 EP 1050713B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vibrations
- combustion system
- combustion
- sensor
- acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
- F23M20/005—Noise absorbing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2210/00—Noise abatement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00013—Reducing thermo-acoustic vibrations by active means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00014—Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
Definitions
- the present invention relates to the field of combustion technology, as it plays a role in particular for gas turbines.
- the invention relates to a Process for the suppression or control of thermoacoustic vibrations in a combustion system according to the preamble of claim 1.
- the invention further relates to a combustion system for performing the Method according to the preamble of claim 7.
- thermoacoustic Vibrations are detected and rotated in phase by 180 degrees and coupled into the system in a correspondingly reinforced form in order to then due to superposition with the thermoacoustic vibrations out of phase leads to extinction.
- anti-noise solutions have proven useful in low power combustion systems. In high-performance combustion systems with correspondingly strong ones Pressure fluctuations, however, are becoming increasingly difficult to achieve appropriate acoustic Generate and couple vibrations with reasonable effort.
- thermoacoustic Vibrations are not due to sound cancellation based, but intervenes in the formation of the vibrations and how can be described as follows:
- Coherent structures play a crucial role Role in mixing processes between air and fuel.
- the dynamics of this Structures therefore affect combustion and thus heat release.
- a control of the combustion instabilities is possible in the recirculated exhaust gas.
- One way of influencing this is in the publication mentioned at the beginning described acoustic excitation.
- the acoustic excitation allows suppression the combustion-driven vibrations by doing the training coherent structures prevented.
- Vortex structures at the burner outlet will release heat periodically and thus preventing the basis for the occurrence of thermoacoustic vibrations.
- this method is based on the direct influence of the shear layer.
- This direct influence on the shear layer has the advantage that the external disturbances in the shear layer itself are amplified and therefore less energy is needed to generate the disturbances than in the case the direct cancellation of a sound field by anti-sound.
- the shear layer can be excited both downstream and upstream of the burner. There only low power is required, the sound energy e.g. of acoustic Drivers, in particular loudspeakers or the like, introduced into the flow become.
- the combustion system 10 includes one (Swirl-stabilized) burner 11, which works in a combustion chamber 12.
- the burner 11 receives the necessary combustion air via an air supply 13.
- a corresponding fuel supply 14 is provided for the fuel supply.
- sensors 20, .., 22 are provided which are connected to the air supply (sensors 20) and / or on the combustion chamber (sensors 21, 22) can be arranged.
- the sensors 20, .., 22 can be used for the direct detection of the pressure fluctuations or vibrations as (water-cooled) microphones or other dynamic Pressure transducers should be designed.
- the sensors 20, .., 22 can also be wholly or partly designed as optical sensors with which the Chemiluminescence e.g. the OH molecules the fluctuations in the heat release can be detected with the thermoacoustic vibrations are directly linked.
- the sensors 20, .. 22 are connected to a control 23, the output side controls different speakers 16, .., 19, which are symmetrical to the axis of the Combustion system 10 optionally in the area of the air supply 13 and / or the combustion chamber 12 are arranged.
- the speakers 16, .., 19 produce after Provided the regulation 23 acoustic vibrations, which then enter the combustion system 10 are coupled and there the shear layers described influence.
- the combustion system 10 according to the prior art with the Sensors 20, .., 22 and the loudspeakers 16, .. 19 forms - if the vibrations are detected at the combustion chamber 12 - the closed one shown in FIG. 2 Control loop 24.
- Vibrations in the combustion chamber 12 are in a subsequent filter 25 filtered and possibly amplified and then by means of a phase shifter 26 with specifiable phase setting 29 in the phase by a desired amount postponed.
- the phase-shifted signal then triggers a signal generator 27, whose output signal in a power amplifier 28 with a predeterminable amplitude setting 30 amplified and used to control the speakers 16, .., 19 becomes.
- a signal generator 27 whose output signal in a power amplifier 28 with a predeterminable amplitude setting 30 amplified and used to control the speakers 16, .., 19 becomes.
- the object is achieved by the entirety of the features of claims 1 and 7.
- the essence of the invention is, within the closed control loop, through the combustion system with the sensors and acoustic Excitation means (e.g. loudspeakers) is formed, a proportional regulation to provide, i.e., the amplitude of the acoustic vibrations generated directly to be proportional to the amplitude of the detected vibrations.
- acoustic Excitation means e.g. loudspeakers
- thermoacoustic vibrations are measured acoustically, or the associated fluctuations in heat release measured optically be used for optical measurement of the fluctuations in the heat release in particular the fluctuations in the chemiluminescence of the OH molecules be measured.
- Another preferred embodiment of the method according to the invention is characterized by the fact that it generates acoustic vibrations Speakers are used which acoustically connect to the combustion system are coupled.
- the sensors used in the combustion system according to the invention can according to a preferred embodiment, either as pressure fluctuations receiving pressure sensors, in particular as a microphone, or as optical sensors for measuring chemiluminescence.
- FIG. 3 shows a preferred exemplary embodiment of a control scheme, in the context of the invention instead of that from the prior art known control schemes (Fig. 2) used in a combustion system of FIG. 1 can be used to improve the suppression of thermoacoustic To achieve vibrations.
- the sensors 21, 22, detection signals characteristic of the thermoacoustic vibrations passed on to a P controller 31, which amplifies the signals and around delayed a predetermined period of time.
- the delay - that of the phase shift in Fig. 2 corresponds - can be done directly in the P controller 31, or - as shown in Fig. 3 - in a downstream delay circuit 32 with Delay time setting 33.
- the pre-amplified, delayed signal will then given directly to the input of a power amplifier 28 ', which it on the for the control of the speakers 16, .., 19 required performance level amplified.
- the proportional control causes the amplitude of the acoustic generated Vibrations with the amplitude of the detected combustion vibrations increases and decreases proportionally.
- FIG. 4 shows exemplary measurement results which show the suppression (in dB) of a pressure oscillation in the 100 Hz range in a combustion system 1 with a proportional control according to FIG. 3.
- the normalized amplitudes are shown as a function of the phase shift (in degrees) between the detected and generated vibrations for acoustic detection using a microphone (open circles) and optical detection via OH chemiluminescence (filled circles). You can see that in in both cases the maximum suppression of more than 20 dB is approximately the same with a phase shift of about 50 degrees.
- the necessary optimal time delay or Phase shift depends on the respective combustion system. significant is in any case that the acoustic vibrations generated with one power and can be coupled in which is several powers of ten smaller than the thermal performance of the combustion system. From the acoustic stimulants (Loudspeakers 16, .., 19) is to be demanded that - if it is the combustion system 10 is that of a gas turbine - that in gas turbines must withstand normal preheating temperatures of approx. 400 ° C. Farther they should approx. 0.001% of the thermal output per burner 11 (with several Burners) to the respective gas (air or fresh mixture when excited upstream; Exhaust gas can be released downstream of the burner 11) upon excitation.
- the thermal output per burner 11 with several Burners
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
- Control Of Combustion (AREA)
Claims (12)
- Procédé de suppression ou de contrôle de vibrations thermoacoustiques qui sont produites dans un système de combustion (10) comportant un brûleur (11) fonctionnant dans une chambre de combustion (12) en formant des structures tourbillonnaires ou cohérentes et un dégagement de chaleur périodique qui y est lié, procédé avec lequel les vibrations sont détectées dans une boucle de régulation fermée (24') et des vibrations sonores ayant une amplitude et une phase données sont générées en fonction des vibrations détectées puis injectées dans le système de combustion (10), caractérisé en ce qu'à l'intérieur de la boucle de régulation (24') l'amplitude des vibrations acoustiques générées est choisie proportionnellement à l'amplitude des vibrations détectées.
- Procédé selon la revendication 1, caractérisé en ce que la détection des vibrations thermoacoustiques s'effectue en mesurant de manière acoustique les variations de pression qui y sont liées.
- Procédé selon la revendication 1, caractérisé en ce que la détection des vibrations thermoacoustiques s'effectue en mesurant de manière optique les variations de dégagement de chaleur qui y sont liées.
- Procédé selon la revendication 3, caractérisé en ce que les variations de la chimioluminescence des molécules d'OH sont mesurées pour effectuer la mesure optique des variations du dégagement de chaleur.
- Procédé selon l'une des revendications 1 à 4, caractérisé en ce que des haut-parleurs (16, ..., 19) sont utilisés pour générer les vibrations acoustiques, lesquels sont reliés acoustiquement au système de combustion (10).
- Procédé selon l'une des revendications 1 à 5, caractérisé en ce que les vibrations acoustiques sont générées et injectées à une puissance qui est inférieure de plusieurs puissances de dix à la puissance thermique du système de combustion (10).
- Système de combustion pour mettre en oeuvre le procédé selon la revendication 1, système de combustion (10) qui comprend un brûleur (11), une chambre de combustion (12), une arrivée d'air (13) pour acheminer l'air de combustion au brûleur (11), au moins un capteur (20, ..., 22) pour détecter les variations thermoacoustiques ainsi que des moyens (16, ..., 19) pour générer et injecter les vibrations acoustiques dans le système de combustion (10), l'au moins un capteur (20, ..., 22) et les moyens (16, ..., 19) pour générer et injecter les vibrations acoustiques étant disposés dans une bcucle de régulation (24'), caractérisé en ce qu'un régulateur P (31) est prévu dans la boucle de régulation (24') entre l'au moins un capteur (20, ..., 22) et les moyens (16, ..., 19) pour générer et injecter les vibrations acoustiques.
- Système de combustion selon la revendication 7, caractérisé en ce que l'au moins un capteur (21) est réalisé sous la forme d'un capteur de pression qui enregistre les variations de pression, plus précisément sous la forme d'un microphone.
- Système de combustion selon la revendication 7, caractérisé en ce que l'au moins un capteur (22) est réalisé sous la forme d'un capteur optique pour mesurer la chimioluminescence.
- Système de combustion selon l'une des revendications 7 à 9, caractérisé en ce que les moyens pour générer et injecter les vibrations acoustiques sont réalisés sous la forme de haut-parleurs (16, ..., 19) .
- Système de combustion selon la revendication 10, caractérisé en ce qu'à l'intérieur de la boucle de régulation (24'), un amplificateur de puissance (28') qui commande les haut-parleurs (16, ..., 19) est branché à la suite du régulateur P (31).
- Système de combustion selon l'une des revendications 7 à 11, caractérisé en ce que des moyens (32) produisant un retard dans le temps réglable du signal de régulation sont prévus dans la boucle de régulation (24') avant les moyens pour générer et injecter les vibrations acoustiques ou avant les haut-parleurs (16, ..., 19).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19928226A DE19928226A1 (de) | 1999-05-07 | 1999-05-07 | Verfahren zur Unterdrückung bzw. Kontrolle von thermoakustischen Schwingungen in einem Verbrennungs-System sowie Verbrennungssystem zur Durchführung des Verfahrens |
DE19928226 | 1999-05-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1050713A1 EP1050713A1 (fr) | 2000-11-08 |
EP1050713B1 true EP1050713B1 (fr) | 2003-08-13 |
Family
ID=7911921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00810369A Expired - Lifetime EP1050713B1 (fr) | 1999-05-07 | 2000-05-01 | Procédé de suppression respectivement de contrôle de vibrations thermoacoustiques dans une chambre de combustion ainsi que chambre de combustion pour la mise en oeuvre du procédé |
Country Status (3)
Country | Link |
---|---|
US (1) | US6461144B1 (fr) |
EP (1) | EP1050713B1 (fr) |
DE (2) | DE19928226A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008022117A1 (de) * | 2007-06-15 | 2008-12-18 | Alstom Technology Ltd. | Verfahren und Prüfstand zum Bestimmen einer Transferfunktion |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1217295B1 (fr) | 2000-12-23 | 2006-08-23 | ALSTOM Technology Ltd | Brûleur pour la génération d'un gaz chaud |
DE10135566B4 (de) * | 2001-07-20 | 2009-12-10 | Eads Deutschland Gmbh | Verfahren und System zur aktiven Minderung der Schallabstrahlung von Triebwerken |
DE10213682A1 (de) | 2002-03-27 | 2003-10-09 | Alstom Switzerland Ltd | Verfahren und Vorrichtung zur Kontrolle von thermoakustischen Instabilitäten bzw. Schwingungen in einem Verbrennungssystem |
DE10257275A1 (de) * | 2002-12-07 | 2004-06-24 | Alstom Technology Ltd | Verfahren und Vorrichtung zur Beeinflussung thermoakustischer Schwingungen in Verbrennungssystemen |
DE102004013584B4 (de) * | 2003-05-10 | 2016-01-21 | IfTA Ingenieurbüro für Thermoakustik GmbH | Verfahren zur Untersuchung des frequenzabhängigen Schwingungsverhaltens eines Brenners |
FR2855253A1 (fr) * | 2003-05-19 | 2004-11-26 | Univ Maine | Refrigerateur thermoacoustique compact |
GB2407152A (en) * | 2003-10-14 | 2005-04-20 | Alstom | Apparatus and method for testing combustion |
DE102004015187A1 (de) * | 2004-03-29 | 2005-10-20 | Alstom Technology Ltd Baden | Brennkammer für eine Gasturbine und zugehöriges Betriebsverfahren |
DE102005001807A1 (de) * | 2005-01-13 | 2006-07-20 | Air Liquide Deutschland Gmbh | Verfahren zum Erhitzen eines Industrieofens und dafür geeignete Vorrichtung |
EP1724527A1 (fr) * | 2005-05-13 | 2006-11-22 | Siemens Aktiengesellschaft | Chambre de combustion et procédé pour supprimer des vibrations de combustion |
WO2007021259A1 (fr) * | 2005-08-12 | 2007-02-22 | Proto-Technics, Inc. | Bruleur de turbulence a nappes de tourbillons |
US7441411B2 (en) * | 2005-09-16 | 2008-10-28 | General Electric Company | Method and apparatus to detect onset of combustor hardware damage |
DE102006015230A1 (de) | 2006-03-30 | 2007-10-18 | Alstom Technology Ltd. | Brennkammer |
DE102007032600A1 (de) | 2007-07-11 | 2009-01-15 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Vorrichtung und Verfahren zur Verbesserung der Dämpfung von akustischen Wellen |
US8028512B2 (en) | 2007-11-28 | 2011-10-04 | Solar Turbines Inc. | Active combustion control for a turbine engine |
US9354618B2 (en) | 2009-05-08 | 2016-05-31 | Gas Turbine Efficiency Sweden Ab | Automated tuning of multiple fuel gas turbine combustion systems |
US9671797B2 (en) | 2009-05-08 | 2017-06-06 | Gas Turbine Efficiency Sweden Ab | Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications |
US8437941B2 (en) | 2009-05-08 | 2013-05-07 | Gas Turbine Efficiency Sweden Ab | Automated tuning of gas turbine combustion systems |
US9267443B2 (en) | 2009-05-08 | 2016-02-23 | Gas Turbine Efficiency Sweden Ab | Automated tuning of gas turbine combustion systems |
US9222674B2 (en) * | 2011-07-21 | 2015-12-29 | United Technologies Corporation | Multi-stage amplification vortex mixture for gas turbine engine combustor |
US20130291552A1 (en) * | 2012-05-03 | 2013-11-07 | United Technologies Corporation | Electrical control of combustion |
US9255835B2 (en) | 2012-08-22 | 2016-02-09 | Siemens Energy, Inc. | System for remote vibration detection on combustor basket and transition in gas turbines |
US9255526B2 (en) | 2012-08-23 | 2016-02-09 | Siemens Energy, Inc. | System and method for on line monitoring within a gas turbine combustor section |
CN103528090B (zh) * | 2013-10-09 | 2016-05-18 | 清华大学 | 燃烧系统以及燃烧振荡抑制系统 |
US10072843B2 (en) * | 2015-10-21 | 2018-09-11 | Honeywell International Inc. | Combustion resonance suppression |
US11092083B2 (en) | 2017-02-10 | 2021-08-17 | General Electric Company | Pressure sensor assembly for a turbine engine |
US11421877B2 (en) | 2017-08-29 | 2022-08-23 | General Electric Company | Vibration control for a gas turbine engine |
CN108870439A (zh) * | 2018-07-27 | 2018-11-23 | 中国东方电气集团有限公司 | 一种用于燃烧设备的燃烧振荡控制结构 |
DE102019206727A1 (de) * | 2019-05-09 | 2020-11-12 | Ibu-Tec Advanced Materials Ag | Vorrichtung zur thermischen Behandlung eines Rohstoffs in einem pulsierenden Heißgasstrom |
CN114526479A (zh) * | 2022-02-23 | 2022-05-24 | 浙江科技学院 | 一种脉动燃烧抑制碳烟生成的方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2043416A (en) * | 1933-01-27 | 1936-06-09 | Lueg Paul | Process of silencing sound oscillations |
US3826870A (en) * | 1970-03-20 | 1974-07-30 | Quest Electronics Corp | Noise cancellation |
US3936606A (en) * | 1971-12-07 | 1976-02-03 | Wanke Ronald L | Acoustic abatement method and apparatus |
US4044203A (en) * | 1972-11-24 | 1977-08-23 | National Research Development Corporation | Active control of sound waves |
US4473906A (en) | 1980-12-05 | 1984-09-25 | Lord Corporation | Active acoustic attenuator |
GB8329218D0 (en) * | 1983-11-02 | 1983-12-07 | Ffowcs Williams J E | Reheat combustion system for gas turbine engine |
FR2645247B2 (fr) | 1988-06-22 | 1991-06-07 | Centre Nat Rech Scient | Procede et dispositif de controle actif des instabilites de combustion |
US5347585A (en) | 1991-09-10 | 1994-09-13 | Calsonic Corporation | Sound attenuating system |
US5428951A (en) | 1993-08-16 | 1995-07-04 | Wilson; Kenneth | Method and apparatus for active control of combustion devices |
EP0918152A1 (fr) * | 1997-11-24 | 1999-05-26 | Abb Research Ltd. | Procédé et dispositif pour contrÔler les vibrations thermoacoustiques dans les chambres de combustion |
-
1999
- 1999-05-07 DE DE19928226A patent/DE19928226A1/de not_active Withdrawn
-
2000
- 2000-05-01 EP EP00810369A patent/EP1050713B1/fr not_active Expired - Lifetime
- 2000-05-01 DE DE50003241T patent/DE50003241D1/de not_active Expired - Fee Related
- 2000-05-05 US US09/565,553 patent/US6461144B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008022117A1 (de) * | 2007-06-15 | 2008-12-18 | Alstom Technology Ltd. | Verfahren und Prüfstand zum Bestimmen einer Transferfunktion |
Also Published As
Publication number | Publication date |
---|---|
DE50003241D1 (de) | 2003-09-18 |
DE19928226A1 (de) | 2001-02-01 |
US6461144B1 (en) | 2002-10-08 |
EP1050713A1 (fr) | 2000-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1050713B1 (fr) | Procédé de suppression respectivement de contrôle de vibrations thermoacoustiques dans une chambre de combustion ainsi que chambre de combustion pour la mise en oeuvre du procédé | |
DE19636093B4 (de) | Verfahren und Vorrichtung zur akustischen Modulation einer von einem Hybridbrenner erzeugten Flamme | |
EP0961906B1 (fr) | Procede d'attenuation active d'une oscillation de combustion, et utilisation de la procede | |
EP0987495B1 (fr) | Procédé pour minimiser les vibrations thermoacoustiques dans les chambres de combustion de turbines à gaz | |
DE3439903A1 (de) | Verbrennungssystem fuer ein gasturbinentriebwerk | |
EP2167796B1 (fr) | Dispositif et procédé d'amélioration de l'atténuation d'ondes acoustiques | |
DE10205839A1 (de) | Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens | |
US6840046B2 (en) | Method and apparatus for minimizing thermoacoustic vibrations in gas-turbine combustion chambers | |
WO1993010401A1 (fr) | Dispositif permettant de supprimer les vibrations dues a la combustion dans une chambre de combustion d'une installation a turbine a gaz | |
DE102009012914A1 (de) | Aktive Musterfaktorsteuerung/regelung für Gasturbinenmotoren | |
DE4339094A1 (de) | Verfahren zur Dämpfung von thermoakustischen Schwingungen sowie Vorrichtung zur Durchführung des Verfahrens | |
GB2356246A (en) | Combustion apparatus in particular for driving gas turbines | |
EP1348908A2 (fr) | Procédé et dispositif pour contrôler les instabilités ou les vibrations thermoacoustiques dans un système de combustion | |
EP0918152A1 (fr) | Procédé et dispositif pour contrÔler les vibrations thermoacoustiques dans les chambres de combustion | |
DE19939235B4 (de) | Verfahren zum Erzeugen von heissen Gasen in einer Verbrennungseinrichtung sowie Verbrennungseinrichtung zur Durchführung des Verfahrens | |
EP1429003B1 (fr) | Méthode et dispositif influençant les oscillations thermoacoustiques dans les systèmes de combustion | |
EP1533569B1 (fr) | Méthode de fonctionnement d'un appareil de combustion | |
EP1429004B1 (fr) | Méthode et dispositif influençant les oscillations thermoacoustiques dans les systèmes de combustion | |
US6705857B2 (en) | Method for injecting fuel into a burner | |
EP2447511B1 (fr) | Procédé de réglage d'une turbine à gaz et turbine à gaz destinée à l'exécution du procédé | |
DE102007025051A1 (de) | Hüttengasbrenner | |
DE10040868A1 (de) | Verfahren zur Reduzierung thermoakustischer Schwingungen in Strömungskraftmaschinen mit einem Brennersystem | |
WO2008138828A1 (fr) | Dispositif et procédé de mesure de vibrations acoustiques dans un écoulement fluidique et turbine à gaz équipée d'un dispositif de ce type | |
DE10205428A1 (de) | Vormischbrenner mit erhöhter Flammenstabilität | |
EP1114967B1 (fr) | Procédé et dispositif pour supprimer les tourbillons dans une chambre à combustion d'une turbomachine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010402 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SCHWEIZ) AG |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50003241 Country of ref document: DE Date of ref document: 20030918 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20031110 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040514 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080523 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080522 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |