EP1042641B1 - Heat exchanger tubular block and a multi-chamber flat tube which can be used therefor - Google Patents

Heat exchanger tubular block and a multi-chamber flat tube which can be used therefor Download PDF

Info

Publication number
EP1042641B1
EP1042641B1 EP99945950A EP99945950A EP1042641B1 EP 1042641 B1 EP1042641 B1 EP 1042641B1 EP 99945950 A EP99945950 A EP 99945950A EP 99945950 A EP99945950 A EP 99945950A EP 1042641 B1 EP1042641 B1 EP 1042641B1
Authority
EP
European Patent Office
Prior art keywords
block
collector
heat exchanger
tube
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99945950A
Other languages
German (de)
French (fr)
Other versions
EP1042641A1 (en
Inventor
Bernd Dienhart
Hans-Joachim Krauss
Hagen Mittelstrass
Karl-Heinz Staffa
Christoph Walter
Jochen Schumm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Werke GmbH
Original Assignee
Ford Werke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Werke GmbH filed Critical Ford Werke GmbH
Publication of EP1042641A1 publication Critical patent/EP1042641A1/en
Application granted granted Critical
Publication of EP1042641B1 publication Critical patent/EP1042641B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/04Communication passages between channels

Definitions

  • the invention relates to a heat exchanger tube block according to the preamble. of claim 1 and a multi-chamber flat tube that can be used for such a tube block.
  • a heat exchanger tube block is already known from DE-A-196 49 129.
  • the tube block contains a plurality of block units each consisting of a plurality of tube units lying one above the other in a stack, the stacking direction defining a block vertical direction and the flow channels formed by the tube units running in a block transverse direction perpendicular thereto.
  • the block units are arranged one behind the other in the block depth direction perpendicular to the block vertical and block transverse directions.
  • the pipe units open into collecting ducts which are arranged laterally on the block in the vertical direction of the block, ie with a longitudinal axis parallel to this.
  • the term "collecting channels” is used uniformly for the sake of simplicity for all channels into which the pipe units open, these being collecting channels in the actual sense in which the medium, which is carried out in parallel through several pipe units, is collected for the purpose of being discharged from the pipe block Distribution channels in which the medium supplied to the pipe block is distributed to several pipe units that flow into it as well as deflection channels, in which the medium is deflected from a first group of pipe units opening into a second group of pipe units opening.
  • a first medium flows through the tube block, while a second medium to be brought into thermal contact with the first is passed over the tube block in the depth direction of the block with the flow against the outside of the tube block surfaces.
  • Heat exchangers with such tube blocks are e.g. used as evaporators and condensers in automotive air conditioning systems.
  • the pipe block is usually supplemented into a pipe / fin block by inserting heat-conducting corrugated fins between the pipe units.
  • the tube units can be formed, for example, from flat tubes.
  • a generic heat exchanger tube block is disclosed in the published patent application DE 39 36 101 A1.
  • the tube block there is made up of single-chamber flat tubes which are bent once or in a meandering shape several times in a U-shape by 180 ° in the plane of their transverse and longitudinal extension and are stacked one above the other in the direction perpendicular thereto with the interposition of corrugated fins.
  • the tube block thus consists of two or more block units located one behind the other in the block depth direction, each of which contains a stack of straight, parallel flowed flat tube sections. Adjacent block units are in serial fluid communication via the side U-bends of the flat tubes.
  • the two ends of each flat tube open out on the same block side into an associated collecting duct running along the vertical direction of the block, the two collecting ducts being formed by a longitudinally divided collecting box or two separate collecting pipes.
  • the invention is a technical problem of providing a heat exchanger tube block of the aforementioned.
  • the invention solves this problem by providing a heat exchanger tube block with the features of claim 1 and a multi-chamber flat tube with the features of claim 10.
  • At least one collecting duct connection is provided between at least two adjacent block units, which connects a collecting duct of the one block unit directly to a collecting duct of the other block unit.
  • the term "direct” means that the relevant collecting channels are connected via a corresponding fluid connection running in the block depth direction and not or at least not only via one or more of the pipe units of the block.
  • a high heat transfer capacity for the pipe block can be achieved by the several block units lying one behind the other in the block depth direction and thus the flow direction of the other medium passed over the pipe block.
  • the tube block can be constructed from extruded flat tubes with channels optimized with regard to a small filling quantity, ie a small volume of the tube block to be flowed through, and high pressure stability.
  • the collecting ducts arranged on the side of the pipe block can be formed by highly pressure-stable collecting pipes with a relatively small cross-section, in particular if correspondingly narrow flat pipe units or those with the longitudinal direction of the collecting duct flat tube ends turned out from the transverse plane can be used.
  • direct collecting channel connections between each pair of adjacent block units are provided in such a way that the associated temperature control medium flows through the block units in series.
  • a collecting space which e.g. is formed by a collecting pipe or a collecting box, divided into several collecting channels by transverse partition walls. This allows a serpentine flow, once or several times deflected, to flow through a respective block unit.
  • the collecting channels are formed on at least one block side by individual collecting tubes, each assigned to a block unit, which are spaced apart in the depth direction of the block, which e.g. when used in an evaporator, the condensate drainage easier.
  • the spacing is brought about by one or more spacer elements which are formed on or attached to the header tubes.
  • the spacer element according to claim 5 includes a deformed sheet metal piece or tube piece with at least one slot opening or according to claim 6 an outwardly bulged passage on a collecting tube.
  • the spacer elements designed in this way keep the manifolds at a distance and at the same time define a respective manifold connection.
  • the spacer element can consist of two passages which abut or engage in one another in a fluid-tight manner, for which purpose at least one of the two passages is bulged outwards.
  • the tube units are formed by straight flat sections which open into the header tubes with twisted tube ends. Due to the twisting at the end, the flat tube ends are turned out of the transverse plane of the header tubes, which makes it possible to use header tubes with an inner diameter that is smaller than the width of the flat tube, in order to keep the inner volume of the tube block low.
  • a tube block developed according to claim 9 is supplemented to a tube / fin block.
  • a single corrugated fin can be introduced, the width of which essentially corresponds to the entire block depth, or several corrugated fins are provided next to one another, which can be of the same or different width and structure.
  • At least two tube units lying next to one another in the depth direction of the block are realized as integral parts of a one-piece multi-chamber flat tube, for which purpose the width extends over a corresponding number of block units.
  • the multi-chamber flat tube according to claim 10 is divided at the end by one or more longitudinal slots into a plurality of separate end segments, each of which is twisted about its own longitudinal axis.
  • the end segments of each flat tube end region are then individually assigned to the corresponding block units, so that the chambers of each flat tube are divided into groups on the corresponding block units, the chambers emanating from an end segment each belonging to a block unit.
  • the respective block unit 1 shows a tube block unit 1, several of which are arranged one behind the other in the block depth direction, that is to say perpendicular to the plane of the drawing, and thereby form a tube / fin block which can be used, for example, as a parallel-flow evaporator with variable refrigerant guidance in a motor vehicle air conditioning system.
  • the respective block unit 1 contains a stack of multi-arm flat tube units 2 successive in the block vertical direction, ie stacked one above the other, whose chambers, ie flow channels, in Block cross direction, ie perpendicular to the block depth and block vertical direction.
  • the flat tube units 2 which are otherwise located in planes perpendicular to the block vertical direction, are twisted by a predeterminable torsion angle about their longitudinal central axis, alternatively about an axis parallel to them.
  • the torsion angle can be selected as desired between 0 ° and 90 °, with a torsion of 90 ° being selected as an example in FIG. 1.
  • Heat-conducting corrugated fins 6 are introduced between the flat tube units 2.
  • the flat tube units 2 open into respective header tubes 4a, 5a provided on opposite tube block sides, which are arranged with a longitudinal axis parallel to the vertical direction of the block.
  • the flat tube ends 3a, 3b are inserted in a fluid-tight manner in corresponding slots in the collecting tube 4a, 5a.
  • these longitudinal slots run parallel to the longitudinal axis of the collecting pipe, which enables the use of collecting pipes 4a, 5a with a particularly small inside diameter. In extreme cases, the latter then only needs to be slightly larger than the thickness of the flat tube units 2.
  • the longitudinal slots made on the respective manifold 4a, 5a are separated from one another by narrow webs or are combined to form a continuous longitudinal slot.
  • FIG. 2 shows an arrangement of four collecting channels 4a, 4b, 4c, 4d lying next to one another in parallel in the block depth direction, as are provided on the right side of the tube block in FIG. 1 for the assumed case that the tube block is composed of four block units 1 lying one behind the other.
  • four header tubes are then also correspondingly arranged.
  • the side shown in FIG. 2 forms the connection side of the pipe block, the medium passed through the pipe block for the flow direction selected in FIGS. 1 and 2, illustrated by flow arrows, being fed to the left-hand header pipe 4a in FIG. 2 and from the one shown in FIG right manifold 4d is discharged again. It is understood that alternatively the opposite flow direction is possible.
  • the manifolds 4a to 4d shown in FIG. 2 are each separated by a transverse partition 7a to 7d into two separate manifolds 8a, 8b; 9a, 9b; 10a, 10b; 11a, 11b divided.
  • the opposite collecting pipes are undivided and therefore each form a single collecting channel 12, as illustrated in FIG. 1 on the left collecting pipe 5aa.
  • the undivided manifolds on the left side of the block in FIG. 1 act as deflecting tubes which deflect the one part of the flat tube units, which open in parallel on the opposite side into the one collecting duct 8a, into the other part of the flat tube units, which open opposite to the other collecting channel 8b.
  • This flow behavior can also be seen in FIG. 1.
  • a collection channel connection 13a, 13b, 13c is provided between each two adjacent ones of the four header pipes 4a to 4d of FIG. 2, in which a direct fluid connection is created in the block depth direction between the associated flow channels.
  • the collecting duct connections 13a to 13c are arranged alternately such that of the two collecting ducts of each inner collecting pipe 4b, 4c, one with the neighboring collecting duct of a collecting pipe adjoining on one side and the other with the adjacent collecting duct of a collecting pipe adjoining on the other side is connected. In this way, the temperature control medium is guided serially through the block units located one behind the other, whereby it flows through each block unit in a meandering manner.
  • the temperature control medium reaches the associated collecting duct 8a of one end via a lateral inlet opening 14 Manifold 4a.
  • This collecting duct 8a acts as a distributor, which divides the medium into the first part of parallel flat tube units 2 of the block unit 1 in question that flows into it.
  • the medium After flowing through this group of flat tube units 2, the medium reaches the opposite collecting or deflecting tube 5a, where it is deflected in the remaining part of the flat tube units 2 of this block unit 1, in order to pass through these flat tube units into the other collecting channel 8b of the inlet-side collecting tube 4a stream.
  • the medium is forwarded via the corresponding collecting duct connection 13a into the adjacent collecting duct 9a of the adjacent collecting pipe 4b and thus to the next block unit. It flows through this block unit, as can be seen from FIGS. 1 and 2, in the opposite direction to the flow through the first block unit on the inlet side.
  • the flow directions are further illustrated in Fig. 2 in that in those collecting channels in which the temperature control medium is passed into the plane of the drawing, the usual crossed circles are shown, while in the other collecting channels, which act as collectors and into which Medium enters the drawing plane from behind, the usual dotted circles are shown.
  • the medium After flowing through the second block unit, the medium thus arrives in the collecting collecting duct 9b of this block unit and is forwarded from there to the distributing, neighboring collecting duct 10a via the corresponding collecting duct connection 13b to the next block unit.
  • This third block unit is then again flowed through in the same direction as the first block unit.
  • the medium From its collecting channel 10b, the medium reaches the fourth block unit via the associated channel connection 13c, which in turn flows through in the same way as the second block unit.
  • the temperature control medium is then discharged from the pipe block via an end outlet 15.
  • fewer or more than four block units can also be connected in series in the manner described.
  • shape and positioning of the inlet and outlet openings can be modified as desired in relation to the example shown in order to supply the temperature control medium to the pipe block in a manner which is best adapted to the respective application and to discharge it again from there.
  • additional transverse partition walls can be provided in the collecting tubes on both sides of the respective block unit in order to guide the temperature control fluid through the block unit in a meandering manner with repeated reversal of direction.
  • Another modification is to provide the inlet and outlet openings not on the same as shown, but on opposite pipe block sides.
  • the manifolds 4a to 4d are spaced apart on the respective pipe block side, which e.g. when used as an evaporator, the condensate drainage easier.
  • FIGS. 3 to 6 Various implementations for this are shown in FIGS. 3 to 6. In the example of FIG.
  • a suitably shaped sealing sleeve 17 is provided as a spacer element, which is provided at two radially opposite points on its circumference with longitudinal slots 18a, 18b, the slot edges of which form connecting pieces which are inserted in fluid-tight manner into corresponding longitudinal slots of two header pipes 19a, 19b to be connected are.
  • the tubular sleeve 17, which thus forms a tubular transition piece, is closed at the end and fixes the two fluid-connected header tubes 19a, 19b at the desired distance.
  • a suitably shaped, solder-plated sheet metal piece 20 serves as a spacer element, into which an opening 21 is made, which is adjacent with longitudinal slots 22, 23 Collecting tubes 24, 25 form a continuous fluid connection between the collecting channels defined by the collecting tubes 24, 25.
  • two flat tubes 2a, 2b of adjacent tube block units are shown in FIG. 4, which are inserted with correspondingly twisted tube ends into corresponding longitudinal slots of the header tubes 24, 25 in a fluid-tight manner.
  • the temperature control medium flows from a flat tube 2a and possibly further parallel flat tubes of the same block unit into the collecting duct of the associated collecting tube 24 and is forwarded via the direct collecting channel connection into the collecting channel of the adjacent collecting tube 25 and then into the flat tubes opening there 26 of the next tube block unit concerned.
  • the solder-plated sheet metal piece 20 is fixed to the manifolds 24, 25 by a suitable soldering process, the previous solder-plating being carried out by any conventional method, e.g. by galvanizing or the so-called CD process.
  • a common soldering process can be provided both for connecting the spacer elements 20 to the header tubes 24, 25 and for the fluid-tight connection of the flat tube units to the header tubes 24, 25, for which purpose the flat tubes and / or the header tubes are also prefabricated with solder and provided with flux.
  • unplated manifolds 24, 25 can be used and separate shaped solder parts can be introduced at the connection points.
  • the fluid-connected manifolds 24, 25 are also kept at a desired distance from one another with the spacer elements 20 used in the example of FIG. 4.
  • FIG. 5 and 6 show examples in which the spacer elements are formed by corresponding bulges on the connected manifolds themselves.
  • collecting tubes 26, 27 are used, which are provided with dome-shaped bulges 28, 29 at the connection points are, which surround a respective through opening 30, 31.
  • the header pipes 26, 27 to be connected are joined together with their dome-shaped bulges 28, 29 in a fluid-tight manner, so that the desired fluid connection is obtained on the one hand and the header pipes 26, 27 are kept apart as desired in the area outside the connection point.
  • header pipes 32, 33 to be connected to one another are provided with different, intermeshing dome-shaped bulges 34, 35, which surround associated through openings.
  • the narrower bulge 35 is inserted into the corresponding bulge 34 of greater width and fixed in it in a fluid-tight manner, preferably by means of sealing soldering.
  • the slots required for inserting the tube units can be made in one operation with the slots required for the direct manifold fluid connection, i.e. Passages, and possibly the associated dome-shaped bulges are generated.
  • the passages for the direct collecting channel fluid connections can be round or elongated.
  • the two dome-shaped bulges forming a respective collecting channel-fluid connection do not need, as in the examples shown, both to be bulged outwards; alternatively, one of the two can be bulged inwards, in which the other bulge facing outwards engages.
  • the flat tube units 2 of the tube / fin block of FIG. 1 can consist of flat tubes 2a, 2b lying next to one another in the block depth direction, for each block unit 1, ie in this case each block unit 1 consists of a stack of individual flat tubes, whose width corresponds essentially to the depth of the respective block unit.
  • the multi-chamber flat tube 2c shown there has a width T which essentially corresponds to the total tube block depth, ie the sum of the depths of the individual block units.
  • the flat tube 2c is provided in both end regions, one of which is shown in FIG.
  • n 3 cuts in this example, as a result of which the end region is divided into one Number n + 1 of end segments 37 1 to 37 4 , that is, divided into four segments in the case shown.
  • Each end segment 37 1 to 37 4 is twisted by 90 ° about its own longitudinal central axis, alternatively a different torsion angle greater than 0 ° and less than 90 ° can be selected.
  • the end segments 37 1 to 37 4 run on their end faces parallel to the vertical direction of the block, ie to the longitudinal direction of the associated manifolds 38 1 , 38 2 , 38 3 , 38 4 , which are provided with corresponding longitudinal slots into which the end segments 37 1 to 37 4 are inserted.
  • the flat tube 2c is fluidically divided into a corresponding number n of flat tube strands 2 1 , 2 2 , 2 3 , 2 4 , each of which belongs to one of the block units lying one behind the other in the block depth direction and contains an associated subgroup of all flow channel-forming chambers of the flat tube 2c. While in the example of FIG.
  • the flat tube 2c is divided into sub-strands 2 1 to 2 4 of the same width, a division into sub-strands of different widths can alternatively be provided.
  • an open flow channel 39 remains between two adjacent flat tube parts, in that this is shortened at the end by the correspondingly wide saw cuts 36 1 , 36 2 , 36 3 and thus does not function as a fluid-carrying channel opening into the collecting tubes. If, alternatively, the saw cuts are made as narrow cuts between adjacent channels, all chambers of the flat tube 2c can function as fluid-conducting flow channels if required.
  • the multi-chamber flat tube 2c is preferably manufactured as an extruded profile with channels optimized with regard to a small internal volume and high pressure stability.
  • a low internal volume and a high pressure stability of the tube / fin block overall additionally contributes to the fact that collecting tubes with a relatively small inner diameter can be used for the tube block, especially in flat tubes with twisted ends.
  • a very variable flow guidance for the temperature control medium passed through can be achieved depending on the positioning of the direct collecting duct connections between the collecting pipes and / or the transverse partition walls in the collecting pipes.
  • a corrugated fin extending over the entire block depth or a plurality of narrower corrugated fins of the same or different width can be introduced adjacent to one another per fin layer.
  • a wide corrugated fin extending over three block units and a narrow corrugated fin limited to the fourth block unit or alternately a narrower and a wider corrugated fin each can be provided.
  • the various possibilities for introducing the corrugated fins 6 are independent of whether the wide flat tube 2c from FIG. 7 or a plurality of flat tubes lying next to one another in the block depth direction are provided for the tube block.
  • the tube block according to the invention is particularly well suited, among other things, to evaporators of automotive air conditioning systems working with the refrigerant CO 2 , in that it is sufficiently pressure-stable and has a comparatively small internal volume, whereby besides the already mentioned further realizations are possible.
  • manifolds without transverse partition walls can be provided, ie all tube units of a block unit are flowed through in parallel.
  • the manifold connections are arranged alternately on one and the other manifold tube block side.
  • you can the collecting duct connections are formed by deflecting pipes which deflect the medium flowing through from pipe units of a block unit into the pipe units of at least one neighboring block unit.
  • these tube units of the block units involved then open into a common deflection space formed in front of the deflection tube, which thus integrally comprises the connected collecting channels of these block units.

Description

Die Erfindung bezieht sich auf einen Wärmeübertrager-Rohrblock nach dem Oberbegriff. des Anspruchs 1 sowie auf ein für einen solchen Rohrblock verwendbares Mehrkammer-Flachrohr. Ein derartiger Wärmeübertrager-Rohrblock ist bereits aus der DE-A-196 49 129 bekannt.The invention relates to a heat exchanger tube block according to the preamble. of claim 1 and a multi-chamber flat tube that can be used for such a tube block. Such a heat exchanger tube block is already known from DE-A-196 49 129.

Der Rohrblock beinhaltet mehrere Blockeinheiten aus jeweils mehreren stapelförmig übereinanderliegenden Rohreinheiten, wobei die Stapelrichtung eine Blockhochrichtung definiert und die von den Rohreinheiten gebildeten Strömungskanäle in einer dazu senkrechten Blockquerrichtung verlaufen. Die Blockeinheiten sind in der zur Blockhoch- und Blockquerrichtung senkrechten Blocktiefenrichtung hintereinanderliegend angeordnet. Die Rohreinheiten münden in Sammelkanäle, die seitlich am Rchrblock in Blockhochrichtung verlaufend, d.h. mit hierzu paralleler Längsachse, angeordnet sind. Vorliegend wird der Begriff "Sammelkanäle" der Einfachkeit halber einheitlich für alle Kanäle verwendet, in welche die Rohreinheiten münden, wobei es sich hierbei um Sammelkanäle im eigentlichen Sinn, in denen das parallel durch mehrere Rohreinheiten durchgeführte Medium zwecks Abführung aus dem Rohrblock gesammelt wird, um Verteilkanäle, in denen das dem Rohrblock zugeführte Medium auf mehrere einmündende Rohreinheiten verteilt wird, sowie um Umlenkkanäle handelt, in denen das Medium von einer ersten Gruppe einmündender Rohreinheiten in eine zweite Gruppe einmündender Rohreinheiten umgelenkt wird.The tube block contains a plurality of block units each consisting of a plurality of tube units lying one above the other in a stack, the stacking direction defining a block vertical direction and the flow channels formed by the tube units running in a block transverse direction perpendicular thereto. The block units are arranged one behind the other in the block depth direction perpendicular to the block vertical and block transverse directions. The pipe units open into collecting ducts which are arranged laterally on the block in the vertical direction of the block, ie with a longitudinal axis parallel to this. In the present case, the term "collecting channels" is used uniformly for the sake of simplicity for all channels into which the pipe units open, these being collecting channels in the actual sense in which the medium, which is carried out in parallel through several pipe units, is collected for the purpose of being discharged from the pipe block Distribution channels in which the medium supplied to the pipe block is distributed to several pipe units that flow into it as well as deflection channels, in which the medium is deflected from a first group of pipe units opening into a second group of pipe units opening.

Im Gebrauch wird der Rohrblock von einem ersten Medium durchströmt, während ein mit dem ersten in Wärmekontakt zu bringendes zweites Medium in Blocktiefenrichtung unter außenseitiger Anströmung der Rohrblockoberflächen über den Rohrblock hinweggeführt wird. Wärmeübertrager mit solchen Rohrblöcken werden z.B. als Verdampfer und Kondensatoren in Kraftfahrzeug-Klimaanlagen eingesetzt. Meist ist der Rohrblock unter Einfügen wärmeleitender Wellrippen zwischen die Rohreinheiten zu einem Rohr-/Rippenblock ergänzt. Die Rohreinheiten können beispielsweise von Flachrohren gebildet sein.In use, a first medium flows through the tube block, while a second medium to be brought into thermal contact with the first is passed over the tube block in the depth direction of the block with the flow against the outside of the tube block surfaces. Heat exchangers with such tube blocks are e.g. used as evaporators and condensers in automotive air conditioning systems. The pipe block is usually supplemented into a pipe / fin block by inserting heat-conducting corrugated fins between the pipe units. The tube units can be formed, for example, from flat tubes.

Ein gattungsgemäßer Wärmeübertrager-Rohrblock ist in der Offenlegungsschrift DE 39 36 101 A1 offenbart. Der dortige Rohrblock ist aus Einkammer-Flachrohren aufgebaut, die einmal oder mäanderförmig mehrmals U-förmig um 180° in der Ebene ihrer Quer- und Längserstreckung umgebogen und in der dazu senkrechten Richtung unter Zwischenfügung von Wellrippen übereinandergestapelt sind. Je nach Anzahl der Flachrohrwindungen besteht somit der Rohrblock aus zwei oder mehr in Blocktiefenrichtung hintereinanderliegenden Blockeinheiten, von denen jede einen Stapel geradliniger, parallel durchströmter Flachrohrabschnitte beinhaltet. Benachbarte Blockeinheiten stehen über die seitlichen U-Bögen der Flachrohre in serieller Fluidverbindung. Die beiden Enden jedes Flachrohrs münden an derselben Blockseite in je einen zugehörigen, entlang der Blockhochrichtung verlaufenden Sammelkanal, wobei die beiden Sammelkanäle von einem längsgeteilten Sammelkasten oder zwei getrennten Sammelrohren gebildet sind.A generic heat exchanger tube block is disclosed in the published patent application DE 39 36 101 A1. The tube block there is made up of single-chamber flat tubes which are bent once or in a meandering shape several times in a U-shape by 180 ° in the plane of their transverse and longitudinal extension and are stacked one above the other in the direction perpendicular thereto with the interposition of corrugated fins. Depending on the number of flat tube turns, the tube block thus consists of two or more block units located one behind the other in the block depth direction, each of which contains a stack of straight, parallel flowed flat tube sections. Adjacent block units are in serial fluid communication via the side U-bends of the flat tubes. The two ends of each flat tube open out on the same block side into an associated collecting duct running along the vertical direction of the block, the two collecting ducts being formed by a longitudinally divided collecting box or two separate collecting pipes.

Der Erfindung liegt als technisches Problem die Bereitstellung eines Wärmeübertrager-Rohrblocks der eingangs genannter. Art, mit dem ein Wärmeübertrager mit hohem Wärmeübertragungsvermögen und hoher Druckstabilität bei relativ geringer Füllmenge und mit der Möglichkeit einer variablen Führung des hindurchgeleiteten Temperiermediums realisierbar ist, sowie eines zum Aufbau eines solchen Rohrblocks besonders geeigneten Mehrkammer-Flachrohres zugrunde.The invention is a technical problem of providing a heat exchanger tube block of the aforementioned. Type with which a heat exchanger with high heat transfer capacity and high pressure stability with a relatively small filling quantity and can be realized with the possibility of variable guidance of the temperature control medium passed through, as well as a multi-chamber flat tube which is particularly suitable for the construction of such a tube block.

Die Erfindung löst dieses Problem durch die Bereitstellung eines Wärmeübertrager-Rohrblocks mit den Merkmalen des Anspruchs 1 sowie eines Mehrkammer-Flachrohres mit den Merkmalen des Anspruchs 10.The invention solves this problem by providing a heat exchanger tube block with the features of claim 1 and a multi-chamber flat tube with the features of claim 10.

Beim Wärmeübertrager-Rohrblock nach Anspruch 1 ist zwischen wenigstens zwei benachbarten Blockeinheiten wenigstens eine Sammelkanalverbindung vorgesehen, die einen Sammelkanal der einen Blockeinheit direkt mit einem Sammelkanal der anderen Blockeinheit verbindet. Mit der Bezeichnung "direkt" ist dabei gemeint, daß die betreffenden Sammelkanäle über eine entsprechende, in Blocktiefenrichtung verlaufende Fluidverbindung und nicht oder jedenfalls nicht nur über eine oder mehrere der Rohreinheiten des Blocks in Verbindung stehen. Mit Hilfe dieser einen oder vorzugsweise mehreren direkten Fluidverbindungen der seitlich des Rohrblocks angeordneten Sammelkanäle läßt sich eine sehr variable, an den jeweiligen Anwendungsfall angepaßte Strömungsführung des hindurchgeleiteten Mediums, z.B. eines Kältemittels einer Klimaanlage, realisieren. Durch die mehreren, in Blocktiefenrichtung und damit der Strömungsrichtung des über den Rohrblock hinweggeführten anderen Mediums hintereinanderliegenden Blockeinheiten läßt sich ein hohes Wärmeübertragungsvermögen für den Rohrblock erzielen. Der Rohrblock kann aus extrudierten Flachrohren mit hinsichtlich geringer Füllmenge, d.h. geringem zu durchströmendem Volumen des Rohrblocks, und hoher Druckstabilität optimierten Kanälen aufgebaut sein. Die seitlich am Rohrblock angeordneten Sammelkanäle können von hoch druckstabilen Sammelrohren mit relativ geringem Querschnitt gebildet sein, insbesondere wenn entsprechend schmale Flachrohreinheiten oder solche mit zur Sammelkanallängsrichtung hin aus der Querebene herausgedrehten Flachrohrenden verwendet werden.In the heat exchanger tube block according to claim 1, at least one collecting duct connection is provided between at least two adjacent block units, which connects a collecting duct of the one block unit directly to a collecting duct of the other block unit. The term "direct" means that the relevant collecting channels are connected via a corresponding fluid connection running in the block depth direction and not or at least not only via one or more of the pipe units of the block. With the help of these one or preferably several direct fluid connections of the collecting channels arranged on the side of the tube block, a very variable flow control of the medium passed through, adapted to the respective application, for example a refrigerant of an air conditioning system, can be realized. A high heat transfer capacity for the pipe block can be achieved by the several block units lying one behind the other in the block depth direction and thus the flow direction of the other medium passed over the pipe block. The tube block can be constructed from extruded flat tubes with channels optimized with regard to a small filling quantity, ie a small volume of the tube block to be flowed through, and high pressure stability. The collecting ducts arranged on the side of the pipe block can be formed by highly pressure-stable collecting pipes with a relatively small cross-section, in particular if correspondingly narrow flat pipe units or those with the longitudinal direction of the collecting duct flat tube ends turned out from the transverse plane can be used.

Bei einem nach Anspruch 2 weitergebildeten Rohrblock sind direkte Sammelkanalverbindungen zwischen jedem Paar benachbarter Blockeinheiten dergestalt vorgesehen, daß die Blockeinheiten vom zugehörigen Temperiermedium seriell durchströmt werden.In a tube block developed according to claim 2, direct collecting channel connections between each pair of adjacent block units are provided in such a way that the associated temperature control medium flows through the block units in series.

Bei einem nach Anspruch 3 weitergebildeten Rohrblock ist ein Sammelraum, der z.B. durch ein Sammelrohr oder einen Sammelkasten gebildet ist, durch Quertrennwände in mehrere Sammelkanäle unterteilt. Dadurch läßt sich eine schlangenlinienförmige, einmal oder mehrmals umgelenkte Durchströmung einer jeweiligen Blockeinheit verwirklichen.In a tube block developed according to claim 3 is a collecting space, which e.g. is formed by a collecting pipe or a collecting box, divided into several collecting channels by transverse partition walls. This allows a serpentine flow, once or several times deflected, to flow through a respective block unit.

Bei einem nach Anspruch 4 weitergebildeten Rohrblock sind die Sammelkanäle auf wenigstens einer Blockseite von einzelnen, jeweils einer Blockeinheit zugeordneten Sammelrohren gebildet, die in Blocktiefenrichtung voneinander beabstandet sind, was z.B. bei Verwendung in einem Verdampfer den Kondenswasserablauf erleichtert. Die Beabstandung wird durch ein oder mehrere Distanzelemente bewerkstelligt, die an den Sammelrohren angeformt oder an diesen angebracht sind.In a tube block developed according to claim 4, the collecting channels are formed on at least one block side by individual collecting tubes, each assigned to a block unit, which are spaced apart in the depth direction of the block, which e.g. when used in an evaporator, the condensate drainage easier. The spacing is brought about by one or more spacer elements which are formed on or attached to the header tubes.

In weiteren Ausgestaltungen dieser Maßnahme beinhaltet das Distanzelement gemäß Anspruch 5 ein umgeformtes Blechstück oder Rohrstück mit wenigstens einer Schlitzöffnung oder gemäß Anspruch 6 einen nach außen ausgebauchten Durchlaß an einem Sammelrohr. Die so gestalteten Distanzelemente halten die Sammelrohre auf Abstand und definieren gleichzeitig eine jeweilige Sammelkanalverbindung. In weiterer Ausgestaltung der Erfindung gemäß Anspruch 7 kann das Distanzelement aus zwei fluiddicht aneinanderstoßenden oder ineinandergreifenden Durchlässen bestehen, wozu wenigstens einer der beiden Durchlässe nach außen ausgebaucht ist.In further refinements of this measure, the spacer element according to claim 5 includes a deformed sheet metal piece or tube piece with at least one slot opening or according to claim 6 an outwardly bulged passage on a collecting tube. The spacer elements designed in this way keep the manifolds at a distance and at the same time define a respective manifold connection. In a further embodiment of the invention according to claim 7, the spacer element can consist of two passages which abut or engage in one another in a fluid-tight manner, for which purpose at least one of the two passages is bulged outwards.

Bei einem nach der Erfindung weitergebildeten Rohrblock sind die Rohreinheiten von geradlinigen Flachrchrabschnitten gebildet, die mit tordierten Rohrenden in die Sammelrohre münden. Durch die endseitige Tordierung sind die Flachrohrenden aus der Querebene der Sammelrohre herausgedreht, was es ermöglicht, Sammelrohre mit gegenüber der Flachrohrbreite geringerem Innendurchmesser zu verwenden, um das innere Volumen des Rohrblocks gering zu halten.In a tube block further developed according to the invention, the tube units are formed by straight flat sections which open into the header tubes with twisted tube ends. Due to the twisting at the end, the flat tube ends are turned out of the transverse plane of the header tubes, which makes it possible to use header tubes with an inner diameter that is smaller than the width of the flat tube, in order to keep the inner volume of the tube block low.

Ein nach Anspruch 9 weitergebildeter Rohrblock ist zu einem Rohr-/Rippenblock ergänzt. Dabei kann für jede Wellrippenschicht eine einzelne Wellrippe eingebracht sein, deren Breite im wesentlichen der gesamten Blocktiefe entspricht, oder es sind mehrere wellrippen nebeneinanderliegend vorgesehen, die von gleicher oder unterschiedlicher Breite und Struktur sein können.A tube block developed according to claim 9 is supplemented to a tube / fin block. For each corrugated fin layer, a single corrugated fin can be introduced, the width of which essentially corresponds to the entire block depth, or several corrugated fins are provided next to one another, which can be of the same or different width and structure.

Bei einem nach der Erfindung weitergebildeten Rohrblock sind wenigstens zwei in Blocktiefenrichtung nebeneinanderliegende Rohreinheiten als integrale Teile eines einstückigen Mehrkammer-Flachrohres realisiert, wozu sich dieses in der Breite über entsprechend viele Blockeinheiten erstreckt.In the case of a tube block developed according to the invention, at least two tube units lying next to one another in the depth direction of the block are realized as integral parts of a one-piece multi-chamber flat tube, for which purpose the width extends over a corresponding number of block units.

Das Mehrkammer-Flachrohr nach Anspruch 10 ist endseitig durch einen oder mehrere Längsschlitze in eine Mehrzahl von separaten Endsegmenten unterteilt, die um je eine eigene Längsachse tordiert sind. Bei einem aus solchen Flachrohren aufgebauten Rohrblock sind dann die Endsegmente jedes Flachrohrendbereichs einzeln den entsprechenden Blockeinheiten zugeordnet, so daß die Kammern eines jeden Flachrohres gruppenweise auf die entsprechenden Blockeinheiten aufgeteilt sind, wobei jeweils die aus einem Endsegment ausmündenden Kammern zu einer Blockeinheit gehören.The multi-chamber flat tube according to claim 10 is divided at the end by one or more longitudinal slots into a plurality of separate end segments, each of which is twisted about its own longitudinal axis. In the case of a tube block constructed from such flat tubes, the end segments of each flat tube end region are then individually assigned to the corresponding block units, so that the chambers of each flat tube are divided into groups on the corresponding block units, the chambers emanating from an end segment each belonging to a block unit.

Vorteilhafte Aufsführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:

Fig. 1
eine schematische Seitenansicht einer von mehreren Blockeinheiten eines Rohr-/Rippenblocks für einen Verdampfer einer Klimaanlage,
Fig. 2
eine schematische Seitenansicht einer seitlichen Sammelrohranordnung des Rohr-/Rippenblocks von Fig. 1,
Fig. 3
eine schematische Querschnittsansicht einer ersten Realisierung direkter Fluidverbindungen zwischen Sammelkanälen der Sammelrohre von Fig. 2,
Fig. 4
eine schematische Querschnittsansicht einer zweiten Realisierung der Sammelkanalverbindungen,
Fig. 5
eine schematische Querschnittsansicht einer dritten Realisierung der Sammelkanalverbindungen,
Fig. 6
eine schematische Querschnittsansicht einer vierten Realisierung der Sammelkanalverbindungen und
Fig. 7
eine schematische, teilweise Draufsicht auf ein für den Rohr-/Rippenblock von Fig. 1 verwendbares Mehrkammer-Flachrohr.
Advantageous embodiments of the invention are shown in the drawings and are described below. Here show:
Fig. 1
1 shows a schematic side view of one of a plurality of block units of a tube / fin block for an evaporator of an air conditioning system,
Fig. 2
FIG. 1 shows a schematic side view of a lateral manifold arrangement of the tube / fin block from FIG. 1,
Fig. 3
2 shows a schematic cross-sectional view of a first realization of direct fluid connections between collecting channels of the collecting pipes of FIG. 2,
Fig. 4
1 shows a schematic cross-sectional view of a second realization of the collecting duct connections,
Fig. 5
2 shows a schematic cross-sectional view of a third realization of the collecting duct connections,
Fig. 6
is a schematic cross-sectional view of a fourth implementation of the manifold connections and
Fig. 7
is a schematic, partial plan view of a multi-chamber flat tube usable for the tube / fin block of FIG. 1.

Fig. 1 zeigt eine Rohrblockeinheit 1, von denen mehrere in Blocktiefenrichtung, d.h. senkrecht zur Zeichenebene hintereinanderliegend, angeordnet sind und dadurch einen Rohr/Rippenblock bilden, der beispielsweise als Parallelstrom-Verdampfer mit variabler Kältemittelführung in einer Kraftfahrzeug-Klimaanlage verwendbar ist. Die jeweilige Blockeinheit 1 beinhaltet einen Stapel von in Blockhochrichtung aufeinanderfolgenden, d.h. übereinandergestapelten Mehrkarmmer-Flachrohreinheiten 2, deren Kammern, d.h. Strömungskanäle, in Blockquerrichtung, d.h. senkrecht zur Blocktiefen- und Blockhochrichtung, verlaufen. In ihren Endbereichen 3a, 3b sind die Flachrohreinheiten 2, die ansonsten in Ebenen senkrecht zur Blockhochrichtung liegen, um einen vorgebbaren Torsionswinkel um ihre Längsmittelachse, alternativ um eine dazu parallele Achse, tordiert. Der Torsionswinkel ist beliebig zwischen 0° und 90° wählbar, wobei in Fig. 1 beispielhaft eine Tordierung um 90° gewählt ist. Zwischen die Flachrohreinheiten 2 sind wärmeleitende Wellrippen 6 eingebracht.1 shows a tube block unit 1, several of which are arranged one behind the other in the block depth direction, that is to say perpendicular to the plane of the drawing, and thereby form a tube / fin block which can be used, for example, as a parallel-flow evaporator with variable refrigerant guidance in a motor vehicle air conditioning system. The respective block unit 1 contains a stack of multi-arm flat tube units 2 successive in the block vertical direction, ie stacked one above the other, whose chambers, ie flow channels, in Block cross direction, ie perpendicular to the block depth and block vertical direction. In their end regions 3a, 3b, the flat tube units 2, which are otherwise located in planes perpendicular to the block vertical direction, are twisted by a predeterminable torsion angle about their longitudinal central axis, alternatively about an axis parallel to them. The torsion angle can be selected as desired between 0 ° and 90 °, with a torsion of 90 ° being selected as an example in FIG. 1. Heat-conducting corrugated fins 6 are introduced between the flat tube units 2.

Mit ihren tordierten Enden 3a, 3b münden die Flachrohreinheiten 2 in jeweilige, an entgegengesetzten Rohrblockseiten vorgesehene Sammelrohre 4a, 5a, die mit zur Blockhochrichtung paralleler Längsachse angeordnet sind. Dabei sind die Flachrohrenden 3a, 3b fluiddicht in entsprechende Schlitze der Sammelrchre 4a, 5a eingefügt. Im Fall von um 90° tordierten Rohrenden verlaufen diese Längsschlitze parallel zur Sammelrohr-Längsachse, was die Verwendung von Sammelrohren 4a, 5a mit besonders kleinem Innendurchmesser ermöglicht. Denn letzterer braucht im Extremfall dann nur wenig größer als die Dicke der Flachrohreinheiten 2 sein. Je nach Bedarf sind die am jeweiligen Sammelrohr 4a, 5a eingebrachten Längsschlitze durch schmale Stege voneinander getrennt oder zu einem durchgehenden Längsschlitz vereinigt.With their twisted ends 3a, 3b, the flat tube units 2 open into respective header tubes 4a, 5a provided on opposite tube block sides, which are arranged with a longitudinal axis parallel to the vertical direction of the block. The flat tube ends 3a, 3b are inserted in a fluid-tight manner in corresponding slots in the collecting tube 4a, 5a. In the case of pipe ends twisted by 90 °, these longitudinal slots run parallel to the longitudinal axis of the collecting pipe, which enables the use of collecting pipes 4a, 5a with a particularly small inside diameter. In extreme cases, the latter then only needs to be slightly larger than the thickness of the flat tube units 2. Depending on requirements, the longitudinal slots made on the respective manifold 4a, 5a are separated from one another by narrow webs or are combined to form a continuous longitudinal slot.

Fig. 2 zeigt eine Anordnung von vier parallel in Blocktiefenrichtung nebeneinanderliegenden Sammelrchren 4a, 4b, 4c, 4d, wie sie an der in Fig. 1 rechten Rohrblockseite für den beispielhaft angenommenen Fall vorgesehen sind, daß der Rohrblock aus vier hinteinanderliegenden Blockeinheiten 1 aufgebaut ist. Auf der gegenüberliegenden Rohrblockseite sind dann dazu korrespondierend ebenfalls vier Sammelrohre angeordnet. Die in Fig. 2 dargestellte Seite bildet die Anschlußseite des Rohrblocks, wobei für die in Fig. 1 und 2 gewählte, durch Strömungspfeile veranschaulichte Strömungsrichtung das durch den Rohrblock hindurchgeleitete Medium dem in Fig. 2 linken Sammelrohr 4a zugeführt und aus dem in Fig. 2 rechten Sammelrohr 4d wieder abgeführt wird. Es versteht sich, daß alternativ die entgegengesetzte Strömungsrichtung möglich ist. Die in Fig. 2 gezeigten Sammelrohre 4a bis 4d sind durch je eine Quertrennwand 7a bis 7d in je zwei getrennte Sammelkanäle 8a, 8b; 9a, 9b; 10a, 10b; 11a, 11b unterteilt. Im Gegensatz dazu sind die gegenüberliegenden Sammelrohre ungeteilt und bilden daher je einen einzigen Sammelkanal 12, wie in Fig. 1 am linken Sammelrohr 5aa veranschaulicht. Dies hat zur Folge, daß die ungeteilten Sammelrohre auf der in Fig. 1 linken Blockseite als Umlenkrohre fungieren, die das vom einen Teil der Flachrohreinheiten, die auf der gegenüberliegenden Seite parallel in den einen Sammelkanal 8a münden, in den anderen Teil der Flachrohreinheiten umlenken, die gegenüberliegend in den anderen Sammelkanal 8b münden. Dieses Strömungsverhalten ist ebenfalls in Fig. 1 zu erkennen.FIG. 2 shows an arrangement of four collecting channels 4a, 4b, 4c, 4d lying next to one another in parallel in the block depth direction, as are provided on the right side of the tube block in FIG. 1 for the assumed case that the tube block is composed of four block units 1 lying one behind the other. On the opposite side of the tube block, four header tubes are then also correspondingly arranged. The side shown in FIG. 2 forms the connection side of the pipe block, the medium passed through the pipe block for the flow direction selected in FIGS. 1 and 2, illustrated by flow arrows, being fed to the left-hand header pipe 4a in FIG. 2 and from the one shown in FIG right manifold 4d is discharged again. It is understood that alternatively the opposite flow direction is possible. The manifolds 4a to 4d shown in FIG. 2 are each separated by a transverse partition 7a to 7d into two separate manifolds 8a, 8b; 9a, 9b; 10a, 10b; 11a, 11b divided. In contrast to this, the opposite collecting pipes are undivided and therefore each form a single collecting channel 12, as illustrated in FIG. 1 on the left collecting pipe 5aa. This has the consequence that the undivided manifolds on the left side of the block in FIG. 1 act as deflecting tubes which deflect the one part of the flat tube units, which open in parallel on the opposite side into the one collecting duct 8a, into the other part of the flat tube units, which open opposite to the other collecting channel 8b. This flow behavior can also be seen in FIG. 1.

Um das Strömungsmedium von einer zu einer nächsten Blockeinheit weiterzuleiten, d.h. die Blockeinheiten strömungstechnisch seriell zu verbinden, ist zwischen je zwei benachbarten der vier Sammelrohre 4a bis 4d von Fig. 2 eine Sammelkanalverbindung 13a, 13b, 13c vorgesehen, in denen eine direkte Fluidverbindung in Blocktiefenrichtung zwischen den zugehörigen Strömungskanälen geschaffen ist. Dabei sind die Sammelkanalverbindungen 13a bis 13c, wie aus Fig. 2 zu erkennen, dergestalt alternierend angeordnet, daß von den beiden Sammelkanälen eines jeden innenliegenden Sammelrohres 4b, 4c der eine mit dem benachbarten Sammelkanal eines auf der einen Seite angrenzenden Sammelrohres und der andere mit dem benachbarten Sammelkanal eines auf der anderen Seite angrenzenden Sammelrohres verbunden ist. Auf diese Weise wird das Temperiermedium seriell durch die hintereinanderliegenden Blockeinheiten geführt, wobei es jede Blockeinheit mäanderförmig durchströmt.To transfer the flow medium from one block unit to another, i.e. To connect the block units in terms of flow technology, a collection channel connection 13a, 13b, 13c is provided between each two adjacent ones of the four header pipes 4a to 4d of FIG. 2, in which a direct fluid connection is created in the block depth direction between the associated flow channels. The collecting duct connections 13a to 13c, as can be seen from FIG. 2, are arranged alternately such that of the two collecting ducts of each inner collecting pipe 4b, 4c, one with the neighboring collecting duct of a collecting pipe adjoining on one side and the other with the adjacent collecting duct of a collecting pipe adjoining on the other side is connected. In this way, the temperature control medium is guided serially through the block units located one behind the other, whereby it flows through each block unit in a meandering manner.

Bei dem in den Fig. 1 und 2 gezeigten Strömungsverlauf gelangt das Temperiermedium über eine seitliche Einlaßöffnung 14 in den zugehörigen Sammelkanal 8a des einen endseitigen Sammelrohres 4a. Dieser Sammelkanal 8a fungiert als Verteiler, der das Medium auf den in ihn einmündenden ersten Teil paralleler Flachrohreinheiten 2 der betreffenden Blockeinheit 1 aufteilt. Nach Durchströmen dieser Gruppe von Flachrohreinheiten 2 gelangt das Medium in das gegenüberliegende Sammel- bzw. Umlenkrohr 5a, wo es in den restlichen Teil der Flachrohreinheiten 2 dieser Blockeinheit 1 umgelenkt wird, um durch diese Flachrohreinheiten hindurch in den anderen Sammelkanal 8b des eintrittsseitigen Sammelrohres 4a zu strömen. Von dort wird das Medium über die entsprechende Sammelkanalverbindung 13a in den benachbarten Sammelkanal 9a des angrenzenden Sammelrohres 4b und damit zur nächsten Blockeinheit weitergeleitet. Diese Blockeinheit durchströmt es, wie aus den Fig. 1 und 2 ersichtlich, in der zur Durchströmung der ersten, eintrittsseitigen Blockeinheit gegensinnigen Weise. Die Durchströmungsrichtungen sind in Fig. 2 des weiteren dadurch veranschaulicht, daß in denjenigen Sammelkahälen, in denen das Temperiermedium in die Zeichenebene hinein weitergeleitet wird, die hierfür üblichen gekreuzten Kreise eingezeichnet sind, während in den anderen Sammelkanälen, die als Sammler wirken und in die das Medium von hinten in die Zeichenebene eintritt, die hierfür üblichen gepunkteten Kreise eingezeichnet sind. Nach Durchströmung der zweiten Blockeinheit gelangt das Medium somit in den sammelnden Sammelkanal 9b dieser Blockeinheit und wird von dort zum verteilenden, benachbarten Sammelkanal 10a über die entsprechende Sammelkanalverbindung 13b zur nächsten Blockeinheit weitergeleitet. Diese dritte Blockeinheit wird dann ersichtlich wieder in der zur ersten Blockeinheit gleichsinnigen Weise durchströmt. Von deren sammelndem Sammelkanal 10b gelangt das Medium über die zugehörige Sammelkanalverbindung 13c zur vierten Blockeinheit, die wiederum in gleicher Weise wie die zweite Blockeinheit durchströmt wird. Vom sammelnden Sammelkanal 11b der vierten Blokkeinheit wird das Temperiermedium dann über einen stirnseitigen Auslaß 15 vom Rohrblock abgeführt.In the flow course shown in FIGS. 1 and 2, the temperature control medium reaches the associated collecting duct 8a of one end via a lateral inlet opening 14 Manifold 4a. This collecting duct 8a acts as a distributor, which divides the medium into the first part of parallel flat tube units 2 of the block unit 1 in question that flows into it. After flowing through this group of flat tube units 2, the medium reaches the opposite collecting or deflecting tube 5a, where it is deflected in the remaining part of the flat tube units 2 of this block unit 1, in order to pass through these flat tube units into the other collecting channel 8b of the inlet-side collecting tube 4a stream. From there, the medium is forwarded via the corresponding collecting duct connection 13a into the adjacent collecting duct 9a of the adjacent collecting pipe 4b and thus to the next block unit. It flows through this block unit, as can be seen from FIGS. 1 and 2, in the opposite direction to the flow through the first block unit on the inlet side. The flow directions are further illustrated in Fig. 2 in that in those collecting channels in which the temperature control medium is passed into the plane of the drawing, the usual crossed circles are shown, while in the other collecting channels, which act as collectors and into which Medium enters the drawing plane from behind, the usual dotted circles are shown. After flowing through the second block unit, the medium thus arrives in the collecting collecting duct 9b of this block unit and is forwarded from there to the distributing, neighboring collecting duct 10a via the corresponding collecting duct connection 13b to the next block unit. This third block unit is then again flowed through in the same direction as the first block unit. From its collecting channel 10b, the medium reaches the fourth block unit via the associated channel connection 13c, which in turn flows through in the same way as the second block unit. From the collecting manifold 11b of the fourth block unit, the temperature control medium is then discharged from the pipe block via an end outlet 15.

Es versteht sich, daß alternativ zu diesem gezeigten Beispiel auch weniger oder mehr als vier Blockeinheiten seriell in der beschriebenen Weise hintereinandergeschaltet sein können. Des weiteren versteht sich, daß Gestalt und Positionierung von Einlaß- und Auslaßöffnung gegenüber dem gezeigten Beispiel beliebig modifiziert sein können, um das Temperiermedium in einer an den jeweiligen Anwendungsfall am besten angepaßten Weise dem Rohrblock zuzuführen und von dort wieder abzuführen. Als weitere Alternative können zusätzliche Quertrennwände in den Sammelrohren beidseits der jeweiligen Blockeinheit vorgesehen sein, um das Temperierfluid unter mehrmaliger Richtungsumkehr mäanderförmig durch die Blockeinheit hindurchzuführen. Eine weitere Modifikation besteht darin, Einlaß- und Auslaßöffnung nicht wie gezeigt an derselben, sondern an gegenüberliegenden Rohrblockseiten vorzusehen.It goes without saying that, as an alternative to the example shown, fewer or more than four block units can also be connected in series in the manner described. Furthermore, it goes without saying that the shape and positioning of the inlet and outlet openings can be modified as desired in relation to the example shown in order to supply the temperature control medium to the pipe block in a manner which is best adapted to the respective application and to discharge it again from there. As a further alternative, additional transverse partition walls can be provided in the collecting tubes on both sides of the respective block unit in order to guide the temperature control fluid through the block unit in a meandering manner with repeated reversal of direction. Another modification is to provide the inlet and outlet openings not on the same as shown, but on opposite pipe block sides.

Wie in der schematischen Ansicht von Fig. 2 angedeutet, sind die Sammelrohre 4a bis 4d an der jeweiligen Rohrblockseita mit Abstand voneinander angeordnet, was z.B. beim Einsatz als Verdampfer den Kondenswasserablauf erleichtert. Dies wird mit Distanzelementen 16a, 16b, 16c erreicht, die gleichzeitig die direkten Sammelkanal-Fluidverbindungen 13a, 13b, 13c bereitstellen. Verschiedene Realisierungen hierfür sind in den Fig. 3 bis 6 dargestellt. Im Beispiel von Fig. 3 ist als Distanzelement eine geeignet umgeformte Rchrhülse 17 vorgesehen, die an zwei radial gegenüberliegenden Stellen ihres Umfangs mit Längsschlitzen 18a, 18b versehen ist, deren Schlitzränder Anschlußstutzen bilden, die fluiddicht in korrespondierende Längsschlitze zweier zu verbindender Sammelrohre 19a, 19b eingefügt sind. Die auf diese Weise ein rohrförmiges Übergangsstück bildende Rohrhülse 17 ist stirnseitig geschlossen und fixiert die beiden fluidverbundenen Sammelrohre 19a, 19b im gewünschten Abstand.As indicated in the schematic view of Fig. 2, the manifolds 4a to 4d are spaced apart on the respective pipe block side, which e.g. when used as an evaporator, the condensate drainage easier. This is achieved with spacer elements 16a, 16b, 16c, which simultaneously provide the direct collecting channel fluid connections 13a, 13b, 13c. Various implementations for this are shown in FIGS. 3 to 6. In the example of FIG. 3, a suitably shaped sealing sleeve 17 is provided as a spacer element, which is provided at two radially opposite points on its circumference with longitudinal slots 18a, 18b, the slot edges of which form connecting pieces which are inserted in fluid-tight manner into corresponding longitudinal slots of two header pipes 19a, 19b to be connected are. The tubular sleeve 17, which thus forms a tubular transition piece, is closed at the end and fixes the two fluid-connected header tubes 19a, 19b at the desired distance.

Im Beispiel von Fig. 4 dient als Distanzelement ein geeignet geformtes, lotplattiertes Blechstück 20, in das eine Öffnung 21 eingebracht ist, die mit Längsschlitzen 22, 23 angrenzender Sammelrohre 24, 25 eine durchgehende Fluidverbindung zwischen den von den Sammelrohren 24, 25 definierten Sammelkanälen bildet. Weiter sind in Fig. 4 zwei Flachrohre 2a, 2b benachbarter Rohrblockeinheiten wiedergegeben, die mit rechtwinklig tordierten Rohrenden in korrespondierende Längsschlitze der Sammelrohre 24, 25 fluiddicht eingefügt sind. Wie durch entsprechende Strömungspfeile angedeutet, strömt das Temperiermedium vom einen Flachrohr 2a und ggf. weiteren, parallelen Flachrohren derselben Blockeinheit in den Sammelkanal des zugehörigen Sammelrohres 24 und wird über die direkte Sammelkanalverbindung in den Sammelkanal des benachbarten Sammelrohrs 25 weitergeleitet und dann in die dort mündenden Flachrohre 26 der betreffenden, nächsten Rohrblockeinheit verteilt.In the example of FIG. 4, a suitably shaped, solder-plated sheet metal piece 20 serves as a spacer element, into which an opening 21 is made, which is adjacent with longitudinal slots 22, 23 Collecting tubes 24, 25 form a continuous fluid connection between the collecting channels defined by the collecting tubes 24, 25. Furthermore, two flat tubes 2a, 2b of adjacent tube block units are shown in FIG. 4, which are inserted with correspondingly twisted tube ends into corresponding longitudinal slots of the header tubes 24, 25 in a fluid-tight manner. As indicated by corresponding flow arrows, the temperature control medium flows from a flat tube 2a and possibly further parallel flat tubes of the same block unit into the collecting duct of the associated collecting tube 24 and is forwarded via the direct collecting channel connection into the collecting channel of the adjacent collecting tube 25 and then into the flat tubes opening there 26 of the next tube block unit concerned.

Die Festlegung des lotplattierten Blechstücks 20 an den Sammelrohren 24, 25 erfolgt durch ein geeignetes Lötverfahren, wobei das vorherige Lotplattieren nach irgendeinem herkömmlichen Verfahren erfolgen kann, z.B. durch galvanisches Verzinken oder das sogenannte CD-Verfahren. Dabei kann ein gemeinsamer Lötprozeß sowohl zur Verbindung der Distanzelemente 20 mit den Sammelrohren 24, 25 als auch zur fluiddichten Verbindung der Flachrohreinheiten mit den Sammelrohren 24, 25 vorgesehen sein, wozu die Flachrohre und/oder die Sammelrohre ebenfalls lotplattiert vorgefertigt und mit Flußmittel versehen werden. Alternativ können unplattierte Sammelrohre 24, 25 verwendet und separate Lotformteile an den Verbindungsstellen eingebracht werden. Auch mit den im Beispiel von Fig. 4 verwendeten Distanzelementen 20 werden die fluidverbundenen Sammelrohre 24, 25 in einem gewünschten Abstand voneinander gehalten.The solder-plated sheet metal piece 20 is fixed to the manifolds 24, 25 by a suitable soldering process, the previous solder-plating being carried out by any conventional method, e.g. by galvanizing or the so-called CD process. In this case, a common soldering process can be provided both for connecting the spacer elements 20 to the header tubes 24, 25 and for the fluid-tight connection of the flat tube units to the header tubes 24, 25, for which purpose the flat tubes and / or the header tubes are also prefabricated with solder and provided with flux. Alternatively, unplated manifolds 24, 25 can be used and separate shaped solder parts can be introduced at the connection points. The fluid-connected manifolds 24, 25 are also kept at a desired distance from one another with the spacer elements 20 used in the example of FIG. 4.

Die Fig. 5 und 6 zeigen Beispiele, bei denen die Distanzelemente durch entsprechende Ausbauchungen an den verbundenen Sammelrohren selbst gebildet sind. In der Ausführungsform von Fig. 5 sind Sammelrohre 26, 27 verwendet, die an den Verbindungsstellen mit domförmigen Ausbauchungen 28, 29 versehen sind, die eine jeweilige Durchgangsöffnung 30, 31 umgeben. Die zu verbindenden Sammelrohre 26, 27 sind mit ihren domförmigen Ausbauchungen 28, 29 aneinanderstoßend fluiddicht zusammengefügt, so daß sich einerseits dort die gewünschte Fluidverbindung ergibt und die Sammelrohre 26, 27 andererseits im Bereich außerhalb der Verbindungsstelle wie gewünscht auf Abstand gehalten sind.5 and 6 show examples in which the spacer elements are formed by corresponding bulges on the connected manifolds themselves. In the embodiment of FIG. 5, collecting tubes 26, 27 are used, which are provided with dome-shaped bulges 28, 29 at the connection points are, which surround a respective through opening 30, 31. The header pipes 26, 27 to be connected are joined together with their dome-shaped bulges 28, 29 in a fluid-tight manner, so that the desired fluid connection is obtained on the one hand and the header pipes 26, 27 are kept apart as desired in the area outside the connection point.

Beim Beispiel von Fig. 6 sind miteinander zu verbindende Sammelrohre 32, 33 mit unterschiedlichen, ineinanderpassenden domförmigen Ausbauchungen 34, 35 versehen, die zugehörige Durchgangsöffnungen umgeben. Die engere Ausbauchung 35 ist in die korrespondierende Ausbauchung 34 größerer Weite eingesteckt und in ihr fluiddicht festgelegt, vorzugsweise mittels Dichtlöten.In the example of FIG. 6, header pipes 32, 33 to be connected to one another are provided with different, intermeshing dome-shaped bulges 34, 35, which surround associated through openings. The narrower bulge 35 is inserted into the corresponding bulge 34 of greater width and fixed in it in a fluid-tight manner, preferably by means of sealing soldering.

In allen beschriebenen Beispielen können bei der Vorfertigung der benötigten Sammelrohre die zum Einfügen der Rohreinheiten benötigten Schlitze in einem Arbeitsgang mit den für die direkte Sammelkanal-Fluidverbindung benötigten Schlitzen, d.h. Durchzügen, und gegebenenfalls den zugehörigen domförmigen Ausbauchungen erzeugt werden. Die Durchlässe für die direkten Sammelkanal-Fluidverbindungen können rund oder länglich ausgebildet sein. Die beiden eine jeweilige Sammelkanal-Fluidverbindung bildenden, domförmigen Ausbauchungen brauchen nicht, wie in den gezeigten Beispielen, beide nach außen ausgebaucht sein, vielmehr kann alternativ eine von beiden nach innen ausgebaucht sein, in die dann die andere, nach außen weisende Ausbauchung eingreift.In all of the examples described, in the prefabrication of the required manifolds, the slots required for inserting the tube units can be made in one operation with the slots required for the direct manifold fluid connection, i.e. Passages, and possibly the associated dome-shaped bulges are generated. The passages for the direct collecting channel fluid connections can be round or elongated. The two dome-shaped bulges forming a respective collecting channel-fluid connection do not need, as in the examples shown, both to be bulged outwards; alternatively, one of the two can be bulged inwards, in which the other bulge facing outwards engages.

Wie in Fig. 4 angedeutet, können die Flachrohreinheiten 2 des Rohr-/Rippenblocks von Fig. 1 aus in Blocktiefenrichtung nebeneinanderliegenden, für jede Blockeinheit 1 einzelnen Flachrohren 2a, 2b bestehen, d.h. jede Blockeinheit 1 besteht in diesem Fall aus einem Stapel einzelner Flachrohre, deren Breite im wesentlichen der Tiefe der jeweiligen Blockeinheit entspricht. Alternativ kann ein breiterer Flachrohrtyp in einer Weise verwendet werden, wie dies in Fig. 7 schematisch und ausschnittweise illustriert ist. Das dort gezeigte Mehrkammer-Flachrohr 2c besitzt eine Breite T, die im wesentlichen der gesamten Rohrblocktiefe, d.h. der Summe der Tiefen der einzelnen Blockeinheiten entspricht. Das Flachrohr 2c ist in beiden Endbereichen, von denen in Fig. 7 einer dargestellt ist, mit einer vorgebbaren Anzahl n von längsverlaufenden Sägeschnitten 361, 362, 363, d.h. in diesem Beispiel n=3 Schnitten versehen, wodurch der Endbereich in eine Anzahl n+1 von Endsegmenten 371 bis 374, d.h. im gezeigten Fall von vier Segmenten, aufteilt ist. Jedes Endsegment 371 bis 374 ist jeweils um seine eigene Längsmittelachse um 90° tordiert, alternativ kann ein anderer Torsionswinkel größer 0° und kleiner 90° gewählt werden. Im Fall der rechtwinkligen Tordierung verlaufen die Endsegmente 371 bis 374 an ihrer Stirnseite parallel zur Blockhochrichtung, d.h. zur Längsrichtung der zugehörigen Sammelrohre 381, 382, 383, 384, die mit entsprechenden Längsschlitzen versehen sind, in welche die Endsegmente 371 bis 374 eingefügt sind. Auf diese Weise ist das Flachrohr 2c strömungstechnisch in eins entsprechende Anzahl n von Flachrohrsträngen 21, 22, 23, 24 aufgeteilt, die jeweils zu einer der in Blocktiefenrichtung hintereinanderliegenden Blockeinheiten gehörigen und eine zugehörige Untergruppe aller strömungskanalbildenden Kammern des Flachrohres 2c beinhalten. Während im Beispiel von Fig. 7 das Flachrohr 2c in gleich breite Teilstränge 21 bis 24 unterteilt ist, kann alternativ eine Aufteilung in unterschiedlich breite Teilstränge vorgesehen sein. Im Beispiel von Fig. 7 verbleibt zwischen zwei benachbarten Flachrohrteilen je ein offener Strömungskanal 39, indem dieser endseitig von den entsprechend breit gewählten Sägeschnitten 361, 362, 363 gekürzt wird und dadurch nicht als fluidführender, in die Sammelrohre mündender Kanal fungiert. Wenn alternativ die Sägeschnitte als schmale Schnitte zwischen benachbarten Kanälen eingebracht werden, können bei Bedarf alle Kammern des Flachrohrs 2c als fluidführende Strömungskanäle fungieren.As indicated in FIG. 4, the flat tube units 2 of the tube / fin block of FIG. 1 can consist of flat tubes 2a, 2b lying next to one another in the block depth direction, for each block unit 1, ie in this case each block unit 1 consists of a stack of individual flat tubes, whose width corresponds essentially to the depth of the respective block unit. Alternatively, a wider flat tube type in one Be used as shown in Fig. 7 schematically and in sections. The multi-chamber flat tube 2c shown there has a width T which essentially corresponds to the total tube block depth, ie the sum of the depths of the individual block units. The flat tube 2c is provided in both end regions, one of which is shown in FIG. 7, with a predeterminable number n of longitudinal saw cuts 36 1 , 36 2 , 36 3 , that is to say n = 3 cuts in this example, as a result of which the end region is divided into one Number n + 1 of end segments 37 1 to 37 4 , that is, divided into four segments in the case shown. Each end segment 37 1 to 37 4 is twisted by 90 ° about its own longitudinal central axis, alternatively a different torsion angle greater than 0 ° and less than 90 ° can be selected. In the case of right-angled twisting, the end segments 37 1 to 37 4 run on their end faces parallel to the vertical direction of the block, ie to the longitudinal direction of the associated manifolds 38 1 , 38 2 , 38 3 , 38 4 , which are provided with corresponding longitudinal slots into which the end segments 37 1 to 37 4 are inserted. In this way, the flat tube 2c is fluidically divided into a corresponding number n of flat tube strands 2 1 , 2 2 , 2 3 , 2 4 , each of which belongs to one of the block units lying one behind the other in the block depth direction and contains an associated subgroup of all flow channel-forming chambers of the flat tube 2c. While in the example of FIG. 7 the flat tube 2c is divided into sub-strands 2 1 to 2 4 of the same width, a division into sub-strands of different widths can alternatively be provided. In the example of FIG. 7, an open flow channel 39 remains between two adjacent flat tube parts, in that this is shortened at the end by the correspondingly wide saw cuts 36 1 , 36 2 , 36 3 and thus does not function as a fluid-carrying channel opening into the collecting tubes. If, alternatively, the saw cuts are made as narrow cuts between adjacent channels, all chambers of the flat tube 2c can function as fluid-conducting flow channels if required.

Das Mehrkammer-Flachrohr 2c ist vorzugsweise als extrudiertes Profil mit hinsichtlich geringem innerem Volumen und hoher Druckstabilität optimierten Kanälen gefertigt. Zur Erzielung eines geringen inneren Volumens und einer hohen Druckstabilität des Rohr-/Rippenblocks insgesamt trägt, wie erwähnt, zusätzlich bei, daß besonders bei Flachrchren mit tordierten Enden für den Rohrblock Sammelrohre mit relativ geringem Innendurchmesser verwendet werden können. Außerdem läßt sich je nach Positionierung der direkten Sammelkanalverbindungen zwischen den Sammelrohren und/oder der Quertrennwände in den Sammelrohren eine sehr variable Strömungsführung für das hindurchgeleitete Temperiermedium erzielen.The multi-chamber flat tube 2c is preferably manufactured as an extruded profile with channels optimized with regard to a small internal volume and high pressure stability. To achieve a low internal volume and a high pressure stability of the tube / fin block overall, as mentioned, additionally contributes to the fact that collecting tubes with a relatively small inner diameter can be used for the tube block, especially in flat tubes with twisted ends. In addition, depending on the positioning of the direct collecting duct connections between the collecting pipes and / or the transverse partition walls in the collecting pipes, a very variable flow guidance for the temperature control medium passed through can be achieved.

Zur Bildung der Wellrippenstruktur 6 des Rohr-/Rippenblocks können pro Rippenschicht eine sich über die gesamte Blocktiefe erstreckende Wellrippe oder mehrere schmälere Wellrippen gleicher oder unterschiedlicher Breite nebeneinanderliegend eingebracht sein. So können beispielsweise eine breite, sich über drei Blockeinheiten erstreckende Wellrippe und eine schmale, auf die vierte Blockeinheit beschränkte Wellrippe oder abwechselnd je eine schmalere und eine breitere Wellrippe vorgesehen sein. Die verschiedenen Möglichkeiten der Einbringung der Wellrippen 6 sind unabhängig davon, ob für den Rohrblock das breite Flachrohr 2c von Fig. 7 oder eine Mehrzahl von in Blocktiefenrichtung nebeneinanderliegender Flachrohre vorgesehen sind.To form the corrugated fin structure 6 of the tube / fin block, a corrugated fin extending over the entire block depth or a plurality of narrower corrugated fins of the same or different width can be introduced adjacent to one another per fin layer. For example, a wide corrugated fin extending over three block units and a narrow corrugated fin limited to the fourth block unit or alternately a narrower and a wider corrugated fin each can be provided. The various possibilities for introducing the corrugated fins 6 are independent of whether the wide flat tube 2c from FIG. 7 or a plurality of flat tubes lying next to one another in the block depth direction are provided for the tube block.

Der erfindungsgemäße Rohrblock eignet sich u.a. besonders gut für Verdampfer von mit dem Kältemittel CO2 arbeitenden Kraftfahrzeug-Klimaanlagen, indem er ausreichend druckstabil ist und ein vergleichsweise geringes inneres Volumen besitzt, wobei neben den schon erwähnten weitere Realisierungen möglich sind. So können z.B. Sammelrohre ohne Quertrennwände vorgesehen sein, d.h. alle Rohreinheiten einer Blockeinheit werden parallel durchströmt. Die Sammelkanalverbindungen sind in diesem Fall abwechselnd auf der einen und der anderen Sammelkanal-Rohrblockseite angeordnet. Als weitere Variante können die Sammelkanalverbindungen durch Umlenkrohre gebildet sein, welche das durchströmende Medium von Rohreinheiten einer Blockeinheit in die Rohreinheiten mindestens einer benachbarten Blockeinheit umlenken. Dazu münden dann diese Rohreinheiten der beteiligten Blockeinheiten in einen gemeinsamen, vor dem Umlenkrchr gebildeten Umlenkraum, der somit die verbundenen Sammelkanäle dieser Blockeinheiten integriert umfaßt.The tube block according to the invention is particularly well suited, among other things, to evaporators of automotive air conditioning systems working with the refrigerant CO 2 , in that it is sufficiently pressure-stable and has a comparatively small internal volume, whereby besides the already mentioned further realizations are possible. For example, manifolds without transverse partition walls can be provided, ie all tube units of a block unit are flowed through in parallel. In this case, the manifold connections are arranged alternately on one and the other manifold tube block side. As another variant, you can the collecting duct connections are formed by deflecting pipes which deflect the medium flowing through from pipe units of a block unit into the pipe units of at least one neighboring block unit. For this purpose, these tube units of the block units involved then open into a common deflection space formed in front of the deflection tube, which thus integrally comprises the connected collecting channels of these block units.

Claims (10)

  1. The Heat exchanger tubular block containing at least one block unit (1) comprising a plurality of heat exchanger tubular units arranged succesively in a direction of the block height, said tube units each having a plurality of flow ducts extending transverse to the block, and associated laterally arranged collector ducts (8a-11b, 12), extending in said block height direction, where said collector ducts (8a-11b, 12) contain slot openings formed in a direction vertical or tilted to the block depth and where each slot opening engages the associated twisted tube ends (3a, 3b) from the straight flat tubular bundles (2) that form the heat exchanger tubular units, and where said block units (1) are arranged successively, and wherein at least one collector-duct connection (13a, 13b, 13c) is provided between at least two adjacent block units (1). Said collector-duct connection (8a bis 11 b, 12) directly connects a collector duct (8a bis 11 b, 12) of one block unit (1) to a collector duct of the other block unit (1) where further slot openings are formed in the collector ducts (8a bis 11 b, 12) to provide collector-duct connections (13a, 13b, 13c) and where at least a portion of the flow ducts that run in the direction transversal to the block depth are formed by a multi-chamber flat tube (2c) extending over at least one block unit (1) in the direction of the block depth. Said multi-chamber flat tube (2c) is subdivided at each of opposite ends by at least one longitudinal slot (361, 362, 363) into at least two separate end segments (371 to 374) each twisted about their own longitudinal centerline.
  2. The Heat exchanger tubular block according to claim 1, including at least one collector-duct connection (13a, 13b, 13c) to be provided between every pair of adjacent block units (1) forming a fluidal flow path serially connecting the block units (1).
  3. The Heat exchanger tubular block according to claim 1 or 2, wherein a collection chamber consisting of several parts is to be located laterally to at least one side of the block unit (1) and where said collection chamber contains a plurality of collector ducts (8a to 11b) separated from one another by a transverse partition (7a to 7d).
  4. The Heat exchanger tubular block according to one of the claims 1 to 3, wherein the collector duct or the collector ducts (8a to 11b, 12) of each block unit is formed by seperate collector tubes (4a to 4d, 5a) adjacent ones of said collector tubes being spaced apart by at least one distance element (16a, 16b, 16c) shaped or attached accordingly.
  5. The heat exchanger block according to claim 4, wherein said distance element (16a, 16b, 16c) is one of a shaped sheet-metal piece (20) or a tubular piece (17) having at least one slot opening formed therein providing said one collector-duct connection (13a, 13b, 13c).
  6. The heat exchanger block according to claim 4 or 5 wherein said distance element (16a, 16b, 16c) includes at least one outwardly bulged through-opening (28, 29, 34, 35) provided by at least one of the two said connected collector tubes (26, 27, 32, 33) forming part of said one collector-duct connection (13a, 13b, 13c) between said collector ducts.
  7. The heat exchanger block according to claim 4 to 6, wherein said distance element (16a, 16b, 16c) includes a pair of fluid-tight, mutually engaging through-openings (28, 29, 34, 35) of which at least one is outwardly bulged.
  8. The heat exchanger block according to claim 1 to 7, wherein a part of the slot openings formed in a vertical or tilted direction to the block depth and contained in said collector ducts (8a bis 11 b, 12), provide laterally placed inlet- (14) and/or outlet-openings (15) for a temperature control medim.
  9. The heat exchanger block according to claim 1 to 8 including a heat-conducting corrugated rib (6) positioned between each adjacent pair of said heat exchanger tube units, whrere a single said corrugated rib (6) or a plurality therof, adjacently placed and of identical or different width and of identical or different rib density, is to extend over the entire block depth in the direction of said block depth.
  10. Multi-chamber flat tube according to one of the claims 1 to 9, characterized through one or several longitudinal slots (361, 362, 363) which form a majority of separate end segments (371 to 374) each twisted about their own longitudinal centerline.
EP99945950A 1998-07-28 1999-07-09 Heat exchanger tubular block and a multi-chamber flat tube which can be used therefor Expired - Lifetime EP1042641B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19833845 1998-07-28
DE19833845A DE19833845A1 (en) 1998-07-28 1998-07-28 Heat exchanger tube block and multi-chamber flat tube that can be used for this
PCT/DE1999/002128 WO2000006964A1 (en) 1998-07-28 1999-07-09 Heat exchanger tubular block and a multi-chamber flat tube which can be used therefor

Publications (2)

Publication Number Publication Date
EP1042641A1 EP1042641A1 (en) 2000-10-11
EP1042641B1 true EP1042641B1 (en) 2003-09-10

Family

ID=7875516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99945950A Expired - Lifetime EP1042641B1 (en) 1998-07-28 1999-07-09 Heat exchanger tubular block and a multi-chamber flat tube which can be used therefor

Country Status (6)

Country Link
US (1) US6523606B1 (en)
EP (1) EP1042641B1 (en)
JP (1) JP2002521644A (en)
AU (1) AU5849499A (en)
DE (1) DE19833845A1 (en)
WO (1) WO2000006964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655917B2 (en) 2013-09-30 2020-05-19 Daikin Industries, Ltd. Heat exchanger and air conditioning device

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19915389A1 (en) * 1999-04-06 2000-10-12 Behr Gmbh & Co Multi-block heat exchanger
DE10146824A1 (en) * 2001-09-18 2003-04-24 Behr Gmbh & Co Heat exchanger flat tube block with deformed flat tube ends
DE10147521A1 (en) * 2001-09-26 2003-04-10 Behr Gmbh & Co Heat exchangers, in particular gas coolers CO2 - air conditioners
EP1321734A1 (en) * 2001-10-02 2003-06-25 Behr GmbH & Co. KG Flat tubes heat exchanger and fabricating process associated
EP1300644A3 (en) * 2001-10-02 2003-05-14 Behr GmbH & Co. KG Heat exchanger and process to fabricate this heat exchanger
EP1452814A4 (en) * 2001-11-08 2008-09-10 Zexel Valeo Climate Contr Corp Heat exchanger and tube for heat exchanger
JP4121085B2 (en) * 2001-12-21 2008-07-16 ベール ゲーエムベーハー ウント コー カーゲー Especially heat exchanger for automobile
DE10229973A1 (en) * 2002-07-03 2004-01-29 Behr Gmbh & Co. Heat exchanger
CN100533043C (en) * 2002-07-26 2009-08-26 贝洱两合公司 Device for exchange of heat
EP1527310A2 (en) 2002-07-26 2005-05-04 Behr GmbH & Co. Device for heat exchange
BR0316006A (en) * 2002-11-07 2005-09-13 Behr Gmbh & Co Kg Heat exchanger
DE10315371A1 (en) * 2003-04-03 2004-10-14 Behr Gmbh & Co. Kg Heat exchanger
AU2003255422A1 (en) * 2003-08-07 2005-02-25 Norsk Hydro Asa Heat exchanger comprising two manifolds
JP2005188849A (en) * 2003-12-26 2005-07-14 Zexel Valeo Climate Control Corp Heat exchanger
JP2005214459A (en) * 2004-01-27 2005-08-11 Zexel Valeo Climate Control Corp Flat tube for heat exchanger, heat exchanger using the same, and method for moulding flat tube for heat exchanger
DE102004018317A1 (en) * 2004-04-13 2005-11-03 Behr Gmbh & Co. Kg Heat exchanger for motor vehicles
DE102004028652A1 (en) * 2004-06-15 2006-01-12 Behr Gmbh & Co. Kg Heat exchanger in all-metal, preferably all-aluminum construction
US9080500B2 (en) * 2004-12-13 2015-07-14 MAHLE Behr GmbH & Co. KG Device for exchanging heat for gases containing acids
DE102005021931A1 (en) * 2005-05-12 2006-11-16 Modine Manufacturing Co., Racine Heat exchanger block especially for vehicles has stabilizing metal strips clipped across the block
US7267162B2 (en) * 2005-06-10 2007-09-11 Delphi Technologies, Inc. Laminated evaporator with optimally configured plates to align incident flow
DE102005040613A1 (en) * 2005-08-27 2007-03-08 Behr Gmbh & Co. Kg Heat exchanger, in particular coolant radiator for motor vehicles
DE102005058769B4 (en) * 2005-12-09 2016-11-03 Modine Manufacturing Co. Intercooler
US20070199685A1 (en) * 2006-02-28 2007-08-30 Valeo, Inc. Two-fold combo-cooler
US7874349B2 (en) * 2006-03-16 2011-01-25 Visteon Global Technologies, Inc. Heat exchanger tank
US20070240865A1 (en) * 2006-04-13 2007-10-18 Zhang Chao A High performance louvered fin for heat exchanger
WO2007129851A1 (en) * 2006-05-09 2007-11-15 Korea Delphi Automotive Systems Corporation Heat exchanger for automobile and fabricating method thereof
DE102006053702B4 (en) * 2006-11-13 2019-04-04 Mahle International Gmbh Heat exchangers, in particular gas coolers
GB2457935B (en) * 2008-02-29 2010-08-04 Pitacs Ltd A heating appliance
ATE554361T1 (en) * 2009-04-28 2012-05-15 Abb Research Ltd HEAT PIPE WITH TWISTED TUBE
EP2246654B1 (en) * 2009-04-29 2013-12-11 ABB Research Ltd. Multi-row thermosyphon heat exchanger
DE102009020711A1 (en) * 2009-05-11 2010-11-18 Behr Gmbh & Co. Kg Radiator for a motor vehicle with an internal combustion engine
US8464782B2 (en) * 2009-10-20 2013-06-18 Delphi Technologies, Inc. Manifold fluid communication plate
US9519728B2 (en) * 2009-12-04 2016-12-13 Time Warner Cable Enterprises Llc Apparatus and methods for monitoring and optimizing delivery of content in a network
DE102010027068A1 (en) * 2010-07-13 2012-01-19 Behr Gmbh & Co. Kg System for using waste heat from an internal combustion engine
US10247481B2 (en) * 2013-01-28 2019-04-02 Carrier Corporation Multiple tube bank heat exchange unit with manifold assembly
JP6088905B2 (en) * 2013-05-24 2017-03-01 サンデンホールディングス株式会社 Double heat exchanger
EP3074709B1 (en) 2013-11-25 2021-04-28 Carrier Corporation Dual duty microchannel heat exchanger
DE102014206612A1 (en) * 2014-04-04 2015-10-29 Mahle International Gmbh heat exchangers
EP3653950A4 (en) * 2017-07-13 2020-11-25 Hangzhou Sanhua Research Institute Co., Ltd. Heat exchanger

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1957779A (en) * 1931-02-14 1934-05-08 John J Hoppes Heat exchange device
US2105267A (en) * 1935-03-13 1938-01-11 Robertson John Hogg Charge cooler
US2044457A (en) * 1935-11-25 1936-06-16 Fred M Young Heat exchanger
US2184657A (en) * 1936-04-10 1939-12-26 Fred M Young Heat exchanger
US3416600A (en) * 1967-01-23 1968-12-17 Whirlpool Co Heat exchanger having twisted multiple passage tubes
NO141963L (en) * 1975-03-19
US4213640A (en) * 1978-05-04 1980-07-22 Alfred Miles Coupling for interconnecting conduits
FR2558043B1 (en) 1984-01-13 1986-05-16 Adidas Chaussures HIGH ROD SPORTS OR LEISURE SHOES
DE3403488C2 (en) * 1984-02-01 1986-11-20 Arbonia Ag, Arbon Flat tube radiators
JPH0619965Y2 (en) * 1988-01-22 1994-05-25 サンデン株式会社 Heat exchanger
EP0373102A3 (en) * 1988-11-09 1990-08-08 Jäggi AG Bern Heat exchanger and method for its manufacture
US5099576A (en) * 1989-08-29 1992-03-31 Sanden Corporation Heat exchanger and method for manufacturing the heat exchanger
US5314013A (en) * 1991-03-15 1994-05-24 Sanden Corporation Heat exchanger
GB9307212D0 (en) * 1993-04-06 1993-05-26 Gen Motors Corp U-flow evaporators for vehicle air-conditioning systems
US5303770A (en) * 1993-06-04 1994-04-19 Dierbeck Robert F Modular heat exchanger
US5383517A (en) * 1993-06-04 1995-01-24 Dierbeck; Robert F. Adhesively assembled and sealed modular heat exchanger
JPH07180988A (en) * 1993-12-21 1995-07-18 Sanden Corp Heat exchanger
DE4441503C2 (en) * 1994-11-22 2000-01-05 Behr Gmbh & Co Heat exchangers, in particular for motor vehicles
KR100497847B1 (en) * 1996-10-24 2005-09-30 쇼와 덴코 가부시키가이샤 Evaporator
DE19649129A1 (en) * 1996-11-27 1998-05-28 Behr Gmbh & Co Flat tube heat exchanger with shaped flat tube end section
US5915470A (en) * 1997-10-15 1999-06-29 Dierbeck; Robert F. Modular heat exchanger
US6161614A (en) * 1998-03-27 2000-12-19 Karmazin Products Corporation Aluminum header construction
DE19846267A1 (en) * 1998-10-08 2000-04-13 Behr Gmbh & Co Collector tube unit for a heat exchanger
US6173493B1 (en) * 1998-10-15 2001-01-16 Robert F. Dierbeck Modular heat exchanger and method of making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655917B2 (en) 2013-09-30 2020-05-19 Daikin Industries, Ltd. Heat exchanger and air conditioning device

Also Published As

Publication number Publication date
WO2000006964A1 (en) 2000-02-10
AU5849499A (en) 2000-02-21
JP2002521644A (en) 2002-07-16
EP1042641A1 (en) 2000-10-11
US6523606B1 (en) 2003-02-25
DE19833845A1 (en) 2000-02-03

Similar Documents

Publication Publication Date Title
EP1042641B1 (en) Heat exchanger tubular block and a multi-chamber flat tube which can be used therefor
EP1036296B1 (en) Flat tube with transversally offset u-bend section and heat exchanger configured using same
EP2026028B1 (en) Heat exchanger, more particularly for automotive vehicle
EP0845647B1 (en) Flat tube heat exchanger with twisted tube ends
EP1792135B1 (en) Heat exchanger for motor vehicles
EP1460363B1 (en) Evaporator
EP1203922A2 (en) Condenser and tube therefor
DE102004002252B4 (en) Heat exchanger for vehicles
EP1411310B1 (en) Heat exhanger with serpentine structure
EP1643202B1 (en) Heat exchanger
EP1597529B1 (en) Flat pipe comprising a return bend section and a heat exchanger constructed therewith
EP1738125A1 (en) Heat exchanger for motor vehicles
EP1934545B1 (en) Heating body, cooling circuit, air conditioning unit for a motor vehicle air conditioning system, and air conditioning system for a motor vehicle
WO2005028987A1 (en) Heat exchanger
EP0268831B1 (en) Plate fin
EP2049859B1 (en) Motor vehicle air conditioning system
EP1166025B1 (en) Multiblock heat-transfer system
EP0910778B1 (en) Flat tube evaporator with vertical flat tubes for motor vehicles
EP1748271A1 (en) Fins and tubes for a heat exchanger core
WO2004102098A1 (en) Heat exchanger unit for motor vehicles
DE102009017813A1 (en) Heat exchanger for passing fluid to be cooled or heated, particularly coolant evaporator of motor vehicle air conditioning system, has feed pipe with holes to supply fluid and delivery pipe with holes for discharging fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010301

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030910

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070720

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080709