EP1041785B1 - Démodulateur d'amplitude pour systèmes de tompgraphie assistée par ordinateur - Google Patents

Démodulateur d'amplitude pour systèmes de tompgraphie assistée par ordinateur Download PDF

Info

Publication number
EP1041785B1
EP1041785B1 EP00302669A EP00302669A EP1041785B1 EP 1041785 B1 EP1041785 B1 EP 1041785B1 EP 00302669 A EP00302669 A EP 00302669A EP 00302669 A EP00302669 A EP 00302669A EP 1041785 B1 EP1041785 B1 EP 1041785B1
Authority
EP
European Patent Office
Prior art keywords
signal
amplitude
digital
encoded data
data signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00302669A
Other languages
German (de)
English (en)
Other versions
EP1041785A3 (fr
EP1041785A2 (fr
Inventor
Phil E. Pearson, Jr.
Michael H. Harris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1041785A2 publication Critical patent/EP1041785A2/fr
Publication of EP1041785A3 publication Critical patent/EP1041785A3/fr
Application granted granted Critical
Publication of EP1041785B1 publication Critical patent/EP1041785B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates generally to computerized tomography (CT) systems. More particularly, the present invention relates to an apparatus and method for receiving high data rate communication in a CT system.
  • CT computerized tomography
  • CT systems are used to obtain non-invasive sectional images of test objects, particularly internal images of human tissue for medical analysis and treatment.
  • Current CT systems position the test object, such as a patient, on a table within a central aperture of a rotating frame, or gantry, which is supported by a stationary frame.
  • the gantry includes an x-ray source and a detector array positioned on opposite sides of the aperture, within an x-y plane of a Cartesian coordinate system (generally referred to as the "imaging plane"), such that both rotate with the gantry around the test object being imaged.
  • imaging plane Cartesian coordinate system
  • the x-ray source emits a fan-shaped collimated beam which passes through the imaging slice of the test object, is attenuated by the test object, and is received by the detector array.
  • Each detector element in the detector array produces a separate electrical signal indicative of the attenuated x-ray beam intensity, the beam projected from the x-ray source to the particular detector element, incident at its sensor surface.
  • the electrical signals from all the detector elements are collated by circuitry within the rotating frame to produce a projection data set at each gantry angle or projection.
  • Each projection data set is referred to as a "view", and a “scan” is a set of such views from the different gantry angles during one revolution of the x-ray source and detector array.
  • the scan is then processed by a computer in the stationary frame to reconstruct the projection data sets into a CT image of the slice or cross-section of the test object.
  • various communication links such as an umbilical cable, an optical data link, a slipring with a contacting brush, and a slipring with a contactless coupler are currently available.
  • Newer CT systems typically utilize a slipring disposed on the rotating frame with a contactless coupler, having a certain air gap with respect to the slipring, disposed on the stationary frame as the communication link between the rotating and stationary frames.
  • the slipring comprises a broken circle of wire or transmission line encircling the aperture of the rotating frame such that each half of the broken circle of wire forms an arc of exactly the same length.
  • Data signals e.g., the projection data sets
  • the contactless coupler disposed on the stationary frame lies close to the slipring and captures the transmitted encoded data signals via electromagnetic coupling. Because each projection data set is transmitted as they are acquired (after encoding), i.e. while the rotating frame is still rotating to acquire the next projection data set for the next gantry angle, propagation of the data signals along the wires of the slipring and electromagnetic coupling from the slipring to the contactless coupler occurs while the rotating frame and thus the slipring are in rotation.
  • slipring and contactless coupler provides many advantages over other types of communication links such as higher data rate transfer, shorter image acquisition time, increased patient comfort, and less mechanical stress and wear, it also suffers from problems associated with controlling the data signal strength present at the contactless coupler.
  • Data signals received by the contactless coupler can have a power variation of up to 15 to 20 dB around its center operating power level.
  • WO 97/38490 discloses a method and apparatus for wirelessly transmitting and receiving digital information using an analog carrier where the required bandwidth is limited to approximately the frequency of the analog carrier signal. Further examples of computerized tomography systems are described in NL-A-7707414, US-A-5646962 and US-A-4035651.
  • US-A-5646962 is directed to apparatus for reducing electromagnetic radiation from a differentially driven transmission line for providing high data rate communication in a computerized tomography system.
  • the high data rate communication is noncontactively provided between the rotating frame and the stationary frame through radio coupling between the differentially driven transmission line and a differential coupler.
  • NL-A-7707414 discloses a tomography system with an analogue/digital converter which is connected in series with a dynamic signal adaptor which brings the measured signals within a certain amplitude range.
  • the adaptor comprises a variable-gain amplifier and a comparator comparing each measured signal with a reference, the comparator output determining the gain.
  • US-A-4035651 discloses a tomography system with a controllable gain amplifier.
  • One embodiment of the invention relates to a computerized tomography (CT) apparatus , including means for radio frequency (RF) amplitude modulation encoding the digital image data and electromagnetically coupling said data from a RF slipring disposed on a rotating frame of the CT system to a contactless coupler disposed on a stationary frame of the CT system, comprising:
  • Another embodiment of the invention relates to a method for reconstructing a digital image data in a computerized tomography (CT) system, the digital image data being radio frequency (RF) amplitude modulation encoded to be electromagnetically coupled from a RF slipring disposed on a rotating frame of the CT system to a contactless coupler disposed on a stationary frame of the CT system, comprising:
  • a computerized tomography (CT) system 10 includes a generally annular rotating frame 12 or gantry, and a stationary frame 13 that supports rotating frame 12.
  • Rotating frame 12 includes an x-ray source 14 for emitting a highly collimated x-ray beam 16 toward a detector array 18 positioned on the opposite side of an aperture 19.
  • Aperture 19 permits a test object 20, such as a patient, to be placed on a platform 21 which may be movable, for example, by translation, along rotating frame's 12 rotational axis 22. Movement of platform 21 allows different cross-sectional portions of interest of test object 20 to be positioned within the imaging plane of rotating frame 12.
  • test object 20 has been positioned within aperture 19, as desired, by movement of test object 20 and/or platform 21, rotating frame 12 rotates about the rotational axis 22, and at each of a plurality of angular positions along the rotational path, x-ray source 14 emits x-ray beam 16 which passes through test object 20 and is incident on the receiving surfaces of a plurality of detector elements (not individually shown) of the detector array 18.
  • each of the detector elements of detector array 18 produces an electrical signal at a magnitude proportional to the intensity of the received rays, and thus to the amount of attenuation of the x-ray beam after passing through test object 20.
  • the signals from each of the detector elements of detector array 18, which represent the projection data are presented through lines 23 to a control and array processor 24 that processes the received projection data into a radial image of test object 20 at the selected radial or angular position, which is referred to as a view. Then the aggregate of the views taken over a full revolution of the rotating frame 12, generally referred to as a scan, are further processed, using known image processing algorithms, into a cross-sectional image of the portion of interest of test object 20 that was within the imaging plane.
  • FIG. 2 there is shown a schematic block diagram of a portion of the CT system 10 of FIG. 1. It should be understood that only functional elements necessary for a teaching of the present invention are shown in FIG. 2 and that only the relative connections between functional elements are shown.
  • the signals from the detector array 18 are provided through lines 26 to a data acquisition system (DAS) 28 disposed on rotating frame 12, which converts each signal from a detector element of detector array 18 from an analog signal format into a digital binary signal format, typically a 16 bit digital value representing the attenuated x-ray intensity.
  • DAS 28 multiplexes the converted detector channel signals, together with a data clock signal and an error checking signal function, into a serial digital bit signal.
  • serial digital bit signal is then received by a transmitter 32, disposed on rotating frame 12, via lines 30.
  • transmitter 32 digitally encodes the serial digital bit signal with amplitude modulation using a radio frequency (RF) carrier signal to produce a RF amplitude modulated digital serial data signal.
  • RF radio frequency
  • an encoded data signal can be in a non-return to zero inverted (NRZI) format.
  • the encoded data signal is presented from transmitter 32 to transmission line segments 36, 38 of a RF slipring 34.
  • the encoded data signal is propagated along transmission line segments 36, 38 to be electromagnetically coupled into a coupler 50 disposed on the stationary frame 13.
  • RF slipring 34 may be configured to include one or more transmission lines disposed on rotating frame 12.
  • more transmission line segments may be required to ensure that coupler 50 is always in sufficient spatial proximity to at least one of the transmission line segments to receive the encoded data signal.
  • each segment will have a length that is a fractional portion of the arc length of the rotating frame's 12.
  • the segments are cascaded, end-to-end around the rotating frame's 12 rotational axis 22 (see FIG. 1), typically along the circumference of aperture 19, such that the aggregate segment length provides a substantially 360 degree arc, e.g., fully encircling the rotating frame 12.
  • two transmission line segments 36, 38 having first ends 40, 41 and second ends 42, 43, respectively, are contiguously positioned on rotating frame 12 encircling aperture 19 such that substantial continuity of electromagnetic coupling along the full rotational path of rotating frame 12 is possible.
  • the first ends 40, 41 are connected to the transmitter 32, and the second ends 42, 43 are connected through terminal impedances 44, 46, respectively, to an electrical ground 48.
  • the terminal impedances 44, 46 have a predetermined resistance value chosen to minimize reflection of energy in each of the transmission line segments 36, 38.
  • the coupler 50 is positioned on the stationary frame 13 (not shown in FIG. 2) such that physical proximity between coupler 50 and at least one of the transmission line segments 36, 38 will be maintained during rotation of rotating frame 12.
  • the air gap between coupler 50 and the transmission lines 36, 38 of slipring 34 is in the range of 0.050 to 0.080 inches
  • coupler 50 is a short piece of wire or transmission line approximately 2 inches in length.
  • Coupler 50 may alternately be a pickup antenna, a RF shoe, a contactless brush, or an electromagnetic coupling apparatus capable of receiving the encoded data signal from the RF slipring 34 across a transmitting distance in the range of 0.050 to 0.080 inches.
  • Transmitter 32 transmits the encoded data signal to the first ends 40, 41 of the transmission lines 36, 38, respectively, and the encoded data signal propagates from the first ends 40, 41 to the second ends 42, 43 to be terminated at the electrical ground 48. Before the encoded data signal propagates to ground 48, however, the encoded data signal will be electromagnetically coupled to coupler 50, thereby completing the transfer from the rotating frame 12 to the stationary frame 13 for signal processing.
  • the coupled encoded data signal On the stationary frame side, the coupled encoded data signal, also referred to as the coupled modulated data signal, is transmitted to a receiver 54 located in the control and array processor 24 via lines 52. As described in further detail hereinafter in FIG. 3, the receiver 54 decodes the coupled modulated data signal to its pre-encoded state and provides this decoded signal to a signal processor 58 via lines 56.
  • the signal processor 58 includes a computer and signal memory (not shown) for storing the program algorithms which govern the CT processing of the received data in response to operator commands and scanning parameters received via an operator console 60, such as a keyboard, mouse, trackball, or switches.
  • the operator commands and parameters are used by the signal processor 58 to provide control signals and information to the DAS 28, the x-ray controller (not shown), the gantry motor controller (not shown), as well as controlling movement of platform 21.
  • the signal processor 58 collates the decoded signal, i.e. the projection data, into a composite view corresponding to a particular angular position of the rotating frame 12.
  • Each composite view is stored in a mass storage device 62 and is retrieved as necessary during processing of other composite views to be further processed to provide a final image of the desired cross-section of test object 20.
  • This final image also referred to as a reconstructed image
  • a display 64 for example as a conventional cathode ray tube (CRT) display, a liquid crystal display, or other display devices, or it may be converted to a film or printed record by means of an appropriate computer controlled camera or printer (not shown).
  • reconstructed images may be stored in the mass storage 62 and stored reconstructed images and/or other data may be retrieved as commanded by the operator via the operator console 60 and the signal processor 58.
  • FIG. 3 there is shown a block diagram of a portion of the receiver which forms part of the CT system of FIG. 1.
  • the coupled encoded data signal also referred to as a coupled modulated data signal 102, is provided on lines 52 (see FIG. 2) to an automatic RF attenuation loop 100 within the receiver 54.
  • the attenuation loop includes a RF bandwidth filter 104, a RF voltage controlled variable attenuator 108, RF high gain amplifier stages 112, a RF amplitude modulation (AM) digital envelope detector 116, a digital hysteresis circuit 120, a digital signal level detector 126, a digital fiber optic output circuit 130, and a digital signal level detector status light emitting diode (LED) circuit 136.
  • the coupled modulated data signal 102 has a power level range of up to 50 dBm (decibels referenced at 1 milliWatts) around a center operating power level of -13.6 dBm. Alternately, the coupled modulated data signal 102 can have a power level range of up to 40 dBm around a center operating power level.
  • the coupled data signal 102 is received by the RF bandwidth filter 104 and produces a bandwidth filtered signal 106.
  • the bandwidth filter 104 filters the coupled data signal 102 in a bandwidth range of 500 MHz (megahertz) to 1 GHz (gigahertz) to remove signal components from frequencies outside the bandwidth range such as noise.
  • the bandwidth filtered signal 106 is received by the controlled variable attenuator 108 to produce an amplitude stabilized signal 110.
  • the amount of attenuation applied to the bandwidth filtered signal 106 is determined by a feedback control voltage signal 128 also received by the controlled variable attenuator 108.
  • the amplitude stabilized signal 110 will be the same amplitude or up to 40 dB (decibels) smaller in amplitude than the bandwidth filtered signal 106.
  • the controlled variable attenuator 108 selectively attenuates the amplitude of the received signal but preserves the frequency components therein.
  • the amplitude stabilized signal 110 is received by the amplifier stages 112 to produce an amplitude gain signal 114.
  • the amplifier stages 112 amplifies the amplitude of the amplitude stabilized signal 110 by a gain of up to approximately 45 dB. Similar to the controlled variable attenuator 108, the amplifier stages 112 preserves the frequency components of the received signal.
  • amplifier stages 112 comprises three amplifiers connected in series, each amplifier providing a gain of up to approximately 15 dB, for a total gain of approximately 45 dB.
  • Such amplifiers can be a chip device made by Minicircuits and it is well-known in the art that an amplifier chip device will have various other driving components such as capacitors, other circuits, coils, etc. to provide biasing and other functionally necessary inputs.
  • the amplitude gain signal 114 is received by the digital envelope detector 116 to produce a digitized signal 118.
  • the digital envelope detector 116 removes the RF component of the amplitude gain signal 114, thereby digitizing signal 114.
  • the signal Prior to the digital envelope detector 116, the signal is still amplitude modulated with a RF carrier signal and although a digital signal, contains sine waveforms. But after the digital envelope detector 116, signal 114 has essentially been converted to a digital square wave.
  • the digital envelope detector 116 is available as a Minicircuits device and alternatively could be a modulator circuit implemented as an amplitude modulation detector.
  • the digitized signal 118 is received by the digital hysteresis circuit 120 to produce a noise-filtered digitized signal 124 and an amplitude signal 122.
  • the digitized signal 118 entering the hysteresis circuit 120 is a square wave containing some noise components because the digital envelope detector 116 is typically unable to remove all the RF components of the amplitude modulation.
  • the hysteresis circuit 120 serves to filter out the residual undesirable signal components, such as noise, remaining in the signal after the digital envelope detector 116, by adding hysteresis to the digitized signal 118, as is well-known in the art, to generate the noise filtered digitized signal 124.
  • hysteresis circuit 120 will have associated resistors and capacitors connected thereto to provide a certain turn on and turn off hysteresis.
  • the hysteresis circuit 120 may be a digital buffer gate, a digital noise filter circuit, or a NRZI data screen.
  • the hysteresis circuit 120 also serves a dual function in that the digitized signal 118 is used to generate the amplitude signal 122, which is a voltage signal having its amplitude representative of the amplitude of the digitized signal 118.
  • the amplitude signal 122 is received by the digital signal level detector 126 to produce the feedback control voltage signal 128 and a status signal 134.
  • the digital signal level detector 126 converts the amplitude signal 122 into the feedback signal 128 which is a low-frequency voltage signal (almost a direct current (DC) signal) representative of the digitized signal 118.
  • the response rate of the feedback signal 128 is around 100 milliseconds which is orders of magnitude slower then the response rates of the rest of the attenuation loop 100.
  • the feedback signal 128 is received by the controlled variable attenuator 108, completing the feedback loop to maintain the amplitude of the digitized signal 118 at roughly the same level or range by controlling the amount of attenuation provided in the controlled variable attenuator 108, the amount of attenuation representative of the level of the feedback signal 128.
  • the status signal 134 received by the digital signal level detector status LED circuit 136 is an indicator signal of the voltage level within the attenuation loop 100, particularly the level of the digitized signal 118.
  • the status circuit 136 includes indicia means for displaying or indicating the relative range of this operating voltage level.
  • status circuit 136 can include a set of bar graph LEDs (not shown) that displays the relative range of this operating voltage level. When the voltage is at the maximum limit, which means that the controlled variable attenuator 108 is letting the bandwidth filtered signal 106 through with no attenuation, all the bar graph LEDs will be illuminated.
  • the voltage level will be a mid-gain level such that the bar graph LEDs comprised of 10 LEDs in a row will have the fifth or sixth such LED illuminated.
  • the number of LEDs illuminated in the status circuit 136 can increase or decrease to continually reflect the signal level operating with the attenuation loop 100.
  • the status circuit 136 may include a numerical display, a LCD indicator, or other indicator means capable of providing the relative signal level information.
  • the bar graph LEDs within status circuit 136 are housed within the receiver 54 to provide diagnostic-type information to field service personnel such that the CT system operator or end-user typically will not be aware of or view these bar graph LEDs.
  • the noise filtered digitized signal 124 is received by the digital fiber optic output circuit 130 for converting signal 124, which is now in its pre-encoded or pre-modulated state similar to the serial digital data signal outputted by DAS 28 (see FIG. 2), into a digital fiber optic signal 132 suitable for transmission in a fiber optic cable.
  • the digital fiber optic output circuit 130 is a chip device which is well-known in the art. Then digital fiber optic signal 132 may be transmitted to the signal processor 58 (see FIG. 2) via lines 56 or signal 132 may be further processed before being transmitted to the signal processor 58 via lines 56.
  • the present invention provides a data signal receiver having an extensive dynamic input range and which also provides an elegant means for correcting or compensating for various signal variations based on the received signal strength. In this manner, the quality of RF communication is much improved without the need for additional mechanical fine tuning such as special test equipment to repeatedly calibrate and center the center operating power level in the slipring assembly.
  • the RF carrier signal described herein may be at a different frequency or the modulation scheme described herein may be a modulation type different from amplitude modulation.
  • the slipring and coupler may communicate using a capacitive type coupling, which also suffers from signal variability to some degree, instead of electromagnetic coupling such that the receiver described herein may be implemented by including other combinations or types of signal processing devices.
  • the encoded data signal may have a even wider signal variation range than the 40 dBm or 50 dBm described herein such that the controlled variable attenuator would correspondingly have to provide an appropriate range of attenuation and the amplifier stages would have to provide greater gain than described herein.
  • the invention may be applied to systems other than medical systems which can benefit from the use of feedback-based signal attenuation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Claims (8)

  1. Appareil de tomographie informatisée, CT, (10) comprenant un moyen pour coder par modulation d'amplitude en radiofréquence, HF, les données d'images numériques et coupler par voie électromagnétique lesdites données d'une bague collectrice HF (34) disposée sur un cadre tournant (12) du système de CT (10) à un coupleur sans contact (50) disposé sur un cadre statique (13) du système de CT (10), comprenant :
    (a) un moyen pour recevoir un signal de données série numérique modulé en amplitude HF et codé (102) ayant une grande plage de niveaux de puissance en provenance de la bague collectrice HF (34) ;
    (b) un moyen (104) pour filtrer en largeur de bande le signal de données codé (102), ce qui élimine les composantes de fréquences indésirables ;
    (c) un moyen (108) pour atténuer l'amplitude du signal de données codé (102) partiellement en réponse à une tension de commande (128) ;
    (d) un moyen (112) pour amplifier l'amplitude du signal de données codé (102), provoquant l'amplification de la composante de données souhaitée du signal de données codé (102) ;
    (e) un moyen (116) pour numériser le signal de données codé (102) en éliminant par filtrage la composant HF qu'il contient ;
    (f) un moyen pour générer un niveau de signal numérique (118) proportionnel à l'amplitude du signal de données codé numérisé ;
    (g) un moyen (120) pour filtrer le signal de données codé (102) afin de supprimer les composantes du signal indésirables restantes du codage par modulation d'amplitude HF, grâce à quoi les données d'image numérique ont été reconstruites à partir du signal de données codé (102) pour un traitement d'image CT dans le cadre statique (13) afin d'en générer une image CT ;
    (h) un moyen pour réguler le degré d'atténuation de l'amplitude du signal de données codé (102) à l'étape (c) par une boucle de rétroaction de telle manière que les données d'image numérique reconstruite de l'étape (g) se trouvent dans la limite d'un niveau de signal souhaité ; et
    (i) un moyen pour faire maintenir le niveau de signal souhaité par le moyen de génération et le moyen de régulation.
  2. Appareil de tomographie informatisée (10) selon la revendication 1, dans lequel la boucle de rétroaction (100) comprend :
    un atténuateur variable commandé (108) configuré pour recevoir deux entrées, le signal de données modulé couplé (102) et un signal de tension d'asservissement (128), pour produire un signal à amplitude stabilisée (110) ;
    un détecteur d'enveloppe numérique (116) configuré pour recevoir le signal à amplitude stabilisée (110) et pour délivrer en sortie un signal numérisé (118), le signal numérisé (118) comprenant le signal à amplitude stabilisée (110) numérisé en supprimant par filtrage la composante HF qu'il contient ;
    un étage de filtre de bruit numérique (120) configuré pour recevoir le signal numérisé (118) du détecteur d'enveloppe numérique (116) et pour délivrer en sortie un signal numérisé à bruit filtré (124) et un signal d'amplitude (122), le signal numérisé à bruit filtré (124) comprenant le signal numérisé (118) filtré pour en supprimer le bruit résiduel et le signal d'amplitude (122) réagit en partie à l'amplitude du signal numérisé (118) ; et
    un détecteur de niveau de signal numérique (126) configuré pour recevoir le signal d'amplitude (122) du circuit de filtre de bruit numérique (120) et pour produire le signal de tension d'asservissement (128), dans lequel le signal de tension d'asservissement (128) est un signal à basse fréquence dont l'amplitude est proportionnelle au signal numérisé (118), moyennant quoi le signal de tension d'asservissement (128) qui complète la boucle de rétroaction dans l'atténuateur variable commandé (108) régule le degré d'atténuation d'amplitude fourni par l'atténuateur variable commandé (108).
  3. Appareil de tomographie informatisée selon la revendication 2, dans lequel la boucle de rétroaction (100) comprend en outre :
    un filtre en largeur de bande HF (104) configuré pour recevoir le signal de données modulé couplé et pour délivrer en sortie un signal filtré en largeur de bande (106), dans lequel le filtre en largeur de bande (104) a une plage de largeur de bande de 500 MHz à 1 GHz ; et
    un étage amplificateur (112) configuré pour recevoir le signal à amplitude stabilisée de l'atténuateur variable commandé pour produire un signal de gain en amplitude (114).
  4. Appareil de tomographie informatisée selon la revendication 3, dans lequel la boucle de rétroaction (100) comprend en outre un étage optique à fibre numérique configuré pour recevoir le signal numérisé filtré en bruit du circuit de filtre de bruit numérique pour faire délivrer en sortie de l'étage optique à fibre numérique un signal optique à fibre numérique destiné à être transmis dans un câble optique à fibre.
  5. Appareil de tomographie informatisée selon la revendication 3, dans lequel la boucle de rétroaction (100) comprend en outre un indicateur d'état configuré pour recevoir un signal d'état du détecteur de niveau de signal numérique et pour afficher de façon relative le niveau de signal numérisé dans la boucle d'atténuation (100).
  6. Appareil de tomographie informatisée selon la revendication 5, dans lequel l'indicateur d'état comprend un circuit (136) comportant un moyen pour afficher des indices visibles représentant le niveau de signal relatif, les indices visibles étant rattachés à des emplacements dans l'indicateur d'état utilisant une mise à l'échelle commune.
  7. Procédé de reconstruction de données d'image numérique dans un système de tomographie informatisée, CT, (10), les données d'image numérique étant codées par modulation d'amplitude en radiofréquence, HF, pour être couplées par voie électromagnétique d'une bague collectrice HF (34) disposée sur un cadre tournant (12) du système de CT (10) à un coupleur sans contact (50) disposé sur un cadre statique (13) du système de CT (10), comprenant :
    (a) recevoir un signal de données série numérique modulé en amplitude HF et codé (102) ayant une grande plage de niveaux de puissance en provenance de la bague collectrice HF (34) ;
    (b) filtrer en largeur de bande le signal de données codé (102), ce qui élimine les composantes de fréquences indésirables ;
    (c) atténuer l'amplitude du signal de données codé (102) partiellement en réponse à une tension de commande (128) ;
    (d) amplifier l'amplitude du signal de données codé (102), provoquant l'amplification de la composante de données souhaitée du signal de données codé (102) ;
    (e) numériser le signal de données codé (102) en éliminant par filtrage la composant HF qu'il contient ;
    (f) générer un niveau de signal numérique proportionnel à l'amplitude du signal de données codé numérisé ;
    (g) filtrer le signal de données codé (102) afin de supprimer les composantes du signal indésirables restantes du codage par modulation d'amplitude HF, grâce à quoi les données d'image numérique ont été reconstruites à partir du signal de données codé (102) pour un traitement d'image CT dans le cadre statique (13) afin d'en générer une image CT ;
    (h) réguler le degré d'atténuation de l'amplitude du signal de données codé (102) à l'étape (c) par une boucle de rétroaction de telle manière que les données d'image numérique reconstruite de l'étape (g) se trouvent dans la limite d'un niveau de signal souhaité ; et
    (i) répéter les étapes de génération et de régulation pour maintenir de façon itérative le niveau de signal souhaité.
  8. Procédé selon la revendication 7, comprenant en outre l'étape consistant à convertir les données d'image numérique reconstruite de l'étape (g) en un signal optique de fibre numérique (132) destiné à être transmis le long d'un câble optique à fibre.
EP00302669A 1999-03-31 2000-03-30 Démodulateur d'amplitude pour systèmes de tompgraphie assistée par ordinateur Expired - Lifetime EP1041785B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US282535 1999-03-31
US09/282,535 US6301324B1 (en) 1999-03-31 1999-03-31 RF slipring receiver for a computerized tomography system

Publications (3)

Publication Number Publication Date
EP1041785A2 EP1041785A2 (fr) 2000-10-04
EP1041785A3 EP1041785A3 (fr) 2004-02-25
EP1041785B1 true EP1041785B1 (fr) 2007-05-02

Family

ID=23081964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00302669A Expired - Lifetime EP1041785B1 (fr) 1999-03-31 2000-03-30 Démodulateur d'amplitude pour systèmes de tompgraphie assistée par ordinateur

Country Status (6)

Country Link
US (2) US6301324B1 (fr)
EP (1) EP1041785B1 (fr)
JP (1) JP2000308635A (fr)
CN (1) CN1250163C (fr)
DE (1) DE60034622T2 (fr)
IL (2) IL135205A (fr)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396613B1 (en) * 1998-12-22 2002-05-28 General Electric Company Optical high speed communications for a computed tomography x-ray machine
US6370217B1 (en) * 1999-05-07 2002-04-09 General Electric Company Volumetric computed tomography system for cardiac imaging
US6327327B1 (en) * 1999-09-27 2001-12-04 Picker International, Inc. Multi-channel segmented slip ring
DE10007601B4 (de) * 2000-02-18 2005-08-18 Siemens Ag Röntgengerät mit Mitteln zur Übertragung von Daten
US6424159B1 (en) 2000-04-25 2002-07-23 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for monitoring contact slipring disconnections
JP2002085390A (ja) * 2000-06-29 2002-03-26 Siemens Ag X線設備
AU2002231053A1 (en) * 2001-12-19 2003-07-09 Philips Medical Systems Technologies Ltd. Wireless data transmission in ct-scanners
US6788793B2 (en) 2002-06-04 2004-09-07 Motorola, Inc. Speaker system for an electronic device
DE10241581B4 (de) * 2002-09-05 2007-11-29 Schleifring Und Apparatebau Gmbh Schleifringanordnung insbesondere zum Einsatz in Computertomographen mit Steuerung der Senderamplitude
DE10241554A1 (de) * 2002-09-05 2004-03-25 Schleifring Und Apparatebau Gmbh Empfangseinrichtung für digitale Signale
DE10241583B4 (de) * 2002-09-05 2005-09-01 Schleifring Und Apparatebau Gmbh Empfangseinrichtung für digitale Signale
DE10245450B4 (de) * 2002-09-27 2018-06-14 Schleifring Gmbh Vorrichtung und Verfahren zur Übertragung digitaler Signale zwischen beweglichen Einheiten mit variabler Übertragungsrate
DE10245449A1 (de) * 2002-09-27 2004-04-08 Schleifring Und Apparatebau Gmbh Vorrichtung zur Übertragung digitaler Signale zwischen beweglichen Einheiten mit Beeinflussung der spektralen Eigenschaften
DE10245505B4 (de) * 2002-09-27 2010-03-25 Schleifring Und Apparatebau Gmbh Vorrichtung zur Übertragung digitaler Signale zwischen beweglichen Einheiten mit analoger Filterung
DE10262316B3 (de) 2002-09-27 2022-05-12 Schleifring Gmbh Vorrichtung zur Übertragung digitaler Signale zwischen beweglichen Einheiten
DE10245589B4 (de) * 2002-09-27 2007-04-26 Schleifring Und Apparatebau Gmbh Vorrichtung zur Übertragung digitaler Signale zwischen beweglichen Einheiten
FR2847798B1 (fr) * 2002-11-28 2006-02-10 Ge Med Sys Global Tech Co Llc Procede pour determiner des parametres fonctionnels dans un dispositif de fluoroscopie
DE10354494B4 (de) * 2003-11-21 2019-04-11 Siemens Healthcare Gmbh Verfahren zur Daten- und Signalübertragung zwischen unterschiedlichen Teileinheiten einer medizintechnischen Anlage
DE10356109B4 (de) * 2003-11-27 2006-09-21 Schleifring Und Apparatebau Gmbh Computertomographen mit berührungsloser Energieübertragung
WO2005064625A1 (fr) * 2003-11-27 2005-07-14 Schleifring Und Apparatebau Gmbh Tomodensitometre a transmission sans contact d'energie
US7079619B2 (en) * 2003-12-17 2006-07-18 Ge Medical Systems Global Technology Company, Llc. System and method for data slipring connection
DE102004031355A1 (de) * 2004-03-31 2005-10-27 Schleifring Und Apparatebau Gmbh Drehübertrager mit dielektrischem Wellenleiter
US7054411B2 (en) * 2004-04-01 2006-05-30 General Electric Company Multichannel contactless power transfer system for a computed tomography system
US7324625B2 (en) * 2004-05-27 2008-01-29 L-3 Communications Security And Detection Systems, Inc. Contraband detection systems using a large-angle cone beam CT system
DE102004050384B4 (de) * 2004-10-15 2010-08-12 Siemens Ag Signalübertragungseinrichtung zur Übertragung von Signalen zwischen zwei relativ zueinander bewegten Elementen unter Nutzung einer optisch auslesbaren Streifenleitung
DE102004051170B4 (de) * 2004-10-20 2015-03-05 Siemens Aktiengesellschaft Computertomographiegerät mit gleichzeitiger kontaktloser elektrischer Übertragung von Versorgungsspannung und Mess- und Steuerdaten
JP2006243865A (ja) 2005-03-01 2006-09-14 Seiko Epson Corp プロセッサおよび情報処理方法
DE102005027632B4 (de) * 2005-03-31 2009-09-24 Schleifring Und Apparatebau Gmbh Mehrkanal-Datenübertragungssystem für Computertomographen
DE102005035802A1 (de) * 2005-07-27 2007-02-01 Schleifring Und Apparatebau Gmbh Datenübertragungssystem für Computertomographen
US7466791B2 (en) * 2005-05-12 2008-12-16 Schleifring Und Apparatebau Gmbh Data transmission system for computer tomographs
DE102005022825A1 (de) * 2005-05-12 2007-03-01 Schleifring Und Apparatebau Gmbh Datenübertragungssystem für Computertomographen
DE102005026158B4 (de) * 2005-06-06 2011-09-15 Schleifring Und Apparatebau Gmbh Datenübertragungssystem für Computertomographen
DE102005056049C5 (de) * 2005-07-29 2016-02-18 Siemens Aktiengesellschaft Vorrichtung zur kontaktlosen Übertragung elektrischer Signale zwischen zwei relativ zueinander bewegten Teilen mit verminderter Störstrahlung
US7957786B2 (en) * 2005-08-15 2011-06-07 General Electric Company Methods and apparatus for communicating signals between portions of an apparatus in relative movement to one another
DE102005040375A1 (de) 2005-08-25 2007-03-01 Dürr Dental GmbH & Co. KG Vorrichtung zur Erstellung von Durchstrahlungsbildern
DE602007000299D1 (de) * 2006-01-18 2009-01-15 Toshiba Kk Röntgen-CT-Gerät und Verknüpfungssystem zur Kommunikation von medizinischen Daten
DE102006054128A1 (de) * 2006-04-24 2007-10-25 Schleifring Und Apparatebau Gmbh Datenübertragungseinrichtung
DE102006021608A1 (de) * 2006-05-09 2007-11-22 Siemens Ag Vorrichtung und Verfahren zur Datenübertragung mit hoher Datenrate zwischen zwei in geringem Abstand relativ zueinander bewegten Teilen
WO2008155200A1 (fr) * 2007-06-21 2008-12-24 Schleifring Und Apparatebau Gmbh Transmetteur rotatif sans contact
WO2009033001A2 (fr) * 2007-09-05 2009-03-12 University Of Utah Research Foundation Distinction d'emplacement robuste utilisant des signatures de lien temporel
US7844097B2 (en) * 2007-12-03 2010-11-30 Samplify Systems, Inc. Compression and decompression of computed tomography data
US7717619B2 (en) * 2008-01-18 2010-05-18 General Electric Company Contactless power and data transmission apparatus
DE102008011594A1 (de) 2008-02-28 2009-09-10 Schleifring Und Apparatebau Gmbh Vorrichtung zur kontaktlosen Übertragung elektrischer Signale in einem Computertomographiesystem
DE102008000487A1 (de) 2008-03-03 2009-09-24 Schleifring Und Apparatebau Gmbh Drehübertrager mit aktiver Kompensation der Übertragungsfunktion
CN101627918A (zh) * 2008-07-18 2010-01-20 Ge医疗系统环球技术有限公司 Ct影像压缩方法和装置
WO2010030927A2 (fr) 2008-09-11 2010-03-18 University Of Utah Research Foundation Procédé et système d’échange de clé secrète utilisant des caractéristiques d’une liaison sans fil et un mouvement aléatoire des appareils
US8515061B2 (en) * 2008-09-11 2013-08-20 The University Of Utah Research Foundation Method and system for high rate uncorrelated shared secret bit extraction from wireless link characteristics
US7852977B2 (en) * 2008-09-11 2010-12-14 Samplify Systems, Inc. Adaptive compression of computed tomography projection data
US7916830B2 (en) * 2008-09-11 2011-03-29 Samplify Systems, Inc. Edge detection for computed tomography projection data compression
US9049225B2 (en) 2008-09-12 2015-06-02 University Of Utah Research Foundation Method and system for detecting unauthorized wireless access points using clock skews
WO2010030956A2 (fr) * 2008-09-12 2010-03-18 University Of Utah Research Foundation Procédé et système de suivi d'objets utilisant l'imagerie radiotomographique
DE102008042697A1 (de) 2008-10-09 2009-11-05 Schleifring Und Apparatebau Gmbh Kontaktloser Drehübertrager mit Taktmodulation
US8151022B2 (en) * 2008-11-26 2012-04-03 Simplify Systems, Inc. Compression and storage of projection data in a rotatable part of a computed tomography system
DE102010000473A1 (de) * 2009-02-20 2010-08-26 Werth Messtechnik Gmbh Verfahren zum Messen eines Objektes
DE102009060316C5 (de) * 2009-12-23 2019-10-31 Siemens Healthcare Gmbh Vorrichtung zur Datenübertragung, Computertomographiegerät und Verfahren zur Datenübertragung
KR101140669B1 (ko) 2010-06-23 2012-05-03 안기용 회전체 카메라의 슬립링 무선 인터페이스 장치
US8818288B2 (en) 2010-07-09 2014-08-26 University Of Utah Research Foundation Statistical inversion method and system for device-free localization in RF sensor networks
JP2012040216A (ja) * 2010-08-20 2012-03-01 Fujifilm Corp 放射線画像信号の暗号化処理方法、復号化処理方法、放射線画像検出装置および放射線画像信号生成装置
US9042872B1 (en) 2012-04-26 2015-05-26 Intelligent Technologies International, Inc. In-vehicle driver cell phone detector
US8731530B1 (en) * 2012-04-26 2014-05-20 Intelligent Technologies International, Inc. In-vehicle driver cell phone detector
US8985852B2 (en) 2012-07-12 2015-03-24 Schleifring Und Apparatebau Gmbh Monitoring device for a CT scanner gantry
US20140254602A1 (en) * 2013-03-05 2014-09-11 Schleifring Und Apparatebau Gmbh High Speed Network Contactless Rotary Joint
US9306353B2 (en) 2013-05-29 2016-04-05 Moog Inc. Integrated rotary joint assembly with internal temperature-affecting element
EP3066715B1 (fr) * 2013-12-17 2019-11-27 Moog Inc. Liaison de données à haut débit avec une sonde planaire de champ proche
EP3018842B1 (fr) * 2014-11-04 2017-03-22 Schleifring und Apparatebau GmbH Procédé et dispositif pour le réglage de liaisons de données sans contact
DE102016122465A1 (de) 2016-11-22 2018-05-24 Hauni Maschinenbau Gmbh Vorrichtung zum Prüfen, Bearbeiten und/oder Fördern von Artikeln der Tabak verarbeitenden Industrie
AU2018240288B2 (en) * 2017-03-24 2023-12-07 Smiths Detection Inc. Contactless data communication in CT systems
CN112198378B (zh) * 2020-09-07 2022-09-27 上海联影医疗科技股份有限公司 滑环故障检测装置及方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515992A (en) * 1967-06-09 1970-06-02 Itt Automatic alarm detector
US3691465A (en) * 1970-12-14 1972-09-12 Robert I Mcfadyen Low level am detector and automatic gain control network
GB1493148A (en) * 1974-01-31 1977-11-23 Emi Ltd Radiography
NL7707414A (en) * 1977-07-05 1979-01-09 Philips Nv Local surface radiation absorption meter - rotates penetrating radiation and has detectors and A=D converter, adaptor and digital memory
US4329004A (en) 1980-05-12 1982-05-11 Litton Systems, Inc. Gas filled high voltage slip ring assembly
US4323292A (en) 1980-05-12 1982-04-06 Litton Systems, Inc. High voltage slip ring assembly
US4679247A (en) * 1985-03-27 1987-07-07 Cincinnati Microwave, Inc. FM receiver
US4682344A (en) * 1985-07-30 1987-07-21 Amp Incorporated Rf fsk transmitter
US5140696A (en) * 1989-02-28 1992-08-18 Kabushiki Kaisha Toshiba Communication system for transmitting data between a transmitting antenna utilizing strip-line transmission line and a receive antenna in relative movement to one another
US5157393A (en) * 1989-02-28 1992-10-20 Kabushiki Kaisha Toshiba Communication system for transmitting data between a transmitting antenna utilizing leaky coaxial cable and a receive antenna in relative movement to one another
JPH03205901A (ja) * 1989-10-26 1991-09-09 Toshiba Corp 電気機械装置
US5018174A (en) 1989-11-20 1991-05-21 General Electric Company High speed communication apparatus for computerized axial tomography (CAT) scanners
EP0542087A3 (fr) * 1991-11-10 1997-12-29 Hewlett-Packard Company Méthode et appareil pour transmission en série efficace des signaux de commande dans un bus numérique
US5208581A (en) 1991-11-22 1993-05-04 General Electric Company High speed communication apparatus for computerized axial tomography (cat) scanners with matching receiver
US5261004A (en) * 1991-12-17 1993-11-09 Delco Electronics Corporation Noise blanking circuit for AM stero
US5175754A (en) 1992-05-11 1992-12-29 General Electric Company Gantry position reference for tomographic scanners
US5577026A (en) * 1993-12-28 1996-11-19 Analogic Corporation Apparatus for transferring data to and from a moving device
US5530423A (en) 1994-09-16 1996-06-25 General Electric Company Transmission line with a grounding brush for high data rate communication in a computerized tomography system
US5530424A (en) 1994-09-16 1996-06-25 General Electric Company Apparatus and method for high data rate communication in a computerized tomography system
US5530422A (en) 1994-09-16 1996-06-25 General Electric Company Differentially driven transmission line for high data rate communication in a computerized tomography system
US5530425A (en) 1994-09-16 1996-06-25 General Electric Company Radiation shielded apparatus for high data rate communication in a computerized tomography system
US5646962A (en) 1994-12-05 1997-07-08 General Electric Company Apparatus for reducing electromagnetic radiation from a differentially driven transmission line used for high data rate communication in a computerized tomography system
US5600697A (en) 1995-03-20 1997-02-04 General Electric Company Transmission line using a power combiner for high data rate communication in a computerized tomography system
US5579357A (en) * 1995-03-20 1996-11-26 General Electric Company Transmission line using a phase splitter for high data rate communication in a computerized tomography system
US5737356A (en) * 1995-03-31 1998-04-07 General Electric Company Spectral spreading apparatus for reducing electromagnetic radiation from a transmission line used for high data rate communication in a computerized tomography system
AU2800497A (en) * 1996-04-08 1997-10-29 Harry A. Romano Interrupt modulation method and appratus
US5828719A (en) 1996-12-23 1998-10-27 General Electric Company Methods and apparatus for modulating data acquisition system gain
US6181766B1 (en) * 1998-08-25 2001-01-30 General Electric Company Digital encoding of RF computerized tomography data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1041785A3 (fr) 2004-02-25
DE60034622D1 (de) 2007-06-14
EP1041785A2 (fr) 2000-10-04
US6301324B1 (en) 2001-10-09
DE60034622T2 (de) 2007-12-27
IL135205A (en) 2005-09-25
CN1250163C (zh) 2006-04-12
CN1268338A (zh) 2000-10-04
IL135205A0 (en) 2001-05-20
US6433631B2 (en) 2002-08-13
US20020003450A1 (en) 2002-01-10
JP2000308635A (ja) 2000-11-07
IL150620A0 (en) 2003-02-12

Similar Documents

Publication Publication Date Title
EP1041785B1 (fr) Démodulateur d'amplitude pour systèmes de tompgraphie assistée par ordinateur
US8983163B2 (en) Methods and apparatus for data communication across a slip ring
US6252531B1 (en) Data acquisition system using delta-sigma analog-to-digital signal converters
US20020071518A1 (en) Computed tomography apparatus and method for operating same
US20070035883A1 (en) Methods and apparatus for communicating signals between portions of an apparatus in relative movement to one another
CN105577240B (zh) 用于调整非接触式数据链路的方法和装置
US20060287589A1 (en) Digital photoplethysmographic signal sensor
CN100448402C (zh) 基于光纤数据传输的ct滑环系统
US20050203338A1 (en) Endoscope with fiber optic transmission of digital video
US20050135551A1 (en) System and method for data slipring connection
JPH08224231A (ja) コンピュータ断層撮影装置
CN210582435U (zh) 内窥镜装置
JPH03205901A (ja) 電気機械装置
US6417949B1 (en) Broadband communication system for efficiently transmitting broadband signals
US7599467B2 (en) Device for contact-free transmission of signals and measured data in a computed tomography apparatus
US4181850A (en) Data transmission in radiographic apparatus
US4996435A (en) Optical system for transmitting data between a stationary part and a rotating part
JPH10500887A (ja) 計算機式断層写真システムにおける高データ速度通信用の電力コンバイナを用いた伝送線路
EP0498213B1 (fr) Circuit d'acquisition de données d'imagerie pour tomographe à ordinateur à rayons-X capable d'effectuer l'acquisition de données à grande vitesse
US20100091935A1 (en) Non-contacting rotary joint with clock modulation
Wegener Compression of medical sensor data [exploratory DSP]
US7889836B2 (en) Device and method for data transfer with high data rate between two parts moving relative to one another at a slight distance
US4850004A (en) Method and system for acquiring computerized tomogram data
CN220383055U (zh) 电力线载波通信装置及医学成像系统
CN213883468U (zh) 微创心脏搭桥手术远程显示装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 03G 3/30 B

Ipc: 7A 61B 6/00 B

Ipc: 7G 01N 24/00 B

Ipc: 7H 04L 27/06 A

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040825

AKX Designation fees paid

Designated state(s): DE NL

17Q First examination report despatched

Effective date: 20050615

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE NL

REF Corresponds to:

Ref document number: 60034622

Country of ref document: DE

Date of ref document: 20070614

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080324

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080430

Year of fee payment: 9

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001