EP1038290B1 - Ultraschallwandler mit topförmiger halterung - Google Patents

Ultraschallwandler mit topförmiger halterung Download PDF

Info

Publication number
EP1038290B1
EP1038290B1 EP98962245A EP98962245A EP1038290B1 EP 1038290 B1 EP1038290 B1 EP 1038290B1 EP 98962245 A EP98962245 A EP 98962245A EP 98962245 A EP98962245 A EP 98962245A EP 1038290 B1 EP1038290 B1 EP 1038290B1
Authority
EP
European Patent Office
Prior art keywords
membrane
ultrasonic transducer
substance
transducer according
piezoelectric disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98962245A
Other languages
English (en)
French (fr)
Other versions
EP1038290A1 (de
Inventor
Vladimir Potapov
Uwe Schön
Thomas Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1038290A1 publication Critical patent/EP1038290A1/de
Application granted granted Critical
Publication of EP1038290B1 publication Critical patent/EP1038290B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means

Definitions

  • the present invention relates to a Ultrasonic transducer for use as a transmitter and receiver in pulse-echo applications where the transmission medium for the sound wave is air.
  • a special area of application of the ultrasonic transducer as Sensor affects the automotive sector.
  • Converters for object detection within a Vehicle interior for example to control the Airbag ignition during an accident.
  • Vibration mode of the converter has here Bending vibration of a membrane shown. to A round piezoceramic disc generates vibrations glued centrally on the back of a membrane. By Applying an electric field will make the ceramic too radial vibrations excited. Because of a stiff There is an adhesive connection with the membrane Bending vibration of the overall system. On the back of the Membrane is still a piece of foam to dampen the Provided vibration.
  • DE-A-34 41 684 describes an ultrasonic transducer the preamble of claim 1 known, in which the Diameter of the piezoceramic disc almost 100% of the Diameter of the membrane and a foam layer is applied to the back of the piezoceramic disc, which, however, does not completely cover them (see also US Pat. No. 4,437,032).
  • the parameters of the ultrasonic vibration are determined by the elastic and other mechanical properties of the overall system.
  • the elastic properties of the materials used and the geometric dimensions of the components used have an influence on the resonance frequency, the opening angle of the sound beam, the quality of the vibration and the sensitivity of the sensor. A large number of influencing factors, which also influence one another, therefore determine the physical transducer properties.
  • the object of the present invention is therefore a Ultrasonic transducer and a method for its production specify the high at a large opening angle Has sensitivity with the lowest possible quality.
  • the Transducers are said to continue in a robust, resilient Housing executable and cheap in large quantities be producible.
  • an ultrasonic transducer proposed in which a membrane in a holder arranged and a piezoelectric disc on a rear major surface of the membrane is applied.
  • the Diameter of the piezoelectric disc is between 60% and 85% of the diameter of the membrane, so that a Remaining area of the membrane is not from the piezoelectric Disc is covered.
  • On the back main surface of the A first substance is foamed in such a way that the membrane piezoelectric disc and the remaining surface of the membrane of the first fabric is completely covered.
  • the bracket of the ultrasonic transducer which at the same time forms the housing, can be in one piece with the membrane made of a material such as aluminum or one Aluminum alloy (e.g. AlCuMgPb), inexpensively manufactured become.
  • a bracket that with the membrane cup-shaped structure a robust, against mechanical influences from the outside provide a robust converter.
  • the converter can with simple procedures, for example through a Extrusion processes are manufactured and therefore meets the Requirements for an inexpensive production in high Quantities.
  • the thickness and the diameter of the ceramic, the thickness and the diameter of the membrane and the overall height of the aluminum housing have a significant influence on the properties of the transducer.
  • the center frequency f of the ultrasonic transducer is proportional to the ratio of the square membrane diameter D M 2 and membrane thickness d M.
  • the ceramic thickness d K is in turn proportional to the center frequency f, the relationship depending on the particular design.
  • the sensitivity and the associated mechanical quality of the vibration can also be influenced by the material on the back of the ceramic (first material).
  • a special ultrasonic transducer for use in object detection within a vehicle interior operates at a center frequency of 70 kHz. At this frequency, the opening angle of the 6dB sound beam should be as large as possible. In such a system there is a requirement that all essential objects with the different surface structures and materials reflect a detectable echo signal back in the direction of the transducer. The sensitivity of the converter must therefore be as high as possible.
  • a converter with a membrane diameter of 8.85 ⁇ 0.02 mm, a membrane thickness of 0.83 ⁇ 0.02 mm and a ceramic thickness of 0.26 ⁇ 0.01 mm has proven particularly advantageous for this application.
  • a cylindrical holder with a wall thickness of at least 2.85 mm and a height of, for example, 6.83 mm is used in such a converter. However, it goes without saying that smaller or larger heights of the holder are quite possible.
  • the developed sensor fits without further changes the control electronics into an existing one Busy detection system in a motor vehicle.
  • the first material foamed on the back of the membrane preferably consists of open-celled, soft material, for example polyurethane foam or silicone foam.
  • Particularly advantageous transducer properties are achieved with polyurethane foam with a compression hardness (DIN 53577) of ⁇ 9 kPa and an acoustic loss factor (DIN 53426) of ⁇ 1.0.
  • piezoelectric disk a piezoceramic with a relative dielectric constant of> 2500, a radial electromechanical coupling factor of> 0.5 and one mechanical quality of ⁇ 300 used.
  • Ultrasonic transducer is initially a cup-shaped holder Made of aluminum or an aluminum alloy, the bottom of which one Forms membrane, for example by means of a Extrusion process made. On the back of the A piezoelectric disc is glued to the membrane mechanical and electrical contact to the membrane manufacture. One end will be on the piezoelectric disc soldered a thin wire. Finally, a first one Fabric in the pot-shaped holder on the back of the Foamed membrane, so that membrane and piezoelectric Disc are completely covered by the fabric.
  • the ultrasonic transducer according to the invention is of course also for other air-ultrasound applications, the similar boundary conditions to the essential ones Specify converter properties, for example for Distance measurement or position detection systems, excellently suited. Because of the wide sound beam the sensor is particularly suitable for Room monitoring.
  • the converter consists of a cylindrical aluminum housing (1).
  • An aluminum membrane (2) forms the bottom of the housing.
  • the aluminum housing of the converter is manufactured as a turned part.
  • a piezoceramic disc (3) for example made of a PZT-5H ceramic, is glued concentrically with a thin adhesive with pressure into the aluminum pot (on the back of the membrane (2)).
  • An electrode of the ceramic which is glued to the membrane surface, has electrical contact with the aluminum housing (1) via the membrane.
  • the earth connection is ensured by a copper pin (6) which is driven into the aluminum housing. When producing large quantities, another method can also be selected for ground contact.
  • the copper pin is connected via a thin wire (8) to a cable (10) that connects the converter to the control electronics.
  • the other electrode of the ceramic (3) is connected to a further thin wire (9) via a soldering point (7) on the edge of the ceramic.
  • a soldering point (7) on the edge of the ceramic.
  • the wire (9) between the ceramic electrode and the cable (10) must be very light in order to avoid a further influencing factor on the vibration properties of the system.
  • a rear view of the sensor with aluminum housing (1), aluminum membrane (2), glued-in ceramic disc (3), soldering point (7) and ground contact (6) can be seen in FIG. 2.
  • the selected diaphragm diameter generates the desired opening angle (here:> 45 ° with a lateral 3dB sound pressure drop;> 55 ° with a lateral 6dB sound pressure drop) and is matched to the overall vibration system in order to effectively generate the bending vibration.
  • the dimensions of the overall housing height, as well as the thickness and diameter of the ceramic disk were optimized with regard to the vibration behavior of the system. The thickness of the ceramic has less influence on the vibration behavior than the diameter.
  • the components of the ultrasonic transducer have the following dimensions: Thickness of the housing wall d G 2.85 mm Height of the housing wall h G 6.83 mm Housing diameter D G 14.55 mm Diameter of the membrane D M 8.85 mm Thickness of the membrane d M 0.83 mm Diameter of the ceramic disc D K 6.75 mm Thickness of the ceramic disc d K 0.26 mm
  • An essential parameter of the sensor is the mechanical goodness.
  • the first material foamed on the back (4) determines the damping of the membrane vibration. Likewise can that play a role in the wall thickness of the pot.
  • the influence the elastic properties of the first material (4) the resonance behavior only to a lesser extent and allow by using materials of different damping better way of checking the mechanical quality of the transducer adjust.
  • Another second substance (5) applied to the back of the first substance (4) serves to prevent the propagation of a sound wave against the direction of the radiating membrane and its influence is coordinated with the resonance behavior of the overall system.
  • the material of the second material (5) is a polyurethane and also fulfills the task of securing the transition between the very light wire that contacts the electrodes and the heavier connecting cable.
  • the extent to which the membrane is covered or the aluminum housing is filled with the first and second substances (4, 5) can be seen in FIG. 1. In the example, the distance between the upper edge of the second material (5) and the upper edge of the housing wall (1) is 1.17 mm.
  • FIGS. 3 and 4 show a rear view and a front view of the complete ultrasound transducer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

Die vorliegende Erfindung betrifft einen Ultraschallwandler für den Einsatz als Sender und Empfänger in Puls-Echo-Anwendungen, bei denen das Übertragungsmedium für die Schallwelle Luft ist.
Ein besonderes Einsatzgebiet des Ultraschallwandlers als Sensor betrifft den Kfz-Bereich. Hier besteht ein Bedarf an Wandlern zur Objekterkennung innerhalb eines Fahrzeuginnenraums, beispielsweise zur Kontrolle der Airbagzündung während eines Unfalls.
Auf dem Markt sind bereits zahlreiche Ultraschallwandler für derartige Anwendungen erhältlich. Als besonders effektive Schwingungsmode des Wandlers hat sich hierbei die Biegeschwingung einer Membran gezeigt. Zur Schwingungserzeugung wird eine runde Piezokeramikscheibe zentrisch auf die Rückseite einer Membran aufgeklebt. Durch Anlegen eines elektrischen Feldes wird die Keramik zu radialen Schwingungen angeregt. Aufgrund einer steifen Klebeverbindung mit der Membran ergibt sich eine Biegeschwingung des Gesamtsystems. Auf der Rückseite der Membran ist weiterhin ein Stück Schaumstoff zur Dämpfung der Schwingung vorgesehen.
Aus der DE-A-34 41 684 ist ein Ultraschallwandler gemäß dem Oberbegriff des Patentanspruches 1 bekannt, bei dem der Durchmesser der Piezokeramikscheibe nahezu 100% des Durchmessers der Membran beträgt und eine Schaumstoffschicht auf der Rückseite der Piezokeramikscheibe aufgebracht ist, die diese jedoch nicht vollständig bedeckt (siehe auch US-A-4 437 032).
Die Parameter der Ultraschallschwingung werden durch die elastischen und sonstigen mechanischen Eigenschaften des Gesamtsystems bestimmt. Hierbei haben die elastischen Eigenschaften der verwendeten Materialien und die geometrischen Abmessungen der eingesetzten Komponenten einen Einfluß auf die Resonanzfrequenz, den Öffnungswinkel der Schallkeule, die Güte der Schwingung und die Empfindlichkeit des Sensors.
   Eine Vielzahl von Einflußfaktoren, die sich auch gegenseitig beeinflussen, bestimmt daher die physikalischen Wandlereigenschaften.
Im obigen Anwendungsfall zur Kontrolle der Airbagzündung während eines Unfalls werden Eigenschaften des Wandlers gefordert, die in dieser Weise bisher von keinem der bekannten Wandler erfüllt werden. Die am Markt erhältlichen Wandler weisen stets einen oder mehrere der folgenden Nachteile auf, so z.B. eine zu geringe Empfindlichkeit, einen zu kleinen Öffnungswinkel der Schallabstrahlung, keine geschlossene Gehäuseform, keine ausreichende Widerstandsfähigkeit bezüglich mechanischer Einwirkung von außen, eine zu große mechanische Güte. Weiterhin sind sie häufig zu aufwendig in der Funktionsweise und somit fertigungstechnisch schwer realisierbar.
Aufgabe der vorliegenden Erfindung ist es daher, einen Ultraschallwandler und ein Verfahren zu seiner Herstellung anzugeben, der bei einem großen Öffnungswinkel eine hohe Empfindlichkeit bei möglichst geringer Güte aufweist. Der Wandler soll weiterhin in einem robusten, widerstandsfähigen Gehäuse ausführbar und in großen Stückzahlen günstig herstellbar sein.
Die Aufgabe wird mit dem Ultraschallwandler und dem Verfahren gemäß den Merkmalen der Patentansprüche 1 und 15 gelöst. Vorteilhafte Ausgestaltungen des Ultraschallwandlers und des Verfahrens zu seiner Herstellung sind Gegenstand der Unteransprüche.
Erfindungsgemäß wird ein Ultraschallwandler vorgeschlagen, bei dem eine Membran in einer Halterung angeordnet und eine piezoelektrische Scheibe auf einer rückseitigen Hauptfläche der Membran aufgebracht ist. Der Durchmesser der piezoelektrischen Scheibe beträgt zwischen 60% und 85% des Durchmessers der Membran, so daß eine Restfläche der Membran nicht von der piezoelektrischen Scheibe bedeckt wird. Auf die rückseitige Hauptfläche der Membran ist ein erster Stoff derart aufgeschäumt, daß die piezoelektrische Scheibe und die Restfläche der Membran von dem ersten Stoff vollständig bedeckt sind. Durch das Aufschäumen dieses Stoffes können besonders vorteilhafte Eigenschaften des Wandlers hinsichtlich Empfindlichkeit und mechanischer Güte erreicht werden. Das angegebene Verhältnis zwischen dem Durchmesser der Piezokeramik und der Membran führt bei aufgeschäumtem Stoff zu einem großen Öffnungswinkel der Schallabstrahlung.
Die Halterung des Ultraschallwandlers, die gleichzeitig das Gehäuse bildet, kann zusammen mit der Membran einstückig aus einem Material, beispielsweise Aluminium oder einer Aluminiumlegierung (z.B. AlCuMgPb), kostengünstig gefertigt werden. Durch eine Halterung, die mit der Membran eine topfförmige Struktur bildet, läßt sich somit ein robuster, gegen mechanische Einwirkung von außen ausreichend widerstandsfähiger Wandler bereitstellen. Der Wandler kann mit einfachen Verfahren, beispielsweise durch ein Fließpreßverfahren hergestellt werden und erfüllt daher die Anforderungen an eine kostengünstige Fertigung in hohen Stückzahlen.
Insbesondere die Dicke und der Durchmesser der Keramik, die Dicke und der Durchmesser der Membran sowie die Gesamthöhe des Aluminiumgehäuses beeinflussen wesentlich die Eigenschaften des Wandlers. So ist die Mittenfrequenz f des Ultraschallwandlers proportional zum Verhältnis von quadratischem Membrandurchmesser DM 2 und Membrandicke dM. Die Keramikdicke dK wiederum ist proportional der Mittenfrequenz f, wobei der Zusammenhang vom jeweiligen Design abhängt. Die Empfindlichkeit und die damit zusammenhängende mechanische Güte der Schwingung ist außerdem durch das Material auf der Rückseite der Keramik (erster Stoff) beeinflußbar.
Ein spezieller Ultraschallwandler für die Anwendung zur Objekterkennung innerhalb eines Fahrzeuginnenraums, beispielsweise zur Kontrolle der Airbagzündung während eines Unfalls, arbeitet bei einer Mittenfrequenz von 70 kHz. Bei dieser Frequenz soll der Öffnungswinkel der 6dB-Schallkeule möglichst groß sein. Bei einem solchen System besteht die Forderung, daß alle wesentlichen Objekte mit den verschiedenen Oberflächenstrukturen und Materialien ein detektierbares Echo-Signal in Richtung des Wandlers zurückreflektieren. Die Empfindlichkeit des Wandlers muß also möglichst hoch sein.
   Besonders vorteilhaft erweist sich für diese Anwendung erfindungsgemäß ein Wandler mit einem Membrandurchmesser 8.85 ± 0.02 mm, einer Membrandicke 0.83 ± 0.02 mm und einer Keramikdicke 0.26 ± 0.01 mm.
   Weiterhin wird bei einem solchen Wandler eine zylinderförmige Halterung mit einer Wandstärke von mindestens 2.85 mm und einer Höhe von beispielsweise 6.83 mm eingesetzt. Es versteht sich jedoch von selbst, daß auch kleinere oder größere Höhen der Halterung durchaus möglich sind.
Der entwickelte Sensor fügt sich ohne weitere Änderungen der Ansteuerungselektronik in ein bestehendes Besetztdetektionssystem in einem Kfz ein.
Der erste, rückseitig auf die Membran aufgeschäumte Stoff besteht vorzugsweise aus offenzelligem, weichem Material, beispielsweise Polyurethanschaum oder Silikonschaum.
   Besonders vorteilhafte Wandlereigenschaften werden hierbei mit Polyurethanschaum mit einer Stauchhärte (DIN 53577) von < 9 kPa und einem akustischen Verlustfaktor (DIN 53426) von < 1.0 erzielt.
In einer besonderen Ausführungsform wird als piezoelektrische Scheibe eine Piezokeramik mit einer relativen Dielektrizitätskonstante von > 2500, einem radialen elektromechanischen Kopplungsfaktor von > 0.5 und einer mechanischen Güte von < 300 eingesetzt.
Bei der Fertigung des erfindungsgemäßen Ultraschallwandlers wird zunächst eine topfförmige Halterung aus Aluminium oder einer Aluminiumlegierung, deren Boden eine Membran bildet, beispielsweise mittels eines Fließpreßverfahrens hergestellt. Auf die Rückseite der Membran wird eine piezoelektrische Scheibe aufgeklebt, um einen mechanischen und elektrischen Kontakt zur Membran herzustellen. Auf die piezoelektrsiche Scheibe wird ein Ende eines dünnen Drahtes aufgelötet. Schließlich wird ein erster Stoff in der topfförmigen Halterung auf die Rückseite der Membran aufgeschäumt, so daß Membran und piezoelektrische Scheibe von dem Stoff vollständig bedeckt sind.
Der erfindungsgemäße Ultraschallwandler ist selbstverständlich auch für andere Luft-Ultraschall-Anwendungen, die ähnliche Randbedingungen an die wesentlichen Wandlereigenschaften vorgeben, beispielsweise für Abstandsmessungs- oder Positionserfassungssysteme, hervorragend geeignet. Aufgrund der breiten Schallkeule eignet sich der Sensor in besonderem Maße zur Raumüberwachung.
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert, in denen
  • Fig. 1 ein Beispiel für einen erfindungsgemäßen Wandler im Querschnitt,
  • Fig. 2 den Wandler aus Figur 1 in Rückansicht ohne den ersten Stoff (4) und den zweiten Stoff (5),
  • Fig. 3 den Wandler aus Figur 1 in Rückansicht vollständig, und
  • Fig. 4 den Wandler aus Figur 1 in Vorderansicht zeigen.
  • Anhand der Figuren 1 und 2 wird nun eine bevorzugte Ausführungsform der Erfindung erläutert.
    Fig. 1 zeigt den Wandler gemäß einer bevorzugten Ausführungsform im Querschnitt. Der Wandler besteht aus einem zylinderförmigen Aluminiumgehäuse (1). Den Boden des Gehäuses bildet eine Aluminium-Membran (2). Das Aluminiumgehäuse des Wandlers wird als Drehteil hergestellt. Eine Piezokeramikscheibe (3), beispielsweise aus einer PZT-5H-Keramik, wird mit einem dünnflüssigen Kleber mit Druck in den Aluminiumtopf (auf die Rückseite der Membran (2)) konzentrisch eingeklebt. Eine Elektrode der Keramik, die auf die Membranfläche geklebt wird, hat über die Membran elektrischen Kontakt zum Aluminiumgehäuse (1). Die Masseverbindung wird durch einen Kupferstift (6) gewährleistet, der in das Aluminiumgehäuse getrieben wird. Bei Fertigung großer Stückzahlen kann zur Massekontaktierung auch ein anderes Verfahren gewählt werden. Der Kupferstift ist über einen dünnen Draht (8) mit einem Kabel (10) verbunden, das den Wandler mit der Ansteuerelektronik verbindet. Die andere Elektrode der Keramik (3) wird über einen Lötpunkt (7) am Rand der Keramik mit einem weiteren dünnen Draht (9) verbunden. Durch das Anbringen des Lötpunktes (7) am Rand der Keramik wird der Einfluß auf die Schwingungseigenschaften des Systems minimiert. Der Draht (9) zwischen Keramikelektrode und Kabel (10) muß sehr leicht sein, um einen weiteren Einflußfaktor auf die Schwingungseigenschaften des Systems zu vermeiden.
       Eine Rückansicht des Sensors mit Aluminiumgehäuse (1), Aluminium-Membran (2), eingeklebter Keramikscheibe (3), Lötpunkt (7) und Masse-Kontaktierung (6) ist Figur 2 zu entnehmen.
       Der gewählte Membrandurchmesser erzeugt den gewünschten Öffnungswinkel (hier: >45° bei einem lateralen 3dB Schalldruckabfall; >55° bei einem lateralen 6dB Schalldruckabfall) und ist auf das Gesamtschwingungssystem abgestimmt, um die Biegeschwingung effektiv zu erzeugen. Bei dem beispielhaften System wurden die Abmessung der Gesamtgehäusehöhe, sowie Dicke und Durchmesser der Keramikscheibe bezüglich des Schwingungsverhaltens des Systems optimiert. Die Dicke der Keramik hat dabei einen geringeren Einfluß auf das Schwingungsverhalten als der Durchmesser.
    Im vorliegenden Beispiel weisen die Komponenten des Ultraschallwandlers (Sensors) folgende Abmessungen auf:
    Dicke der Gehäusewandung dG 2,85 mm
    Höhe der Gehäusewandung hG 6,83 mm
    Durchmesser des Gehäuses DG 14,55 mm
    Durchmesser der Membran DM 8,85 mm
    Dicke der Membran dM 0,83 mm
    Durchmesser der Keramikscheibe DK 6,75 mm
    Dicke der Keramikscheibe dK 0,26 mm
    Dabei sind alle geometrischen Abmessungen der beteiligten Komponenten genau einzuhalten, um ein unter allen Aspekten optimiertes System für genannten Anwendungsfall zu erhalten.
    Ein wesentlicher Parameter des Sensors ist die mechanische Güte. Der rückseitig aufgeschäumte erste Stoff (4) bestimmt die Dämpfung der Membranschwingung. Ebenso kann die die Wandstärke des Topfes eine Rolle spielen. Die elastischen Eigenschaften des ersten Stoffes (4) beeinflussen das Resonanzverhalten nur in geringerem Maße und erlauben durch Einsatz von Materialien unterschiedlicher Dämpfung eine bessere Möglichkeit, die mechanische Güte des Wandlers einzustellen.
    Ein weiterer, rückseitig auf den ersten Stoff (4) aufgebrachter zweiter Stoff (5) dient dazu, die Ausbreitung einer Schallwelle entgegen der Richtung der abstrahlenden Membran zu verhindern und ist in seinem Einfluß auf das Resonanzverhalten des Gesamtsystems abgestimmt. Das Material des zweiten Stoffes (5) ist ein Polyurethan und erfüllt außerdem die Aufgabe, den Übergang zwischen dem sehr leichten Draht, der die Elektroden kontaktiert, und dem schwereren Anschlußkabel zu sichern.
       Das Ausmaß der Bedeckung der Membran bzw. der Ausfüllung des Aluminiumgehäuses durch die ersten und zweiten Stoffe (4,5) können Figur 1 entnommen werden. Im Beispiel beträgt der Abstand des oberen Randes des zweiten Stoffes (5) vom oberen Rand der Gehäusewandung (1) 1,17 mm.
       Die Figuren 3 und 4 zeigen schließlich noch eine Rückansicht und eine Vorderansicht des vollständigen Ultraschallwandlers.

    Claims (16)

    1. Ultraschallwandler, insbesondere für den Einsatz als Sender und Empfänger in Puls-Echo Anwendungen, bei dem eine kreisförmige Membran (2) in einer Halterung (1) angeordnet und eine piezoelektrische Scheibe (3) auf einer rückseitigen Hauptfläche der Membran (2) aufgebracht ist,
      dadurch gekennzeichnet, daß der Durchmesser der piezoelektrischen Scheibe (3) zwischen 60% und 85% des Durchmessers der Membran (2) beträgt, wobei eine Restfläche der Membran (2) nicht von der piezoelektrischen Scheibe (3) bedeckt wird,
      und ein erster Stoff (4) derart auf die rückseitige Hauptfläche der Membran (2) mit der piezoelektrischen Scheibe (3) aufgeschäumt ist, daß die piezoelektrische Scheibe (3) und die Restfläche der Membran (2) von dem ersten Stoff (4) vollständig bedeckt sind.
    2. Ultraschallwandler nach Anspruch 1,
      dadurch gekennzeichnet, daß die Halterung (1) zusammen mit der Membran (2) einstückig aus einem Material gefertigt ist.
    3. Ultraschallwandler nach Anspruch 2,
      dadurch gekennzeichnet, daß das Material Aluminium oder eine Aluminiumlegierung ist.
    4. Ultraschallwandler nach einem der Ansprüche 1 bis 3,
      dadurch gekennzeichnet, daß die Halterung (1) mit der Membran (2) eine topfförmige Struktur bildet.
    5. Ultraschallwandler nach einem der Ansprüche 1 bis 4,
      dadurch gekennzeichnet, daß zur Erzeugung einer Mittenfrequenz von 70 kHz der Membrandurchmesser 8.85 ± 0.02 mm, die Membrandicke 0.83 ± 0.02 mm und die Keramikdicke 0.26 ± 0.01 mm betragen.
    6. Ultraschallwandler nach Anspruch 5,
      dadurch gekennzeichnet, daß eine zylinderförmige Halterung (1) mit einer Wandstärke von mindestens 2.85 mm und einer Höhe von ca. 6 mm eingesetzt wird.
    7. Ultraschallwandler nach einem der Ansprüche 1 bis 6,
      dadurch gekennzeichnet, daß die piezoelektrische Scheibe (3) auf die Membran (2) aufgeklebt ist.
    8. Ultraschallwandler nach einem der Ansprüche 1 bis 7,
      dadurch gekennzeichnet, daß die piezoelektrische Scheibe (3) eine Piezokeramik ist.
    9. Ultraschallwandler nach Anspruch 8,
      dadurch gekennzeichnet, daß die Piezokeramik eine relative Dielektrizitätskonstante von > 2500, einen elektromechanischen Kopplungsfaktor von > 0.5 und eine mechanische Güte von < 300 aufweist.
    10. Ultraschallwandler nach einem der Ansprüche 1 bis 9,
      dadurch gekennzeichnet, daß der erste Stoff (4) aus offenzelligem, weichem Material besteht.
    11. Ultraschallwandler nach Anspruch 10,
      dadurch gekennzeichnet, daß der erste Stoff (4) aus Polyurethanschaum oder Silikonschaum besteht.
    12. Ultraschallwandler nach einem der Ansprüche 1 bis 10,
      dadurch gekennzeichnet, daß der erste Stoff (4) aus Polyurethanschaum mit einer Stauchhärte von < 9 kPa und einem akustischen Verlustfaktor von < 1.0 besteht.
    13. Ultraschallwandler nach einem der Ansprüche 1 bis 12,
      dadurch gekennzeichnet, daß auf dem ersten Stoff (4) ein zweiter Stoff (5) vorgesehen ist.
    14. Ultraschallwandler nach einem der Ansprüche 1 bis 13,
      dadurch gekennzeichnet, daß eine erste Elektrode der piezoelektrischen Scheibe (3) über die Membran (2) und die Halterung (1) mit Masse verbunden, und eine zweite Elektrode der piezoelektrischen Scheibe (3) über einen dünnen am Rand der Scheibe angelöteten Draht (9) kontaktiert ist.
    15. Verfahren zur Herstellung eines Ultraschallwandlers mit folgenden Verfahrensschritten:
      Herstellung einer topfförmigen Halterung (1) aus Aluminium oder einer Aluminiumlegierung, deren Boden eine Membran (2) bildet,
      Aufkleben einer piezoelektrischen Scheibe (3) auf die Rückseite der Membran (2), so daß ein mechanischer und elektrischer Kontakt zur Membran (2) hergestellt wird, Auflöten eines Endes eines dünnen Drahtes (9) auf die piezoelektrische Scheibe (3),
      Aufschäumen eines ersten Stoffes (4) in der topfförmigen Halterung (1) auf die Rückseite der Membran (2), so daß Membran (2) und piezoelektrische Scheibe (3) von dem ersten Stoff (4) vollständig bedeckt sind.
    16. Verfahren nach Anspruch 15,
      dadurch gekennzeichnet, daß auf den ersten Stoff (4) ein zweiter Stoff (5) aufgebracht wird, der die Ausbreitung einer Schallwelle entgegen der gewünschten Richtung der abstrahlenden Membran (2) verhindern soll.
    EP98962245A 1997-12-10 1998-11-03 Ultraschallwandler mit topförmiger halterung Expired - Lifetime EP1038290B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19754891A DE19754891C1 (de) 1997-12-10 1997-12-10 Ultraschallwandler
    DE19754891 1997-12-10
    PCT/DE1998/003297 WO1999030313A1 (de) 1997-12-10 1998-11-03 Ultraschallwandler mit topfförmiger halterung

    Publications (2)

    Publication Number Publication Date
    EP1038290A1 EP1038290A1 (de) 2000-09-27
    EP1038290B1 true EP1038290B1 (de) 2004-01-28

    Family

    ID=7851451

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98962245A Expired - Lifetime EP1038290B1 (de) 1997-12-10 1998-11-03 Ultraschallwandler mit topförmiger halterung

    Country Status (4)

    Country Link
    EP (1) EP1038290B1 (de)
    JP (1) JP2001526479A (de)
    DE (2) DE19754891C1 (de)
    WO (1) WO1999030313A1 (de)

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AU2001290303A1 (en) 2000-09-29 2002-04-15 Ajinomoto Co., Inc. Novel phenylalanine derivatives
    DE10156259A1 (de) * 2001-11-09 2003-05-22 Valeo Schalter & Sensoren Gmbh Ultraschallsensor und Verfahren zur Herstellung eines Ultraschallsensors
    DE10159679A1 (de) * 2001-11-30 2003-06-12 Valeo Schalter & Sensoren Gmbh Ultraschallsensoreinheit und Verfahren zur Herstellung
    DE102005046173A1 (de) * 2005-09-27 2007-04-05 Siemens Ag Ultraschallwandler für verdeckten Einbau
    DE102006011155A1 (de) * 2006-03-10 2007-09-13 Robert Bosch Gmbh Ultraschallsensor
    DE102006028211A1 (de) 2006-06-14 2007-12-20 Valeo Schalter Und Sensoren Gmbh Ultraschallsensor mit Membran
    DE102012210522A1 (de) * 2012-06-21 2013-12-24 Robert Bosch Gmbh Dämpfungselement zur Dämpfung von Schwingungen, Schallwandleranordnung mit einem Dämpfungselement sowie Verfahren zur Herstellung eines Dämpfungselements
    US20140157894A1 (en) * 2012-12-12 2014-06-12 Tung Thih Electronic Co., Ltd. Transducer Case
    CN103900629A (zh) * 2012-12-24 2014-07-02 同致电子企业股份有限公司 传感器外壳
    JP6922651B2 (ja) 2017-10-26 2021-08-18 セイコーエプソン株式会社 超音波デバイス、及び超音波測定装置

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4437032A (en) * 1981-09-23 1984-03-13 Egon Gelhard Sensor for distance measurement by ultrasound

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3301848C2 (de) * 1983-01-20 1984-11-08 Siemens AG, 1000 Berlin und 8000 München Ultraschallwandler
    JPS59175299A (ja) * 1983-03-24 1984-10-04 Nippon Denso Co Ltd 超音波送受波器
    DE3441684A1 (de) * 1984-11-15 1986-05-15 SWF Auto-Electric GmbH, 7120 Bietigheim-Bissingen Elektroakustischer wandler
    DE9204734U1 (de) * 1992-04-06 1993-08-05 Honeywell Regelsysteme Gmbh, 63067 Offenbach, De
    DE4329055A1 (de) * 1993-08-28 1995-03-02 Teves Gmbh Alfred Druckdichter Wandler für Kraftfahrzeuge
    DE19601656B4 (de) * 1996-01-18 2009-07-16 Valeo Schalter Und Sensoren Gmbh Bedämpfter Ultraschallwandler
    DE29614691U1 (de) * 1996-08-23 1996-10-17 Pil Sensoren Gmbh Ultraschall-Sensor

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4437032A (en) * 1981-09-23 1984-03-13 Egon Gelhard Sensor for distance measurement by ultrasound

    Also Published As

    Publication number Publication date
    DE59810685D1 (de) 2004-03-04
    EP1038290A1 (de) 2000-09-27
    DE19754891C1 (de) 1999-07-15
    JP2001526479A (ja) 2001-12-18
    WO1999030313A1 (de) 1999-06-17

    Similar Documents

    Publication Publication Date Title
    DE69721728T2 (de) Ultraschallsende-/empfangsgerät
    DE60005382T2 (de) Breitbandiger unterwasser-schallwandler
    EP1038290B1 (de) Ultraschallwandler mit topförmiger halterung
    DE3505872A1 (de) Ultraschallwandler
    EP0766071B1 (de) Ultraschallwandler
    DE4117638C2 (de)
    DE102010027780A1 (de) Verfahren zum Ansteuern eines Ultraschallsensors und Ultraschallsensor
    DE102006011155A1 (de) Ultraschallsensor
    DE3009068A1 (de) Piezopolymer-wandler mit fester membranunterstuetzung
    DE3441684A1 (de) Elektroakustischer wandler
    DE102008049081B4 (de) Ultraschallsensor
    EP2031580B1 (de) Ultraschallsensor mit einem Trägerelement und einer Membran, wobei die Membran in das Trägerelement eingebettet ist
    DE102012207160A1 (de) Sensoranordnung umfassend eine flächige Fahrzeugkomponente und einen Ultraschallsensor
    DE3732410A1 (de) Ultraschallwandler mit astigmatischer sende-/empfangscharakteristik
    DE3422115A1 (de) Ultraschallwandlersystem
    WO2014202333A1 (de) Umfeldsensiereinrichtung mit ultraschallwandler, und kraftfahrzeug mit einer derartigen umfeldsensiereinrichtung
    EP0993344B2 (de) Ultraschallwandler
    DE3808019A1 (de) Ultraschall-sensor
    DE4231253A1 (de) Membran fuer elektrodynamische wandler
    EP0232760A2 (de) Breitbandlautsprecher mit in Teilflächen für verschiedene frequenzbereiche aufgeteilter Membranfläche
    DE3143027C2 (de) Piezoelektrischer Wandler
    DE10139341A1 (de) Ultraschallsensor mit einer Membran
    WO1996031870A1 (de) Piezoelektrischer ultraschallwandler
    DE3041742C2 (de) Luftschallgeber
    EP0825585B1 (de) Vorrichtung zur Bestimmung des Abstandes von Objekten

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000530

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB NL

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: HAHN, THOMAS

    Inventor name: SCHOEN, UWE

    Inventor name: POTAPOV, VLADIMIR

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040128

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040128

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040128

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59810685

    Country of ref document: DE

    Date of ref document: 20040304

    Kind code of ref document: P

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20040128

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041029

    EN Fr: translation not filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050601