EP1036050A1 - Procede pour la production d'un corps sacrificiel en vue de fabriquer des corps composites alumine/aluminure de titane - Google Patents

Procede pour la production d'un corps sacrificiel en vue de fabriquer des corps composites alumine/aluminure de titane

Info

Publication number
EP1036050A1
EP1036050A1 EP98964400A EP98964400A EP1036050A1 EP 1036050 A1 EP1036050 A1 EP 1036050A1 EP 98964400 A EP98964400 A EP 98964400A EP 98964400 A EP98964400 A EP 98964400A EP 1036050 A1 EP1036050 A1 EP 1036050A1
Authority
EP
European Patent Office
Prior art keywords
sacrificial body
starting
filling
binder
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98964400A
Other languages
German (de)
English (en)
Inventor
Tilmann Haug
Christoph Hesselmann
Steffen Rauscher
Michael Scheydecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1036050A1 publication Critical patent/EP1036050A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00905Uses not provided for elsewhere in C04B2111/00 as preforms
    • C04B2111/00913Uses not provided for elsewhere in C04B2111/00 as preforms as ceramic preforms for the fabrication of metal matrix comp, e.g. cermets
    • C04B2111/00922Preforms as such

Definitions

  • the invention relates to a method for producing a sacrificial body from an initial batch for the later production of a component from an Al2 ⁇ 3 / titanium aluminide composite material according to the preamble of claim 1, a starting batch for the sacrificial body according to the preamble of claim 16 and a sacrificial body according to the preamble of Claim 27, as everything emerges from the generic DE 196 05 858 AI as known.
  • AI discloses a method for producing a component from an Al 2 O 3 / italuminide composite material.
  • the ceramic / metal composite combines the properties of the ceramic and the metallic phase and has high strength and high fracture toughness.
  • a starting mixture is formed which, inter alia, has an oxidic compound, which compound can be reduced by means of aluminum while simultaneously forming aluminide and Al2O3.
  • Ti ⁇ 2 is mentioned as part of the initial batch.
  • a near-net shape sacrificial body is produced from the initial batch, which is then infiltrated with AI. The sacrificial body is sintered for stabilization and in particular for filling with aluminum under pressure before the pressure infiltration.
  • the sacrificial body After sintering, the sacrificial body is tempered to a filling temperature which is arranged above the melting temperature of the aluminum and / or an aluminum alloy - hereinafter simply called aluminum. Furthermore, the filling temperature is arranged below a reaction temperature at which a so-called SHS Reaction takes place between the aluminum and at least one of the starting materials.
  • An SHS reaction self propagating high temperature synthesis
  • the sacrificial body is filled with aluminum under pressure and heated again, an exchange reaction now taking place between the aluminum and the constituents of the sacrificial body to form an Al 2 O 3 / titanium aluminide composite material.
  • the sacrificial body is usually only partially converted into the Al2 ⁇ 3 / titanium aluminide composite.
  • a sacrificial body comprising TiO 2 can only be completely filled with aluminum in some cases.
  • such a sacrificial body can also be completely provided with a continuous titanium aluminide hash only in exceptional cases.
  • a method for producing a component from a metal / ceramic composite material in which a sacrificial body made of ceramic materials is filled with thermally softened metal - in particular aluminum - and / or with a metallic alloy.
  • the filling temperature is arranged below a reaction temperature at which reaction temperature an exchange reaction takes place between a metal of the ceramic primary material and a metal of the filling metal.
  • the filled victim's body is heated to or above the reaction temperature, as a result of which the exchange reaction just mentioned then takes place.
  • a component is produced from the metal / ceramic composite material, which has a ceramic and a metallic phase with an intermetallic compound of the metal of the ceramic and the metal of the filling metal.
  • the ceramic matrix is obtained during the filling and also during the subsequent exchange reaction between the introduced metal and the material of the sacrificial body.
  • the pores of the sacrificial body are filled completely, so that when the substances in question are stoichiometrically dimensioned, the component has reacted completely and without cracks or channels.
  • the filling metal is preferably aluminum and the metal of the ceramic titanium, so that after the preferred exchange reaction the ceramic phase has TiB x and / or TiC y and / or TiCN and Al2O3, the intermetallic compound of the metallic phase being a high-temperature resistant titanium aluminide , in particular TiAl.
  • the material properties of this metal / ceramic composite material are good.
  • a metal / ceramic composite that is produced with aluminum as the filling metal and Ti as the metal of the ceramic sacrificial body has a density of 3.4 g / cm 3 , this density being slightly higher than that of the so-called MMCs (metal matrix composites), but is only 42% of the density of comparable cast iron.
  • the area of application of the component extends to at least 800 ° C., the values for gray cast iron being clearly exceeded.
  • the metal / ceramic composite material produced is used in particular to produce friction rings for the friction surfaces of disc brakes. These friction rings are then attached to the brake disk cup using mechanical connection techniques such as screw connections, etc.
  • the starting materials of the sacrificial body must be heated, with a first exchange reaction taking place between the primary materials form high-quality and expensive raw materials for the exchange materials.
  • the ceramic phase and the metallic phase are formed from these expensive primary materials and the metal, an exchange reaction being carried out again for this purpose, this time with the primary material and the filling metal.
  • SHS reaction Seif propagating high temperature synthesis, means the ignition of a reactive mixture, the reaction maintaining itself and providing the desired ceramic matrix as reaction products).
  • a component produced in this way sometimes has an unacceptable porosity, so that the rejection rate is high.
  • the filling of sacrificial bodies with TiO 2 as the primary material of the sacrificial body is very poor.
  • WO 84/02927 discloses a process for the production of fiber-reinforced die-cast parts with aluminum in the so-called sgueeze-casting process.
  • a porous green body is first pressed from an initial mixture containing fibers, which is then filled with aluminum.
  • a starting agent is added to the starting mixture, which is thermally removed when the green body is filled. Due to the presence of the pores and the strength of the binder, there is no or at most a negligible deformation of the green body.
  • the object of the invention is to further develop the previously known method in such a way that the production of components from a metal / ceramic composite material is simpler, faster and, in particular, cheaper and more economical in terms of energy technology, and that the volume of the composite body is reliable and as far as possible with titanium aluminum. can not be provided.
  • the two previously known exchange reactions for converting the aluminum and the materials of the sacrificial body into an Al2 ⁇ 3 / titanium aluminide composite of the starting materials can be carried out in a single heating process.
  • This reaction temperature is preferably below the filling temperature, preferably below the melting temperature of the aluminum and particularly preferably below 400 ° C. This reduces the energy requirement and also the production time required.
  • the sacrificial body is heated to fill the sacrificial body with aluminum or with an aluminum alloy. Therefore, it makes sense to use for the production of, among other things Kochkorpers TiO 2 and C, as can be formed, inter alia, the reduced titanium oxide TiO x (TiO, i2 ⁇ 3 and / or Ti3Ü5) of TiO 2 and possibly C at heating then.
  • a powdery ceramic starting mixture with carbon and TiO 2 as well as with a binder and with a filler is mixed and then pressed.
  • a low-temperature treatment under vacuum or protective gas in particular nitrogen or CO 2 , between 350 ° C. and 700 ° C., in particular at 400 ° C., in particular burns out the filler and possibly also the binder under vacuum or protective gas, with a porous and non-sintered pressure-stable as well as ceramic sacrificial body.
  • thermogravimetric analysis (TG) is expediently carried out here, which serves to demonstrate that the binder and possibly also the filler have been completely removed.
  • One of the advantages of the invention is that in the entire production of a component from such a metal / ceramic composite material, that is to say starting from the production of the sacrificial body through the filling of the sacrificial body with aluminum up to the formation of the composite material by the exchange reaction, no temperature steps over 800 ° C, especially above 700 ° C are required. On the other hand, this happens in a short time, especially the filling by die casting.
  • the aluminum is converted to a high-temperature-resistant titanium aluminide. Very cheap raw materials are also used; the material price is currently around 4 DM per kg.
  • titanium dioxide and graphite in particular are first mixed with one another in a defined stoichiometric ratio.
  • binder preferably polyvinyl alcohol PVA and / or polyethylene glycol PEG
  • a water-soluble powder and / or fibrous organic filler preferably a celulose derivative, in particular celulose acetate
  • the filler which is preferably added in powder form, has in particular an average grain size between 10 ⁇ m and 100 ⁇ m, preferably 20 ⁇ m.
  • the mixture is either dried or moist (residual moisture approx. 10-20% H20) uniaxially pressed at in particular 300 bar.
  • the uniaxial pressing process is optionally followed by a further cold isostatic pressing process.
  • the sacrificial body which is preferably pressed close to the final shape, is mechanically machined to the final dimension and is used for a Position of the component in the subsequent filling of the sacrificial body with liquid aluminum placed in a die-casting mold.
  • the strength, the modulus of elasticity, the porosity and the pore structure of the sacrificial body are important for filling with aluminum using the die casting process.
  • These properties can be influenced by the choice of the binder, the fillers, the amount of filler and the pressing pressure.
  • the particle sizes of the ceramic powder (TiO 2 etc.) and the fillers are also included.
  • the sacrificial body is heated at 700 ° C under nitrogen for 1 hour (holding time at 350 ° C, heating rate 1 K / min), whereby all organic additives burn out without residue.
  • the sacrificial body has a compressive strength of 7 MPa and a porosity of 49%.
  • the pore diameters have a bimodal distribution in which a maximum is 0.1 ⁇ m and a maximum is 20 ⁇ m.
  • Example 2 As in Example 1, except that the amount of celulose acetate is 20% by weight.
  • Example 2 As in Example 1, except that 10% by weight of water are added to the mixture of TiO 2 / C / PEG / CA before uniaxial pressing.
  • the sacrificial bodies are intended for subsequent pressure filling with aluminum. After filling, they are subjected to a temperature treatment below the melting point of the aluminum, as a result of which a component is made of composite material, which has, in particular, homogeneously distributed TiC, Al2O3 and G A ⁇ Ti.
  • tribological systems are particularly suitable for producing friction surfaces, tribological systems or engine components and / or vehicle components and / or brake discs and / or friction surfaces for brake discs.
  • tribological systems are preferably to be understood as meaning structural components in jet engines and engines, in particular plain bearings, cutting materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)
  • Braking Arrangements (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

L'invention concerne un procédé pour la production d'un corps sacrificiel à partir d'un mélange initial permettant la fabrication ultérieure d'un composant constitué d'un matériau composite Al2O3/aluminure de titane, un mélange initial ainsi qu'un corps sacrificiel. A partir de ce mélange initial auquel ont été ajoutés, outre du titane, notamment comme oxyde, encore du carbone et/ou ses intermédiaires, des charges et des liants, un corps moulé est moulé par pression. Ce corps moulé est soumis, à une température de transformation, à un traitement thermique en vue de former le corps sacrificiel stable à la pression. A cet effet, la charge et éventuellement également le liant sont éliminés thermiquement. Le corps sacrificiel est destiné à être rempli ultérieurement d'aluminium et/ou d'un alliage d'aluminium sous pression, ce remplissage s'effectuant à une température de remplissage se situant au-dessus de la température de transformation. On fait réagir les matériaux du corps sacrificiel rempli et l'aluminium par une réaction à l'état solide à une température inférieure à la température de remplissage, pour obtenir un corps composite Al2O3/aluminure de titane.
EP98964400A 1997-11-28 1998-11-14 Procede pour la production d'un corps sacrificiel en vue de fabriquer des corps composites alumine/aluminure de titane Withdrawn EP1036050A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19752775A DE19752775C1 (de) 1997-11-28 1997-11-28 Verfahren zur Herstellung eines Opferkörpers aus einem Ausgangsgemenge zur späteren Herstellung eines Bauteils aus einem Al¶2¶0¶3¶/Titanaluminid-Verbundwerkstoff, Ausgangsgemenge für den Opferkörper sowie Opferkörper und Verwendung des Opferkörpers
DE19752775 1997-11-28
PCT/EP1998/007294 WO1999028276A1 (fr) 1997-11-28 1998-11-14 Procede pour la production d'un corps sacrificiel en vue de fabriquer des corps composites alumine/aluminure de titane

Publications (1)

Publication Number Publication Date
EP1036050A1 true EP1036050A1 (fr) 2000-09-20

Family

ID=7850098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98964400A Withdrawn EP1036050A1 (fr) 1997-11-28 1998-11-14 Procede pour la production d'un corps sacrificiel en vue de fabriquer des corps composites alumine/aluminure de titane

Country Status (8)

Country Link
EP (1) EP1036050A1 (fr)
JP (1) JP2001524607A (fr)
KR (1) KR20010031873A (fr)
CN (1) CN1279659A (fr)
BR (1) BR9815038A (fr)
CZ (1) CZ20001961A3 (fr)
DE (1) DE19752775C1 (fr)
WO (1) WO1999028276A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012214847B2 (en) * 2011-01-15 2015-04-23 Scott Richard Holloway Electric power transmission cable comprising continuously synthesized titanium aluminide intermetallic composite wire
CN103831421A (zh) * 2014-03-26 2014-06-04 铜仁学院 一种制备局部增强铝基复合材料的方法
CN110893460B (zh) * 2019-06-05 2020-10-02 南京工业大学 基于钛合金与碳化硼颗粒错配度的增材制造冶金组织调控方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929476A (en) * 1972-05-05 1975-12-30 Minnesota Mining & Mfg Precision molded refractory articles and method of making
GB8301320D0 (en) * 1983-01-18 1983-02-16 Ae Plc Reinforcement of articles of cast metal
US4988645A (en) * 1988-12-12 1991-01-29 The United States Of America As Represented By The United States Department Of Energy Cermet materials prepared by combustion synthesis and metal infiltration
US5536686A (en) * 1992-10-20 1996-07-16 The Research Foundation Of State University Of New York At Buffalo Phosphate binders for metal-matrix composites
JP3618106B2 (ja) * 1992-12-21 2005-02-09 独立行政法人科学技術振興機構 複合材料とその製造方法
DE19605858A1 (de) * 1996-02-16 1997-08-21 Claussen Nils Verfahren zur Herstellung von Al¶2¶O¶3¶-Aluminid-Composites, deren Ausführung und Verwendung
DE19619500A1 (de) * 1996-05-14 1997-11-20 Claussen Nils Metall-Keramik-Formkörper und Verfahren zu ihrer Herstellung
DE19710671C2 (de) * 1997-03-14 1999-08-05 Daimler Chrysler Ag Verfahren zum Herstellen eines Bauteils sowie Verwendung eines derart hergestellten Bauteils

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9928276A1 *

Also Published As

Publication number Publication date
JP2001524607A (ja) 2001-12-04
BR9815038A (pt) 2000-10-03
KR20010031873A (ko) 2001-04-16
CZ20001961A3 (cs) 2001-12-12
CN1279659A (zh) 2001-01-10
DE19752775C1 (de) 1999-04-29
WO1999028276A1 (fr) 1999-06-10

Similar Documents

Publication Publication Date Title
EP1899280B1 (fr) CORPS MOULE CERAMIQUE CONTENANT DU ß-SIC POREUX ET PRESENTANT UN REVETEMENT EN OXYDE D'ALUMINIUM ET PROCEDE POUR LE PRODUIRE
DE2904996C2 (de) Verfahren zur Herstellung eines Sinterkörpers aus Siliciumcarbid
DE19752776C1 (de) Verfahren zur Herstellung eines Bauteils aus Al¶2¶0¶3¶/Titanaluminid-Verbundwerkstoff und dessen Verwendung
EP0899251B1 (fr) Procédé de fabrication d'un corps ayant une matrice poreuse d'au moins un matériau recristallisé
EP1400499B1 (fr) Produit composite en céramique renforcée par des fibres et procédé de préparation
DE3205877C2 (fr)
DE19706926C2 (de) Verfahren zur Herstellung von Keramik-Metall-Verbundkörpern
DD283368A5 (de) Verfahren fuer die herstellung eines selbsttragenden koerpers
DE4126738A1 (de) Zr0(pfeil abwaerts)2(pfeil abwaerts)-haltiger keramikformkoerper
EP1999087A1 (fr) Matériau à base de borure fritté résistant a l'usure, mélange poudreux frittable destiné à la fabrication de ce matériau, procédé de fabrication du materiau et son utilisation
DE3222784C2 (de) Verfahren zum Herstellen eines hochfesten gesinterten Siliciumcarbids
DE2628578B2 (de) Verfahren zur Herstellung gegossener hochschmelzbarer anorganischer Stoffe
DE3327101A1 (de) Verfahren zur herstellung eines mit sic-whiskers verstaerkten verbundmaterials
DE1118079B (de) Verfahren zur Herstellung von Koerpern aus Graphit und Metallkarbiden
DE19752777C2 (de) Verfahren zur Herstellung eines Al¶2¶O¶3¶/Titanaluminid-Verbundkörpers sowie Verwendung des Verfahrens zur Herstellung von tribologisch beanspruchten Systemkomponenten
DE19706925C2 (de) Verfahren zum Herstellen von Keramik-Metall-Verbundkörpern, Keramik-Metall-Verbundkörper und deren Verwendung
EP0317701A1 (fr) Réfractaire et procédé pour sa production
DE19752775C1 (de) Verfahren zur Herstellung eines Opferkörpers aus einem Ausgangsgemenge zur späteren Herstellung eines Bauteils aus einem Al¶2¶0¶3¶/Titanaluminid-Verbundwerkstoff, Ausgangsgemenge für den Opferkörper sowie Opferkörper und Verwendung des Opferkörpers
DE4007825C2 (fr)
AT502394B1 (de) Verfahren zur herstellung eines keramischen werkstoffes und keramischer werkstoff
EP1525330A1 (fr) Procede de production d'un element constitutif, element constitutif correspondant et utilisation
DE3603331A1 (de) Siliciumcarbid-sintererzeugnis und verfahren zu dessen herstellung
EP0528416B1 (fr) Composite de carbure de silicium et son procédé de fabrication
DE19820832A1 (de) Verfestigung keramischer Körper durch Saccharidzugabe
EP0810982A1 (fr) Procede de production de corps fa onnes et de couches ceramiques, metalliques ou ceramo-metalliques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR GB IT NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHEYDECKER, MICHAEL

Inventor name: RAUSCHER, STEFFEN

Inventor name: HESSELMANN, CHRISTOPH

Inventor name: HAUG, TILMANN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHEYDECKER, MICHAEL

Inventor name: RAUSCHER, STEFFEN

Inventor name: HESSELMANN, CHRISTOPH

Inventor name: HAUG, TILMANN

17Q First examination report despatched

Effective date: 20001102

18W Application withdrawn

Withdrawal date: 20001021