EP1035310B1 - Moteur à pistons à combustion continue - Google Patents

Moteur à pistons à combustion continue Download PDF

Info

Publication number
EP1035310B1
EP1035310B1 EP00102242A EP00102242A EP1035310B1 EP 1035310 B1 EP1035310 B1 EP 1035310B1 EP 00102242 A EP00102242 A EP 00102242A EP 00102242 A EP00102242 A EP 00102242A EP 1035310 B1 EP1035310 B1 EP 1035310B1
Authority
EP
European Patent Office
Prior art keywords
piston engine
set forth
combustion chamber
cylinder
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00102242A
Other languages
German (de)
English (en)
Other versions
EP1035310A2 (fr
EP1035310A3 (fr
Inventor
Ulrich Dr. Rohs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1035310A2 publication Critical patent/EP1035310A2/fr
Publication of EP1035310A3 publication Critical patent/EP1035310A3/fr
Application granted granted Critical
Publication of EP1035310B1 publication Critical patent/EP1035310B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/26Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0002Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F01B3/0005Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G3/00Combustion-product positive-displacement engine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Definitions

  • the invention relates to a piston engine with continuous Combustion, in which from a combustion chamber effluent Working medium is successively fed to at least two cylinders.
  • Such a motor is known to consist of a fixed Housing in which a cylinder block arranged in a circle axially parallel cylinders rotated.
  • the pistons work on one connecting rod inclined, circulating synchronously with the cylinder block Crankshaft whose fixed axis relative to the motor shaft to an angle is inclined.
  • a single, common for all cylinders combustion chamber is located in a fixed cylinder head and is through an inlet and a Outlet bore connected to a control surface of the cylinder head, on which the rotating cylinders pass.
  • Between the rotating cylinder block and the fixed cylinder head is one Sealing provided.
  • each cylinder receives in the range of Lower piston dead center fresh air, in the course of further rotation is compacted conditionally by the piston movement until it is close to the top dead center entered into the combustion chamber and with there injected fuel is burned.
  • the piston movement follows in this case from the inclination of the crank disc.
  • the cylinder After passing through top dead center, the cylinder decreases Combustion gases from the combustion chamber, which then expand until a for all cylinders common outlet shortly before bottom dead center opens. Subsequently, a charge change takes place after the 2-TaktVerfahren instead of.
  • the fuel is the combustion chamber by a Injection nozzle fed continuously so that the combustion maintained uninterrupted; an electric ignition takes place therefore only for starting the engine.
  • the invention proposes a piston engine with continuous Combustion, in which out of a combustion chamber Working medium successively at least two cylinders is supplied, each Cylinder is stationary with respect to the combustion chamber and an inlet wherein the combustion chamber has a combustion chamber floor with at least having a firing channel and the combustion chamber floor with the firing channel is shifted so that the firing channel successively to each at least an inlet is directed.
  • the working medium can immediately and without further losses flow into the respective cylinders to do its job accordingly.
  • the present invention is fundamentally different from the US 5,285,633, in which the working medium first a stationary channel, a Distribution channel in a distributor and another stationary channel has to flow through until it can get out of the combustion chamber into the cylinder, and from US 5,497,614, in which the working medium initially via a Inlet opening in a rotary valve and from this rotary valve in the firing channel arrives.
  • the output shaft For example, have a swash plate, which via connecting rods in the Cylinders working piston is connected.
  • the term describes a swash plate rotatably mounted on a knee shaft portion of the Output shaft arranged wobble body, the radially outboard Has pivot points for the connecting rod of the piston.
  • an output shaft may be provided which is a cam along which cylinders operating in the piston run.
  • a Such cam arrangement has an extraordinary high Efficiency on.
  • a particularly favorable power flow follows when the combustion chamber is coaxial is arranged to the output shaft. This is especially in the Related to the use of a wobble or cam advantageous, wherein this favorable power flow in others, of the Piston driven drives is advantageous.
  • This arrangement allows in particular a single-flow output of a generic Piston engine, which gives access to the combustion chamber, for maintenance purposes, for example.
  • An inventive piston engine runs relatively round when the Cylinders are arranged symmetrically to the combustion chamber. This leaves the outgoing from the combustion chamber working medium flow distribute evenly over the cylinders.
  • While generic piston engines are known as floodwaters, the means that the output takes place only to one side, allow the stationary cylinder for the first time that a generic piston engine is formed double-flow, so that a power take-off, for example, for oil, Fuel and / or distributor pump, also on the combustion chamber side can.
  • a power take-off for example, for oil, Fuel and / or distributor pump, also on the combustion chamber side can.
  • At least one inlet of a cylinder can on the combustion chamber side be open or closed at least one slide. This on the one hand ensures that the way back the piston Working medium selectively transported through an outlet from the cylinder can be.
  • the inlet can be closed before the corresponding piston reaches its upper dead center or the Working medium has filled the cylinder in its entirety. This can be done in the working medium existing energy to be better utilized because otherwise a part of the incoming through the inlet working medium a contribution to the overall work, so the drive of the piston, not afford can.
  • Such an arrangement is particularly advantageous when of the Combustion chamber to each inlet a shot channel passes, through which otherwise flow working fluid into the cylinder at any time could. This would be a return movement of the piston after expansion of the Prevent working medium.
  • the slide are advantageously controlled so that they synchronized to the engine rotation or to the position of the piston moves become. In this way, at selected times of the slide be opened and get working medium into the cylinder. On the other hand, the shot channel can be closed, so that the expanded working medium can flow unhindered.
  • the combustion chamber with a To provide combustion chamber floor, which has at least one shot channel, wherein the combustion chamber bottom is displaced with the firing channel such that the weft channel is successively directed to an inlet in each case.
  • a targeted distribution of the hot working medium possible on the individual cylinders.
  • the combustion chamber floor only to rotate synchronously with the engine speed.
  • the slider can be a cylindrical, one in the Cylinder arranged piston provided sleeve include a with having the inlet corresponding opening, wherein the opening with the motor revolution synchronized with the inlet brought into coincidence becomes.
  • this can be suitably lubricated stored.
  • the sleeve can be synchronized in a very simple manner to the Engine revolution be brought into line with the inlet when the Sleeve performs a rotational movement about the cylinder axis. This can on the one hand, be a rotation. On the other hand, a pendulum or Oscillation movement possible.
  • Such a sleeve movement also ensures distribution of the previously mentioned lubricant. If the sleeve is also a Axialrois axially to the cylinder passes, so an axial stroke can also be a distribution of the lubricant in parallel to Cylinder axis can be ensured.
  • Such Axialhub for example, already by the piston friction be ensured when the piston is inside directly on the sleeve is applied. If this piston friction is not sufficient, the Axialhub but also be made by coercive forces. This is one hand by levers or gears possible, but it can, for example, a gas-controlled axial stroke, which is caused by a pressure difference, to be available.
  • a sleeve for example, offers a Burt-McCullumn slide.
  • the sleeve may also undergo a periodic movement, whose period is a fraction of the engine speed. This is for example possible if the sleeve has a plurality of identical openings. A Such measure allows a lower material load and lower requirements for lubrication. In particular, the sleeve be driven half as fast as the engine.
  • the distance between Combustion chamber and cylinder relatively low. This can do this lead, that the cylinders are subject to a high temperature load. In particular, this may be the above-described, serving as a control means Pod affect. So this sleeve, for example, in a bushing be stored, through which the sleeve, especially if they are directly comes in contact with the corresponding piston, is stabilized. Between the bushing and the sleeve is a lubricant, such as oil, intended. Now, the sleeve or the liner is excessive heated, this can lead to destruction of the lubricant film.
  • a lubricant such as oil
  • each cylinder should be provided with a heat shield.
  • a heat shield each between the combustion chamber and an assembly the cylinder provided arrangement, which in some way from the Combustion chamber and the cylinder assembly is thermally separated.
  • These Separation may for example be an air gap, a material transition or to cover another thermal obstacle.
  • the heat shield at a remote location with the combustion chamber and / or the cylinder is connected, the bis there to be overcome route forms a sufficient temperature barrier.
  • the heat shield before the inlet can be brought, so that the Heat shield also a slider or a sleeve, this inlet closes, can cover.
  • the temperature of the Slider or the sleeve are kept sufficiently low, so that For example, a necessary for these assemblies lubricant film or oil film is not destroyed.
  • a piston engine with such an arrangement thus allows a Segregation of duties. While the heat shield is immediately attacking Keeps temperatures off, ensures the slide or the sleeve for a sufficiently tight completion of the cylinder, both inside as well as outward. Such a separation of duties or the provision a heat shield between an assembly of the cylinder and the Combustion chamber is also independent of the other features of the Piston engine with continuous combustion advantageous.
  • the sleeve or the slider and the heat shield at the moment of release of the inlet as well as at the moment closing the inlet is substantially rectified Perform movement.
  • the Heat shield moves in opposite directions to the sleeves around the combustion chamber. By this rectified movement can be ensured that the Heat shield sufficiently covers the opening edge or slide edge. It is understood that apart from this, the movement of heat shield and Slider or sleeve need not be coordinated, so that, for example the sleeve a vibratory motion and the heat shield one Can perform rotational movement.
  • the combustion chamber floor displaced or rotated, and the heat shield can be moved with or rotated become.
  • the heat shield can also be stationary around the inlet be arranged around. Likewise, are slight displacement movements, the follow the rotation of the combustion chamber floor only during the moment, in which the shot channel reaches a corresponding inlet, conceivable.
  • means may be present a dead center of the pistons with respect to a position of the control means or the slider, the sleeve or the heat shield to move.
  • At least one of the cylinders may include an exhaust valve. hereby can largely be avoided that when expressing the relaxed Working medium as exhaust gas due to existing lubricants or oils unnecessarily unburned carbons enter the exhaust gas. Any otherwise still existing lubricants are due to the high temperature the incoming working medium has been reliably burned.
  • valves to control the outlet of the Working medium is also independent of all other features the piston engine with continuous combustion advantageous to a Avoid leakage of lubricant or oil and the ejected To minimize pollutants. So can also with the well-known Piston engines with continuous combustion regulations by Slider or by cylinder displacement are applied, the one Force sealing on which lubricant with exiting, relaxed working medium comes into contact. This can also be at these piston engines with continuous combustion by a Avoid exhaust valve.
  • valve describes each Shut-off device in which a sealing surface is lifted off a seat becomes.
  • sealant or lubricant be waived, whereby the advantages of the invention are conditional.
  • the use of valves requires a complete departure from the known to date for piston engines with continuous combustion applied sealing mechanisms. It is understood, on the other hand, that under ingestion of minor pollutants also other output controls, in particular through openings in the sleeve or through further slides, are conceivable.
  • Such solutions can in particular then Find application, if by other measures a contact of the Exhaust gas can be prevented with unburned lubricants or a downstream elimination of these sheep materials takes place.
  • valves can be hydraulically driven become.
  • a hydraulic pump for example, via a Cam arrangement is driven find use.
  • measurement the valve lift for example by a Pressure measurement or by an electric coil. The result of this Valve stroke measurement can also be incorporated in the control of the valves.
  • valve drive a cam, a swash plate or comprise a cam.
  • a cam can by separate output to be moved synchronously with the rest of the engine.
  • the cam assembly or the like can drive directly through the slide or the sleeve.
  • plunger arrangements Find use.
  • this also includes the one for the Cylinder outlet valve described valve types in question.
  • valve actuators possible. It is understood that these too Valve actuators according to the load or the engine speed compared Movement dead centers of the corresponding compressor be shifted can, if this is advantageous for increasing the engine power.
  • a compressor may include an inlet valve that a compressor side seated Ventildeckei having, by a spring is pulled against a valve seat.
  • Such an arrangement ensures structurally relatively simple way that the Inlet valve can be opened by compressor-side vacuum, so that a medium to be compressed flows in, while the valve seals, as soon as this influx stops.
  • compaction however is the inlet valve by the pressure occurring in this case against the Valve seat pressed so that the sealing effect is enhanced.
  • the compressor may include a ball valve. There relatively small volumes are moved on the outlet side, passes through the exhaust valve relatively small distance. This allows a Ball valve as a check valve adequate sealing and a sufficiently high flow of the compressed medium. Because of the small It is not absolutely necessary to travel along these routes.
  • the piston engine with continuous combustion can a Have suction, with at least one compressor operatively connected and at one of the combustion chamber pioneering end of the engine is arranged.
  • the above-described intake valves can in this case open directly into this suction chamber.
  • Such Arrangement ensures, despite fixed cylinder a simple Construction of the engine and a controllable supply of the compressor with the medium to be compacted. In particular, this way a common access to all compressors, so that the medium, such as air, readily a common Pretreatment, such as filtering, can be subjected.
  • Such Arrangement is particularly suitable for piston engines with continuous combustion, involving compressors and working cylinders separated from each other at opposite ends of the engine are.
  • the invention proposes to use a separate compressor cylinder to provide a compressor piston, which via a Ver Whyrpleuel with connected to a connecting rod of a cylinder piston running in a cylinder is.
  • the invention thus proposes contrary to all previously known Piston engines with continuous use before, compressor cylinder and separate working cylinder.
  • Such an arrangement has the advantage that the respective cylinder specialized according to their tasks can be trained. In this way, the Increase overall efficiency.
  • Working rods and compressor connecting rods can be rigidly connected be so that the work done by the work hub directly into a Compaction can be implemented. This will increase the efficiency increased during compaction.
  • working and Verdückpleuel than be formed common connecting rod, so that of the working piston applied forces directly and rectilinear to the compressor to get redirected.
  • the connecting rod be formed in two parts, these two parts during assembly be rigidly connected.
  • the connecting rod may have two rollers, which is a cam embrace an output shaft.
  • Such an arrangement of a straight-line connecting rod, the working piston and compressor piston with connecting each other, and a cam passing through the connecting rod is also independent of the other Merkamlen for one Piston engine with continuous combustion advantageous.
  • Such Arrangement is characterized by an extremely high efficiency out.
  • the connecting rods can in a relatively simple manner to a Rotational motion can be prevented around its own longitudinal axis, though at least one of the rollers has a shoulder and / or a Guide pulley, which rests radially outward on the cam.
  • a piston engine with continuous combustion free of translational forces caused by the piston movement are conditional to be operated. Be over it, several pistons are moved in the same direction and are these pistons arranged symmetrically to each other, so can also torsional moments be completely avoided.
  • Such multiphase piston engines with continuous combustion can thus almost be almost be operated vibration-free.
  • the invention proposes, in a piston engine with continuous combustion, which is operated in a single phase, the Balancing already by the between working piston and output shaft make the required gear members.
  • the invention proposes for a piston engine with continuous Combustion, the transmission links between the piston and Output shaft are effective to interpret such that their balancing forces be compensated by the balancing forces of the piston.
  • these transmission elements have masses or material thicknesses that exceed the Masses or material thicknesses go beyond the stability reasons Operation of the piston engine are necessary.
  • the present invention claims piston engines continuous combustion between piston and output shaft provided gear members whose strength or mass, the Stability reasons including given tolerances necessary strength and whose balancing forces exceed the balancing forces of the Compensate piston assembly substantially. Smaller residual imbalances can by additional weights on the gear members, such as on a Cam or even on the output shaft, to be compensated.
  • an oil supply channel be arranged which at corresponding points radially outwardly facing oil distributor includes.
  • the oil from the oil distributors which are designed as fine holes can be conveyed radially outward.
  • the Oil distributors respectively positioned at suitable positions so that the oil or the lubricant reaches the desired locations in the engine.
  • the Oil supply channel at least one radially arranged oil supply, the for example, from a pressurized annular channel with oil is charged.
  • the pressurized lubricant is thus in the Pressed radial oil supply and enters the coaxial with the output shaft arranged oil supply channel. This overcomes the lubricant pressure in the annular channel the centrifugal forces. The necessary pressure can through all known measures, such as an oil pump, maintained become.
  • Such an oil supply or lubricant supply is independent of the other features of the invention Piston engine with continuous combustion advantageous as it up structurally extremely simple way a precisely metered lubricant distribution guaranteed.
  • the dosage is made in particular by a suitable choice the oil distributor or its diameter.
  • the piston engine with continuous combustion can one Cooling fluid flow, which directly with a guide on a Cylinder comes into contact.
  • Cooling fluid flow which directly with a guide on a Cylinder comes into contact.
  • the cooling fluid flow with a guide for a slider of a firing channel come into contact.
  • it is particularly sufficient Ensure lubrication.
  • such slides such explained in detail above, exposed to high temperature loads. These loads tend to destroy a lubricant film. Such a disturbance can be counteracted very effectively if the corresponding slide guide directly with the cooling fluid flow in Touch stands.
  • This relates in particular to a bushing for a cylindrical, to a piston provided sleeve which serves as a slide for closing or Opening a shot channel is used.
  • a liner can be brought directly into contact with the cooling fluid flow.
  • a cooling fluid flow can be small Holes arranged in the immediate vicinity of the weft channel are to be routed at a high flow rate.
  • the Bore diameter and the flow rate chosen such that the pressures occurring can be controlled.
  • Such Measure can also with other piston engines with continuous Incineration may be provided in the vicinity of a shot channel.
  • such small holes in other places in Be provided in the immediate vicinity of the combustion chamber to the in the Combustion occurring temperatures exceeding 2,400 ° C can dominate.
  • a cooling fluid flow ensures a temperature balance between different modules become. This allows in particular that a lubricant in the Piston engine with continuous combustion at all operating parts is equally effective.
  • the cooling fluid flow be passed directly from a cylinder to a compressor, so that between these two modules a temperature compensation is created.
  • two parallel cooling fluid streams, from one cylinder block and the other a compressor block flows through, be provided, wherein the cooling fluid flows in series are.
  • each cylinder In contrast to the known piston engines with continuous Combustion, where each cylinder is at an exhaust outlet is passed, can in a piston engine according to the invention with continuous combustion in which the cylinders are stationary, each cylinder having an outlet connected to an exhaust manifold is connected, which has a common exhaust port.
  • a uniform outflow of the Be ensured exhaust gas This serves to synchronize the motor. If this is not enough, two can go over the exhaust manifold Connected outlets in addition to a pressure equalization immediately be connected to each other. This can be at outlets, the one especially long way to the common exhaust collector have one uniform exhaust gas flow can be ensured.
  • the common exhaust port allows the exhaust gas a heat exchanger can be supplied, the energy of the exhaust gas or of a respective outlet leaving fluid on the Combustion chamber supplied fluid transfers.
  • a heat exchanger can be supplied, the energy of the exhaust gas or of a respective outlet leaving fluid on the Combustion chamber supplied fluid transfers.
  • a heat exchanger for example, a Bernard heat exchanger is conceivable.
  • a filler can be arranged as a displacer.
  • a combustion chamber of the combustion chamber with a be provided ceramic lining.
  • the stability of the ceramic lining can be increased by that this is at least in the operating state under a voltage that is so is chosen that no tensile forces can occur.
  • the stands ceramic lining already before commissioning under a Preload.
  • the ceramic lining can also be radially inward, in put the flame chamber under a bias.
  • This can for example, by inwardly facing supports, such as stamp or a suitably cut thread, done.
  • the radial supports or the thread can also be used as a channel for a coolant or for a Serve fluid.
  • the ceramic lining may also have cooling fins that adhere to support a corresponding wall outside and in this way a ensure suitable preload.
  • the distance serves between the ceramic lining and the remaining housing of the Flame space of a thermal insulation. For this reason, the Spacers chosen relatively small, so that thermal bridges be minimized.
  • Such a ceramic lining is also independent of the Other features of the above engine in a piston engine advantageous with continuous combustion.
  • the combustion chamber can have a flame chamber with holes in a Flammraumwandung, through which a fluid in the Flame can be directed.
  • a fluid in the Flame can be directed.
  • the fluid only in the vicinity of Wall in the area of a return current, the actual flame is opposite, to let flow along.
  • a return flow Of the fluid can be excellent especially at smaller Combustion chambers an insulation of the combustion chamber to the outside enable.
  • the fluid for example, from the compressor come.
  • the fluid supplied in this way can during the Flowing through the flame chamber also participate in the combustion, especially when it has finished its return flow and back in Flame direction is accelerated.
  • the combustion chamber can via an injection pump, which is controlled by a ⁇ -probe, fuel be supplied.
  • a control loop can be a Piston engine with continuous combustion also extremely reliable operate independently of its other features.
  • the ⁇ -probe is provided on the outlet side behind at least one cylinder.
  • the ⁇ -probe in an exhaust manifold or Exhaust port to be arranged.
  • the control over the ⁇ -probe takes place advantageous in a specific load range, in particular at full load.
  • is regulated to values ⁇ 1. This means that the exhaust gas no lack of air or an excess of air or an excess of Contains the medium provided by the compressor, the injected So fuel can be burned sufficiently.
  • the injection pump via a temperature measurement to regulate.
  • the required temperature measurement can also on the outlet side, behind a cylinder. This is the temperature at least in a certain load range, but at least when idling, controlled to about 1000 ° C or to a self-running temperature. In these Temperatures ensures that the flame in the combustion chamber continuously without foreign means, like a spark plug, burns. A Spark plug is only needed to start the engine.
  • control circuit of the injection pump comprises both a ⁇ probe as well as a temperature meter, the temperature measurement idle and the ⁇ probe at full load for use.
  • the regulation takes place via a corresponding functional Linking of both measured values.
  • the desired Torque temperature and / or ⁇ specified as manipulated variable are depending on the desired Torque temperature and / or ⁇ specified as manipulated variable.
  • the piston engine shown schematically in Figures 1 and 2 comprises a combustion chamber 1 from which starting a working medium Shot channels 11 (exemplified) in cylinder 20 (exemplary numbered). There the working medium expands and drives the Piston 21 on.
  • the pistons 21 are connected to connecting rods 4, which in turn with in Compressor cylinder 30 (numbered as an example) running back and forth Compressor piston 31 (exemplified figured) are connected. About that In addition, the connecting rods 4 engage around a common cam track 5, the is connected via a spacer 50 with an output shaft 51.
  • this air is in the Compressors 30 compressed.
  • the compressed air is over Supply lines 32 of the combustion chamber 1 is supplied. There she will at least partially used for combustion of an injected fuel.
  • the cylinders 20 are symmetrical to a central motor axis arranged. Furthermore, two are moving each opposite rectified connecting rods 4, so that This engine is essentially vibration-free.
  • this piston engine how also the engines of the other embodiments, control means, the the shot channels 11 open or close according to the engine speed.
  • the piston engine shown in Figure 3 corresponds to the previously described piston engine substantially, but in this meet the cylinder 20 'with their piston 21' both the work function as well the compression function.
  • a Swash plate 5 ' provided as a transmission between the Piston and the drive shaft 51 not a curved path but a Swash plate 5 'provided. With this swash plate 5 'are over corresponding joints the piston 21 'by means of connecting rods 4' connected. The swash plate 5 'itself is on a knee wave 51' of Output shaft 51 stored. An expansion of working medium in one the cylinder 20 'leads to a change in inclination of the Swash plate 5 ', which the knee wave 51' only by a movement of the Output shaft 51 can follow.
  • control means By means of control means it is ensured that the working medium in each case in the desired cylinder 20 'passes.
  • the control means comprise a Sleeve 6 (exemplified), which via a gear arrangement 61st is moved synchronously to the engine revolution.
  • the sleeve is parallel to both its longitudinal axis and its Longitudinal axis moves around. This serves a uniform distribution of Lubricant between the sleeve 6 and a sleeve storing the Bushing 62 (numbered as an example).
  • the sleeve 6 serves as a slide, which has an inlet 23 of each cylinder 20 'synchronously to the engine revolution opens or closes.
  • the know Sleeve 6 also has a correspondingly arranged opening.
  • each bushing 62 cooled directly by water (designated by 24, for example).
  • each bushing 62 cooled directly by water (designated by 24, for example).
  • the heat shield 7 is connected via a shaft 70 with the Drive shaft 51 is connected and thus rotates synchronously with the same.
  • the heat shield openings (not numbered), the are arranged so that they at the right time the weft channel 11th release in the desired manner, so that the working medium readily through the at the same time open inlet 23 in the corresponding cylinder 20 'passes.
  • combustion chamber 1 is water cooled via channels 12, the outside of the water cooling areas of the Combustion chamber 1 also serve as a heat shield.
  • the piston engine shown in Figure 4 substantially corresponds to the However, in FIGS. 1 and 2, features of FIG Figure 3 shown piston engine. Equivalent components are Also designated in this figure with identical reference numerals. Especially are in the piston engine shown in Figure 4 cooling water circuits contrary to the representation in Figure 1 by reference numerals 12, 24 and 36th exemplified. Thus, the cooling water flows on the one hand along the Combustion chamber 1 through coolant channels 12, through the cylinder block. 2 through coolant channels 24 and in the compressor block 3 through Coolant fluid channels 36. The respective channels 12, 24 and 32 are in series connected. In this way, a temperature compensation over the entire engine block take place.
  • the piston engine shown in Figure 4 has on each cylinder 20 a Outlet 25, which opens into an exhaust manifold 8. Behind the Exhaust manifold 8, a heat exchanger 80 is provided, through which the Feed line 32 for the compressed fluid runs. This way you can the compressed fluid preheated and the efficiency of the engine increase.
  • the exhaust leaves the engine through an exhaust port 81.
  • Both the outlet 25 and the inlet 23 are on the sleeve. 6 activated, as shown in Figure 4 immediately apparent.
  • the Gear assembly 61 formed such that the sleeves half as fast, as the output shaft 51, rotate.
  • the piston motor shown in Figure 4 has a annular suction chamber 37 which at the combustion chamber. 1 opposite end of the piston engine is arranged.
  • This suction room 37 is connected to the inlets 34 of the compressor 30 and allows a uniform distribution of the supply air.
  • Compressor outlets 38 are provided which formed in an annular channel Lead the pressure chamber 33.
  • the inlets 34 and outlets 38 are each through valves 52, 53 openable or closable.
  • the valves 52, 53 via plunger and a lever assembly 54 of a person sitting on the output shaft 51 Cam arrangement activated.
  • the piston engine shown in Figure 5 essentially corresponds to the in Figure 4 shown.
  • identical acting assembly with provided with identical reference numerals.
  • FIG. 6 shows in detail, here serves, as in the rest of the 4 embodiment, a compressor head 58 as Valve seat.
  • the inlet valve 56 includes a compressor side seated Valve cover 56 ', which by a spring 56 "against the valve seat 58th is pulled.
  • the spring 56 '' by a bracket 56 '' ' held under suitable bias.
  • the valve opening in the valve seat 58 each includes a stop 58 ' (see individual representation of the compressor head 58 in Figure 6), against which the spring 56 "abuts when the valve 56 opens is a springs of attacks in a relatively simple manner guaranteed.
  • the compressor-side seating of the Valve cover 56 'to that during compression of the valve cover 56' against the valve seat 58 is pressed and so sealing is ensured.
  • the outlet valve 57 comprises a ceramic ball 57 ', by the in the Pressure chamber 33 prevailing pressure against the valve seat 58 is pressed becomes. In this way, the exhaust valve 57 is closed as long as as long as the pressure in the compressor 30 under the pressure in the pressure chamber 33 lies. If the pressure in the compressor 30 rises above the pressure in the compressor Pressure chamber 33, so opens the ceramic ball 57 'and strikes against a Adjusting screw 57 '' on. As a result, the way in the pressure chamber 33rd opened and the cylinder 31 can compressed air in the pressure chamber convict.
  • Cylinder head side also gives way to the embodiment shown in FIG somewhat from the embodiment shown in FIG.
  • the outlets 25 instead of the Sleeve 6 controlled by additional exhaust valves 26.
  • This one has the Advantage that the risk of entering the exhaust gas lubricants is largely reduced, since the valves 26 seal without lubricant.
  • a rotating sleeve on the other hand, always leaves one on the edge Lubricating film, which can be entrained by the exhaust gas flow.
  • This springs serve 28 as a return.
  • the balls are by means of a sleeve with the sixth co-rotating cam assembly 29 via slide 29 ', which in Slide openings 29 "can slide back and forth, moved Arrangement ensures that no grease or lubricant from the Exhaust gases can be entrained at the outlet 25.
  • the combustion chamber 1 of the piston engine shown in Figure 5 is essentially divided into three parts. It includes a combustion chamber supply 13, a fuel supply chamber 14 and a flame chamber 15th
  • the Combustion chamber 13 a nozzle 13 "over which compressed Fluid from the compressor 30, in particular thus air, through the Fuel supply chamber 14 through into the flame chamber 15 with high pressure is broadcast.
  • the nozzle 13 “comprises a central nozzle body 13 '' ', which is axially adjustable via a thread, so that a nozzle gap can be adjusted. Behind the nozzle gap is a Venturi nozzle 14 ' arranged, which leads into the flame chamber 15. The through the venturi 14 ' flowing air tears a fuel-air mixture from the fuel supply chamber 14 with in the flame chamber 15 with, whereby there is a continuous Flame is formed.
  • a compensation opening 14 "on the Top of the flame chamber 15 is provided, which is back in the Fuel supply chamber 14 leads. This compensation opening ensures a uniform flame and a complete burning of the supplied Fuel.
  • a ceramic tube 15 ' braced both in the axial direction and in the radial direction.
  • This Ceramic tube is supported by means of cooling fins 15 '' 'shown in FIG. 9 radially on the outside of the combustion chamber wall and can in its cylinder-side Have end radial openings 15 "(embodiment of FIG. 5).
  • an upper feed line 32 ' can be compressed from the supply line 32 Medium to the outside of the ceramic tube 15 'reach. This is flowing along the ribs to the openings 15 "and passes through them Openings 15 "in the flame chamber 15.
  • the combustion chamber 1 further comprises, as already above described, a water cooling 12, the cooling channels 12 'and the immediate vicinity of the shot channels 11 and the combustion chamber floor 16 cools.
  • cooling holes 24 ' are still provided by the Cylinder cooling 24 are fed. These cooling holes 24 ' are in the immediate vicinity of the firing channels 11. The Holes 12 'and 24' condition an extraordinarily high Flow rate to the occurring at these locations high To be able to encounter temperatures.
  • the piston engine shown in Figure 5 has in its output shaft 51st a coaxial bore as oil supply channel 71. From this oil supply channel 71 assume radial holes as oil distributor 72 (numbered example) from. Due to the engine rotation, centrifugal force causes oil from the oil distributors 72 distributed at the desired height in the engine.
  • bores 73 (numbered as an example) provided also for a targeted onward transport of the oil to care.
  • Oil supply passage 71 From the oil supply passage 71 is further a radial bore than Oil supply 74 off. This opens into a ring channel 75, which is not one oil is applied to the oil pump shown. The generated thereby Pressure overcomes the centrifugal forces and allows in this way, the Oil supply channel 71 sufficiently to apply oil.
  • Figure 5 is a division of the Pleulstangen 4 between these rollers 40, which serves a mounting relief.
  • the Pleulstangen 4 are rigid during assembly to a continuous Connecting rod 4 connected.
  • the width of the cam 5 in its area between the rollers 40 is selected such that by the Cam 5 conditional imbalance the balancing forces of the piston-Pleulstangen arrangement equivalent. This way can also be this single-phase motor can be realized that this virtually vibration-free running.
  • a fine balancing of the entire engine is known with ansich and in this figure, not shown, weights on the Spacer 50 are mounted made.

Claims (49)

  1. Moteur à pistons à combustion continue dans lequel un fluide de travail provenant d'une chambre de combustion est successivement acheminé vers au moins deux cylindres, chaque cylindre (20, 20') étant disposé de manière à être fixe par rapport à la chambre de combustion (1) et comportant un orifice d'entrée (23), caractérisé en ce que la chambre de combustion (1) comporte un fond (16) avec au moins un canal d'allumage (11), le fond (16) de la chambre de combustion avec le canal d'allumage (11) étant déplacé de telle sorte que le canal d'allumage (11) est successivement dirigé sur au moins une entrée respective.
  2. Moteur à pistons selon la revendication 1, caractérisé en ce qu' un arbre mené (51) est mis en mouvement par rapport à un bloc cylindres (2) dans lequel sont disposés les cylindres (20, 20').
  3. Moteur à pistons selon la revendication 1 ou 2, caractérisé par un arbre mené (51) comportant un plateau oscillant (5') qui est relié par des bielles (4') à des pistons (21') coulissant dans les cylindres (20').
  4. Moteur à pistons selon la revendication 1 ou 2, caractérisé par un arbre mené (51) comportant un plateau came (5) le long duquel se déplacent des pistons (21) coulissant dans les cylindres (20).
  5. Moteur à pistons selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la chambre de combustion (1) est disposée coaxialement par rapport à l'arbre mené (51).
  6. Moteur à pistons selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les cylindres (20, 20') sont disposés symétriquement par rapport à la chambre de combustion (1).
  7. Moteur à pistons selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la sortie est à double flux.
  8. Moteur à pistons selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu' au moins un orifice d'entrée (23) est adapté pour être ouvert ou fermé par l'intermédiaire d'au moins un tiroir.
  9. Moteur à pistons selon la revendication 8, caractérisé en ce que le tiroir comprend un manchon (6) cylindrique qui est prévu autour d'un piston (21, 21') disposé dans le cylindre (20, 20') et qui comporte au moins une ouverture correspondant à l'orifice d'entrée (23), cette ouverture étant amenée à coïncider avec l'orifice d'entrée (23) en synchronisme avec la rotation du moteur.
  10. Moteur à pistons selon la revendication 9, caractérisé en ce que le manchon (6) effectue un mouvement de rotation autour de l'axe du cylindre.
  11. Moteur à pistons selon la revendication 9 ou 10, caractérisé en ce que le manchon (6) effectue une course axiale par rapport au cylindre (20, 20').
  12. Moteur à pistons selon l'une quelconque des revendications 9 à 11, caractérisé en ce que le manchon (6) effectue un mouvement périodique dont la période est de préférence une fraction du régime moteur.
  13. Moteur à pistons selon l'une quelconque des revendications 9 à 12, caractérisé en ce que l'ouverture dans le manchon et une ouverture dans la protection thermique effectuent un mouvement dirigé sensiblement dans la même direction au moment de la libération de l'orifice d'entrée (23).
  14. Moteur à pistons selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu' une protection thermique (7) est disposée entre la chambre de combustion (1) et chaque cylindre (20, 20').
  15. Moteur à pistons selon la revendication 14, caractérisé en ce que la protection thermique (7) est adaptée pour être placée devant l'orifice d'entrée (23).
  16. Moteur à pistons selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu' une protection thermique (7) est déplacée avec le fond (16) de la chambre de combustion.
  17. Moteur à pistons selon l'une quelconque des revendications 1 à 16, caractérisé en ce qu' un piston (21, 21') est prévu dans chaque cylindre (20, 20') et que sont présents des moyens destinés à déplacer un point mort du piston (21, 21') par rapport à une position des moyens de commande.
  18. Moteur à pistons selon l'une quelconque des revendications 1 à 17, caractérisé en ce que le cylindre (20, 20') comprend une soupape d'échappement (26).
  19. Moteur à pistons selon l'une quelconque des revendications 1 à 18, caractérisé par un compresseur (30) avec une soupape d'admission (56) et/ou une soupape d'échappement (57) de préférence séparé des cylindres (20, 20').
  20. Moteur à pistons selon la revendication 19, caractérisé en ce qu' au moins une des soupapes (56, 57) est passive.
  21. Moteur à pistons selon la revendication 19 ou 20, caractérisé par un compresseur (30) avec une soupape d'admission (56) comprenant un chapeau (56') qui repose côté compresseur et qui est appliqué contre un siège (58) de soupape par l'intermédiaire d'un ressort (56").
  22. Moteur à pistons selon l'une quelconque des revendications 19 à 21, caractérisé par un compresseur (30) avec une soupape d'admission (56) qui en s'ouvrant vient frapper contre une butée (58'), un élément à ressort (56") agissant entre la soupape (56) et la butée (58').
  23. Moteur à pistons selon l'une quelconque des revendications 19 à 22, caractérisé par un compresseur (30) avec une soupape à boulet (57) faisant office de soupape d'échappement.
  24. Moteur à pistons selon l'une quelconque des revendications 1 à 23, caractérisé par une chambre d'admission (37) qui est reliée à, et coopère avec, au moins un compresseur (30) et est disposée à une extrémité du moteur détournée de la chambre de combustion (1).
  25. Moteur à pistons selon l'une quelconque des revendications 1 à 24, caractérisé par un cylindre de compresseur (30) avec un piston (31) de compresseur qui est relié par l'intermédiaire d'une bielle (4) du compresseur à une bielle de travail (4) d'un piston de travail (21) coulissant dans un cylindre de travail (20).
  26. Moteur à pistons selon la revendication 25, caractérisé par une liaison rigide entre la bielle de travail (4) et la bielle (4) du compresseur.
  27. Moteur à pistons selon la revendication 26, caractérisé en ce que la bielle de travail (4) et la bielle (4) du compresseur sont conformées sous forme de bielle (4) commune.
  28. Moteur à pistons selon la revendication 27, caractérisé en ce que la bielle (4) est divisée en deux parties.
  29. Moteur à pistons selon la revendication 27 ou 28, caractérisé en ce que la bielle (4) comporte deux galets (40) enserrant un plateau came (5) d'un arbre mené (51).
  30. Moteur à pistons selon la revendication 29, caractérisé en ce qu' au moins un des galets (40) comporte un épaulement et/ou un plateau de guidage qui de l'extérieur repose radialement contre le plateau came (5).
  31. Moteur à pistons selon la revendication 29 ou 30, caractérisé en ce que le plateau came (5) est conçu de telle sorte, et est notamment conçu pour avoir une largeur telle, que ses forces d'équilibrage sont compensées par les forces d'équilibrage du système de pistons.
  32. Moteur à pistons selon l'une quelconque des revendications 1 à 31, caractérisé par un conduit d'amenée d'huile (71) disposé dans un arbre mené (51) central, coaxialement par rapport à celui-ci (51), et comportant des rampes d'huile (72) pointant radialement vers l'extérieur et au moins une amenée d'huile (74) disposée radialement et alimentée en huile par un canal circulaire (75) mis en pression.
  33. Moteur à pistons selon l'une quelconque des revendications 1 à 32, caractérisé par un courant de fluide de refroidissement qui vient directement au contact d'un guide (62) prévu sur un cylindre (20, 20'), de préférence d'un guide (62) pour un tiroir d'un canal d'allumage (11).
  34. Moteur à pistons selon l'une quelconque des revendications 1 à 33, caractérisé en ce qu' un courant de fluide de refroidissement passe à grande vitesse au travers de petites lumières (12', 24') dans l'environnement immédiat d'un canal d'allumage (11).
  35. Moteur à pistons selon l'une quelconque des revendications 1 à 34, caractérisé en ce qu' un courant de fluide de refroidissement circule d'un cylindre (20, 20') à un compresseur (30).
  36. Moteur à pistons selon l'une quelconque des revendications 1 à 35, caractérisé par deux courants de fluide de refroidissement parallèles dont l'un traverse un bloc cylindres (2) et l'autre un bloc compresseur (3), les courants de fluide de refroidissement étant guidés en série.
  37. Moteur à pistons selon l'une quelconque des revendications 1 à 36, caractérisé en ce que chaque cylindre (20, 20') comporte un orifice de sortie (25) et que chaque orifice de sortie (25) est relié à un collecteur d'échappement (8) comportant un raccord d'échappement (81) commun.
  38. Moteur à pistons selon la revendication 37, caractérisé en ce que deux orifices de sortie (25) reliés par le collecteur d'échappement (8) sont directement reliés entre eux par l'intermédiaire d'une pièce d'égalisation de pression.
  39. Moteur à pistons selon l'une quelconque des revendications 1 à 38, caractérisé par un compresseur (30) qui comprime un fluide et l'achemine vers la chambre de combustion (1) et par un orifice de sortie (25) par lequel le fluide de travail sort du cylindre (20, 20'), un échangeur de chaleur (80) qui transfère l'énergie du fluide sortant par l'orifice de sortie (25) au fluide acheminé vers la chambre de combustion (1) étant prévu entre le compresseur (30) et la chambre de combustion (1).
  40. Moteur à pistons selon l'une quelconque des revendications 1 à 39, caractérisé en ce que la chambre de combustion (1) comprend une enceinte d'inflammation (15) munie d'un revêtement céramique (15').
  41. Moteur à pistons selon la revendication 40, caractérisé en ce que le revêtement céramique (15') est soumis à une tension, de préférence à une précontrainte, choisie pour empêcher l'apparition d'efforts de traction, du moins en état de fonctionnement normal.
  42. Moteur à pistons selon la revendication 40 ou 41, caractérisé en ce que le revêtement céramique (15') comporte des ailettes de refroidissement.
  43. Moteur à pistons selon l'une quelconque des revendications 1 à 42, caractérisé en ce que la chambre de combustion (1) comporte une enceinte d'inflammation (15) avec des ouvertures (15") ménagées dans une paroi de l'enceinte d'inflammation et permettant le passage d'un fluide dans l'enceinte d'inflammation (15).
  44. Moteur à pistons selon l'une quelconque des revendications 1 à 43, caractérisé par une pompe à injection qui refoule le carburant vers la chambre de combustion (1) et est réglée par une sonde lambda.
  45. Moteur à pistons selon la revendication 44, caractérisé en ce que la sonde lambda est prévue en sortie, derrière un cylindre (20, 20').
  46. Moteur à pistons selon la revendication 44 ou 45, caractérisé en ce que lambda est réglé sur une valeur minimale de 1, de préférence supérieure à 1, dans une certaine charge.
  47. Moteur à pistons selon l'une quelconque des revendications 1 à 46, caractérisé par une pompe à injection qui refoule du carburant vers la chambre de combustion (1) et est réglée par la mesure de la température.
  48. Moteur à pistons selon la revendication 47, caractérisé en ce que la température est mesurée en sortie, derrière un cylindre (20, 20').
  49. Moteur à pistons selon la revendication 47 ou 48, caractérisé en ce que la température est réglée à environ 1 000 °C, du moins en marche à vide.
EP00102242A 1999-03-05 2000-02-14 Moteur à pistons à combustion continue Expired - Lifetime EP1035310B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19909689 1999-03-05
DE19909689A DE19909689B4 (de) 1999-03-05 1999-03-05 Kolbenmotor mit kontinuierlicher Verbrennung

Publications (3)

Publication Number Publication Date
EP1035310A2 EP1035310A2 (fr) 2000-09-13
EP1035310A3 EP1035310A3 (fr) 2001-09-12
EP1035310B1 true EP1035310B1 (fr) 2005-10-05

Family

ID=7899808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00102242A Expired - Lifetime EP1035310B1 (fr) 1999-03-05 2000-02-14 Moteur à pistons à combustion continue

Country Status (4)

Country Link
US (1) US6412273B1 (fr)
EP (1) EP1035310B1 (fr)
JP (1) JP2000265847A (fr)
DE (2) DE19909689B4 (fr)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061224B4 (de) * 2004-12-20 2010-09-09 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Kolben-Zylinder-Anordnung, insbesondere für einen Taumelscheibenverdichter
US20060165543A1 (en) * 2005-01-24 2006-07-27 York International Corporation Screw compressor acoustic resonance reduction
US7397049B2 (en) * 2006-03-22 2008-07-08 Varian Semiconductor Equipment Associates, Inc. Determining ion beam parallelism using refraction method
US9879635B2 (en) * 2007-11-12 2018-01-30 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Axial piston engine and method for operating an axial piston engine
WO2009089078A1 (fr) 2008-01-11 2009-07-16 Mcvan Aerospace, Llc Moteur à combustion alternatif
US8490380B2 (en) * 2008-01-17 2013-07-23 Advanced Propulsion Technologies, Inc. Internal continuous combustion engine system
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
WO2010033878A2 (fr) 2008-09-19 2010-03-25 David Brown Dispositif de mesure de la concentration d’un soluté et procédés associés
DE102008058558B4 (de) 2008-11-20 2020-04-23 Volkswagen Ag Wärmekraftmaschine
US8156919B2 (en) 2008-12-23 2012-04-17 Darrow David S Rotary vane engines with movable rotors, and engine systems comprising same
GB2469279A (en) 2009-04-07 2010-10-13 Rikard Mikalsen Linear reciprocating free piston external combustion open cycle heat engine
EP2456955A2 (fr) * 2009-07-24 2012-05-30 GETAS Gesellschaft für thermodynamische Antriebssysteme mbH Moteur à pistons axiaux, procédé pour faire fonctionner un moteur à pistons axiaux et procédé de réalisation d'un échangeur thermique d'un moteur à pistons axiaux
WO2011009451A2 (fr) 2009-07-24 2011-01-27 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Moteur à pistons axiaux, procédé pour faire fonctionner un moteur à pistons axiaux et procédé pour réaliser un échangeur thermique d'un moteur à pistons axiaux
RU2548839C2 (ru) 2009-07-24 2015-04-20 ГЕТАС Гезельшафт фюр термодинамише Антрибссистеме мбХ Аксиально-поршневой двигатель и способ работы аксиально-поршневого двигателя
DE112010003061A5 (de) * 2009-07-24 2012-10-31 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Axialkolbenmotor, verfahren zum betrieb eines axialkolbenmotors sowie verfahren zur herstellung eines wärmeübertragers eines axialkolbenmotors
EP2462319A2 (fr) * 2009-07-24 2012-06-13 GETAS Gesellschaft für thermodynamische Antriebssysteme mbH Moteur à pistons axiaux, procédé pour faire fonctionner un moteur à pistons axiaux et procédé pour réaliser un échangeur thermique d'un moteur à pistons axiaux
CN102686848B (zh) * 2009-07-24 2015-11-25 热力驱动系统有限责任公司 轴向活塞发动机
CA2921304C (fr) 2009-07-30 2018-06-05 Tandem Diabetes Care, Inc. Dispositif de pompe a infusion dote d'une cartouche jetable a aeration de pression et retroaction de pression
CH703399A1 (de) * 2010-07-02 2012-01-13 Suter Racing Technology Ag Taumelscheibenmotor.
DE102011018846A1 (de) * 2011-01-19 2012-07-19 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Axialkolbenmotor sowie Verfahren zum Betrieb eines Axialkolbenmotors
US9003765B1 (en) * 2011-07-14 2015-04-14 Barry A. Muth Engine having a rotary combustion chamber
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
KR20160092997A (ko) * 2013-10-22 2016-08-05 크리스 키아라쉬 몬테벨로 외부 연소/팽창 챔버를 구비하는 로터리 피스톤 엔진
WO2016055923A2 (fr) * 2014-10-09 2016-04-14 Calogero Provenzano Moteur à combustion interne à piston axial
DE102015118239A1 (de) 2015-10-26 2017-04-27 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Axialkolbenmotor und Verfahren zum Betrieb eines Axialkolbenmotors
DE102016119889A1 (de) 2015-10-26 2017-04-27 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Axialkolbenmotor sowie Verfahren zum Betrieb eines Axialkolbenmotors
DE102016100439A1 (de) 2016-01-12 2017-07-13 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Verfahren zum Betrieb eines Axialkolbenmotors sowie Axialkolbenmotor
DE102017124411A1 (de) 2016-11-07 2018-05-09 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Axialkolbenmotor
US10590845B1 (en) * 2017-04-13 2020-03-17 Roderick A. Newstrom Cam-driven radial rotary engine incorporating an HCCI apparatus
WO2019149297A1 (fr) 2018-01-31 2019-08-08 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Moteur à piston axial
DE112019003348A5 (de) 2018-07-04 2021-03-25 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Axialkolbenmotor
RU209106U1 (ru) * 2020-11-03 2022-02-01 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Бинарный двигатель с теплоизолированной камерой сгорания

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE366092B (fr) * 1973-01-02 1974-04-08 T Airas
US4179879A (en) * 1976-04-21 1979-12-25 Kincaid Elmo Jr Automatic steam pressure generator
US4448154A (en) * 1979-04-30 1984-05-15 Paradox International, Incorporated Internal combustion engine
SE422346B (sv) * 1980-07-02 1982-03-01 Hedelin Lars G B Sett att reglera forloppet i en forbrenningsmotor samt forbrenningsmotor for genomforandet av settet
US5285633A (en) * 1993-03-23 1994-02-15 The United States Of America As Represented By The Secretary Of The Navy Coolant subsystem for a torpedo propulsion system
US5362154A (en) * 1993-08-16 1994-11-08 Bernard Wiesen Pivoting slipper pad bearing and crosshead mechanism
US5964087A (en) * 1994-08-08 1999-10-12 Tort-Oropeza; Alejandro External combustion engine
US5497614A (en) * 1994-11-30 1996-03-12 The United States Of America As Represented By The Secretary Of The Navy External combustion engine having an asymmetrical cam and method of operation
US6092365A (en) * 1998-02-23 2000-07-25 Leidel; James A. Heat engine

Also Published As

Publication number Publication date
DE19909689A1 (de) 2000-09-07
EP1035310A2 (fr) 2000-09-13
EP1035310A3 (fr) 2001-09-12
US6412273B1 (en) 2002-07-02
DE50011266D1 (de) 2006-02-16
DE19909689B4 (de) 2009-07-23
JP2000265847A (ja) 2000-09-26

Similar Documents

Publication Publication Date Title
EP1035310B1 (fr) Moteur à pistons à combustion continue
DE10145478B4 (de) Hubkolbenmaschine mit umlaufendem Zylinder
EP2456956B1 (fr) Moteur à pistons axiaux
DE3739899A1 (de) Verbesserung des motorischen waermehaushaltes einer verbrennungskraftmaschine und dazugehoeriger zylinderkopf
DE102019128935B4 (de) Brennkraftmaschine und Verfahren zum Betrieb einer Brennkraftmaschine
DE19819233C2 (de) Aus mehreren Maschineneinheiten zusammengesetzte Kolbenbrennkraftmaschine
DE102004034719A1 (de) Hochleistungs-Ein- und Zweitakt-Axialkolben Otto-Diesel- und Hybrid-Motorensystem
DE19806175C2 (de) Plunger-Brennkraftmaschine
DE640812C (de) Drehkolbenbrennkraftmaschine
DE69835701T2 (de) 2-takt-rotationsbrennkraftmaschine
DE19812800A1 (de) Gegenkolben-Brennkraftmaschine
DE3447004A1 (de) Verbrennungsringmotor
DE102016200057B4 (de) Verbrennungsmotor mit Faltbrennraum
EP2650510B1 (fr) Moteur thermique pour compresseur à piston libre
AT407898B (de) Hubkolbenmotor mit linear entlang der zylinderachse angeordneten hubräumen
DE3029934A1 (de) Brennkraftmaschine
DE617288C (de) Mehrzylindrige Diesel- oder Halbdieselmaschine
DE4021931C2 (fr)
DE4037541A1 (de) Wasserstoff---, wasserstoff-benzin/diesel-verbrennungsmotor mit einer vom verbrennungsmotor abhaengigen vorrichtung zur eigenproduktion von wasserstoff und sauerstoff und deren zufuehrung zum verbrennungsmotor
DE1116942B (de) Brennkraftmaschine mit Abgasturbolader
DE746953C (de) Drehschiebersteuerung, insbesondere fuer den Auslass von Zweitaktbrennkraftmaschinen
DE629768C (de) Verbundbrennkraftmaschine, insbesondere fuer Luftfahrzeuge
DD140156A1 (de) Heissgasmotor mit geschlossenem arbeitskreislauf
DE827136C (de) Gross-Gasmotorenanlage mit Abwaerme-Dampferzeugung
DE102004013461A1 (de) Verbrennungs-4-Takt-Kolbenmotor mit axialstromigem zyklischem Gaswechsel im Zylinder und zentral liegender geteilter Brennkammer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 02B 75/02 A, 7F 02B 75/26 B, 7F 01B 3/00 B, 7F 02G 3/00 B, 7F 02G 3/02 B

17P Request for examination filed

Effective date: 20020307

AKX Designation fees paid

Free format text: AT BE CH CY DE LI

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051005

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060116

REF Corresponds to:

Ref document number: 50011266

Country of ref document: DE

Date of ref document: 20060216

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20051005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061020

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160226

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50011266

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901