EP1034357A1 - Turbogenerateur a paliers et soupapes lubrifies par eau - Google Patents

Turbogenerateur a paliers et soupapes lubrifies par eau

Info

Publication number
EP1034357A1
EP1034357A1 EP98966767A EP98966767A EP1034357A1 EP 1034357 A1 EP1034357 A1 EP 1034357A1 EP 98966767 A EP98966767 A EP 98966767A EP 98966767 A EP98966767 A EP 98966767A EP 1034357 A1 EP1034357 A1 EP 1034357A1
Authority
EP
European Patent Office
Prior art keywords
steam turbine
shaft
water
steam
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98966767A
Other languages
German (de)
English (en)
Other versions
EP1034357B1 (fr
Inventor
Rudolf Thiele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1034357A1 publication Critical patent/EP1034357A1/fr
Application granted granted Critical
Publication of EP1034357B1 publication Critical patent/EP1034357B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/22Lubricating arrangements using working-fluid or other gaseous fluid as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators

Definitions

  • the invention relates to a steam turbine set with a steam turbine unit and a work machine unit connected thereto for generating electrical current.
  • a steam turbine set has an 01 circuit that essentially fulfills three tasks: First, the oil serves as a lubricant and coolant for the bearings of the steam turbine and generator. Second, the control valves of the steam turbine are operated via oil-hydraulic actuating cylinders. Thirdly, the oil is used to cool and lubricate the gearbox. The resulting heat loss is given off to the oil circuit and dissipated to an oil / water heat exchanger. Overall, relatively large amounts of oil are required to accomplish these three tasks.
  • the ratio of lubricating oil: control oil: gear oil is approximately 1: 6: 2.
  • the oil tightness in the oil circuit can be significantly reduced if oil-hydraulic actuating cylinders are dispensed with and a switch is made to another medium (which then requires its own circuit) or to other drive principles for the control valves (e.g. linear actuators, which may also require cooling) .
  • this does not prevent contaminants from escaping bearing oil from the turbine or oil escaping into the environment in the steam outlet.
  • This requires a high level of technological effort, as is the case with numerous patent applications (e.g. EP 0 306 634, WO 94/01713 and DE 19606088.5) are impressive.
  • the object of the invention is to avoid such difficulties caused by the lubricant and / or coolant in a steam turbine set with a steam turbine and a working machine.
  • the invention initially assumes that water-hydraulic actuating cylinders of the valves controlling or regulating the steam supply or other oil-free actuators of these valves avoid the dangers and difficulties posed by oil.
  • the invention provides for using linear motors as actuators for the valves.
  • Water-cooled bearings are readily suitable for the working machine unit, provided the quantities of water required for lubrication and cooling are fed into the bearings with sufficient pressure.
  • the invention also assumes that a gearbox is only required if a reduction or translation of the rotational speed takes place on the shaft driven by the steam turbine. If, however, it becomes possible to operate the steam turbine and driven machine at the same speed, a gearbox can be dispensed with and the problems associated with cooling the gearbox do not arise.
  • Solution between the generator speed i.e. the speed of the high-speed steam turbine
  • a gearbox is also not necessary if these corresponding machines are designed for the high speed of the steam turbine.
  • the steam turbine of the steam turbine unit and the generator of the work machine unit can therefore be connected to one another via a coupling or via flanges.
  • the invention is based on the fact that water can be used as a lubricant and coolant in the steam turbine unit and then the fire risk associated with the use of oil and the risk of environmental damage due to leakages are avoided. Oil and the like can therefore practically be dispensed with in the entire turbo set. Media of a different type will not penetrate into the exhaust steam flow of the turbine if the bearing is in an axial outflow and that
  • Water for lubrication or cooling is taken from the water cycle of the steam power plant.
  • a steam turbine set is provided with a steam turbine unit and a work machine unit comprising a generator, the units being connected to one another without a transmission.
  • a shaft part driven by a steam turbine and a shaft part driving the generator are thus coupled as part shafts in the area between the units to form a common shaft, for example by a flange, or form a rigid (eg one-piece) shaft, in which case the two bearings between the steam turbine and the driven machine can be replaced by a single bearing.
  • An oil-free circuit namely a water circuit, is used to lubricate and cool the shaft bearings in the turbine unit. Only oil-free bearings are used for the bearing of this shaft in the working machine unit.
  • the generator is provided for generating electrical current of a desired frequency, for which purpose a frequency converter is connected downstream.
  • a linear drive or a similar, in any case oil-free drive unit (in particular combined with an electrical or electronic control) can be used to actuate the control valves of the steam turbine.
  • the steam turbine unit can be designed differently and e.g. comprise one or more steam turbines which have steam discharge upwards or downwards (generally: in the lateral direction) or in the axial direction.
  • An axial outflow is usually with a level installation of
  • turbo set preferably contains only oil-free components, since stationary parts (e.g. the frequency converter) can also be cooled by other media (e.g. air or water).
  • stationary parts e.g. the frequency converter
  • other media e.g. air or water
  • one (or more) water circuit is provided, from which water supply channels lead to the individual bearings. It is also possible that several shaft parts and / or shaft bearings are provided in the steam turbine unit and are supplied by a common water circuit. By water drainage channels, the water used as coolant and lubricant is advantageously returned from the shaft bearings to the water cycle.
  • the cooling systems of a generator unit or another work machine unit and also preferably the same time
  • Steam supply to the steam turbine unit can be operated.
  • Linear drives for actuating the control valves of the steam turbine can also be supplied by the water circuit if cooling is required. This makes it possible for a single water circuit to take over the entire heat loss of a turbo set.
  • the heat energy introduced into the circulating water is preferably extracted by a heat exchanger. This heat exchanger is operated by an open water circuit, but can also be an air-cooled heat exchanger.
  • the required circuit water can also be used in the steam / water circuit of the power plant. be taken from the factory.
  • the circuit water is advantageously treated at the same time. Any wear particles or other impurities that arise, for example, from the shaft bearing are filtered out.
  • FIG. 1 shows an oil-free steam turbine set with water as a lubrication and cooling medium with a lateral (namely downward) steam outflow.
  • FIG. 2 shows an oil-free steam turbine set with water as a lubricant and cooling medium with axial steam outflow.
  • a steam turbine set is shown schematically, which bears the overall reference number 1 and contains a steam turbine unit 2 and a generator unit 3 as other work machine unit.
  • the units 2 and 3 are connected to each other by a shaft 4.
  • This shaft consists of several shaft parts (two part shafts 41, 42) which rotate at the same speed.
  • the partial shaft 41 leads through the steam turbine unit 2.
  • the rotor blades 211 of the turbine are attached to this partial shaft 41, of which only two are shown in the drawing for better clarity.
  • the guide vanes 212 of which only two pieces are also shown for better clarity.
  • the partial shaft 42 passes through the generator 30.
  • the two partial shafts 41 and 42 of shaft 4 are connected to one another by flanges 43.
  • the current generated by the generator 30 is fed via lines 51 to a frequency converter 5.
  • This frequency converter 5 converts the output frequency of the generator current, which is determined by the speed and the number of poles of the shaft 4, into a frequency which corresponds to the required network frequency of the power network to be fed.
  • the supply of the current to the power grid takes place through the lines 52.
  • the steam driving the turbine 20 is supplied by the steam supply 22.
  • the steam supply is regulated by control valves 221, which in turn are operated by one or more linear drives 222 and electrical regulators 223.
  • the outflow of the turbine steam takes place in this exemplary embodiment via a downward steam outflow 23.
  • a lateral downward steam outflow there is an axial outflow (cf.
  • the shaft 4 is supported by shaft bearings 6. These are designed as plain bearings. Water serves as lubricant and coolant for these shaft bearings 6, which is provided by a water supply 70 and a water return 71. The water circuit is kept in motion by a pump 80.
  • the circulation water which acts as a cooling and lubricating medium, is supplied to the shaft bearings 6 by water supply channels 72 coming from the water circuit 71. In the shaft bearing 6, the circuit water acts as Coolant and lubricant. The thermal energy generated by sliding friction in the bearing is thus removed from the circulating water.
  • the circulating water is fed from the shaft bearings 6 to the water return 70 via water discharge channels 73.
  • the circuit water of the water circuit (70, 71) can advantageously take over the cooling of further components of the turboset.
  • the circulating water is also used to cool the generator 30.
  • the circulation water is fed into the cooling system 33 of the generator 30 via a water supply channel 74 and from there is fed to the water return 70 via a water discharge channel 75.
  • the linear drives 222 are cooled, if necessary, by supplying circulating water to them via a water supply channel 76 and supplying them to the water return 71 via a water discharge channel 77.
  • the cooling of the frequency converter 5 is effected in the same advantageous manner.
  • Its cooling system (not shown) is supplied with circulating water via a water supply channel 78 and the water return 71 is returned via a water discharge channel 79.
  • the circuit water (70, 71) is cooled by a heat exchanger 8 by releasing the thermal energy of the circuit water to an open exchanger water circuit 81.
  • the circuit water can also be cooled by an air-cooled heat exchanger 9.
  • FIG. 2 shows an oil-free steam turbine set with water as a lubricating and cooling medium with axial steam flow.
  • Components that correspond to the embodiment of Figure 1 have the same reference numerals.
  • the steam turbine set as such again bears the reference number 1.
  • the steam turbine unit 2 is connected to the generator unit 3 by a shaft 4 (namely the two partial shafts 41 and 42).
  • the partial shafts 41 and 42 are coupled directly to one another via flanges 43.
  • the partial shaft 42 carries an armature 31 in the generator 30.
  • the stator 32 which is also contained in the generator 30, is adjacent to it.
  • the electrical current generated by the generator 30 is fed via lines 51 to a frequency converter 5, which after frequency conversion transforms the electrical current via lines 52 into feeds an electrical network.
  • the partial shaft 41 has blades 211 within the turbine 20.
  • Guide vanes 212 are located on the static part of the steam turbine 20 within spaces between the rotor blades 211.
  • the steam turbine 20 in this exemplary embodiment has a steam outflow device 23 ′, by means of which an axial steam outflow is effected.
  • a steam outflow device 23 ′ by means of which an axial steam outflow is effected.
  • Such an axial steam outflow is required, in particular, when steam turbines with a generator are installed on a level surface (eg also in a line with a gas turbine).
  • the generator 30 is then coupled to the side of the steam inflow 22 of the steam turbine 20.
  • the steam outflow device 23 ' is usually followed by a condenser (not shown here) or a counterpressure nozzle (also not shown).
  • a steam turbine with axial outflow requires a shaft bearing in the steam flow.
  • the bearings 6 are supplied with circulating water through water supply ducts 72.
  • the circulating water enters the water return 71 through water discharge ducts 73.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hydraulic Turbines (AREA)
  • Control Of Turbines (AREA)
  • Control Of Eletrric Generators (AREA)
  • Sliding-Contact Bearings (AREA)
EP98966767A 1997-11-28 1998-11-26 Turbogenerateur a paliers et soupapes lubrifies par eau Expired - Lifetime EP1034357B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19752946 1997-11-28
DE19752946 1997-11-28
PCT/DE1998/003490 WO1999028599A1 (fr) 1997-11-28 1998-11-26 Turbogenerateur a paliers et soupapes lubrifies par eau

Publications (2)

Publication Number Publication Date
EP1034357A1 true EP1034357A1 (fr) 2000-09-13
EP1034357B1 EP1034357B1 (fr) 2003-09-03

Family

ID=7850197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98966767A Expired - Lifetime EP1034357B1 (fr) 1997-11-28 1998-11-26 Turbogenerateur a paliers et soupapes lubrifies par eau

Country Status (11)

Country Link
US (1) US6240730B1 (fr)
EP (1) EP1034357B1 (fr)
JP (1) JP4213862B2 (fr)
KR (1) KR100561796B1 (fr)
CN (1) CN1119508C (fr)
AT (1) ATE248983T1 (fr)
BR (1) BR9815069A (fr)
CZ (1) CZ296581B6 (fr)
DE (1) DE59809513D1 (fr)
PL (1) PL195761B1 (fr)
WO (1) WO1999028599A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619355A1 (fr) * 2004-07-20 2006-01-25 Siemens Aktiengesellschaft Palier et dispositif d'étanchéité dans une turbine à vapeur

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236326A1 (de) * 2001-08-17 2003-03-06 Alstom Switzerland Ltd Gasspeicherkraftanlage
JP2003097212A (ja) * 2001-09-21 2003-04-03 Honda Motor Co Ltd 回転流体機械
DE10216953B4 (de) * 2002-04-17 2006-02-23 Daimlerchrysler Ag Vorrichtung und Verfahren zur Versorgung einer Brennstoffzelle mit Prozessluft und deren Verwendung
JP4286062B2 (ja) * 2003-05-29 2009-06-24 株式会社荏原製作所 発電装置および発電方法
CN101571055B (zh) * 2003-07-24 2011-12-21 株式会社日立制作所 气体涡轮发电设备的运转方法
US20050187934A1 (en) * 2004-02-24 2005-08-25 Covelight Systems, Inc. Methods, systems and computer program products for geography and time monitoring of a server application user
ITMI20042484A1 (it) 2004-12-23 2005-03-23 Nuovo Pignone Spa Turbogeneratore
DE102006015639A1 (de) * 2006-04-04 2007-10-11 Mtu Aero Engines Gmbh Strahltriebwerk mit Generatoreinheit
JP2008008218A (ja) * 2006-06-29 2008-01-17 Ebara Corp 発電装置及びその運転方法
CN101536049B (zh) * 2006-11-08 2013-08-14 艾弗拉罕·巴卡尔 自动停车计时系统和方法
JP2008175212A (ja) * 2008-04-09 2008-07-31 Ebara Corp タービン発電機
EP2136035A1 (fr) 2008-06-16 2009-12-23 Siemens Aktiengesellschaft Fonctionnement d'une installation à turbines à gaz et à vapeur par convertisseur de fréquence
US9803549B2 (en) * 2011-02-28 2017-10-31 Ansaldo Energia Ip Uk Limited Using return water of an evaporative intake air cooling system for cooling a component of a gas turbine
US9689281B2 (en) * 2011-12-22 2017-06-27 Nanjing Tica Air-Conditioning Co., Ltd. Hermetic motor cooling for high temperature organic Rankine cycle system
CN102733447B (zh) * 2012-07-06 2013-10-30 东南大学 高速水轴承智能供水装置
CN103397918B (zh) * 2013-08-13 2016-03-16 中国电力工程顾问集团华东电力设计院有限公司 变频发电机调速的背压式小汽机驱动风机系统及方法
CN103397919B (zh) * 2013-08-13 2016-01-06 中国电力工程顾问集团华东电力设计院有限公司 工频发电机调速的纯凝式小汽轮机驱动给水泵系统及方法
US20160047307A1 (en) * 2014-08-15 2016-02-18 General Electric Company Power train architectures with low-loss lubricant bearings and low-density materials
ES2927719T3 (es) * 2018-06-08 2022-11-10 fludema GmbH Procedimiento de operación para un turbogrupo y para una instalación de turbina de vapor a baja presión, e instalación de turbina de vapor a baja presión
CN112833189B (zh) * 2020-12-30 2022-05-10 东方电气集团东方汽轮机有限公司 一种汽轮给水泵轴端密封结构
CN113074023B (zh) * 2021-04-12 2022-11-11 哈尔滨工业大学 一种无油润滑高功率密度零蒸汽泄露汽轮机
CN114607475A (zh) * 2022-04-08 2022-06-10 哈尔滨汽轮机厂有限责任公司 一种5mw一体化布置汽轮发电机组

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1053515A (fr) * 1963-03-23
GB1134391A (en) 1965-08-26 1968-11-20 Harland Engineering Co Ltd Lubrication system for turbine driven impeller pump
DE1426796A1 (de) 1965-09-25 1969-07-03 Bronicki Lucien Harishon Rehov Krafterzeugungsanlage
US3359731A (en) * 1966-10-13 1967-12-26 James H Anderson Power plant including fluid means for supporting rotating shaft in a bearing
DE2105494A1 (de) * 1971-02-05 1972-08-10 Babcock & Wilcox Ag Einrichtung zur Energieversorgung
DE2105949A1 (en) * 1971-02-09 1972-08-17 Dynamit Nobel Ag Heavy unwinding drum - with automatically operated band brake
GB1490089A (en) * 1974-07-12 1977-10-26 Hawthorn Leslie Engineers Ltd Turbo-alternator plant
CH574564A5 (fr) * 1974-08-16 1976-04-15 Bbc Brown Boveri & Cie
US4386499A (en) 1980-11-24 1983-06-07 Ormat Turbines, Ltd. Automatic start-up system for a closed rankine cycle power plant
JPS58140408A (ja) * 1982-02-17 1983-08-20 Hitachi Ltd 蒸気タ−ビンの冷却装置
DE3542316A1 (de) 1985-09-09 1987-03-12 Kraftwerk Union Ag Einrichtung zur leckoel-freien lageroel-abfuehrung an gleitlagern fuer umlaufende wellen hochtouriger maschinen
DE3815679A1 (de) 1988-05-07 1989-11-16 Kuehnle Kopp Kausch Ag Radialturbine
DE4129518A1 (de) * 1991-09-06 1993-03-11 Siemens Ag Kuehlung einer niederbruck-dampfturbine im ventilationsbetrieb
DE59302524D1 (de) 1992-07-07 1996-06-13 Siemens Ag Einrichtung zur abführung von schmiermittel aus einer lageranordnung
DE4227280C1 (fr) 1992-08-18 1993-08-05 Siemens Ag, 8000 Muenchen, De
DE4444587A1 (de) 1994-12-14 1996-06-20 Siemens Ag Turbine mit einer magnetisch gelagerten Welle
DE19606088A1 (de) 1996-02-19 1997-08-21 Siemens Ag Einrichtung und Verfahren zur Abführung eines flüssigen Schmiermittels aus einer Lageranordnung
DE19636674A1 (de) 1996-09-10 1998-03-12 Ghh Borsig Turbomaschinen Gmbh Dampfturbinensteuerung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9928599A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619355A1 (fr) * 2004-07-20 2006-01-25 Siemens Aktiengesellschaft Palier et dispositif d'étanchéité dans une turbine à vapeur
WO2006008235A1 (fr) * 2004-07-20 2006-01-26 Siemens Aktiengesellschaft Ensemble palier/dispositif d'etancheite installe dans une turbine a vapeur

Also Published As

Publication number Publication date
WO1999028599A1 (fr) 1999-06-10
EP1034357B1 (fr) 2003-09-03
DE59809513D1 (de) 2003-10-09
US6240730B1 (en) 2001-06-05
CN1119508C (zh) 2003-08-27
KR100561796B1 (ko) 2006-03-21
BR9815069A (pt) 2000-10-03
CN1280649A (zh) 2001-01-17
CZ296581B6 (cs) 2006-04-12
JP4213862B2 (ja) 2009-01-21
PL341027A1 (en) 2001-03-26
PL195761B1 (pl) 2007-10-31
JP2001525512A (ja) 2001-12-11
KR20010032535A (ko) 2001-04-25
CZ20001940A3 (cs) 2000-11-15
ATE248983T1 (de) 2003-09-15

Similar Documents

Publication Publication Date Title
EP1034357B1 (fr) Turbogenerateur a paliers et soupapes lubrifies par eau
EP1525396B2 (fr) Turbine eolienne a circuit de refroidissement ferme
EP2381561B1 (fr) Eolienne dotée d'un générateur
DE10152712B4 (de) Generator für ein Wasserkraftwerk
EP3108154B1 (fr) Procédé permettant de faire fonctionner une chaîne d'entraînement et de transmission et chaîne d'entraînement et de transmission
DE112016006959B4 (de) Getriebe mit variabler drehzahl
EP0919512B1 (fr) Treuil avec électromoteur refroidi par un liquide
DE3209514A1 (de) Getriebeanlage mit druckschmierung
WO2005111381A1 (fr) Groupe motopropulseur
DE102008013728A1 (de) Windenergieanlage zur Erzeugung elektrischer Energie
DE212014000185U1 (de) Energiewandler
WO2016059115A1 (fr) Dispositif et procédé d'entraînement de machines-outils à vitesse variable
DE112011102904T5 (de) Abwärme-Leistungsgenerator
DE112012002650T5 (de) Abwärmestromerzeuger
DE3231016A1 (de) Umlaufraedergetriebe mit umlaufschmierung
WO2011042084A2 (fr) Chaîne cinématique et éolienne
DE102014115191A1 (de) Vorrichtung und Verfahren zum Antrieb von drehzahlvariablen Arbeitsmaschinen
DE102023203657B3 (de) Kühlsystem für eine lastpunktabhängige Kühlung eines Rotors einer elektrischen Maschine
DE102018008183A1 (de) Vorrichtung und Verfahren zum Betreiben von drehzahlvariablen Arbeitsmaschinen
DE19843441A1 (de) Komponentenanordnung für Gas- und Dampfturbinen-Anlagen mit mehr als einer Gasturbine
EP0713001B1 (fr) Turbine de détente à gaz
CH537516A (de) Verfahren zur Erzeugung elektrischer Energie und Anlage zur Durchführung des Verfahrens
DE3502578A1 (de) Hilfsantrieb fuer ein gasturbinentriebwerk
EP1769137B1 (fr) Turbine à vapeur comprenant un palier et dispositif d'étanchéité
DE29723750U1 (de) Seilwinde mit flüssigkeitsgekühltem Elektromotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 20020822

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: STEAM TURBOGENERATOR WITH WATER LUBRICATED LAGERS AND VALVES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59809513

Country of ref document: DE

Date of ref document: 20031009

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031215

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040604

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131011

Year of fee payment: 16

Ref country code: SE

Payment date: 20131107

Year of fee payment: 16

Ref country code: FR

Payment date: 20131119

Year of fee payment: 16

Ref country code: GB

Payment date: 20131111

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131128

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140206

Year of fee payment: 16

Ref country code: DE

Payment date: 20140120

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59809513

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 248983

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141126

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141126