EP1032840A1 - Mehrkanalsystem zur durchführung chemischer, biologischer und/oder biochemischer analyseverfahren - Google Patents

Mehrkanalsystem zur durchführung chemischer, biologischer und/oder biochemischer analyseverfahren

Info

Publication number
EP1032840A1
EP1032840A1 EP98964407A EP98964407A EP1032840A1 EP 1032840 A1 EP1032840 A1 EP 1032840A1 EP 98964407 A EP98964407 A EP 98964407A EP 98964407 A EP98964407 A EP 98964407A EP 1032840 A1 EP1032840 A1 EP 1032840A1
Authority
EP
European Patent Office
Prior art keywords
chambers
chamber
reaction
group
reaction space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98964407A
Other languages
English (en)
French (fr)
Inventor
Peter Miethe
Dimitri Plaksine
Ursula Erhardt
Christoph Erhardt
Jörg FICHTER
Kurt Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biognosis GmbH
Original Assignee
Abion Beteiligungs und Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abion Beteiligungs und Verwaltungs GmbH filed Critical Abion Beteiligungs und Verwaltungs GmbH
Publication of EP1032840A1 publication Critical patent/EP1032840A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • G01N35/085Flow Injection Analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3035Micromixers using surface tension to mix, move or hold the fluids
    • B01F33/30351Micromixers using surface tension to mix, move or hold the fluids using hydrophilic/hydrophobic surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • G01N2035/00544Mixing by a special element, e.g. stirrer using fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3003Fluid separating traps or vents
    • Y10T137/3084Discriminating outlet for gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/598With repair, tapping, assembly, or disassembly means
    • Y10T137/612Tapping a pipe, keg, or apertured tank under pressure
    • Y10T137/6123With aperture forming means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • the invention relates to a device for carrying out chemical, biological and / or biochemical analysis methods, in particular in-vitro analysis methods such as immunoassays, DNA assays and / or receptor assays.
  • a device liquid and one or more reagents can be accommodated in such a device, which are selectively supplied to a reaction space in which a reaction component for the sample to be analyzed is immobilized.
  • the device should be operated in a simple manner, so that the device can also be operated and used by an inexperienced user. In addition, the device should be relatively compact.
  • CRYSTAL COPY If necessary, quantitative, simple integrated systems are required, which can also be operated by an inexperienced user in decentralized use (doctor's offices, pharmacies, household). A typical catalog of requirements regarding manageability and reliability was formulated in the USA in the form of the guidelines for the CLIA (clinical laboratory improvement act).
  • a device for storing and metering a maximum of three different reagents used today in rapid analysis is described in US Pat. No. 4,943,522.
  • a biochemically active component is placed on a strip-shaped glass sheet and dried on it. In this dry form it can be stored for a longer period.
  • the glass flow is placed over a strip of nitrocellulose.
  • the reagents located there are dissolved and a partial reaction started by feeding a liquid sample that migrates through the glass flow due to capillary forces.
  • the reaction mixture migrates further into the nitrocellulose membrane, where a second and optionally third reactive component is immobilized, which reacts further with the sample.
  • the containers are arranged one behind the other and each closed on the floor with a shut-off device that can be opened via a release unit.
  • the reagents flow due to the gravitation through the open bottoms into the container below and after passing through the last container from the device into the reaction space.
  • the dosing process can be implemented in two ways. Either the shut-off device of the individual containers is opened one after the other, starting from the one closest to the outlet opening to the reaction chamber, the opening of the higher lying container only taking place when the one below is empty or the opening of all containers taking place simultaneously, causing the liquid to flow in from one higher lying in a not yet emptied container below. In the first case it is necessary to trigger the dosing process several times.
  • Another disadvantage of the device is the control of the metering process by gravitation in combination with the flow resistances of the application device and possibly the connected reaction space. Because the flow resistance inside the container is very strongly depend on the interfacial tensions of the liquids, small additions of eg surface-active substances can change the flow behavior very strongly. In applications in which a reproducible outflow behavior of the reagents is necessary for reaction-kinetic reasons, this leads to very strong fluctuations in the course of the reaction.
  • the invention has for its object to provide a device for performing chemical, biological and / or biochemical analysis methods that is easy to use and easy to manufacture and with which analyzes can be carried out quickly.
  • the liquid or semi-liquid sample and one or more reagents are accommodated in the individual chambers of two groups of interconnected chambers. Both groups have at least two chambers connected in parallel, which are provided with outlet or inlet openings through which fluid, i.e. liquid or semi-liquid substances flow into the chambers or from which fluid can flow and which open into a common collecting channel.
  • the collection channel assigned to the first group is connected and / or connectable to the collection channel assigned to the second group via a flow-through reaction space with at least one reaction compartment, a reaction component for detecting the presence of a in the flow-through reaction space or in the reaction compartment certain component is arranged immobilized in the sample to be analyzed.
  • the device according to the invention is a closed system in particular, in which the content of a chamber of one group can be transferred from the opening assigned to this chamber into at least one at least not completely filled chamber of this or the other group, specifically through the opening this at least one chamber.
  • the reaction space is flowed through.
  • the reaction component thus comes in chronological order with the Sample liquid and the reagents in contact.
  • the respective liquid After flowing through the reaction space, the respective liquid enters a free or partially free chamber of the group of chambers arranged behind the reaction space in relation to the respective flow direction. In this way, the reaction space can be flowed through bidirectionally without liquids escaping from the entire device.
  • it is a closed system from which all the liquid remains after the chambers have been filled with the reagents and the sample, which is particularly advantageous from the point of view of the risk of contamination.
  • the device according to the invention is therefore a system which has two groups of chambers connected in parallel within the groups and one or more reaction compartments connected in series are arranged between the two groups of chambers.
  • the sample chamber it is also possible for the sample chamber to belong to one of the two chamber groups and consequently also to be connected in parallel to these chambers.
  • the structure of the device according to the invention makes it possible to flow through the reaction compartments and optionally also the sample chamber in different directions. Action elements acting on the chambers ensure that the content of one chamber passes from its opening via the collecting channels, the reaction compartment or reaction compartments (reaction space) and the collecting channel of the other group of chambers to another chamber. Leaving can be done mechanically, pneumatically or hydraulically.
  • Mechanical is understood here to mean, for example, squeezing out or squeezing out liquid by means of piston / stamp units.
  • the "pumping around" of fluid from one chamber of one group into another chamber of the other group takes place by means of pistons and cylinder units.
  • the chambers are open at their ends facing away from the openings.
  • pistons that are slidably arranged and seal tightly against the inner wall of the chamber.
  • Movable plunger elements arranged at the open ends of the chambers can act on the pistons of the chambers in order to move them in the direction of the chamber openings.
  • the liquid in the relevant chamber is dispensed.
  • Each chamber is assigned a linearly or otherwise movable stamp element, the movement of which can be blocked.
  • the pistons of all other chambers are blocked except for one, so that the liquid can be transferred specifically to the chamber whose piston through the assigned stamp element within the chamber to its open end is freely movable.
  • the sample can be introduced into the sample chamber, for example, by pipetting.
  • a body through which liquid can flow can be inserted into a chamber with sample liquid bound to it or stored with it.
  • a KapiHar tube can be used as the body.
  • the assays carried out according to the invention can be evaluated quantitatively or qualitatively.
  • the assays are carried out on a carrier material (matrix, beds of particulate material, frit) which is preferably in the form of a particulate material, e.g. is arranged in the reaction space.
  • a carrier material matrix, beds of particulate material, frit
  • the carrier material is preferably modified by reactive components such as e.g.
  • Antibodies or substances that have an affinity for the analytes adhere to the surface of the carrier material by forming concentration regions in or on the carrier material which have a different optical density than other regions of the carrier material to which the analytes do not adhere.
  • the carrier material used in the assay which is the subject of the earlier applications mentioned above, is not transparent. In its natural state, the material is opaque or colorless, since all light that strikes the surface of the material is scattered. Thus, there was no reason for the person skilled in the art to measure the "optical density" of such a sample in transmitted light mode. Surprisingly, it has been shown that quantitative results can be obtained even when measuring the optical density in transmitted light mode.
  • the analytes enriched on the carrier material are preferably detected on the basis of the optical density, which arises through labeling reactions.
  • labeling reactions can include reactions of analytes bound to the concentration ranges of the support material with secondary ligands which have an affinity for the analytes and which either carry a (fluorescent or non-fluorescent) dye or an enzyme which is capable of, with a substrate to respond by producing a legible dye.
  • a marking agent according to the disclosure of European patent application 96 100 821, which is hereby incorporated by reference into the present application, is particularly preferred.
  • the assay is preferably evaluated by transmission photometry.
  • a light source for example a light-emitting diode
  • the detector for example a photomultiplier
  • the carrier material is arranged between the light-emitting diode and the detector.
  • Another possibility is to determine the light beam which has passed through the carrier material at an angle which is less than 180 °, but is substantially greater than 90 °.
  • the detector can be designed in such a way that it surrounds as much of the carrier material as possible. In the case of the reaction space, the detector can then be semicircular, for example when viewed in cross section.
  • the relationship between the signal induced in the photodetector and the optical density is linear, so that a quantification of the signal measured in the photodetector can be carried out.
  • the device used to carry out the evaluation method can be dimensioned so compact that it can form part of a kit that is used, for example, in ambulances. Carrying such kits in emergency medical cases is advantageous because - for example, if a patient has a heart attack suffering - immediately after the ambulance arrives at the patient, biochemical parameters such as troponin can be measured quantitatively in the patient's blood samples.
  • the present invention thus claims a kit with at least one device designed according to the present invention and, for example, a chromatographic reaction space according to, for example, EP-A-0 557 288, EP-0 634 015 or PCT / EP94 / 00086.
  • the invention further preferably comprises a device with which an affinity assay can be quantitatively evaluated.
  • reaction compartments connected in series within the reaction space through connecting channels.
  • one or more reaction compartments can thus be used for the reference measurement, while at least one reaction compartment is used for measuring the discoloration of the reaction component caused by the sample. This increases the reliability of the optical detection of the degree of turbidity or discoloration.
  • the device according to the invention can be formed in a compact manner in a multi-part component.
  • the chambers are expediently adjacent to one another, their longitudinal axes extending transversely to the thickness of the component, which is why the component can be designed quite flat in the manner of a plate.
  • the reaction compartments or the reaction space is also housed in this component.
  • the chambers and the reaction space are located in a central core part of the component.
  • the collecting and connecting channels are advantageously introduced in mutually opposite sides of this core part as grooves, which in turn are connected to one another or to the chambers via bores extending in the thickness of the core part.
  • FIG. 1 is a perspective view of the device for the storage and defined dosing of samples and reagents and for carrying out analysis methods with respect to the sample to be examined,
  • FIG. 3 is a partial sectional view taken along the line III-III of FIG. 2, 4 shows a view of the device according to FIG. 1 or FIG. 2 with the film removed on the underside in accordance with IV-IV of FIG. 2,
  • FIG. 5 is a view along the line V-V of FIG. 2 on part of the top of the middle part of the device of FIG. 2,
  • FIG. 6 shows a cross section along the line VI-VI of FIG. 2 through the part of the device having the measuring compartments, the components of a transmitted light measuring device being indicated by dashed lines,
  • FIG. 7 is a perspective view of a device with which the selective pumping and dosing of the sample and reagent liquids is carried out and in which the optical examination of the degree of discoloration and turbidity of the reaction compartments can be carried out, and
  • Fig. 8 to 13 the different stages in the practical use of a device according to the invention.
  • Figs. 1 to 6 show different views of an essentially plate-shaped component 10 for taking up and dosing various liquids for the purpose of carrying out analysis methods in clinical diagnosis in particular.
  • the component 10 has a plate-shaped main part 12 which is made of plastic.
  • the main part 12 has an underside 14 and an upper side 16, which is stepped and has an upper side surface 17 and a lower side surface.
  • These chambers 20 and 22 are designed as bores which are introduced into the main part 12 from the side 26 facing away from the stepped end 24 of the component 10.
  • the chambers 20, 22 are all arranged parallel to one another and are open at their ends 28 facing the end 26 of the component 10.
  • the chambers 20 are combined into a first group 30 and the chambers 22 into a second group 32.
  • the combination of the chambers 20, 22 into groups 30 and 32 should be understood to mean that the chambers of these groups are interconnected.
  • Each chamber 20, 22 is provided with a bore 34 running perpendicular to the top and bottom 14, 16, which extends from the inner ends 36 facing away from the open ends 28 to the bottom 14. These bores 34 form the outlet or inlet openings of the chambers 20, 22.
  • two mutually separate grooves 38, 40 are formed, into which the bores 34 open. While the bores 34 of the four adjacent first chambers 20 open into the groove 38, the bores 34 of the three second chambers 22 are connected via the groove 40.
  • grooves 38, 40 At right angles to these grooves 38, 40 are two grooves 42, 44, of which the groove 42 is connected to the groove 38 and the groove 44 is connected to the groove 40. These grooves 42, 44 extend into the stepped end 24 of the component 10, where they end in two bores 46, 48. These two bores 46, 48 extend from the bottom 14 of the main part 12 to the area 18 from the top 16 thereof and have reagent components binding porous frits 50, 52 which are inserted into the bores 46, 48 secured against unintentional movement (see FIG Fig. 6).
  • the two bores 46, 48 are connected to one another via a connecting channel 54 which consists of two grooves 56, 58 made in the underside 14 and in the region 18 of the upper side 16 and a bore 60 connecting them.
  • the special guidance of the connecting channel 54 which connects the end of the bore 48 located on the underside 14 to the upper end of the bore 46 located in the region 18 of the upper side 16, will be discussed later.
  • each chamber 20, 22 there is a piston 62, which bears sealingly against the inside 64 of the relevant chamber 20, 22 and is displaceable therein.
  • the pistons 62 in the chambers 20, 22 can be moved toward their inner ends 36.
  • the underside 14 of the main part 12 is covered with a plastic film 66, while in the area 18 of the upper side 16 of the main part 12 there is also a cover film 68.
  • the two foils 66, 68 are connected in a fluid-tight manner to the main part 12 and, together with the grooves 38-40, 56.58 and the bores 34, 46, 48, 60, form collecting channels and connecting channels which connect the chambers 20, 22 to those of the Connect holes 46, 48 formed reaction compartments of the reaction space 70.
  • the entire channels as well as the reaction space and the chambers are realized by introducing bores and grooves in only the main part 12 of the component 10, the structured sides of the main part 12, namely the lower and the upper side 14, 16 at least in regions by the Slides 66,68 are covered. This structure allows the component 10 to be produced relatively inexpensively.
  • the Infusomat 72 has a housing 74 which comprises a display 76 and a data input 78.
  • the Infusomat 72 is also provided with a receptacle 80 for the component 10.
  • the receptacle 80 can be closed by means of a cover element 82.
  • stamp elements 86 which are linearly displaceable in a controlled manner are arranged in the form of pins which can be moved out of this housing part 84 into the region of the receptacle 80.
  • Each stamp element 86 is provided with a separately controllable drive (not shown).
  • the feed speeds of the individual stamp elements 86 can be set differently independently of one another.
  • a central control unit is used for this purpose, which, controlled by a program, specifies the forward and backward movements and speeds of the stamp elements 86.
  • Diameter 2 x 1.6 mm polyethylene frit (type 112; Durst Filtertechnik GmbH); loaded with 1: 400 diluted positive reference serum (7.89 lU / ml)
  • Diameter 2 x 1.6 mm polyethylene frit (type 112; Durst Filtertechnik GmbH); loaded with 0.8 ⁇ g tetanus toxoid (GVM, Holland)
  • the component 10 is used as follows to carry out the analysis method.
  • the individual punches 86a-86e then move into the starting positions, in which they bear against the respectively assigned pistons 62 and fix them against unwanted movements in the direction of the open ends of the chamber.
  • the punch 86e is then actuated in order to advance the piston 62 of the chamber 22a to the inner end 36 of this chamber.
  • the buffer emerging from the chamber 22a reaches the frits via the collecting channels and bores, wets them and continues to flow into the sample chamber 20a that receives the sample.
  • the piston 62 of this chamber 20a In order for the buffer to get into the chamber 20a, the piston 62 of this chamber 20a must be free to move to the open end of the chamber 20a.
  • the associated punch 86a is in the position, for example according to FIG. 9, in which it permits the free movement of the piston 62 of the chamber 20a up to its open end.
  • the sample is diluted by the penetration of the buffer into the chamber 20a.
  • the punches 86b-86d remain in their starting positions and thus prevent the associated pistons from moving out of the relevant chambers, which in turn ensures that the buffer from the chamber 22a enters the chamber 20a (FIG. 9).
  • the punch 86a then extends in order to act on the piston 62 of the chamber 20a.
  • the sample diluted with buffer from the chamber 20a which belongs to the first chamber group 30, is fed to one chamber of the second chamber group 32.
  • the sample provided with a buffer enters the chamber 22a because the stamp 86e assigned to this chamber has been moved into its starting position or into its retracting position.
  • the punches 86b-86d bear against the associated piston 62 and thus prevent liquid from penetrating into the associated chambers (FIG. 10).
  • the wash buffer is then pumped from chamber 22b through the frits into chamber 20a.
  • the punches 86b, 86a and 86e assigned to the chambers 20b, 22a and 22b remain in their starting positions (FIG. 11).
  • the conjugate is then expressed from the chamber 20b by moving the stamp 86b assigned to this chamber forward.
  • the frits wetted with the sample in the previous step and then washed are now flowed through by the conjugate.
  • the conjugate After flowing through the frits, the conjugate enters chamber 22b, the associated stamp 86b of which is in the starting position or in the retracting position.
  • the punches 86a, 86c and 86e are in their starting positions and thus prevent liquid from penetrating into the associated chambers 20a, 20b, 22a and 22c (FIG. 12).
  • buffer solution is then pumped from the chamber 22c via the frits into the now free chamber 20b, which previously contained the conjugate. Also in this pumping-over process it applies that the plungers 86a, 86d and 86e assigned to the pistons 62 of the other chambers 20a, 22a and 22b remain in their starting positions, so that in turn it is ensured that the liquid from one of the chambers of the first group into a chamber the second group is transferred specifically (Fig. 13).
  • the transmission is determined in the individual frits with electromagnetic radiation of wavelength 520 nm. This is what the already in connection with the Fign. 6 and 7 described photometer arrangement, which in this case has light-emitting diodes below and photo sensors above in the Infusomat.
  • the evaluation is carried out by two-point calibration on the basis of the transmission values of the positive and negative controls (frits in the holes 48 and 47).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

MEHRKANALSYSTEM ZUR DURCHFÜHRUNG CHEMISCHER, BIOLOGISCHER UND/ODER BIOCHEMISCHER ANALYSEVERFAHREN
Die Erfindung betrifft eine Vorrichtung zur Durchführung von chemischen, biologischen und/oder biochemischen Analyseverfahren, insbesondere In-Vitro-Analyseverfahren wie Immunoassays, DNA-Assays und/oder Rezeptor-Assays . In derartigen Vorrichtung können eine Probenflüssigkeit und ein oder mehrere Reagenzien untergebracht sein, die gezielt einem Reaktionsraum zugeführt werden, in dem eine Reaktionskomponente für die zu analysierende Probe immobilisiert angeordnet ist. Die Bedienung der Vorrichtung soll einfach erfolgen, so daß die Vorrichtung auch von einem ungeübten Anwender bedient und angewendet werden kann. Außerdem soll die Vorrichtung relativ kompakt ausgebildet sein.
Die integrierte Lagerung und definierte Dosierung ovn mehreren flüssigen oder halbflüssigen Reagenzien ist von großer Bedeutung für die Herstellung von anwendungsbereiten chemischen und pharmazeutischen Produkten, die einerseits chemisch komplex sind, d.h. bei denen in einer zeitlich definierten Abfolge verschiedene zum Teil sehr unterschiedliche und miteinander reagierende Reagenzien in einen Reaktionsraum dosiert werden müssen, die aber andererseits einfach herstellbar und für den Anwender bedienbar sein müssen. Eine ausreichend einfache Bedienbarkeit ist insbesondere dann gegeben, wenn der Anwender durch nur wenige unverwechselbare Handgriffe die Dosierung auslösen kann.
Wichtige Anwendungsfelder liegen im Bereich der chemischen und biochemischen Schnellanalytik sowie im Bereich der Wirkstoffformulierung für pharmazeutische Anwendungen. Von besonderer kommerzieller Bedeutung ist der Bereich der klinischen Schnellanalytik. Hier werden reproduzierbar und
BESIÄΠGUNGSKOPIE gegebenenfalls quantitativ arbeitende einfache integrierte Systeme benötigt, die im dezentralen Einsatz (Arztpraxen, Apotheken, Haushalt) auch von einem ungeübten Anwender bedient werden können. Ein typischer Forderungskatalog bezüglich Handhabbarkeit und Verläßlichkeit wurde in den USA in Form der Richtlinien zum CLIA (clinical laboratory improvement act) formuliert.
Eine heute in der Schnellanalytik eingesetzte Vorrichtung zur Lagerung und Dosierung von maximal drei unterschiedlichen Reagenzien ist in US Patent 4,943,522 beschrieben. Dabei wird eine biochemisch aktive Komponente auf ein streifenförmiges Glasfließ gebracht und darauf getrocknet. In dieser trockenen Form kann es über einen längeren Zeitraum gelagert werden. Das Glasfließ iwrd über einen Nitrozellulosestreifen angeordnet. Im Anwendungsfall wird durch Aufgabe einer flüssigen Probe, die durch Kapillarkräfte durch das Glasfließ wandert, die dort befindlichen Reagenzien gelöst und eine Teilreaktion gestartet. Das Reaktionsgemisch wandert dann weiter in die Nitrozellulosemembran, wo eine zweite und gegebenenfalls dritte Reaktivkomponente immobilisiert vorliegt, die mit der Probe weiter reagiert. Das Verfahren ist für komplexe Reaktionen, die mehr als drei Reagenzien erfordern, praktisch nicht anwendbar, da es in der Regel zu schwer kontrollierbaren Vermischungs- oder/und Vernetzungsreaktionen der Komponenten kommt. Zwischenwaschschritte zur Vermeidung dieser Effekte sind nicht möglich. Die Vorrichtung erlaubt insbesondere auch keine sehr gute quantitative Auswertung, da die zugrundeliegenden physikochemischen Schritte wie Trocknung, Rekonstitution und laterale Diffusion sehr störanfällig und ohne großen technischen Aufwand nicht gut reproduzierbar sind. Dem Einsatz von Flüssigreagenzien wird daher oft der Vorzug gegeben. Eine entsprechende Vorrichtung zur Lagerung und Dosierung wird in der WO-A- 9718895 beschrieben. Sie basiert auf dem Einsatz von mindestens zwei die Reagenzien enthaltenden starren Vorratsbehältern/Containern. Die Container sind dabei hintereinander angeordnet und am Boden jeweils mit einer Absperrvorrichtung, die über eine Auslöseeinheit geöffnet werden kann, verschlossen. Im Anwendungsfall fließen die Reagenzien aufgrund der Gravitation durch die geöffneten Böden jeweils in den darunterliegenden Container und nach Passieren des letzten Containers aus der Vorrichtung in den Reaktionsraum. Der Dosiervorgang kann prinzipiell auf zwei Arten realisiert werden. Entweder die Absperrvorrichtung der einzelnen Container beginnend von dem der Auslaßöffnung zum Reaktionsraum am nächstliegenden Container nacheinander geöffnet, wobei die Öffnung des höherliegenden Containers erst erfolgt, wenn der darunterliegende entleert ist oder die Öffnung aller Container erfolgt gleichzeitig, wobei es zu einem Einfließen der Flüssigkeit aus einem höherliegenden in einen noch nicht entleerten darunterliegenden Container kommt. Im ersten Fall ist ein mehrfaches Auslösen des Dosiervorganges notwendig. Dies ist für den Anwender sehr aufwendig und für viele Anwendungen nicht akzeptabel. Im zweiten Fall sind partielle Vermischungen nicht ausgeschlossen, dies führt in der Regel zu unkontrollierbaren Vorreaktionen oder Verdünnungen. In der Anmeldung wird vorgeschlagen, diese Effekte durch nicht störende Zusätze, die Dichten und Viskosität der Flüssigkeiten verändern, zu minimieren, dies schließt aber in keinem Fall Reaktionen an Phasengrenzen und Vermischungen durch Mikrotrubulenzen aus.
Ein weiterer Nachteil der Vorrichtung ist die Kontrolle des Dosiervorganges durch Gravitation in Kombination mit den Strömungswiderständen der Auftragsvorrichtung und unter Umständen des angeschlossenen Reaktionsraumes. Da die Strömungswiderstände im Innern der Container sehr stark von den Grenzflächenspannungen der Flüssigkeiten abhängen, können geringe Zusätze von z.B. oberflächenaktiven Substanzen das Flußverhalten sehr stark verändern. Bei Anwendungen, bei denen aus reaktionskinetischen Gründen ein reprodzierbares Ausflußverhalten der Reagenzien notwendig ist, führt dies zu sehr starken Schwankungen im Reaktionsverlauf .
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Durchführung von chemischen, biologischen und/oder biochemischen Analyseverfahren zu schaffen, die einfach zu bedienen und einfach herstellbar ist und mit der sich Analysen schnell durchführen lassen.
Zur Lösung dieser Aufgabe wird mit der Erfindung eine Vorrichtung zur Durchführung von chemischen, biologischen und/oder biochemischen Diagenoseverfahren vorgeschlagen, die versehen ist mit einer ersten Gruppe von parallel zueinaner geschalteten Kammern, die Öffnungen aufweisen, durch die Fluid in die Kammern einströmen und aus denen Fluid ausströmen kann und die in einen gemeinsamen ersten Sam- melkanal münden, und einer zweiten Gruppe von parallel zueinander geschalteten Kammern, die Öffnungen aufweisen, durch die Fluid in die Kammern einströmen und aus denen Fluid aus den Kammern ausströmen kann und die in einen gemeinsamen zweiten Sammelkanal münden, wobei der erste und der zweite Sammelkanal über einen Durchfluß-Reaktionsraum miteinander verbunden und/ oder verbindbar sind, in dem eine Reaktionskomponente für eine zu analysierende Probe immobilisiert angeordnet ist, mindestens eine Kammer der ersten und/oder der zweiten Gruppe zur Aufnahme einer Probe und mindestens eine andere Kammer der ersten und/oder der zweiten Gruppe zur Aufnahme eines Reagenz vorgesehen ist und der Inhalt einer Kammer der ersten Gruppe aus der Öffnung dieser Kammer in mindestens eine zumindest nicht gänzlich gefüllte Kammer der ersten und/oder der zweiten Gruppe überführbar ist, und zwar durch die Öffnung dieser mindestens einen Kammer.
Bei der erfindungsgemäßen Vorrichtung sind die flüssige bzw. halbflüssige Probe und ein oder mehrere Reagenzien in den einzelnen Kammern zweier Gruppen von untereinander verbundenen Kammern untergebracht. Beide Gruppen weisen mindestens zwei parallel zueinander geschaltete Kammern auf, die mit Auslaß- bzw. Einlaß-Öffnungen versehen sind, durch die Fluid, d.h. flüssige oder halbflüssige Substanzen, in die Kammern einströmen oder aus denen Fluid ausströmen kann und die in einen gemeinsamen Sammelkanal münden. Der der ersten Gruppe zugeordnete Sammelkanal ist dabei mit dem der zweiten Gruppe zugeordneten Sammelkanal über einen Durchfluß-Reaktionsraum mit mindestens einem Reaktionskompartiment verbunden und/oder verbindbar, wobei in dem Durchfluß-Reaktionsraum bzw. in dem Reaktionskom- partiment eine Reaktionskomponente zum Nachweis des Vorhandenseins eines bestimmten Bestandteils in der zu analysierenden Probe immobilisiert angeordnet ist.
Bei der erfindungsgemäßen Vorrichtung handelt es sich um ein insbesondere geschlossenes System, bei dem der Inhalt einer Kammer der einen Gruppe aus der dieser Kammer zugeordneten Öffnung in mindestens eine zumindest nicht gänzlich gefüllte Kammer dieser bzw. der anderen Gruppe überführbar ist, und zwar durch die Öffnung dieser mindestens einen Kammer. Beim Überführen von Fluid, d.h. der Probe bzw. der Reagenzien, von einer Kammer zu einer anderen Kammer wird der Reaktionsraum durchströmt. Damit kommt die Reaktionskomponente in zeitlicher Aufeinanderfolge mit der Probenflüssigkeit und den Reagenzien in Kontakt. Nach dem Durchströmen des Reaktionsraums gelangt die jeweilige Flüssigkeit in eine freie bzw. teilweise freie Kammer der bezogen auf die jeweilige Durchströmungsrichtung hinter dem Reaktionsraum angeordneten Gruppe von Kammern. Auf diese Weise kann der Reaktionsraum bidirektional durchströmt werden, ohne daß Flüssigkeiten aus der gesamten Vorrichtung austreten. Insoweit handelt es sich also um ein geschlossenes System, aus dem nach dem Befüllen der Kammern mit den Reagenzien und der Probe sämtliche Flüssigkeit verbleiben, was insbesondere unter dem Aspekt der Gefahr von Kontaminierungen von Vorteil ist.
Bei der erfindungsgemäßen Vorrichtung handelt es sich also um ein System, das zwei Gruppen von innerhalb der Gruppen parallel geschalteten Kammern aufweist und zwischen den beiden Gruppen von Kammern ein oder mehrere in Serie geschaltete Reaktionskompartimente angeordnet sind. Alternativ dazu ist es auch möglich, daß die Probenkammer zu einer der beiden Kammergruppen gehört und demzufolge auch parallel zu diesen Kammern geschaltet ist. Durch den Aufbau der erfindungsgemäßen Vorrichtung ist es möglich, die Reaktionskompartimente und gegebenenfalls auch die Probenkammer in unterschiedlichen Richtungen zu durchströmen. Auf die Kammern einwirkende Einwirkorgane bzw. Einwirkelemente sorgen dafür, daß der Inhalt einer Kammer aus deren Öffnung über die Sammelkanäle, den oder die Reaktionskompartimente (Reaktionsraum) und den Sammelkanal der anderen Gruppe von Kammern in eine andere Kammer gelangt . Das Austretenlassen kann auf mechanische, pneumatische oder hydraulische Weise erfolgen. Unter mechanisch wird hier z.B. ein Ausquetschen oder ein Ausdrücken von Flüssigkeit mittels Kolben/Stempeleinheiten verstanden. Beim Ausbringen des Inhalts einer Kammer durch deren Öffnung wirken mit Ausnahme mindestens einer anderen Kammer sämtliche Einwirkelemente auf die anderen Kammern ein, so daß diese nicht befüllt werden können. In bereits gefüllte Kammern kann ebenfalls keinerlei Inhalt der besagten einen Kammer, aus der der Inhalt ausgetragen werden soll, gelangen. Dadurch ist es möglich, gezielt Fluid aus einer Kammer in eine andere Kammer zu übertragen.
Vorteilhafterweise erfolgt das "Umpumpen" von Fluid der einen Kammer der einen Gruppe in eine andere Kammer der anderen Gruppe mittels Kolben und Zylindereinheiten. Zu diesem Zweck sind die Kammern an ihren den Öffnungen abgewandten Enden offen. In den Kammern befinden sich gleitend verschiebbar angeordnete Kolben, die zur Kammerinnenwan- dung dicht abschließen. Durch an den offenen Enden der Kammern angeordnete bewegbare Stempelelemente kann auf die Kolben der Kammern eingewirkt werden, um diese in Richtung auf die Kammeröffnungen zu bewegen. Dabei wird die in der betreffenden Kammer befindliche Flüssigkeit ausgegeben. Jeder Kammer ist ein linear oder in sonstiger Weise bewegbares Stempelelement zugeordnet, dessen Bewegung gesperrt werden kann. Um nun den Inhalt einer Kammer gezielt in eine andere Kammer zu überführen, werden die Kolben sämtlicher anderer Kammern bis auf eines blockiert, so daß die Flüssigkeit gezielt in diejenige Kammer überführt werden kann, deren Kolben durch das zugeordnete Stempelelement innerhalb der Kammer zu deren offenen Ende hin frei bewegbar ist .
Das Einbringen der Probe in die Probenkammer kann z.B. durch Pipettieren erfolgen. Alternativ kann ein von Flüssigkeit durchströmbarer Körper mit an diesen gebundener bzw. mit von diesen gespeicherter Probenflüssigkeit in eine Kammer eingesetzt werden. Als Körper kommt z.B. ein KapiHarröhrchen in Frage. Auch an einen eine insbesondere kompressible poröse Struktur aufweisender Körper ist zu denken. Die Kompressibilität hat den Vorteil, daß durch einen Kolben der den porösen Körper aufnehmenden Kammer die Probenflüssigkeit aus dem Körper herausgedrückt werden kann.
Überraschenderweise hat sich herausgestellt, daß die gemäß der Erfindung durchgeführten Assays quantitativ oder qualitativ auswertbar sind. Die Assays werden auf einem vorzugsweise als Partikulatmaterial vorliegenden Trägermaterial (Matrix, Schüttungen von partikulärem Material, Fritte) durchgeführt, das z.B. im Reaktionsraum angeordnet ist. Eine genauere Beschreibung dieses Reaktionsraums findet sich in EP-A-0 557 288, die hiermit durch Verweis in die vorliegende Anmeldung einbezogen wird, EP-0 634 015, die hiermit durch Verweis in die vorliegende Anmeldung einbezogen wird, oder PCT/EP94/00086 , die hiermit durch Verweis in die vorliegende Anmeldung einbezogen wird. Das Modifizieren des .Trägermaterials erfolgt vorzugsweise durch reaktive Komponenten wie z.B. Antikörper oder Substanzen, die eine Affinität zu den Analyten haben. Während des Assays haften die Analyten an der Oberfläche des Trägermaterials an, indem sie in oder an dem Trägermaterial Konzentrationsbereiche bilden, die eine andere optische Dichte aufweisen als andere Bereiche des Trägermaterials, an denen die Analyten nicht anhaften. Das Trägermaterial, das in dem Assay verwendet wird und das der Gegenstand der oben erwähnten früheren Anmeldungen ist, ist nicht durchsichtig. In seinem natürlichen Zustand ist das Maerial lichtundurchlässig oder farblos, da sämtliches auf die Oberfläche des Materials auftreffendes Licht gestreut wird. Somit bestand für den Fachmann keine Veranlassung, die "optische Dichte" einer derartigen Probe in Durch- lichtbetrieb zu messen. Überraschenderweise hat sich gezeigt, daß man selbst bei Messung der optischen Dichte in Durchlichtbetrieb quantitative Ergebnisse erhalten kann.
Vorzugsweise werden die auf dem Trägermaterial angereicherten Analyte anhand der optischen Dichte detektiert, die sich durch Markierungsreaktionen einstellt. Derartige Markierungsreaktionen können Reaktionen von an die Konzentrationsbereiche des Trägermaterials gebundenen Analyten mit sekundären Liganden umfassen, die eine Affinität zu den Analyten auweisen und die entweder einen (fluoreszierenden oder nicht-fluoreszierenden) Farbstoff oder ein Enzym tragen, das in der Lage ist, mit einem Substrat zu reagieren, indem es einen lesbaren Farbstoff erzeugt. Besonders bevorzugt ist ein Markierungsmittel gemäß der Offenbarung der europäischen Patentanmeldung 96 100 821, die hiermit durch Verweis in die vorliegende Anmeldung einbezogen wird. Vorzugsweise wird das Assay durch Trans- missionsphotometrie ausgewertet. In diesem Fall wird an einer Seite des Trägermaterials eine Lichtquelle, z.B. eine lichtemittierende Diode, angeordnet, während an der gegenüberliegenden Seite des Trägermaterials der Detektor, z.B. ein Fotovervielfacher, angeordnet wird, so daß das Trägermaterial zwischen der lichtemittierenden Diode und dem Detektor angeordnet ist. Eine andere Möglichkeit besteht darin, den Lichtstrahl zu bestimmen, der das Trägermaterial in einem Winkel durchlaufen hat, welcher kleiner als 180°, jedoch wesentlich größer als 90° ist. Der Detektor kann derart ausgestaltet sein, daß er so viel von dem Trägermaterial wie möglich umgibt. Im Falle des Reaktionsraums kann der Detektor dann z.B. im Querschnitt betrachtet halbkreisförmig ausgebildet sein.
Überraschenderweise ist die Relation zwischen dem in dem Fotodetektor induzierten Signal und der optischen Dichte linear, so daß eine Quantifizierung des in dem Fotodetektor gemessenen Signals durchgeführt, werden kann. Die zum Durchführen des Auswertungsverfahrens verwendete Vorrichtung kann derart kompakt bemessen sein, daß sie einen Teil eines Kits bilden kann, der z.B. in Krankenwagen verwendet wird. Das Mitführen derartiger Kits in Notarztkoffern ist vorteilhaft, da - z.B. wenn ein Patient einen Herzanfall erleidet - unmittelbar nach dem Eintreffen des Krankenwagens beim Patienten biochemische Parameter wie z.B. Troponin quantitativ in Blutproben des Patienten gemessen werden können. Somit beansprucht die vorliegende Erfindung ein Kit mit mindestens einer gemäß der vorliegenden Erfindung ausgebildeten Vorrichtung und beispielsweise eines chromatographischen Reaktionsraums gemäß z.B. EP-A-0 557 288, EP-0 634 015 oder PCT/EP94/00086. Um ein Instrument zur quantitativen Auswertung der durchzuführenden Tests verfügbar zu machen, umfaßt die Erfindung ferner vorzugsweise eine Vorrichtung, mit der eine Affinitäts-Assay quantitativ ausgewertet werden kann.
Insbesondere unter dem Aspekt der optischen Untersuchung des Reaktionsraums auf den Grad ihrer Verfärbung ist es von Vorteil, wenn der Reaktionsraum entlang der optischen Achse durchströmt werden, entlang derer die optische Untersuchung der Meßkammern erfolgt. Dann nämlich wirken sich Verfärbungsgradienten, wie sie notwendigerweise innerhalb des Reaktionsraums auftreten, auf das Meßergebnis nicht aus, da in Gradientenrichtung gemessen wird.
In vorteilhafter Weiterbildung der Erfindung ist ferner vorgesehen, innerhalb des Reaktionsraums untereinander durch Verbindungskanäle in Serie geschaltete Reaktionskompartimente vorzusehen. Bei der optischen Detektion der Verfärbungsgrade können damit ein oder mehrere Reaktionskompartimente zur Referenzmessung eingesetzt werden, während mindestens ein Reaktionskompartiment zur Messung der durch die Probe hervorgerufenen Verfärbung der Reaktions- komponente eingesetzt wird. Damit wird die Zuverlässigkeit der optischen Erfassung des Trübungs- bzw. Verfärbungsgrades erhöht .
Die erfindungsgemäße Vorrichtung läßt sich in kompakter Weise in einem mehrteiligen Bauelement ausbilden. Hierbei liegen zweckmäßigerweise die Kammern nebeneinander, wobei ihre Längsachsen quer zur Dickenerstreckung des Bauelements verlaufen, weshalb dieses recht flach nach Art einer Platte ausgebildet sein kann. Die Reaktionskompartimente bzw. der Reaktionsraum ist ebenfalls in diesem Bauelement untergebracht . Die Kammern und der Reaktionsraum befinden sich dabei in einem mittleren Kernteil des Bauelements. Die Sammel- und Verbindungskanäle sind dabei vorteilhafterweise in einander gegenüberliegenden Seiten dieses Kernteils als Nuten eingebracht, die wiederum über in Dickenerstreckung des Kernteils verlaufende Bohrungen untereinander bzw. mit den Kammern verbunden sind. Durch Überdecken der mit den Nuten versehenen Seiten des Kernteils durch Folien o.dgl. Plattenteile entstehen in diesen Bereichen geschlossene Kanäle. Hierdurch erhält das Bauelement eine Art Sandwich-Aufbau, mit dem Vorteil, daß sämtliche für die Schaffung der Kammern, des Reaktionsraums und der Sammel- und Verbindungskanäle erforderlichen Strukturen lediglich an dem mittleren Element, dem sogenannten Kernteil, ausgebildet sein müssen.
Nachfolgend werden anhand der Figuren Ausführungsbeispiele der Erfindung näher erläutert. Im einzelnen zeigen:
Fig. 1 eine perpektivische Darstellung der Vorrichtung zur Lagerung und definierten Dosierung von Proben und Reagenzien und zur Durchführung von Analyse- verfahren bezüglich der zu untersuchenden Probe,
Fig. 2 eine Schnittansicht entsprechend II -II der Fig. 1,
Fig. 3 eine teilweise Schnittansicht entlang der Linie III-III der Fig. 2, Fig. 4 eine Ansicht der Vorrichtung gemäß Fig. 1 bzw. Fig. 2 bei abgenommener Folie an der Unterseite entsprechend IV-IV der Fig. 2,
Fig. 5 eine Ansicht entlang der Linie V-V der Fig. 2 auf einen Teil der Oberseite des mittleren Teils der Vorrichtung gemäß Fig. 2,
Fig. 6 einen Querschnitt entlang der Linie VI -VI der Fig. 2 durch den die Meßkompartimente aufweisenden Teil der Vorrichtung, wobei die Bestandteile einer Durchlichtmeßvorrichtung gestrichelt angedeutet sind,
Fig. 7 eine perspektivische Darstellung eines Geräts, mit dem das gezielte Umpumpen und Dosieren der Proben- und Reagenzienflüssigkeiten durchgeführt wird und in dem die optische Untersuchung des Verfärbungsund Trübungsgrades der Reaktionskompartimente durchgeführt werden kann, und
Fign. 8 bis 13 die unterschiedlichen Stadien beim praktischen Einsatz einer erfindungsgemäßen Vorrichtung.
In den Fign. 1 bis 6 sind verschiedene Ansichten eines im wesentlichen plattenförmigen Bauelement 10 zur Aufnahme und Dosierung diverser Flüssigkeiten zwecks Durchführung von Analyseverfahren in der insbesondere klinischen Diagnostik gezeigt. Wie insbesondere anhand der Fign. 1 und 2 zu erkennen ist, weist das Bauelement 10 ein plattenförmi- ges Hauptteil 12 auf, das aus Kunststoff besteht. Das Hauptteil 12 weist eine Unterseite 14 und eine Oberseite 16 auf, die gestuft ausgebildet ist und eine obenliegende Oberseitenfläche 17 und eine tieferliegende Oberseitenfläche aufweist. Innerhalb des dickeren Bereichs des Hauptteils 12 zwischen dem Bereich 17 seiner Oberseite 16 und der Unterseite 14 sind mehrere, im Ausführungsbeispiel sieben Kammern 20,22 angeordnet. Diese Kammern 20 und 22 sind als Bohrungen ausgebildet, die von der dem gestuften Ende 24 des Bauelements 10 abgewandten Seite 26 in das Hauptteil 12 eingebracht sind. Die Kammern 20,22 sind sämtlich parallel zueinander angeordnet und sind an ihren zum Ende 26 des Bauelements 10 weisenden Enden 28 offen.
Die Kammern 20 sind zu einer ersten Gruppe 30 und die Kammern 22 zu einer zweiten Gruppe 32 zusammengefaßt. Die Zusammenfassung der Kammern 20,22 zu den Gruppen 30 bzw. 32 ist dahingehend zu verstehen, daß die Kammern dieser Gruppen untereinander verbunden sind. Jede Kammer 20,22 ist mit einer senkrecht zur Ober- und Unterseite 14,16 verlaufenden Bohrung 34 versehen, die sich ausgehend von den den offenen Enden 28 abgewandten innenliegenden Enden 36 aus bis zur Unterseite 14 erstrecken. Diese Bohrungen 34 bilden die Aus- bzw. Einlaßöffnungen der Kammern 20,22. In der Unterseite 14 des Hauptteils 12 sind zwei voneinander getrennte Nuten 38,40 ausgebildet, in die die Bohrungen 34 münden. Während in die Nut 38 die Bohrungen 34 der vier nebeneinanderliegenden ersten Kammern 20 münden, sind über die Nut 40 die Bohrungen 34 der drei zweiten Kammern 22 verbunden. Rechtwinklig zu diesen Nuten 38,40 verlaufen zwei Nuten 42,44, von denen die Nut 42 mit der Nut 38 und die Nut 44 mit der Nut 40 verbunden ist. Diese Nuten 42,44 erstrecken sich bis in das abgestufte Ende 24 des Bauelements 10 hinein, wo sie in zwei Bohrungen 46,48 enden. Diese beiden Bohrungen 46,48 erstrecken sich von der Unterseite 14 des Hauptteils 12 bis zu dem Bereich 18 von dessen Oberseite 16 und weisen Reagenzienkomponenten bindende poröse Fritten 50,52 auf, die in die Bohrungen 46,48 gegen unbeabsichtigte Bewegungen gesichert eingesetzt sind (s. Fig. 6) . Die beiden Bohrungen 46,48 sind über einen Verbindungskanal 54 miteinander verbunden, der aus zwei in die Unterseite 14 und in den Bereich 18 der Oberseite 16 eingebrachten Nuten 56,58 und eine diese verbindende Bohrung 60 besteht. Auf die spezielle Führung des Verbindungskanals 54, der das an der Unterseite 14 liegende Ende der Bohrung 48 mit dem im Bereich 18 der Oberseite 16 liegenden oberen Ende der Bohrung 46 verbindet, wird später noch eingegangen werden.
In jeder Kammer 20,22 befindet sich ein Kolben 62, der dichtend an der Innenseite 64 der betreffenden Kammer 20,22 anliegt und in dieser verschiebbar ist. Durch Einwirkung von außen über das offene Ende 28 der Kammern 20,22 können die Kolben 62 in den Kammern 20,22 zu deren innenliegenden Enden 36 hin bewegt werden.
Die Unterseite 14 des Hauptteils 12 ist mit einer Kunststofffolie 66 abgedeckt, während sich im Bereich 18 der Oberseite 16 des Hauptteils 12 ebenfalls eine Abdeckfolie 68 befindet. Die beiden Folien 66,68 sind fluiddicht mit dem Hauptteil 12 verbunden und bilden zusammen mit den Nuten 38-40,56,58 und den Bohrungen 34,46,48,60 Sammelkanäle und Verbindungskanäle, die die Kammern 20,22 mit den von den Bohrungen 46,48 gebildeten Reaktionskomparti- menten des Reaktionsraums 70 verbinden. Die gesamten Kanäle sowie der Reaktionsraum und die Kammern sind durch Einbringen von Bohrungen und Nuten in lediglich dem Haupt- teil 12 des Bauelements 10 realisiert, wobei die strukturierten Seiten des Hauptteils 12, nämlich die Unter- und die Oberseite 14,16 zumindest bereichsweise durch die Folien 66,68 abgedeckt sind. Dieser Aufbau erlaubt eine relativ kostengünstige Herstellung des Bauelements 10.
In den Kammern 20,22 des Bauelements 10 befinden sich neben einer zu untersuchenden Probe diverse Reagenzien wie Waschlösungen bzw. Puffer und diverse Konjugate. Durch wechselweises Übertragen von Flüssigkeiten aus den Kammern 20 der ersten Gruppe 30 in die Kammern 22 der zweiten Gruppe 32, wobei jeweils der die beiden Reaktionskompartimente 46,48 aufweisende Reaktionsraum 70 in unterschiedlichen Richtungen durchströmt wird, gelangen die diversen Flüssigkeiten in Kontakt mit den auf den Fritten 50,52 gebundenen Reaktionskomponenten. Dabei kommt es zu bestimmten Re.aktionen, die wiederum zu einer Verfärbung der Fritten 50,52 führen. Anhand der Verfärbung dieser Fritten kann dann auf mindenstens eine in der Probe enthaltene Substanz geschlossen werden sowie deren Konzentration bestimmt werden. Diese Untersuchung erfolgt mittels eines Durchlicht-Fotometers, das in einem Mehrkanal -Infusomat 72 angeordnet ist, mit dem auch die Überführung des Inhalts einer Kammer der einen Kammergruppe in eine Kammer der anderen Kammergruppe erfolgt .
Der Infusomat 72 weist gemäß Fig. 7 ein Gehäuse 74 auf, das eine Anzeige 76 und eine Dateneingabe 78 umfaßt. Der Infusomat 72 ist ferner mit einer Aufnahme 80 für das Bauelement 10 versehen. Die Aufnahme 80 ist mittels eines Deckelelements 82 verschließbar. In dem dem Deckelelement 82 benachbarten Teil 84 des Gehäuses 74 sind gesteuert linear verschiebbare Stempelelemente 86 in Form von aus diesem Gehäuseteil 84 in den Bereich der Aufnahme 80 ausfahrbaren Stiften angeordnet. Jedes Stempelelement 86 ist mit einem (nicht dargestellten) separat ansteuerbaren Antrieb versehen. Die Vorschubgeschwindigkeiten der einzelnen Stempelelemente 86 können unabhängig voneinander unterschiedlich eingestellt werden. Hierzu dient eine zentrale Steuereinheit, die von einem Programm gesteuert die Vor- und Zurückbewegungen sowie Geschwindigkeiten der Stempelelemente 86 vorgibt.
Integraler Bestandteils des Infusomats 72 ist ferner ein Durchlicht-Fotometer 88, das im Deckelelement 82 angeordnete lichtaussendende Elemente 90 und im Boden 91 der Auf- nähme 80 angeordnete lichtempfangende Elemente 92 beinhaltet. Im geschlossenen Zustand der Aufnahme 80 liegt das Deckelelement 82 auf der Oberseite 16 des Bauelements 10 auf, während das Bauelement 10 mit seiner unteren Folie 66 auf dem Boden 91 der Aufnahme 80 aufliegt. Die Anordnung der lichtaussendenden und lichtempfangenden Elemente 90,92 ist derart gewählt, daß sie, wie in Fig. 6 angedeutet, bei geschlossenem Deckelelement 82 ober- und unterhalb der die Reaktionskompartimente bildenden Bohrungen 46,48 im abgestuften Ende 24 des Bauelements 10 positioniert sind.
Anhand von Fig. 6 wird auf eine weitere Besonderheit des hier beschriebenen Bauelements 10 eingegangen, und zwar auf die Parallelität der Durchflußrichtung der beiden Bohrungen 46,48 mit der optischen Achse der fotometrischen Untersuchung der Fritten 50 und 52.
Wie in Fig. 6 gezeigt, werden die beiden Bohrungen 46,48 in der Darstellung dieser Figur von oben nach unten oder von unten nach oben durchströmt, und zwar in Abhängigkeit davon, ob Inhalt aus einer der Kammern 20 in eine der Kammern 22 oder umgekehrt übertragen wird. Mit anderen Worten werden die Fritten 50,52 in jedem Fall in einer zur Unterseite 14 und zur Oberseite 16 senkrechten Richtung durchströmt . Exakt in dieser Richtung verlaufen aber auch die bei 94 angedeuteten Achsen der beiden Paare von lichtaussendenden und lichtempfangenden Elementen 90,92 des Fotometers 88. Da fotometrisch die Färbung bzw. Trübung der Fritten 50,52 ermittelt wird, um darauf auf das Vorhandensein oder Nichtvorhandensein von gewissen Substanzen der Probe schließen zu können, wirken sich bei derartigen Verfärbungen bzw. Trübungen einhergehende Gradienten im Meßergebnis nicht aus. Dies ist sicherlich von Vorteil, wobei anzumerken ist, daß auch dann, wenn die optische Achse 90 in einem anderen Winkel als 0° zur Durchflußrichtung, also beispielsweise quer zur Durchflußrichtung verläuft, den- noch zufriedenstellende Meßergebnisse erzielt werden können.
Um fotometrisch messen zu können, ist es erforderlich, daß das Bauelement 10 zumindest in den Bereichen ober- und unterhalb der Fritten 50 und 52 bzw. Meßraumkompartimente 46,48 für die Detektionsstrahlung transparent ist.
Nachfolgend wird anhand der Fign. 8 bis 12 ein weiteres Ausführungsbeispiel der Erfindung beschrieben. Soweit die in den Fign. 8 bis 12 gezeigten Teile des Bauelements 10' denjenigen des Bauelements 10 entsprechen, sind sie mit den gleichen Bezugszeichen versehen. Im Unterschied zum Bauelement 10 weist das Bauelement 10' zwei erste Kammern 20a und 20b sowie drei zweite Kammern 22a, 22b, 22c auf. Zusätzlich sind insgesamt vier Reaktionskompartimente 46- 49 vorgesehen, von denen jedoch lediglich drei mit (nicht dargestellten) Fritten belegt sind. Die Kammer 20a dient der Probenaufnahme. In den Kammern 20b, 22a und 22c befinden sich jeweils 200 μl Pufferlösung, während sich in der Kammer 22b 200 μl Konjugat befindet. Das Bauelement 10' wird beispielsweise für die Bestimmung von Tetanus-Antikörpern im Humanblut verwendet. Hierbei gilt für die Pufferlösung und das Konjugat:
Puffer: 120 mM NaCl , 26 mM Natriumphosphat; 0,05 % Tween 20; 0,05 % Microcit 1; pH 7,3
Konjugat: Anti-h-IgG-Farbstoffkonjugat (ABION ROT Kat . No . 428-942). Verdünnung 1:16 mit Caseinpuffer (20 Vol.-% Glycerin; 528 mMNaCl; 1,375 % Casein; 46 mM Natriumphosphat; 0,05 % Tween 20; 0,05 % Microeid 1; pH 7,2).
In den Frittenbohrungen 47-49 befinden sich getrocknete Fritten mit folgenden Spezifikationen: Bohrung 47 (Negativkontrolle)
Durchmesser 2 x 1,6 mm Polyethylenfritte (Ty 112; Durst
Filtertechnik GmbH) ; adsoptiv beladen mit Casein
Bohrung 48 (Positivkontrolle)
Durchmesser 2 x 1,6 mm Polyethylenfritte (Typ 112; Durst Filtertechnik GmbH) ; adsoptiv beladen mit 1:400 verdünntem Positivreferenzserum (7,89 lU/ml)
Bohrung 49 (Meßfeld)
Durchmesser 2 x 1,6 mm Polyethylenfritte (Typ 112; Durst Filtertechnik GmbH); adsoptiv beladen mit 0,8 μg Tetanus Toxoid (GVM, Holland)
Zur Durchführung des Analyseverfahrens wird das Bauelement 10' wie folgt eingesetzt.
Zunächst wird die Probe in die Kammer 20a eingebracht. In der Kammer 20a befindet sich eine hydrophile Fritte 96, die mit der Probe belegt wird. Hierzu befindet sich in dem Bauteil 10' eine Probenaufnahmebohrung 98, die bis zur Fritte 96 führt und in die eine Kapillare einführbar ist. Die Kapillare beinhaltet die Probe, die dann von der hydrophilen Fritte aufgenommen wird. Nach Entnahme der Kapillare aus der Probenaufnahmebohrung 98 wird diese mit einem Stopfen 100 verschlossen. Die Länge der Probenaufnahmebohrung 98 sollte so kurz wie möglich sein, um in diesem Bereich kein allzu großes Totvolumen entstehen zu lassen.
Die Kammern 20b, 22a, 22b und 22c sind beispielsweise werk- seitig vorab mit den Reagenzien, nämlich der Pufferlösung und dem Konjugat gefüllt. Anschließend werden diese Kammern mittels der Kolben 62 verschlossen. Nachdem auch die Probe in die Kammer 20a verbracht und diese Kammer mit dem Kolben 62 verschlossen worden ist, wird das Bauelement 10' in einen Mehrkanal-Infusomaten entsprechend Fig. 7 eingesetzt. Vor Einschalten des Infusomaten ergibt sich damit die Situaton gemäß Fig. 8.
Anschließend fahren die einzelnen Stempel 86a-86e in die Startpositionen, in denen sie an den jeweils zugeordneten Kolben 62 anliegen und diese gegen ungewollte Bewegungen in Richtung der offenen Enden der Kammer fixieren.
Danach wird der Stempel 86e angesteuert, um den Kolben 62 der Kammer 22a bis zum innenliegenden Ende 36 dieser Kammer vorzubewegen. Der dabei aus der Kammer 22a austretende Puffer gelangt über die Sammelkanäle und Bohrungen zu den Fritten, benetzt diese und fließt weiter in die die Probe aufnehmende Probenkammer 20a. Damit der Puffer in die Kammer 20a gelangen kann, muß der Kolben 62 dieser Kammer 20a frei zu dem offenen Ende der Kammer 20a bewegbar sein. Der zugeordnete Stempel 86a befindet sich in der Position beispielsweise gemäß Fig 9, in der er die freie Bewegung des Kolbens 62 der Kammer 20a bis zu dessen offenen Ende hin zuläßt. Durch das Eindringen des Puffers in die Kammer 20a wird die Probe verdünnt. Während dieses "Umpumpvorganges" verbleiben die Stempel 86b-86d in ihren Startpositionen und verhindern damit, daß sich die zugehörigen Kolben aus den betreffenden Kammern herausbewegen können, was wiederum dafür sorgt, daß der Puffer aus der Kammer 22a in die Kammer 20a gelangt (Fig. 9) .
Im nächsten Schritt fährt dann der Stempel 86a aus, um auf den Kolben 62 der Kammer 20a einzuwirken. Dabei wird die mit Puffer verdünnte Probe aus der Kammer 20a, die zur ersten Kammergruppe 30 gehört, einer Kammern der zweiten Kammergruppe 32 zugeführt. In diesem Fall gelangt die mit Puffer versehene Probe in die Kammer 22a, da der dieser Kammer zugeordnete Stempel 86e in seine Startposition oder in seine Rückzugposition bewegt ist. Auch bei diesem Vor- gang gilt, daß die Stempel 86b-86d an den zugeordneten Kolben 62 anliegen und damit ein Eindringen von Flüssigkeit in die zugehörigen Kammern verhindern (Fig. 10) .
Danach wird der Waschpuffer aus der Kammer 22b über die Fritten in die Kammer 20a gepumpt. Auch hier verbleiben die den Kammern 20b, 22a und 22b zugeordneten Stempel 86b, 86a und 86e in ihren Startpositionen (Fig. 11) .
Im nächsten Schritt wird dann das Konjugat aus der Kammer 20b ausgedrückt, indem der dieser Kammer zugeordnete Stempel 86b vorbewegt wird. Die im vorherigen Schritt mit der Probe benetzten und danach gewaschenen Fritten werden also nun von dem Konjugat durchflössen. Nach dem Durchströmen der Fritten gelangt das Konjugat in die Kammer 22b, deren zugehöriger Stempel 86b in der Startposition bzw. in der Rückzugposition ist. Während dieses Vorganges befinden sich die Stempel 86a, 86c und 86e in ihren Startpositionen und verhindern damit ein Eindringen von Flüssigkeit in die zugehörigen Kammern 20a, 20b, 22a und 22c (Fig. 12) .
In einem letzten Schritt wird dann aus der Kammer 22c Pufferlösung über die Fritten in die nun freie Kammer 20b gepumpt, die zuvor das Konjugat beinhaltete. Auch bei diesem Umpumpvorgang gilt, daß die den Kolben 62 der anderen Kammern 20a,22a und 22b zugeordneten Stempel 86a, 86d und 86e in ihren Startpositionen verharren, so daß wiederum gewährleistet ist, daß die Flüssigkeit von einer der Kammern der ersten Gruppe in eine Kammer der zweiten Gruppe gezielt überführt wird (Fig. 13) .
Aus der obigen Beschreibung ergibt sich das bei dem hier beschriebenen Bauelement realisierte Prinzip, daß in einem geschlossenen System Flüssigkeiten (Proben, Reagenzien) von der Kammer einer Gruppe in eine Kammer der anderen Gruppe gezielt überführt werden kann, wobei jeweils die Fritten, d.h. der Reaktionsraum bzw. die Reaktionskompartimente durchströmt werden.
Nach Abschluß der zuvor beschriebenen Dosierschritte wird in den einzelnen Fritten mit elektromagnetischer Strahlung der Wellenlänge 520 nm die Transmission bestimmt. Dazu dient die bereits im Zusammenhang mit den Fign. 6 und 7 beschriebene Fotometer-Anordnung, die in diesem Fall Leuchtdioden unterhalb und Fotosensoren oberhalb im Infusomaten aufweist. Die Auswertung erfolgt durch Zweipunktkalibrierung auf der Basis der Transmissionswerte der Positiv- und Negativkontrollen (Fritten in den Bohrungen 48 und 47) .
Mittels der zuvor beschriebenen Dosiermethode wurden zehn vorkalibrierte Blutproben bestimmt. Als Vergleich dazu wurden diese Blutproben auch einem ELISA-Test (Kat. No . EN 124.00, Firma Virotec unterzogen. Es wurden folgende Vergleichsdaten erhalten (Mittelwert aus DoppelbeStimmung) :

Claims

ANSPRÜCHE
Vorrichtung zur Durchführung von chemischen, biologischen und/oder biochemischen Analyseverfahren, insbesondere In-Vitro-Analyseverfahren wie Immunoassays, DNA-Assays, Rezeptor-Assays, mit einer ersten Gruppe von parallel zueinaner geschalteten Kammern, die Öffnungen aufweisen', durch die Fluid in die Kammern einströmen und aus denen Fluid ausströmen kann und die in einen gemeinsamen ersten Sammelkanal münden, und einer zweiten Gruppe von parallel zueinander geschalteten Kammern, die Öffnungen aufweisen, durch die Fluid in die Kammern einströmen und aus denen Fluid aus den Kammern ausströmen kann und die in einen gemeinsamen zweiten Sammelkanal münden, wobei der erste und der zweite Sammelkanal über einen Durchfluß-Reaktionsraum miteinander verbunden und/oder verbindbar sind, in dem eine Reaktionskomponente für eine zu analysierende Probe immobilisiert angeordnet ist, mindestens eine Kammer der ersten und/oder der zweiten Gruppe zur Aufnahme einer Probe und mindestens eine andere Kammer der ersten und/oder der zweiten Gruppe zur Aufnahme eines Reagenz vorgesehen ist und der Inhalt einer Kammer der ersten Gruppe aus der Öffnung dieser Kammer in mindestens eine zumindest nicht gänzlich gefüllte Kammer der ersten und/oder der zweiten Gruppe überführbar ist, und zwar durch die Öffnung dieser mindestens einen Kammer.
Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Reaktionsraum beim Überführen des Inhalts einer der Kammern der ersten Gruppe in eine der Kammern der zweiten Gruppe und umgekehrt bidirektional durchströmbar ist .
3. Vorrichtung nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß die Kammern der beiden Gruppen an den ihren Öffnungen gegenüberliegenden Enden offen sind und daß in den Kammern gleitend verschiebbare Kolben angeordnet sind, die von in die offenen Enden der Kammern hineinbewegbaren Stempelelementen in Richtung auf gegenüberliegende Öffnungen verschiebbar sind.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß beim Einströmen von Fluid in die Kammern über deren Öffnungen und bei Freigabe der Kolben durch die nicht an diesen anliegenden Stempelelemente hydraulisch zu den offenen Enden der Kammern verschiebbar sind.
5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Inhalt aus den Kammern durch Ausquetschen, pneumatisch oder hydraulisch durch Einwirkung eines Einwirkelements auf die Kammer erfolgen kann.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß bei außer Einwirkung mit den Kammern befindlichen Einwirkelementen Fluid über die Öffnungen der Kammern in diese gelangen kann.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Wandung des Reaktionsraums zumindest innerhalb zweier Seiten für eine Detek- tionsstrahlung zur Detektion der Trübung oder Verfärbung der immobilisierten Reaktionskomponenten bereichsweise transparent ausgebildet ist .
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die beiden transparenten Seiten des Reaktionsraums entlang der optischen Achse der Detektions- strahlung angeordnet sind und daß der Durchfluß-Reaktionsraum in Richtung der optischen Achse durchströmbar ist.
9. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Reaktionsraum mindestens zwei durch einen Verbindungskanal miteinander verbundene Reaktionskompartimente mit immobilisierten Reaktionskompartimenten aufwiest.
10. Vorrichtung nach Anspruch 7 und 9, dadurch gekennzeichnet, daß die Wandung des Reaktionsraums zumindest innerhalb zweier Seiten für eine Detek- tionsstrahlung zur Detektion der Trübung oder Verfärbung der immobilisierten Reaktionskompartimenten bereichsweise transparent ausgebildet ist.
11. Vorrichtung nach Anspruch 8 und 10, dadurch gekennzeichnet, daß die beiden transparenten Seiten der Reaktionskompartimente entlang der optischen Achse der Detektionsstrahlung angeordnet sind und daß der Durchfluß-Reaktionsraum in Richtung der optischen Achse durchströmbar ist.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Reaktionskomponenten innerhalb des Reaktionsraums an porösen Trägerkörpern gebunden sind.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Kammern mit ihren Öffnungen, der Reaktionsraum und sämtliche Kanäle in einem gemeinsamen mehrteiligen Bauelement ausgebildet sind, in dem die Kammern nebeneinanderliegend angeordnet sind.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Kammern und der Reaktionsraum in einem mittleren Kernteil des Bauelements augebildet sind und daß die Kanäle durch in gegenüberliegende Seiten des Kernteils eingebrachte Nuten ausgebildet sind, die untereinander durch in das Kernteil eingebrachte Bohrungen mit den Kammern und dem ebenfalls im Kernteil ausgebildeten Reaktionsraum verbunden sind.
15. Vorrichtung nach Anspruch 14 , dadurch gekennzeichnet , daß die mit den Nuten versehenen Bereiche der Seiten des Kernteils durch Folien o.dgl. Plattenteile überdeckt sind.
EP98964407A 1997-11-19 1998-11-19 Mehrkanalsystem zur durchführung chemischer, biologischer und/oder biochemischer analyseverfahren Withdrawn EP1032840A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19751327 1997-11-19
DE19751327 1997-11-19
DE19825362 1998-06-06
DE19825362 1998-06-06
PCT/EP1998/007414 WO1999026071A1 (de) 1997-11-19 1998-11-19 Mehrkanalsystem zur durchführung chemischer, biologischer und/oder biochemischer analyseverfahren

Publications (1)

Publication Number Publication Date
EP1032840A1 true EP1032840A1 (de) 2000-09-06

Family

ID=26041746

Family Applications (2)

Application Number Title Priority Date Filing Date
EP98964407A Withdrawn EP1032840A1 (de) 1997-11-19 1998-11-19 Mehrkanalsystem zur durchführung chemischer, biologischer und/oder biochemischer analyseverfahren
EP98963483A Expired - Lifetime EP1032471B1 (de) 1997-11-19 1998-11-19 Vorrichtung zur sequentiellen ausgabe von fliessfähigen reagenzien

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP98963483A Expired - Lifetime EP1032471B1 (de) 1997-11-19 1998-11-19 Vorrichtung zur sequentiellen ausgabe von fliessfähigen reagenzien

Country Status (6)

Country Link
US (2) US6488894B1 (de)
EP (2) EP1032840A1 (de)
AT (1) ATE216637T1 (de)
AU (2) AU1874099A (de)
DE (1) DE59803938D1 (de)
WO (2) WO1999026071A1 (de)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807952B1 (fr) * 1999-09-23 2002-07-26 Genset Sa Dispositif de stockage et de distribution de fluides notamment de reactifs
AU2002217141A1 (en) * 2000-12-20 2002-07-01 Dsm Ip Assets B.V. Preparation of fluid samples by applying pressure
ATE517682T1 (de) * 2002-05-24 2011-08-15 Fraunhofer Ges Forschung Verfahren zum mischungsfreien übertragen von heterogenen flüssigkeiten in mikrokanälen
US7198759B2 (en) * 2002-07-26 2007-04-03 Applera Corporation Microfluidic devices, methods, and systems
US7374723B2 (en) * 2002-07-31 2008-05-20 Dräger Safety AG & Co. KGaA System for collecting and releasing saliva
CN1767897B (zh) 2003-02-05 2011-03-02 伊库姆公司 试样处理细管
US7726308B1 (en) 2003-05-09 2010-06-01 Maurino Flora Apparatus and method for respiratory drug delivery
US6971385B1 (en) * 2003-05-09 2005-12-06 Maurino Flora Apparatus and method for respiratory drug delivery
US20050026126A1 (en) * 2003-07-30 2005-02-03 Hageman James H. Method for students to carry out chemical reactions
US20060166177A1 (en) * 2003-07-30 2006-07-27 Hageman James H Method of incorporating an active learning experience into a classroom
EP1704405A1 (de) 2003-12-31 2006-09-27 The President and Fellows of Harvard College Testvorrichtung und verfahren
US8030057B2 (en) * 2004-01-26 2011-10-04 President And Fellows Of Harvard College Fluid delivery system and method
CN102357352B (zh) 2004-01-26 2015-08-12 哈佛大学 流体递送系统和方法
US7592185B2 (en) * 2004-02-17 2009-09-22 Molecular Bioproducts, Inc. Metering doses of sample liquids
CN100434181C (zh) * 2004-02-17 2008-11-19 纳斯申特生物科学公司 计量一定剂量的样品液体
ATE407624T1 (de) * 2004-03-05 2008-09-15 Dilab I Lund Ab System und verfahren für die automatische entnahme von flüssigkeitsproben
WO2007002480A2 (en) * 2005-06-24 2007-01-04 Board Of Regents, The University Of Texas System Systems and methods including self-contained cartridges with detection systems and fluid delivery systems
US20080003564A1 (en) * 2006-02-14 2008-01-03 Iquum, Inc. Sample processing
CN101754812B (zh) 2007-05-04 2013-06-26 克拉洛诊断仪器公司 流体连接器和微流体系统
JP5413916B2 (ja) * 2007-09-19 2014-02-12 オプコ・ダイアグノスティクス・リミテッド・ライアビリティ・カンパニー 統合検定のための液体格納
US8222049B2 (en) 2008-04-25 2012-07-17 Opko Diagnostics, Llc Flow control in microfluidic systems
AU2009246306B2 (en) 2008-05-14 2014-09-25 Biolyph, Llc Reagent preparation and dispensing device and methods for the same
US20110117673A1 (en) * 2008-07-16 2011-05-19 Johnson Brandon T Methods and systems to collect and prepare samples, to implement, initiate and perform assays, and to control and manage fluid flow
US8021873B2 (en) * 2008-07-16 2011-09-20 Boston Microfluidics Portable, point-of-care, user-initiated fluidic assay methods and systems
DK2376226T3 (en) 2008-12-18 2018-10-15 Opko Diagnostics Llc IMPROVED REAGENT STORAGE IN MICROFLUIDIC SYSTEMS AND RELATED ARTICLES AND PROCEDURES
DK2391451T3 (en) 2009-02-02 2018-10-15 Opko Diagnostics Llc STRUCTURES FOR MANAGING LIGHT INTERACTION WITH MICROFLUIDIC DEVICES
US20100329927A1 (en) 2009-06-26 2010-12-30 Perez Carlos A Pipelining Assembly For A Blood Analyzing Instrument
EP2504105B1 (de) 2009-11-24 2021-02-17 Opko Diagnostics, LLC Fluidmischung und -ausgabe in mikrofluidischen systemen
GB201005885D0 (en) * 2010-04-08 2010-05-26 Avacta Ltd Apparatus and method
AU2011239534B2 (en) 2010-04-16 2015-01-22 Opko Diagnostics, Llc Feedback control in microfluidic systems
USD645971S1 (en) 2010-05-11 2011-09-27 Claros Diagnostics, Inc. Sample cassette
CA2803375C (en) 2010-06-29 2016-05-10 Biolyph, Llc Reagent preparation assembly
WO2012067619A1 (en) 2010-11-18 2012-05-24 Biolyph, Llc Reagent preparation and dispensing device
CN108108590A (zh) 2012-03-05 2018-06-01 阿克蒂克合伙公司 分析系统和方法
DE102012107652A1 (de) * 2012-08-21 2014-03-20 Astrium Gmbh Behälter zur zumindest weitgehend getrennten Lagerung und Abgabe von Stoffen, insbesondere zu einer Lagerung und Abgabe im Weltraum
WO2014164933A1 (en) * 2013-03-11 2014-10-09 Ruubix, Inc. Systems and methods for detection and quantification of analytes
WO2014158367A1 (en) 2013-03-13 2014-10-02 Opko Diagnostics, Llc Mixing of fluids in fluidic systems
US9308508B2 (en) 2013-07-22 2016-04-12 Kianoosh Peyvan Sequential delivery device and method
EA038479B1 (ru) 2014-12-12 2021-09-03 Опкоу Дайагностикс, Ллк Устройство для проведения анализа пробы и способ эксплуатации указанного устройства
USD804682S1 (en) 2015-08-10 2017-12-05 Opko Diagnostics, Llc Multi-layered sample cassette
US20170059590A1 (en) * 2015-08-27 2017-03-02 Ativa Medical Corporation Fluid holding and dispensing micro-feature
US11071982B2 (en) 2015-08-27 2021-07-27 Ativa Medical Corporation Fluid holding and dispensing micro-feature
WO2017100457A1 (en) 2015-12-11 2017-06-15 Opko Diagnostics, Llc Fluidic systems involving incubation samples and/or reagents
CN110678265A (zh) * 2017-03-24 2020-01-10 通用生物传感器有限公司 样品预处理装置和方法
US11946570B2 (en) * 2019-08-28 2024-04-02 Haemograph Pty Ltd Fluid check valve and fluidic systems for gas venting
EP3808453A1 (de) * 2019-10-18 2021-04-21 Biothink Technologies S.L. Lab-on-a-chip mit elektronisch gesteuertem mechanischem fluidantriebssystem
ES2953705B2 (es) * 2022-04-04 2024-04-05 Univ Sevilla LABORATORIO EN CHIP (LoC) Y LECTOR ASOCIADO

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036894A (en) * 1958-10-22 1962-05-29 Jasper A Forestiere Method of using testing containers
US3070094A (en) * 1959-02-25 1962-12-25 Stanley J Sarnoff Medicament and diluent storing, mixing, and dispensing device
US3600953A (en) * 1969-07-25 1971-08-24 Technicon Corp Method and apparatus for the introduction of auxiliary separating fluid in fluid sample analyses means
US3666420A (en) * 1970-11-09 1972-05-30 Bodenseewerk Perkin Elmer Co Apparatus for automatically carrying out chemical analyses
US3713779A (en) * 1970-12-07 1973-01-30 J Sirago Disposable comparison detector kit
US3713780A (en) * 1971-02-01 1973-01-30 Becton Dickinson Co Apparatus for chemical testing
BE788754A (de) * 1971-10-13 1973-03-13 Technicon Instr
GB2097692B (en) * 1981-01-10 1985-05-22 Shaw Stewart P D Combining chemical reagents
DE3134611A1 (de) * 1981-09-01 1983-03-10 Boehringer Mannheim Gmbh, 6800 Mannheim Verfahren zur durchfuehrung analytischer bestimmungen und hierfuer geeignetes mittel
US5073484A (en) * 1982-03-09 1991-12-17 Bio-Metric Systems, Inc. Quantitative analysis apparatus and method
US4585623A (en) * 1984-02-27 1986-04-29 Allelix Inc. Device for performing quantitative chemical and immunochemical assays
US4689204A (en) * 1985-03-08 1987-08-25 Cambridge Bioscience Corporation Multiple step reagent delivery system
DE3635598A1 (de) * 1986-10-20 1988-05-05 Eppendorf Geraetebau Netheler Pipettiervorrichtung mit einem aufsteckkonus fuer eine pipettenspitze sowie pipettenspitze fuer eine solche pipettiervorrichtung
US4943522A (en) 1987-06-01 1990-07-24 Quidel Lateral flow, non-bibulous membrane assay protocols
FR2663304B1 (fr) * 1990-06-18 1992-09-25 Lontrade Jean Pierre Conditionnement compartimente de securite.
US5387526A (en) * 1990-09-11 1995-02-07 General Atomics Coated capillary tube for the controlled release of reagent
US5154888A (en) * 1990-10-25 1992-10-13 Eastman Kodak Company Automatic sealing closure means for closing off a passage in a flexible cuvette
US5156811A (en) * 1990-11-07 1992-10-20 Continental Laboratory Products, Inc. Pipette device
US5312757A (en) * 1991-05-02 1994-05-17 Olympus Optical Co., Ltd. Sample distributing method
WO1993017328A1 (en) * 1992-02-20 1993-09-02 Drew Scientific Limited Liquid chromatography apparatus
US5268147A (en) * 1992-02-26 1993-12-07 Miles, Inc. Reversible direction capsule chemistry sample liquid analysis system and method
US5399497A (en) * 1992-02-26 1995-03-21 Miles, Inc. Capsule chemistry sample liquid analysis system and method
WO1993022055A2 (en) * 1992-05-01 1993-11-11 Trustees Of The University Of Pennsylvania Fluid handling in microfabricated analytical devices
US5290518A (en) * 1992-08-17 1994-03-01 Eastman Kodak Company Flexible extraction device with burstable sidewall
US5288463A (en) * 1992-10-23 1994-02-22 Eastman Kodak Company Positive flow control in an unvented container
GB9318940D0 (en) * 1993-09-14 1993-10-27 Northumbrian Water Group Plc Multi-sensor systems
US5496523A (en) * 1994-05-06 1996-03-05 Sorenson Bioscience Filtered micropipette tip for high/low volume pipettors
US5731212A (en) * 1994-12-20 1998-03-24 International Technidyne Corporation Test apparatus and method for testing cuvette accommodated samples
US5644395A (en) * 1995-07-14 1997-07-01 Regents Of The University Of California Miniaturized flow injection analysis system
DE19543240A1 (de) * 1995-11-20 1997-05-22 Abion Ohg Einwegauftragsvorrichtung sowie Kit
DE19648695C2 (de) * 1996-11-25 1999-07-22 Abb Patent Gmbh Vorrichtung zur automatischen und kontinuierlichen Analyse von Flüssigkeitsproben
US5955032A (en) * 1997-09-12 1999-09-21 Becton Dickinson And Company Collection container assembly
US6221655B1 (en) * 1998-08-01 2001-04-24 Cytosignal Spin filter assembly for isolation and analysis
US6284549B1 (en) * 1999-05-26 2001-09-04 Ventrex, Inc. Reagent tube venting system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9926071A1 *

Also Published As

Publication number Publication date
DE59803938D1 (de) 2002-05-29
WO1999025475A1 (de) 1999-05-27
EP1032471B1 (de) 2002-04-24
WO1999026071A1 (de) 1999-05-27
EP1032471A1 (de) 2000-09-06
AU1962399A (en) 1999-06-07
AU1874099A (en) 1999-06-07
US20030039588A1 (en) 2003-02-27
ATE216637T1 (de) 2002-05-15
US6488894B1 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
EP1032840A1 (de) Mehrkanalsystem zur durchführung chemischer, biologischer und/oder biochemischer analyseverfahren
DE69016740T2 (de) Analytisches element.
DE3880531T2 (de) Integriertes immunoassayelement.
DE69229478T2 (de) Vorrichtung und verfahren zur dosierung von flüssigkeitsproben
DE60037268T2 (de) Verfahren zur durchführung magnetischer chromatographischer assays
EP0073513B2 (de) Verfahren zur Durchführung analytischer Bestimmungen und hierfür geeignetes Mittel
DE69033569T2 (de) Festphasen-analytische Vorrichtung
DE69906986T2 (de) Analytisches testgerät und verfahren
DE60121404T2 (de) Biosensor
EP1445020B1 (de) Analytisches Testelement und Verfahren für Blutuntersuchungen
EP2830763B1 (de) Integriertes einweg-chipkartuschensystem für mobile multiparameteranalysen chemischer und/oder biologischer substanzen
EP0989407B1 (de) Verfahren zur Bestimmung von glykiertem Hämoglobin
DE3853457T2 (de) Vorrichtung und verfahren zur genauen, schnellen und einfachen durchführung eines prothrombin tests.
EP2654955B1 (de) Verfahren zum mischen wenigstens einer probenlösung mit reagenzien
EP1752755B1 (de) Probenaufnahme- und-dosiervorrichtung mit integrierten Flüssigkeitskompartimenten
DE3786278T2 (de) Element zum Immunoassay und Verfahren zu seiner Benutzung.
DE10013242A1 (de) Chemisches Analysegerät und chemisches Analysesystem
DE3530993A1 (de) Teststreifen mit festlegbarer probenaufnahmekapazitaet
DE69330613T2 (de) Gehäuse für analytisches teststrip
DE1673340A1 (de) Chemische Analysierungseinrichtung
EP1522343B1 (de) Analytisches Testelement umfassend ein hydrophiles Netzwerk zur Bildung eines Kapillarkanals, dessen Verwendung und Verfahren zur Bestimmung eines Analyten in einer Flüssigkeit
DE10001116C2 (de) Vorrichtung und Verfahren zur optischen oder elektrochemischen quantitativen Bestimmung chemischer oder biochemischer Substanzen in flüssigen Proben
DE69403333T2 (de) Vorrichtungen zum übertragen von flüssigkeiten
EP1507589B1 (de) Vorrichtung zur probennahme von flüssigen proben
DE3226407A1 (de) Mikro-analyse-kapillar-system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK ES FI FR GB IE IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BIOGNOSIS GMBH

17Q First examination report despatched

Effective date: 20031007

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040218