EP1032017B1 - Anode résistive d'écran plat de visualisation - Google Patents

Anode résistive d'écran plat de visualisation Download PDF

Info

Publication number
EP1032017B1
EP1032017B1 EP00410018A EP00410018A EP1032017B1 EP 1032017 B1 EP1032017 B1 EP 1032017B1 EP 00410018 A EP00410018 A EP 00410018A EP 00410018 A EP00410018 A EP 00410018A EP 1032017 B1 EP1032017 B1 EP 1032017B1
Authority
EP
European Patent Office
Prior art keywords
anode
deposited
phosphor elements
layer
strips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00410018A
Other languages
German (de)
English (en)
Other versions
EP1032017A1 (fr
Inventor
Bernard Bancal
Pascal Olivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1032017A1 publication Critical patent/EP1032017A1/fr
Application granted granted Critical
Publication of EP1032017B1 publication Critical patent/EP1032017B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/08Electrodes intimately associated with a screen on or from which an image or pattern is formed, picked-up, converted or stored, e.g. backing-plates for storage tubes or collecting secondary electrons
    • H01J29/085Anode plates, e.g. for screens of flat panel displays

Definitions

  • the present invention relates to an electron-excited phosphor display flat anode, for example of the microtip type. More particularly, it relates to the polarization of phosphor elements of an anode provided with phosphor elements of different color-polarized colors, for example alternating bands of phosphor elements organized into combs.
  • FIG. 1 represents, very schematically, a flat display screen of the type to which the invention relates.
  • This screen includes two plates.
  • a first plate 1 commonly called a cathode plate, is disposed opposite a second plate 2 commonly called anode plate.
  • These two plates are spaced apart from each other by spacers 3 regularly distributed in the surface of the screen, and a vacuum is formed in the zone delimited by the two plates and a peripheral sealing gasket 4.
  • the cathode plate 1 comprises electron generating elements and pixel selection elements (not shown) which can be organized in various ways, for example, as described in US Pat. No. 4,940,916 to US Pat. Atomic Energy in the case of microtip screens.
  • the anode plate 2 is, in the case a color screen, provided with alternating bands of phosphor elements, each band corresponding to a color (red, green, blue).
  • Figures 2A and 2B show, very schematically, a front view of a portion of an anode plate and a sectional view of this portion.
  • the face corresponding to the inner face of the screen is turned upwards.
  • the anode comprises, for example, alternating bands 4R, 4G, 4B of phosphor elements respectively red, green and blue.
  • the strips of phosphor elements are arranged on corresponding conductive strips 5R, 5G, 5B generally organized into combs, all the 5R bands being connected together as well as all the 5G bands and all the bands. 5B.
  • the phosphor elements are divided into elementary patterns, each of which is generally a pixel (in fact, a sub-pixel of each color for a trichromatic screen). These "pixelated" phosphor elements can then always be addressed by polarization electrodes in conductive strips (5G, 5B and 5R) as described in relation to FIGS. 2A and 2B, but a particular mask is used for the deposition of the phosphor elements. .
  • the light emitted by the phosphor elements propagates through the anode plate (downwards in Figure 2B).
  • the material of the conductive strips 5R, 5G, 5B is then transparent, usually indium tin oxide (ITO).
  • the transparent electrodes 5R, 5B, 5G are replaced by opaque and preferably reflecting electrodes, so that as much as possible of the light emitted by the phosphor elements 4R, 4G, 4B is returned to the cathode once these phosphors have been excited by electron bombardment.
  • the electron generator plate 1 is then at least partially transparent and the observation takes place through this cathode plate.
  • the sets of bands (for example, blue, red, green) are often alternately positively polarized with respect to the cathode 1, so that the electrons extracted from the emitting elements (for example, the microtips) of a pixel of the cathode are alternately directed towards the phosphor elements 4R, 4G, 4B with respect to each of the colors.
  • the control in selecting the phosphor to be bombarded by the electrons imposes to control, selectively, the polarization of the phosphor elements of the anode, color by color.
  • the bands 5R, 5G, 5B carrying phosphor elements to be excited are biased under a voltage of several hundred volts relative to the cathode, the other bands being at a zero potential.
  • the choice of polarization potential values is related to the characteristics of the phosphor elements and the emissive means.
  • the anode may, while consisting of several sets of strips of phosphor elements or the like, not be switched per set of bands. All the bands are then polarized at the same potential, at least during the duration of a display frame. This is called an unswitched anode.
  • the potential difference between the anode and the cathode is essentially related to the inter-electrode distance, that is to say to the thickness of the internal space.
  • a maximum potential difference is sought for reasons of brightness of the screen, which implies that an inter-electrode distance is sought which is as large as possible.
  • the structure of the inter-electrode space, which has the spacers 3 may create shadow areas in the screen if they are too large, prevents increasing the inter-electrode distance.
  • a resistive layer is provided in the case of microtip screens to receive these microtips and thus limit the formation of destructive short circuits between the microtips and a control grid associated with the cathode.
  • arcs may occur not only between the cathode plate and those of the phosphor elements of the anode which are polarized to attract electrons emitted by the microtips, but also between two adjacent bands of phosphor elements. because of the potential difference between these two bands.
  • the risk of arcs exists only between anode and cathode.
  • interstitial strips 7 of an insulating material (usually silicon oxide).
  • these strips are inoperative with respect to the formation of electric arcs between the anode and the cathode.
  • the phosphor elements 4R, 4G, 4B significantly exceed the interstitial bands.
  • the thickness bands of phosphor elements is generally of the order of about ten ⁇ m and the production of silicon oxide insulation strips of such a thickness is, in practice, incompatible with the technologies used for the manufacture of anodes, so that the thickness of the strips 7 is generally of the order of 1 to 2 ⁇ m , their width being of the order of 10 to 20 ⁇ m .
  • a first known solution to try to reduce the appearance of arcs between the anode and the cathode is to provide, at the end of each conductive strip 5R, 5G, 5B, a resistance between the supply line and the strip . As soon as a strong current appears in the band, this resistance causes the voltage to drop. It follows that the potential difference between the conductive strip and the cathode decreases and eliminates the generating voltage of the arc.
  • a disadvantage of such a solution is that it does not protect the formation of a lateral electric arc, that is to say between two neighboring bands 5R, 5G, 5B. It may indeed occur a local current flow between two bands which is then not avoided by the end resistors.
  • resistors are generally made of ruthenium whose resistivity is stabilized by annealing.
  • This annealing at high temperature (of the order of 600 ° C) necessary to stabilize the resistance poses compatibility problems with the screen manufacturing process which requires, in the case where the conductive strips are aluminum in the case of a transparent cathode, temperatures less than 600 °.
  • such a method of manufacturing by annealing is difficult to control.
  • this solution can give satisfactory results overall, it requires a large space between each band of phosphor elements to accommodate two polarization conductors respectively associated with two neighboring bands while spacing these polarization conductors sufficiently from each other in order to maintain a necessary lateral isolation between them.
  • this solution is, in practice, more particularly intended for low resolution screens.
  • the anode strips each have a width that is close to but less than 100.
  • ⁇ m and the insulating strips 7 have a width of about ten ⁇ m.
  • the implementation of a local protection solution resistive layer flanked laterally by polarization bands is not possible because of the small gap between the anode strips.
  • the present invention aims at overcoming the drawbacks of conventional techniques by proposing a flat display screen anode which eliminates the risk of the appearance of an electric arc between the anode and the cathode plate, or between two neighboring strips of elements. phosphors of the anode, without impairing the brightness of the screen.
  • the present invention also aims at providing a solution that is compatible with the conventional differences between two bands of phosphor elements.
  • the present invention also aims at providing a solution that is particularly suitable for a "transparent" cathode screen, that is to say whose cathode plate constitutes the display surface of the screen.
  • the invention also aims to propose a solution which respects the conventional manufacturing processes of the anodes and, in particular, the masks used during this manufacture.
  • the present invention provides a flat display screen anode, comprising phosphor elements intended to be excited by an electron bombardment, these elements being deposited on at least one polarization electrode constituted, at least to the right of the elements.
  • phosphors a stack comprising a resistive layer, itself deposited on a polarization conductive layer of the phosphor elements.
  • the phosphor elements are deposited directly on the resistive layer.
  • the phosphor elements are deposited on a conductive reflective layer, itself deposited on the resistive layer.
  • said reflective layer is deposited in elementary patterns of small dimension in the surface of the anode.
  • the phosphor elements are deposited according to the elementary pattern of deposition of the reflective layer.
  • the resistive layer is deposited in full plate.
  • the resistive layer has the same pattern as the reflective layer.
  • the resistive layer has, at least in the active area of the screen, the same pattern as the polarization conductive layer.
  • said conductive layer has a pattern of alternate bands interconnected in at least two sets.
  • the present invention also provides a flat display screen comprising an electron bombardment cathode of a cathodoluminescent anode.
  • FIG 3 shows a schematic sectional view of a flat screen anode according to a first embodiment of the present invention.
  • This anode comprises, as before, a support plate 2, for example a glass plate. In the case of a monitor observable from the anode, this plate is clearly transparent.
  • Anode conductive strips 5R, 5G, 5B are deposited, for example conventionally as illustrated by FIGS. 2A and 2B, and are interconnected by a set of bands assigned to one and the same color.
  • a feature of the present invention is that these strips 5R, 5G, 5B are all coated with strips of resistive material 8.
  • strips of phosphor elements 4R, 4G, 4B are then deposited on the resistive strips 8 and no longer, as in conventional screens, directly on the conductive strips 5.
  • the polarization electrodes of the phosphor elements here consist of a stack of a conductive layer (in which are defined the strips 5R, 5G and 5B) and a resistive layer 8.
  • the resistive layer 8 may, in the first embodiment, be deposited, at least in the active part of the screen, that is to say out of the interconnection zones of the sets of strips, with the same pattern as the conductive strips 5R, 5G, 5B anode, so by means of the same mask.
  • Another important advantage of the present invention is that, while effectively shielding the screen against destructive electric arcs, the invention does not require any increase in the lateral deviation between the phosphor strips.
  • the present invention is therefore particularly suitable for anodes of fine resolution.
  • the anode strips 5R, 5G and 5B are preferably separated laterally by insulating interstitial strips 7.
  • the invention provides protection against destructive electric arcs not only between the anode plate and the cathode plate, but also between neighboring strips of phosphor elements polarized at different potentials.
  • This side protection is particularly effective insofar as it acts against any flow of current, even local.
  • the material now accessible is the material of the resistive layer 8, which prevents the formation of destructive electric arcs.
  • the choice of the constituent material of the resistive strips 8 depends on the application and, in particular, on the need for transparency (transparent anode) or reflectivity (transparent cathode) of these resistive strips.
  • tin oxide or thin silicon, deposited with a thickness of preferably between one and two ⁇ m.
  • the conductive strips 5R, 5G, 5B anode are, for example, made of ITO (transparent) or aluminum (reflective) with a thickness of about one tenth of ⁇ m.
  • the present invention provides a significant improvement over ruthenium series resistors which must have a thickness of several tens of ⁇ m.
  • the first embodiment of the present invention also applies to the case of a monochrome screen in which the anode consists of a plane of phosphor elements of the same color or in the case of a screen (color or monochrome) in which the anode consists of several sets of bands not switched.
  • the resistive layer 8 is preferably deposited on the entire conductive anode layer.
  • the structure of the phosphor elements of the anode can be very different.
  • it may be elementary patterns each of which will correspond to a pixel.
  • the present invention provides the additional advantage of being able to be implemented while a solution by lateral protection would take up too much space.
  • FIGS. 4A and 4B show, respectively front view and in section, a second embodiment of a flat screen anode according to the invention. This embodiment is more particularly intended for an anode to reflect the light to the cathode plate (1, Figure 1) which then constitutes the surface of the screen.
  • a characteristic of the second embodiment of the invention is that the polarization electrodes of the phosphor elements here consist of a stack of three layers.
  • an additional conductive layer 10 is deposited on the resistive layer.
  • a feature of this additional layer 10 is to be reflective to return light to the cathode.
  • the second embodiment makes it possible to use a resistive layer having any optical properties ( transparent, absorbent or reflecting), the optical effect of reflection to the cathode being here ensured by the additional conductive layer 10.
  • the second embodiment of the invention applies more particularly to the case where the elements phosphors are deposited by elementary patterns by means of a specific mask comprising apertures, for example, corresponding to the respective sizes of the pixels of the screen or sub-pixels of each color of the screen.
  • This characteristic is related to the presence of the conductive layer 10 which must itself be deposited according to these elementary patterns to prevent propagation of charges along the electrode strips.
  • the phosphor elements 4'B, 4'R and 4'G are deposited by small surfaces of elementary patterns (in this example, rectangular).
  • elementary patterns in this example, rectangular.
  • the color distribution of the phosphor elements always takes place in a strip in line with the polarization conducting strips 5B, 5R and 5G which are produced in accordance with FIG. pattern of alternate bands.
  • the additional reflective conductive layer is deposited by means of the same mask as the phosphor elements and therefore consists of zones of elementary patterns 10 in line with the phosphor elements.
  • An insulating layer 7 is optionally provided between the anode strips. This layer 7 is deposited, as in the first embodiment, on the resistive layer 8 '. However, when it is provided, the insulating layer 7 is then present not only between the anode strips but also between the different elementary patterns of definition of the reflective layer 10 and luminophoric element zones 4. It will be noted that the fact that the additional conductive layer is deposited according to the elementary patterns makes it possible to keep a floating potential at each pixel.
  • the resistive layer 8 ' is deposited in full plate, that is to say that it extends at least over the entire active zone of the anode.
  • An advantage of the second embodiment of the invention is that it applies particularly well to a screen with transparent cathode. Indeed, by dissociating the functions of reflective layer and resistive layer, there is a greater choice of material to achieve these different layers.
  • a resistive layer 8 'of an optically absorbing material for example, silicon.
  • the resistive layer will then form an opaque mesh (black matrix) wherever there is neither phosphor nor reflective layer 10. It will then absorb the light, which improves the contrast of the screen.
  • the resistive layer if it is deposited full plate, and if it is made of a material with a low secondary emission coefficient (which is generally the case for resistive materials), will protect the underlying layer between the conductive tracks 5B, 5R and 5G which is generally made of a material with a high secondary emission coefficient, and will then protect the anode against charging effects which reduces the degassing of the screen.
  • an advantage associated with the suppression of the end resistances of the anode conductive strips is on the one hand that space is gained on the anode but also that one distributes the thermal effects related to the presence of these resistances throughout the anode plate. This avoids localized heating that may be harmful.
  • FIGS. 5A and 5B show, respectively front view and in section, an alternative embodiment of an anode according to the second embodiment of the invention.
  • the resistive layer 8 " is itself deposited according to the elementary patterns of deposition of the phosphor elements 4 'For the sake of clarity, the differences in alignment between the elementary patterns of the elements have been exaggerated in FIGS. phosphors 4 ', the additional conductive layer 10 and the resistive layer 8 ". It will be noted, however, that these different elementary patterns are obtained by means of the same mask.
  • the invention remains perfectly compatible with the processes conventional anodes manufacturing and, in particular, requires no additional mask regardless of the embodiment used.
  • the polarization conductive strips 5B, 5R and 5G have again been represented in strips as in the first embodiment.
  • the resistive layer provided in the second embodiment of the invention may also be deposited in the pattern of the polarization-conducting strips 5B, 5R and 5G. In this case, we retain the advantage of not using an additional mask for the deposition of this resistive layer as in the first embodiment.
  • FIG. 5B illustrates a relatively thicker resistive layer 8 "than that illustrated in FIG. 4B: according to the invention and whatever the embodiment, the value of the resistor can be adjusted as a function of a given material, the thickness of the deposited resistive layer.
  • the present invention is susceptible of various variations and modifications which will be apparent to those skilled in the art.
  • provision may be made for the polarization conductive layer 5 and that the resistive layer 8 are deposited full plate.
  • the reflective conductive layer 10 and the phosphor elements will then be deposited according to the elementary patterns of the pixels of the screen.
  • the choice of materials for producing a flat screen anode according to the invention is within the abilities of those skilled in the art from the functional indications given above and applications. Note further that it will be able to adapt the thicknesses of the different layers and in particular the resistive layer according to the expected electrical characteristics.
  • the polarization layer 5 may be a conductive plane as the resistive layer may be full plate. There is then only one polarization electrode of the anode.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

  • La présente invention concerne une anode d'écran plat de visualisation à luminophores excités par des électrons, par exemple du type à micropointes. Elle concerne plus, particulièrement, la polarisation d'éléments luminophores d'une anode pourvue d'éléments luminophores de différentes couleurs polarisés par couleur, par exemple, de bandes alternées d'éléments luminophores organisées en peignes.
  • La figure 1 représente, très schématiquement, un écran plat de visualisation du type auquel se rapporte l'invention. Cet écran comprend deux plaques. Une première plaque 1, couramment appelée plaque de cathode, est disposée en vis à vis d'une deuxième plaque 2 couramment appelée plaque d'anode. Ces deux plaques sont espacées l'une de l'autre par des espaceurs 3 régulièrement répartis dans la surface de l'écran, et un vide est ménagé dans la zone délimitée par les deux plaques et un joint de scellement périphérique 4.
  • La plaque de cathode 1 comprend des éléments de génération d'électrons et des éléments de sélection de pixels (non représentés) qui peuvent être organisés de diverses manières, par exemple, comme cela est décrit dans le brevet américain n° 4940916 du Commissariat à l'Énergie Atomique dans le cas d'écrans à micropointes. La plaque d'anode 2 est, dans le cas d'un écran couleur, pourvue de bandes alternées d'éléments luminophores, chaque bande correspondant à une couleur (rouge, vert, bleu).
  • Les figures 2A et 2B représentent, très schématiquement, une vue de face d'une portion d'une plaque d'anode et une vue en coupe de cette portion. En figure 2B, la face correspondant à la face interne de l'écran est tournée vers le haut. L'anode comprend, par exemple, des bandes alternées 4R, 4G, 4B d'éléments luminophores respectivement rouges, verts et bleus. Comme l'illustre la figure 2B, les bandes d'éléments luminophores sont disposées sur des bandes conductrices correspondantes 5R, 5G, 5B généralement organisées en peignes, toutes les bandes 5R étant connectées entre elles de même que toutes les bandes 5G et toutes les bandes 5B. Dans certains cas, les éléments luminophores sont répartis en motifs élémentaires dont chacun correspond généralement à un pixel (en fait, un sous-pixel de chaque couleur pour un écran trichrome). Ces éléments luminophores "pixélisés" peuvent alors toujours être adressés par des électrodes de polarisation en bandes conductrices (5G, 5B et 5R) telles que décrites en relation avec les figures 2A et 2B, mais on utilise un masque particulier pour le dépôt des éléments luminophores.
  • On distingue deux grandes catégories d'écrans plats selon que l'observateur regarde l'écran du côté anode ou du côté cathode. Dans le premier cas, la lumière émise par les éléments luminophores se propage à travers la plaque d'anode (vers le bas en figure 2B). Le matériau des bandes conductrices 5R, 5G, 5B, est alors transparent, couramment en oxyde d'indium et d'étain (ITO). Dans le second cas, les électrodes transparentes 5R, 5B, 5G sont remplacées par des électrodes opaques, et de préférence réfléchissantes, de façon que la plus grande partie possible de la lumière émise par les éléments luminophores 4R, 4G, 4B soit renvoyée vers la cathode une fois que ces luminophores ont été excités par un bombardement électronique. La plaque 1 génératrice d'électrons est alors au moins partiellement transparente et l'observation s'effectue à travers cette plaque de cathode.
  • Dans un écran couleur (ou dans un écran monochrome constitué de deux ensembles alternés de bandes d'éléments luminophores de même couleur), les ensembles de bandes (par exemple, bleues, rouges, vertes) sont souvent alternativement polarisés positivement par rapport à la cathode 1, pour que les électrons extraits des éléments émissifs (par exemple, les micropointes) d'un pixel de la cathode soient alternativement dirigés vers les éléments luminophores 4R, 4G, 4B en vis à vis de chacune des couleurs.
  • La commande en sélection du luminophore qui doit être bombardé par les électrons impose de commander, sélectivement, la polarisation des éléments luminophores de l'anode, couleur par couleur. Généralement, les bandes 5R, 5G, 5B portant des éléments luminophores devant être excités sont polarisées sous une tension de plusieurs centaines de volts par rapport à la cathode, les autres bandes étant à un potentiel nul. Le choix des valeurs des potentiels de polarisation est lié aux caractéristiques des éléments luminophores et des moyens émissifs.
  • Dans certains cas, l'anode peut, tout en étant constituée de plusieurs ensembles de bandes d'éléments luminophores ou analogues, ne pas être commutée par ensemble de bandes. Toutes les bandes sont alors polarisées à un même potentiel, au moins pendant la durée d'une trame d'affichage. On parle alors d'anode non commutée.
  • La différence de potentiel entre l'anode et la cathode est essentiellement liée à la distance inter-électrodes, c'est-à-dire à l'épaisseur de l'espace interne. On recherche une différence de potentiel maximale pour des raisons de brillance de l'écran, ce qui induit que l'on recherche une distance inter-électrodes qui soit la plus grande possible. Mais, la structure de l'espace inter-électrodes, qui comporte les espaceurs 3, susceptibles de créer des zones d'ombre dans l'écran s'ils présentent une taille trop importante, empêche d'augmenter cette distance inter-électrodes.
  • Le compromis nécessaire conduit à choisir une valeur de tension anode-cathode qui est critique du point de vue de la formation d'arcs électriques. Des arcs électriques destructeurs peuvent alors se produire à la moindre irrégularité dimensionnelle de la distance qui sépare un moyen émissif de la cathode des éléments luminophores de l'anode. De telles irrégularités sont, de surcroît, inévitables compte tenu des faibles dimensions et des techniques employées pour la réalisation de l'anode et de la cathode.
  • Côté cathode, une couche résistive est prévue dans le cas des écrans à micropointes pour recevoir ces micropointes et limiter ainsi la formation de courts-circuits destructeurs entre les micropointes et une grille de commande associée à la cathode.
  • Par contre, côté anode, des arcs peuvent se produire, non seulement entre la plaque de cathode et ceux des éléments luminophores de l'anode qui sont polarisés pour attirer des électrons émis par les micropointes, mais également entre deux bandes voisines d'éléments luminophores en raison de la différence de potentiel entre ces deux bandes. Dans le cas d'un écran monochrome où l'anode est constituée d'un plan conducteur portant des éléments luminophores de même couleur ou dans le cas d'une anode (couleur ou monochrome) à plusieurs bandes non commutées, le risque d'arcs existe uniquement entre anode et cathode.
  • Pour limiter l'apparition de tels arcs latéraux, on prévoit couramment de disposer, entre les bandes d'anode 5B, 5R, 5G, des bandes interstitielles 7 en un matériau isolant (généralement en oxyde de silicium).
  • Toutefois, en pratique, l'efficacité de telles bandes isolantes est limitée pour plusieurs raisons.
  • Tout d'abord, ces bandes sont inopérantes vis à vis de la formation d'arcs électriques entre l'anode et la cathode.
  • De plus, et bien que cela n'apparaisse pas forcément aux figures 2A et 2B dans lesquelles les échelles n'ont pas été respectées, les éléments luminophores 4R, 4G, 4B dépassent de façon importante les bandes interstitielles. En effet, l'épaisseur des bandes d'éléments luminophores est généralement de l'ordre d'une dizaine de µm et la réalisation de bandes d'isolement en oxyde de silicium d'une telle épaisseur est, en pratique, incompatible avec les technologies utilisées pour la fabrication des anodes, de sorte que l'épaisseur des bandes 7 est généralement de l'ordre de 1 à 2 µm, leur largeur étant de l'ordre de 10 à 20 µm.
  • En outre, lors du dépôt des éléments luminophores à travers un masque de dépôt, il peut se produire un léger désalignement de ce masque, de sorte qu'une portion des bandes conductrices 5R, 5G, 5B, ou des zones isolées, se retrouvent accessibles une fois l'écran terminé et favorisent alors la formation d'arcs.
  • Une première solution connue pour tenter de réduire l'apparition d'arcs entre l'anode et la cathode est de prévoir, à l'extrémité de chaque bande conductrice 5R, 5G, 5B, une résistance entre la ligne d'alimentation et la bande. Dès qu'un fort courant apparaît dans la bande, cette résistance fait chuter la tension. Il en découle que la différence de potentiel entre la bande conductrice et la cathode diminue et fait disparaître la surtension génératrice de l'arc.
  • Un inconvénient d'une telle solution est qu'elle ne protège pas de la formation d'un arc électrique latéral, c'est-à-dire entre deux bandes voisines 5R, 5G, 5B. Il peut en effet se produire une circulation de courant local entre deux bandes qui n'est alors pas évité par les résistances d'extrémités.
  • Un autre inconvénient du recours à de telles résistances en série avec les bandes est que ces résistances sont généralement réalisées en ruthénium dont la résistivité est stabilisée par recuit. Ce recuit à forte température (de l'ordre de 600°C) nécessaire pour stabiliser la résistance pose des problèmes de compatibilité avec le procédé de fabrication de l'écran qui requiert, pour le cas où les bandes conductrices sont en aluminium dans le cas d'une cathode transparente, des températures inférieures à 600°. De plus, un tel procédé de fabrication par recuit est difficilement maîtrisable.
  • Un autre inconvénient des résistances série intercalées avec les bandes conductrices d'anode est qu'elles constituent des zones d'échauffement des pistes conductrices d'anode en périphérie de l'écran.
  • Une deuxième solution connue est décrite dans la demande de brevet français n° 2732160. Cette solution consiste à déposer les bandes d'éléments luminophores sur des bandes fortement résistives et à amener la polarisation nécessaire aux luminophores par des bandes de polarisation latérales de part et d'autre de chaque bande résistive.
  • Si cette solution peut donner des résultats satisfaisants dans l'ensemble, elle nécessite un espace important entre chaque bande d'éléments luminophores pour y loger deux conducteurs de polarisation respectivement associés à deux bandes voisines tout en écartant ces conducteurs de polarisation suffisamment les uns des autres afin de maintenir un isolement latéral nécessaire entre eux. Ainsi, cette solution est, en pratique, plus particulièrement destinée à des écrans de faible résolution.
  • A l'inverse et à titre d'exemple, pour une plaque d'anode dans laquelle la surface de chaque pixel est un carré d'environ 300 µm de côté, les bandes d'anode ont chacune une largeur voisine mais inférieure à 100 µm et les bandes d'isolement 7 ont une largeur de l'ordre de la dizaine de µm. Dans un tel cas, la mise en oeuvre d'une solution de protection locale par couche résistive encadrée latéralement par des bandes de polarisation n'est pas envisageable en raison du faible écart entre les bandes d'anode.
  • La présente invention vise à pallier les inconvénients des techniques classiques en proposant une anode d'écran plat de visualisation qui supprime le risque d'apparition d'arc électrique entre l'anode et la plaque de cathode, ou entre deux bandes voisines d'éléments luminophores de l'anode, sans nuire à la brillance de l'écran.
  • La présente invention vise également à proposer une solution qui soit compatible avec les écarts classiques entre deux bandes d'éléments luminophores.
  • La présente invention vise également à proposer une solution qui soit particulièrement adaptée à un écran à cathode "transparente", c'est-à-dire dont la plaque de cathode constitue la surface de visualisation de l'écran.
  • L'invention vise en outre à proposer une solution qui respecte les procédés de fabrication classiques des anodes et, en particulier, les masques utilisés lors de cette fabrication.
  • Pour atteindre ces objets, la présente invention prévoit une anode d'écran plat de visualisation, comportant des éléments luminophores destinés à être excités par un bombardement électronique, ces éléments étant déposés sur au moins une électrode de polarisation constituée, au moins au droit des éléments luminophores, d'un empilement comprenant une couche résistive, elle-même déposée sur une couche conductrice de polarisation des éléments luminophores.
  • Selon un mode de réalisation de la présente invention, les éléments luminophores sont déposés directement sur la couche résistive.
  • Selon un mode de réalisation de la présente invention, les éléments luminophores sont déposés sur une couche réfléchissante conductrice, elle-même déposée sur la couche résistive.
  • Selon un mode de réalisation de la présente invention, ladite couche réfléchissante est déposée selon des motifs élémentaires de faible dimension dans la surface de l'anode.
  • Selon un mode de réalisation de la présente invention, les éléments luminophores sont déposés selon le motif élémentaire de dépôt de la couche réfléchissante.
  • Selon un mode de réalisation de la présente invention, la couche résistive est déposée en pleine plaque.
  • Selon un mode de réalisation de la présente invention, la couche résistive a le même motif que la couche réfléchissante.
  • Selon un mode de réalisation de la présente invention, la couche résistive a, au moins dans la zone active de l'écran, le même motif que la couche conductrice de polarisation.
  • Selon un mode de réalisation de la présente invention, ladite couche conductrice a un motif de bandes alternées interconnectées en au moins deux ensembles.
  • La présente invention prévoit également un écran plat de visualisation comprenant une cathode de bombardement électronique d'une anode cathodoluminescente.
  • Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
    • les figures 1, 2A et 2B qui ont été décrites précédemment sont destinées à exposer l'état de la technique et le problème posé ;
    • la figure 3 est une vue en coupe schématique partielle d'un premier mode de réalisation d'une plaque d'anode d'écran plat selon la présente invention ;
    • les figures 4A et 4B représentent, très schématiquement et partiellement, respectivement vue de face et en coupe, un deuxième mode de réalisation d'une anode d'écran plat selon la présente invention plus particulièrement destinée à un écran dont la surface est constituée par la cathode ; et
    • les figures 5A et 5B représentent, très schématiquement et partiellement, respectivement vue de face et en coupe, une variante du deuxième mode de réalisation de l'invention.
  • Les mêmes éléments ont été désignés par les mêmes références aux différentes figures. Pour des raisons de clarté, seuls les éléments qui sont nécessaires à la compréhension de l'invention ont été représentés aux figures et seront décrits par la suite. En particulier, la constitution de la plaque de cathode d'un écran auquel s'applique la présente invention n'a pas été détaillée et ne fait pas l'objet de la présente invention.
  • La figure 3 représente une vue en coupe schématique d'une anode d'écran plat selon un premier mode de réalisation de la présente invention. Cette anode comprend, comme précédemment, une plaque support 2, par exemple, une plaque de verre. Dans le cas d'un écran observable depuis l'anode, cette plaque est bien entendue transparente.
  • Des bandes conductrices d'anode 5R, 5G, 5B sont déposées, par exemple de façon classique comme cela est illustré par les figures 2A et 2B, et sont interconnectées par ensemble de bandes affectées à une même couleur.
  • Une caractéristique de la présente invention est que ces bandes 5R, 5G, 5B sont toutes revêtues de bandes en un matériau résistif 8. Selon le premier mode de réalisation de la présente invention, des bandes d'éléments luminophores 4R, 4G, 4B sont ensuite déposées sur les bandes résistives 8 et non plus, comme dans les écrans classiques, directement sur les bandes conductrices 5. Ainsi, les électrodes de polarisation des éléments luminophores sont ici constituées d'un empilement d'une couche conductrice (dans laquelle sont définies les bandes 5R, 5G et 5B) et d'une couche résistive 8.
  • Un avantage important de la présente invention est qu'elle respecte le procédé de fabrication classique d'une anode. En effet, la couche résistive 8 peut, dans le premier mode de réalisation, être déposée, au moins dans la partie active de l'écran, c'est-à-dire hors des zones d'interconnexion des ensembles de bandes, avec le même motif que les bandes conductrices 5R, 5G, 5B d'anode, donc au moyen d'un même masque.
  • Un autre avantage important de la présente invention est que, tout en protégeant efficacement l'écran contre des arcs électriques destructeurs, l'invention ne nécessite aucune augmentation de l'écart latéral entre les bandes d'éléments luminophores. La présente invention est donc particulièrement adaptée aux anodes de résolution fine.
  • De façon classique, les bandes d'anode 5R, 5G et 5B sont, de préférence, séparées latéralement par des bandes interstitielles isolantes 7.
  • On notera que l'invention permet une protection contre des arcs électriques destructeurs non seulement entre la plaque d'anode et la plaque de cathode, mais également entre des bandes d'éléments luminophores voisines polarisées à des potentiels différents. Cette protection latérale est particulièrement efficace dans la mesure où elle agit contre toute circulation de courant, même locale.
  • De plus, en cas de désalignement accidentel des masques de gravure servant au dépôt des éléments luminophores 4R, 4G, 4B par rapport au masque de formation des bandes conductrices d'anode 5R, 5G, 5B, le matériau désormais accessible est le matériau de la couche résistive 8, qui empêche la formation d'arcs électriques destructeurs.
  • Le choix du matériau constitutif des bandes résistives 8 dépend de l'application et, en particulier, du besoin de transparence (anode transparente) ou de caractère réfléchissant (cathode transparente) de ces bandes résistives.
  • A titre d'exemple de choix de matériau pour la réalisation des bandes résistives 8, on pourra recourir à de l'oxyde d'étain, ou à du silicium mince, déposé avec une épaisseur comprise, de préférence, entre un et deux µm. Les bandes conductrices 5R, 5G, 5B d'anode, sont, par exemple, réalisées en ITO (transparent) ou en aluminium (réfléchissant) avec une épaisseur de l'ordre du dixième de µm.
  • On notera que la présente invention apporte une amélioration notable par rapport à des résistances série en ruthénium qui doivent présenter une épaisseur de plusieurs dizaines de µm.
  • En outre, le premier mode de réalisation de la présente invention s'applique également au cas d'un écran monochrome dans lequel l'anode est constituée d'un plan d'éléments luminophores de même couleur ou au cas d'un écran (couleur ou monochrome) dans lequel l'anode est constituée de plusieurs ensembles de bandes non commutés. Dans ce cas, la couche résistive 8 est, de préférence, déposée sur toute la couche conductrice d'anode.
  • Bien que l'on ait décrit l'anode selon la présente invention en relation avec une structure trichrome à bandes d'anodes allongées parallèles les unes aux autres dans le premier mode de réalisation, la structure des éléments luminophores de l'anode peut être très différente. Par exemple, il pourra s'agir de motifs élémentaires dont chacun correspondra à un pixel. Dans un tel cas, la présente invention apporte l'avantage supplémentaire de pouvoir être mise en oeuvre alors qu'une solution par protection latérale prendrait trop de place.
  • Les figures 4A et 4B représentent, respectivement vue de face et en coupe, un deuxième mode de réalisation d'une anode d'écran plat selon l'invention. Ce mode de réalisation est plus particulièrement destiné à une anode devant réfléchir la lumière vers la plaque de cathode (1, figure 1) qui constitue alors la surface de l'écran.
  • Une caractéristique du deuxième mode de réalisation de l'invention est que les électrodes de polarisation des éléments luminophores sont ici constituées d'un empilement de trois couches. Comme dans le premier mode de réalisation, on retrouve la présence d'une couche conductrice de polarisation 5 et d'une couche résistive 8. Toutefois, selon ce deuxième mode de réalisation, une couche conductrice supplémentaire 10 est déposée sur la couche résistive. Une caractéristique de cette couche additionnelle 10 est d'être réfléchissante pour renvoyer la lumière vers la cathode. Ainsi, à la différence du premier mode de réalisation qui, s'il est mis en oeuvre dans un écran à cathode transparente, prévoit une couche résistive réfléchissante, le deuxième mode de réalisation permet d'utiliser une couche résistive ayant des propriétés optiques quelconques (transparente, absorbante ou réfléchissante), l'effet optique de réflexion vers la cathode étant ici assuré par la couche conductrice additionnelle 10.
  • On notera que le deuxième mode de réalisation de l'invention s'applique plus particulièrement au cas où les éléments luminophores sont déposés par motifs élémentaires au moyen d'un masque spécifique comprenant des ouvertures, par exemple, correspondant aux tailles respectives des pixels de l'écran ou des sous-pixels de chaque couleur de l'écran. Cette caractéristique est liée à la présence de la couche conductrice 10 qui doit elle-même être déposée selon ces motifs élémentaires pour éviter une propagation des charges le long des bandes d'électrodes.
  • Ainsi, comme l'illustre la figure 4A, les éléments luminophores 4'B, 4'R et 4'G sont déposés par petites surfaces de motifs élémentaires (dans cet exemple, rectangulaires). On notera toutefois que, dans le mode de réalisation illustré par les figures 4A et 4B, la répartition des couleurs des éléments luminophores s'effectue toujours en bande à l'aplomb des bandes conductrices de polarisation 5B, 5R et 5G qui sont réalisées selon un motif de bandes alternées.
  • Selon ce mode de réalisation de l'invention, la couche conductrice additionnelle réfléchissante est déposée au moyen du même masque que les éléments luminophores et est donc constituée de zones de motifs élémentaires 10 à l'aplomb des éléments luminophores. Une couche isolante 7 est optionnellement prévue entre les bandes d'anode. Cette couche 7 est déposée, comme dans le premier mode de réalisation, sur la couche résistive 8'. Toutefois, lorsqu'elle est prévue, la couche isolante 7 est alors présente non seulement entre les bandes d'anode mais également entre les différents motifs élémentaires de définition des zones de couches réfléchissantes 10 et d'éléments luminophores 4. On notera que le fait que la couche conductrice additionnelle est déposée selon les motifs élémentaires permet de garder un potentiel flottant au niveau de chaque pixel.
  • Dans le mode de réalisation illustré par les figures 4A et 4B, la couche résistive 8' est déposée pleine plaque c'est-à-dire qu'elle s'étend au moins sur toute la zone active de l'anode.
  • Un avantage du deuxième mode de réalisation de l'invention est qu'il s'applique particulièrement bien à un écran à cathode transparente. En effet, en dissociant les fonctions de couche réfléchissante et de couche résistive, on dispose d'un plus grand choix de matériau pour réaliser ces différentes couches. En particulier, on pourra alors prévoir une couche résistive 8' en un matériau optiquement absorbant (par exemple, du silicium). Dans ce cas, la couche résistive formera alors un maillage opaque (black matrix) partout où il n'y a ni élément luminophore ni couche réfléchissante 10. Elle absorbera alors la lumière, ce qui améliore le contraste de l'écran.
  • De plus, la couche résistive, si elle est déposée pleine plaque, et si elle est en un matériau à faible coefficient d'émission secondaire (ce qui est généralement le cas des matériaux résistifs), protégera la couche sous-jacente entre les pistes conductrices 5B, 5R et 5G qui est généralement réalisée en un matériau à fort coefficient d'émission secondaire, et protégera alors l'anode contre des effets de charge ce qui réduit le dégazage de l'écran.
  • Comme dans le premier mode de réalisation, un avantage lié à la suppression des résistances en bout des bandes conductrices d'anode est d'une part que l'on gagne de l'espace sur l'anode mais également que l'on répartit les effets thermiques liés à la présence de ces résistances dans toute la plaque d'anode. On évite ainsi les échauffements localisés risquant d'être néfastes.
  • Les figures 5A et 5B représentent, respectivement vue de face et en coupe, une variante de réalisation d'une anode selon le deuxième mode de réalisation de l'invention. Selon cette variante, la couche résistive 8" est elle-même déposée selon les motifs élémentaires de dépôt des éléments luminophores 4'. Par souci de clarté, on a exagéré aux figures 5A et 5B les différences d'alignement entre les motifs élémentaires des éléments luminophores 4', de la couche conductrice additionnelle 10 et de la couche résistive 8". On notera toutefois que ces différents motifs élémentaires sont obtenus au moyen d'un même masque. Ainsi, l'invention reste parfaitement compatible avec les procédés classiques de fabrication des anodes et, en particulier, ne nécessite aucun masque supplémentaire quel que soit le mode de réalisation utilisé.
  • Dans la variante des figures 5A et 5B, les bandes conductrices de polarisation 5B, 5R et 5G ont encore été représentés en bandes comme dans le premier mode de réalisation.
  • On notera que, en variante, la couche résistive prévue dans le deuxième mode de réalisation de l'invention pourra également être déposée selon le motif des bandes 5B, 5R et 5G conductrices de polarisation. Dans ce cas, on conserve l'avantage de ne pas recourir à un masque supplémentaire pour le dépôt de cette couche résistive comme dans le premier mode de réalisation.
  • En figure 5B, on a illustré une couche résistive 8" relativement plus épaisse que celle illustrée en figure 4B. En effet, selon l'invention et quel que soit le mode de réalisation, on peut ajuster la valeur de la résistance en fonction, pour un matériau donné, de l'épaisseur de la couche résistive déposée.
  • Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, on notera que, dans le cas d'un écran monochrome ou d'un écran à anode non commutée, et en application du deuxième mode de réalisation de l'invention, on pourra prévoir que la couche conductrice de polarisation 5 et que la couche résistive 8 soient déposées pleine plaque. La couche conductrice réfléchissante 10 et les éléments luminophores seront alors déposés selon les motifs élémentaires des pixels de l'écran. De plus, le choix des matériaux pour la réalisation d'une anode d'écran plat selon l'invention est à la portée de l'homme du métier à partir des indications fonctionnelles données ci-dessus et des applications. On notera en outre que celui-ci sera à même d'adapter les épaisseurs des différentes couches et en particulier de la couche résistive en fonction des caractéristiques électriques escomptées. En outre, dans le cas d'une anode non commutée, on notera que seule les bandes (ou îlots) d'éléments luminophores ont besoin d'être individualisés dans la surface active de l'écran. Ainsi, la couche de polarisation 5 peut être un plan conducteur de même que la couche résistive peut être pleine plaque. Il y a alors une seule électrode de polarisation de l'anode.

Claims (10)

  1. Anode d'écran plat de visualisation, comportant des éléments luminophores (4R, 4G, 4B ; 4'R, 4'G, 4'B) destinés à être excités par un bombardement électronique, ces éléments étant déposés sur au moins une électrode de polarisation, caractérisée en ce que ladite électrode de polarisation est constituée, au moins au droit des éléments luminophores, d'un empilement comprenant une couche résistive (8, 8', 8"), elle-même déposée sur une couche conductrice (5B, 5R, 5G) de polarisation des éléments luminophores.
  2. Anode selon la revendication 1, caractérisée en ce que les éléments luminophores (4B, 4R, 4G) sont déposés directement sur la couche résistive (8).
  3. Anode selon la revendication 1, caractérisée en ce que les éléments luminophores (4'B, 4'G, 4'R) sont déposés sur une couche réfléchissante (10) conductrice, elle-même déposée sur la couche résistive (8', 8").
  4. Anode selon la revendication 3, caractérisée en ce que ladite couche réfléchissante (10) est déposée selon des motifs élémentaires de faible dimension dans la surface de l'anode.
  5. Anode selon la revendication 4, caractérisée en ce que les éléments luminophores (4'B, 4'R, 4'G) sont déposés selon le motif élémentaire de dépôt de la couche réfléchissante (10).
  6. Anode selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la couche résistive (8, 8', 8") est déposée en pleine plaque.
  7. Anode selon l'une quelconque des revendications 3 à 5, caractérisée en ce que la couche résistive (8") a le même motif que la couche réfléchissante (10).
  8. Anode selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la couche résistive (8) a, au moins dans la zone active de l'écran, le même motif que la couche conductrice de polarisation (5).
  9. Anode selon l'une quelconque des revendications 1 à 8, caractérisée en ce que ladite couche conductrice a un motif de bandes alternées (5R, 5G, 5B) interconnectées en au moins deux ensembles.
  10. Écran plat de visualisation comprenant une cathode (1) de bombardement électronique d'une anode cathodoluminescente (2) conforme à l'une quelconque des revendications 1 à 9.
EP00410018A 1999-02-26 2000-02-25 Anode résistive d'écran plat de visualisation Expired - Lifetime EP1032017B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9902654A FR2790329B1 (fr) 1999-02-26 1999-02-26 Anode resistive d'ecran plat de visualisation
FR9902654 1999-02-26

Publications (2)

Publication Number Publication Date
EP1032017A1 EP1032017A1 (fr) 2000-08-30
EP1032017B1 true EP1032017B1 (fr) 2006-04-26

Family

ID=9542780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00410018A Expired - Lifetime EP1032017B1 (fr) 1999-02-26 2000-02-25 Anode résistive d'écran plat de visualisation

Country Status (5)

Country Link
US (1) US6815885B1 (fr)
EP (1) EP1032017B1 (fr)
JP (1) JP2000251755A (fr)
DE (1) DE60027494T2 (fr)
FR (1) FR2790329B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164007A (ja) * 2000-11-24 2002-06-07 Toshiba Corp 表示装置
JP2006120622A (ja) * 2004-09-21 2006-05-11 Canon Inc 発光スクリーン構造及び画像形成装置
JP2009295532A (ja) 2008-06-09 2009-12-17 Canon Inc 発光体基板及びそれを用いた画像表示装置
JP2010015870A (ja) * 2008-07-04 2010-01-21 Canon Inc 画像表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE133615C (fr)
DD133615A1 (de) * 1977-11-07 1979-01-10 Hoff Siegfried Von Anode fuer eine fluoreszenz-anzeigeroehre
JPS609039A (ja) * 1983-06-28 1985-01-18 Ise Electronics Corp 螢光表示管
JPH0326617Y2 (fr) * 1984-09-17 1991-06-10
JPS62126528A (ja) * 1985-11-26 1987-06-08 Ise Electronics Corp 螢光表示管
KR950034365A (ko) * 1994-05-24 1995-12-28 윌리엄 이. 힐러 평판 디스플레이의 애노드 플레이트 및 이의 제조 방법
FR2732160B1 (fr) * 1995-03-22 1997-06-13 Pixtech Sa Anode d'ecran plat de visualisation a bandes resistives
JP3066573B2 (ja) * 1996-10-30 2000-07-17 双葉電子工業株式会社 電界放出型表示素子
FR2756969B1 (fr) * 1996-12-06 1999-01-08 Commissariat Energie Atomique Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source
JPH11185674A (ja) * 1997-12-24 1999-07-09 Futaba Corp 表示管用陽極基板とその製造方法

Also Published As

Publication number Publication date
DE60027494D1 (de) 2006-06-01
FR2790329A1 (fr) 2000-09-01
EP1032017A1 (fr) 2000-08-30
FR2790329B1 (fr) 2001-05-18
JP2000251755A (ja) 2000-09-14
DE60027494T2 (de) 2007-04-19
US6815885B1 (en) 2004-11-09

Similar Documents

Publication Publication Date Title
EP0704877B1 (fr) Protection électrique d'une anode d'écran plat de visualisation
FR2679057A1 (fr) Structure d'ecran a cristal liquide, a matrice active et a haute definition.
FR3079909A1 (fr) Dispositif electroluminescent a resolution et fiabilite ameliorees
FR2761523A1 (fr) Pose d'espaceurs dans un ecran plat de visualisation
FR2807205A1 (fr) Plaque de cathode d'ecran plat de visualisation
EP1032017B1 (fr) Anode résistive d'écran plat de visualisation
EP0734042B1 (fr) Anode d'écran plat de visualisation à bandes résistives
EP0724771B1 (fr) Ecran plat de visualisation a haute tension inter-electrodes
EP0806788A1 (fr) Anode d'écran plat de visualisation à anneau de protection
EP0732723B1 (fr) Ecran plat de visualisation à distance inter-électrodes élevée
EP1096542A1 (fr) Ecran plat de visualisation à grille de protection
EP0877407A1 (fr) Anode d'ectran plat de visualisation
EP0649162B1 (fr) Ecran plat à micropointes à anode commutée
EP0844642A1 (fr) Ecran plat de visualisation à grilles focalisatrices
EP0806787B1 (fr) Réalisation d'une anode d'écran plat de visualisation
EP0867908A1 (fr) Uniformisation de l'émission électronique potentielle d'une cathode d'écran plat à micropointes
EP0911858A1 (fr) Elimination de l'effet de moiré d'un écran plat de visualisation
EP0806790B1 (fr) Ecran couleur à micropointes à double grille
EP0905670A1 (fr) Simplification de l'adressage d'un écran à micropointes avec électrode de rappel
WO2000021112A1 (fr) Source d'electrons comportant au moins une electrode de protection contre des emissions parasites
FR2828956A1 (fr) Protection locale d'une grille d'ecran plat a micropointes
FR2797092A1 (fr) Procede de fabrication d'une anode d'un ecran plat de visualisation
FR2859811A1 (fr) Panneau electroluminescent d'eclairage ou de visualisation d'images dote d'electrodes superieures transparentes renforcees par des grilles
FR2794568A1 (fr) Perfectionnement aux panneaux a plasma de type matriciel
EP0987729A1 (fr) Cathode à micropointes à faible dégazage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010214

AKX Designation fees paid

Free format text: DE FR GB IT

19U Interruption of proceedings before grant

Effective date: 20020621

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20050502

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LE COMMISSARIAT AE L'ENERGIE ATOMIQUE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060426

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60027494

Country of ref document: DE

Date of ref document: 20060601

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070222

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070622

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070228

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080225

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080225