EP1019415A1 - Modified alumoxane catalyst activator - Google Patents
Modified alumoxane catalyst activatorInfo
- Publication number
- EP1019415A1 EP1019415A1 EP98947065A EP98947065A EP1019415A1 EP 1019415 A1 EP1019415 A1 EP 1019415A1 EP 98947065 A EP98947065 A EP 98947065A EP 98947065 A EP98947065 A EP 98947065A EP 1019415 A1 EP1019415 A1 EP 1019415A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymerization
- group
- moiety
- catalyst
- occurrence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 58
- 239000012190 activator Substances 0.000 title claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 61
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 55
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 25
- 239000000178 monomer Substances 0.000 claims abstract description 25
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 12
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 10
- 239000002841 Lewis acid Substances 0.000 claims abstract description 6
- 150000007517 lewis acids Chemical class 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 43
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 150000004696 coordination complex Chemical class 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- 125000001931 aliphatic group Chemical group 0.000 claims description 10
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 239000002002 slurry Substances 0.000 claims description 8
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 125000000962 organic group Chemical group 0.000 claims description 4
- 238000010528 free radical solution polymerization reaction Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 101100378709 Arabidopsis thaliana AIR3 gene Proteins 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 31
- 239000002184 metal Substances 0.000 abstract description 31
- 150000001336 alkenes Chemical class 0.000 abstract description 13
- 230000004913 activation Effects 0.000 abstract description 6
- 150000002739 metals Chemical class 0.000 abstract 1
- -1 especially Chemical class 0.000 description 89
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 51
- 239000007789 gas Substances 0.000 description 36
- 239000000243 solution Substances 0.000 description 31
- 239000000047 product Substances 0.000 description 27
- 239000003446 ligand Substances 0.000 description 23
- 229920000642 polymer Polymers 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 22
- 239000007788 liquid Substances 0.000 description 22
- YSRFHVJGXPIDGR-UHFFFAOYSA-N dimethylsilane titanium Chemical compound [Ti].C[SiH2]C YSRFHVJGXPIDGR-UHFFFAOYSA-N 0.000 description 21
- 125000000129 anionic group Chemical group 0.000 description 19
- 239000002904 solvent Substances 0.000 description 17
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 16
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 16
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- 125000001183 hydrocarbyl group Chemical group 0.000 description 15
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 14
- OBAJXDYVZBHCGT-UHFFFAOYSA-N tris(pentafluorophenyl)borane Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F OBAJXDYVZBHCGT-UHFFFAOYSA-N 0.000 description 14
- 150000001335 aliphatic alkanes Chemical class 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 13
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 13
- 238000004293 19F NMR spectroscopy Methods 0.000 description 10
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 10
- 239000005977 Ethylene Substances 0.000 description 10
- 239000011541 reaction mixture Substances 0.000 description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 9
- 229910052796 boron Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 239000004711 α-olefin Substances 0.000 description 9
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 8
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 150000001993 dienes Chemical class 0.000 description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 8
- 230000000737 periodic effect Effects 0.000 description 8
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 7
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 7
- 125000004407 fluoroaryl group Chemical group 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- IQUIFCKVSZISBH-UHFFFAOYSA-N penta-1,3-diene;titanium(2+) Chemical compound [Ti+2].CC=CC=C IQUIFCKVSZISBH-UHFFFAOYSA-N 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000000376 reactant Substances 0.000 description 7
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005243 fluidization Methods 0.000 description 6
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 6
- 229910052752 metalloid Inorganic materials 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 6
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 6
- JFLKFZNIIQFQBS-FNCQTZNRSA-N trans,trans-1,4-Diphenyl-1,3-butadiene Chemical compound C=1C=CC=CC=1\C=C\C=C\C1=CC=CC=C1 JFLKFZNIIQFQBS-FNCQTZNRSA-N 0.000 description 6
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 5
- 238000012685 gas phase polymerization Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 4
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 125000003800 germyl group Chemical group [H][Ge]([H])([H])[*] 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 4
- 229910052747 lanthanoid Inorganic materials 0.000 description 4
- 150000007527 lewis bases Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical group 0.000 description 4
- 238000004260 weight control Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002738 metalloids Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000002685 polymerization catalyst Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- XWJBRBSPAODJER-UHFFFAOYSA-N 1,7-octadiene Chemical class C=CCCCCC=C XWJBRBSPAODJER-UHFFFAOYSA-N 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- PJLHTVIBELQURV-UHFFFAOYSA-N 1-pentadecene Chemical compound CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical compound CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000007848 Bronsted acid Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- 239000002879 Lewis base Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000085 borane Inorganic materials 0.000 description 2
- 229910052799 carbon Chemical group 0.000 description 2
- 229910052800 carbon group element Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000003678 cyclohexadienyl group Chemical group C1(=CC=CCC1)* 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910052735 hafnium Chemical group 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical group [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 150000002602 lanthanoids Chemical group 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 239000004701 medium-density polyethylene Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000002097 pentamethylcyclopentadienyl group Chemical group 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- APPOKADJQUIAHP-GGWOSOGESA-N (2e,4e)-hexa-2,4-diene Chemical compound C\C=C\C=C\C APPOKADJQUIAHP-GGWOSOGESA-N 0.000 description 1
- BOGRNZQRTNVZCZ-AATRIKPKSA-N (3e)-3-methylpenta-1,3-diene Chemical compound C\C=C(/C)C=C BOGRNZQRTNVZCZ-AATRIKPKSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical class C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical class C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- BOGRNZQRTNVZCZ-UHFFFAOYSA-N 1,2-dimethyl-butadiene Natural products CC=C(C)C=C BOGRNZQRTNVZCZ-UHFFFAOYSA-N 0.000 description 1
- IFXGRVXPSNHLNW-UHFFFAOYSA-N 1-ethenylcyclobutene Chemical class C=CC1=CCC1 IFXGRVXPSNHLNW-UHFFFAOYSA-N 0.000 description 1
- 238000004607 11B NMR spectroscopy Methods 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical class C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- QLKINISCYVCLTE-UHFFFAOYSA-N 6-phenylhexa-2,4-dienylbenzene Chemical compound C=1C=CC=CC=1CC=CC=CCC1=CC=CC=C1 QLKINISCYVCLTE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- FJMJPZLXUXRLLD-UHFFFAOYSA-L [Cl-].[Cl-].C1=CC2=CC=CC=C2C1[Zr+2]([SiH](C)C)C1C2=CC=CC=C2C=C1 Chemical compound [Cl-].[Cl-].C1=CC2=CC=CC=C2C1[Zr+2]([SiH](C)C)C1C2=CC=CC=C2C=C1 FJMJPZLXUXRLLD-UHFFFAOYSA-L 0.000 description 1
- DJROETYLRMHNEO-UHFFFAOYSA-L [Cl-].[Cl-].C[SiH](C)C1=C(C(C=C1)(C(C)(C)C)[Zr+2])C(C)(C)C Chemical compound [Cl-].[Cl-].C[SiH](C)C1=C(C(C=C1)(C(C)(C)C)[Zr+2])C(C)(C)C DJROETYLRMHNEO-UHFFFAOYSA-L 0.000 description 1
- UDGDYEXUYLDOKV-UHFFFAOYSA-L [Cl-].[Cl-].C[SiH](C)[Zr+2](C1=CC=CC=2C3=CC=CC=C3CC12)C1=CC=CC=2C3=CC=CC=C3CC12 Chemical compound [Cl-].[Cl-].C[SiH](C)[Zr+2](C1=CC=CC=2C3=CC=CC=C3CC12)C1=CC=CC=2C3=CC=CC=C3CC12 UDGDYEXUYLDOKV-UHFFFAOYSA-L 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 125000005626 carbonium group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- BOXSCYUXSBYGRD-UHFFFAOYSA-N cyclopenta-1,3-diene;iron(3+) Chemical compound [Fe+3].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 BOXSCYUXSBYGRD-UHFFFAOYSA-N 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical class N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000000806 fluorine-19 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 125000005062 perfluorophenyl group Chemical group FC1=C(C(=C(C(=C1F)F)F)F)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WNFSFUSCVXIYGN-UHFFFAOYSA-N phenylaluminum Chemical compound [Al]C1=CC=CC=C1 WNFSFUSCVXIYGN-UHFFFAOYSA-N 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 230000037048 polymerization activity Effects 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical class FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical group 0.000 description 1
- YXFVVABEGXRONW-JGUCLWPXSA-N toluene-d8 Chemical compound [2H]C1=C([2H])C([2H])=C(C([2H])([2H])[2H])C([2H])=C1[2H] YXFVVABEGXRONW-JGUCLWPXSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- WXRGABKACDFXMG-UHFFFAOYSA-N trimethylborane Chemical compound CB(C)C WXRGABKACDFXMG-UHFFFAOYSA-N 0.000 description 1
- POHPFVPVRKJHCR-UHFFFAOYSA-N tris(2,3,4,5,6-pentafluorophenyl)alumane Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1[Al](C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F POHPFVPVRKJHCR-UHFFFAOYSA-N 0.000 description 1
- XDSSGQHOYWGIKC-UHFFFAOYSA-N tris(2-methylpropyl)borane Chemical compound CC(C)CB(CC(C)C)CC(C)C XDSSGQHOYWGIKC-UHFFFAOYSA-N 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/06—Aluminium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/06—Aluminium compounds
- C07F5/061—Aluminium compounds with C-aluminium linkage
- C07F5/066—Aluminium compounds with C-aluminium linkage compounds with Al linked to an element other than Al, C, H or halogen (this includes Al-cyanide linkage)
- C07F5/068—Aluminium compounds with C-aluminium linkage compounds with Al linked to an element other than Al, C, H or halogen (this includes Al-cyanide linkage) preparation of alum(in)oxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
Definitions
- the present invention relates to compounds that are useful as catalyst activator components. More particularly the present invention relates to such compounds that are particularly adapted for use in the polymerization of unsaturated compounds having improved activation efficiency and performance. Such compounds are particularly advantageous for use in a polymerization process wherein catalyst, catalyst activator, and at least one polymerizable monomer are combined under polymerization conditions to form a polymeric product. It is previously known in the art to activate Ziegler-Natta polymerization catalysts, particularly such catalysts comprising Group 3-10 metal complexes containing delocalized ⁇ -bonded ligand groups, by the use of an activator. Generally in the absence of such an activator compound, also referred to as a cocatalyst, little or no polymerization activity is observed.
- a class of suitable activators are aluminoxanes, or alkylaluminoxanes, which are generally believed to be oligomeric or polymeric alkylaluminoxy compounds, including cyclic oligomers.
- aluminoxanes or alkylaluminoxanes
- alkylaluminoxanes which are generally believed to be oligomeric or polymeric alkylaluminoxy compounds, including cyclic oligomers.
- the skilled artisan will appreciate that the precise chemical structure of individual alumoxane molecules including methyl alumoxane has eluded full characterization.
- the structure of methylalumoxane is postulated to consist of linear chains, cyclic rings, or poiyhedra, which forms may interconvert in solution.
- such compounds contain, on average about 1.5 alkyl groups per aluminum atom, and are prepared by reaction of trialkylaluminum compounds or mixtures of compounds with water (Reddy et al, Prog. Poly.
- the resulting product is in fact a mixture of various substituted aluminum compounds including especially, trialklyaluminum compounds.
- the amount of such free trialkylaluminum compound in the mixture generally varies from 1 to 50 percent by weight of the total product.
- alumoxanes include methylalumoxane (MAO) made by hydrolysis of trimethylaluminum as well as modified methylalumoxane (MMAO), made by hydrolysis of a mixture of trimethylaluminum and triisobutyialuminum.
- MAO methylalumoxane
- MMAO modified methylalumoxane
- MMAO advantageously is more soluble in aliphatic solvents than is MAO.
- a different type of activator compound is a Bronsted acid salt capable of transferring a proton to form a cationic derivative or other catalytically active derivative of such Group 3-10 metal complex.
- Preferred Bronsted acid salts are such compounds containing a cation/ anion pair that is capable of rendering the Group 3- 10 metal complex catalytically active.
- Suitable activators comprise fluorinated arylborate anions, most preferably, the tetrakis(pentafluorophenyl)borate anion. Additional suitable anions include sterically shielded diboron anions of the formula: X 1
- S is hydrogen, alkyl, fluoroalkyl, aryl, or fluoroaryl
- Ar F is fluoroaryl
- X 1 is either hydrogen or halide, disclosed in US-A-5,447,895.
- Examples of preferred charge separated (cation/ anion pair) activators are protonated ammonium, sulfonium, or phosphonium salts capable of transferring a hydrogen ion, disclosed in US-A-5,198,401 , US-A-5,132,380, US-A-5,470,927, and US-A-5, 153, 157, as well as oxidizing salts such as carbonium, ferrocenium and silyilium salts, disclosed in USP's 5,350,723, 5,189,192 and 5,626,087.
- activators for the above metal complexes include strong Lewis acids including (trisperfluorophenyl)borane and tris(perfluorobiphenyl)borane.
- the former composition has been previously disclosed for the above stated end use in EP-A-520,732, and elsewhere, whereas the latter composition is disclosed in Marks, et al., J. Am. Chem. Soc. 118, 12451-12452 (1996). Additional teachings of the foregoing activators may be found in Chen, et al, J. Am. Chem. Soc. 1997, 119, 2582-2583, Jia et al, Orqanometallics, 1997, 16, 842-857. and Coles et al, J. Am. Chem. Soc.
- boron containing contaminating compounds result primarily from ligand exchange with the alumoxane, and comprise trialkylboron compounds having from 1 to 4 carbons in each alkyl group, for example, trimethylboron, triisobutylboron, or mixed trialkylboron products. It would be desirable if there were provided compounds that could be employed in solution, slurry, gas phase or high pressure polymerizations and under homogeneous or heterogeneous process conditions having improved activation properties, that lack such trialkylboron species.
- composition of matter comprising: a fluorohydrocarbyl- substituted alumoxane compound corresponding to the formula:
- Rl (AIR3 ⁇ ) m -R2, wherein: R 1 independently each occurrence is a C1.40 aliphatic or aromatic group;
- R 2 independently each occurrence is a C1.40 aliphatic or aromatic group or in the case of a cyclic oligomer, R 1 and R 2 together form a covalent bond;
- R 3 independently each occurrence is a monovalent, fluorinated organic group containing from 1 to 100 carbon atoms or R 1 , with the proviso that in at least one occurrence per molecule, R 3 is a monovalent, fluorinated organic group containing from 1 to 100 carbon atoms, and m is a number from 1 to 1000.
- composition may exist in the form of mixtures of compounds of the foregoing formula, and further mixtures with a trihydrocarbylaluminum compound, and may exist in the form of linear chains, cyclic rings, or polyhedra, which forms may interconvert in solution.
- a catalyst composition for polymerization of an ethylenically unsaturated, polymerizable monomer comprising, in combination, the above described combination and a Group 3-10 metal complex, or the reaction product resulting from such combination.
- composition comprising the reaction product of an alkylalumoxane and BAr f 3 ; wherein:
- Ar f is a fluorinated aromatic moiety of from 6 to 30 carbon atoms; the reaction steps comprising contacting the alkylalumoxane and BAr f 3 under ligand exchange conditions and removing at least a portion of the volatile byproducts.
- the foregoing combination is uniquely adapted for use in activation of a variety of metal complexes, especially Group 4 metal complexes, under standard and atypical olefin polymerization conditions.
- the catalyst activators of the invention are readily prepared by combining an alkylalumoxane, which may also contain residual quantities of trialkylaluminum compound, with a fluoroaryl ligand source, preferably a strong Lewis acid containing fluoroaryl Iigands, optionally followed by removing byproducts formed by the ligand exchange.
- a fluoroaryl ligand source preferably a strong Lewis acid containing fluoroaryl Iigands
- the reaction may be performed in a solvent or diluent, or neat, and preferably is performed neat, or in as concentrated solution as possible, for as long reaction time as possible.
- Intimate contacting of the neat reactants can be effectively achieved by removing volatile components under reduced pressure from a solution of the separate reactants, to form a solid mixture of reactants and, optionally, intermediate exchange products and desired final exchange products, and thereafter, continuing such contacting optionally at an elevated temperature.
- Preferred fluoroaryl ligand sources are trifluoroarylboron compounds, most preferably tris(pentafluorophenyl)boron, which result in trialkylboron ligand exchange products, that are relatively volatile and easily removable from the reaction mixture, or more preferably, trifluoroarylaluminum compounds.
- CQ.Q aliphatic and alicyclic hydrocarbons and mixtures thereof including hexane, heptane, cyclohexane, and mixed fractions such as IsoparTM E, available from Exxon Chemicals Inc.
- the reactants are combined in the absence of a diluent, that is, the neat reactants are merely combined and heated.
- Preferred contacting times are at least one hour, preferably at least 90 minutes, at a temperature of at least 25 °C, preferably at least 30 °C, most preferably at least 35°C.
- the contacting is also done prior to addition of a metal complex catalyst, such as a metallocene, in order to avoid formation of further derivatives and multiple metal exchange products having reduced catalytic effectiveness.
- a metal complex catalyst such as a metallocene
- the reaction mixture may be purified to remove ligand exchange products, especially any trialkylboron compounds by any suitable technique.
- a Group 3-10 metal complex catalyst may first be combined with the reaction mixture prior to removing the residual ligand exchange products. It will be appreciated by the skilled artisan that the degree of fluoroaryl-substitution of the alumoxane can be controlled over a wide range by manipulating the reaction conditions.
- a low degree of fluoroaryl substitution can be achieved by the use of lower temperatures, solvents, and shorter contact times.
- a higher degree of substitution can be achieved by the use of neat reactants, long reaction times, higher temperatures and dynamic removal of volatile byproducts under vacuum.
- Suitable techniques for removing alkyl exchange byproducts from the reaction mixture include degassing optionally at reduced pressures, distillation, solvent exchange, solvent extraction, extraction with a volatile agent, contacting with a zeolite or molecular sieve, and combinations of the foregoing techniques, all of which are conducted according to conventional procedures.
- the quantity and nature of the residual boron-containing exchange byproducts remaining in of the resulting product may be determined by 11 B NMR analysis.
- the quantity of residual trialkylboron exchange product is less than 10 weight percent, more preferably less than 1.0 weight percent, most preferably less than 0.1 weight percent, based on fluorohydrocarbyl- substituted alumoxane compound.
- the resulting product contains a quantity of fluorinated organic substituted aiuminoxy compound. More particularly, the product may be defined as a composition comprising a mixture of aluminum containing Lewis acids said mixture corresponding to the formula:
- Q 1 independently each occurrence is selected from C ⁇ - 20 alkyl;
- Ar f is a fluorinated aromatic hydrocarbyl moiety of from 6 to 30 carbon atoms;
- z is a number from 1 to 50, preferably from 1.5 to 40, more preferably from 2 to 30, and the moiety (-AIQ 1 -O-) is a cyclic or linear oligomer with a repeat unit of 2- 30;
- z' is a number from 1 to 50, preferably from 1.5 to 40, more preferably from 2 to 30, and the moiety (-AIAr f -O-) is a cyclic or linear oligomer with a repeat unit of 2- 30;
- z" is a number from 0 to 6, and the moiety (Ar f z » AI 2 Q 1 6 -z”) is either tri(fluoroarylaluminum), trialkylaluminum, or an adduct of tri(fluoroarylaluminum) with a sub-stoich
- the moieties may exist as discrete entities or dynamic exchange products. That is, such moieties may be in the form of dimeric or other multiple centered products in combination with metal complexes resulting from partial or complete ligand exchange, especially when combined with other compounds such as metallocenes. Such exchange products may be fluxional in nature, the concentration thereof being dependant on time, temperature, solution concentration and the presence of other species able to stabilize the compounds, thereby preventing or slowing further ligand exchange.
- z" is from 1 -5, more preferably from 1-3.
- Preferred compositions according to the present invention are those wherein Ar f is pentafluorophenyl, and Q 1 is C ⁇ . 4 alkyl. Most preferred compositions according to the present invention are those wherein Ar is pentafluorophenyl, and Q 1 each occurrence is methyl, isopropyl or isobutyl.
- the present composition is a highly active co-catalyst for use in activation of metal complexes, especially Group 4 metallocenes for the polymerization of olefins.
- metal complexes especially Group 4 metallocenes for the polymerization of olefins.
- it is desirably employed as a dilute concentration in a hydrocarbon liquid, especially an aliphatic hydrocarbon liquid for use as a homogeneous catalyst activator, especially for solution polymerizations.
- the composition may be deposited on an inert support, especially a particulated metal oxide or polymer, in combination with the metal complex to be activated according to known techniques for producing supported olefin polymerization catalysts, and thereafter used for gas phase or slurry polymerizations.
- the molar ratio of metal complex to activator composition is preferably from 0.1 :1 to 3:1 , more preferably from 0.2:1 to 2:1 , most preferably from 0.25:1 to 1 :1 , based on the metal contents of each component.
- the molar ratio of metal complex: polymerizable compound employed is from 10 "12 :1 to 10 "1 :1 , more preferably from 10 "12 :1 to 10 "5 :1.
- the reagents employed in the preparation and use of the present compositions should be thoroughly dried prior to use, preferably by heating at 200-500 °C, optionally under reduced pressure, for a time from 10 minutes to 100 hours. By this procedure the quantity of residual aluminum trialkyl present in the alumoxane is reduced as far as possible.
- the support for the activator component may be any inert, particulate material, but most suitably is a metal oxide or mixture of metal oxides, preferably alumina, silica, an aluminosilicate or clay material. Suitable volume average particle sizes of the support are from 1 to 1000 ⁇ M, preferably from 10 to 100 ⁇ M. Most desired supports are calcined silica, which may be treated prior to use to reduce surface hydroxyl groups thereon, by reaction with a silane, a trialkylaluminum, or similar reactive compound.
- Any suitable means for incorporating the present composition onto the surface of a support may be used, including dispersing the cocatalyst in a liquid and contacting the same with the support by slurrying, impregnation, spraying, or coating and thereafter removing the liquid, or by combining the cocatalyst and a support material in dry or paste form and intimately contacting the mixture, thereafter forming a dried, particulated product.
- silica is preferably reacted with a tri(C M0 alkyl)aluminum, most preferably, trimethylaluminum, triethylaluminum, triisopropylaluminum or triisobutylaiuminum, in an amount from 0.1 to 100, more preferably 0.2 to 10 mmole aluminum/ g silica, and thereafter contacted with the above activator composition, or a solution thereof, in a quantity sufficient to provide a supported cocatalyst containing from 0.1 to 1000, preferably from 1 to 500 ⁇ mole activator/ g silica.
- the active catalyst composition is prepared by thereafter adding the metal complex or a mixture of metal complexes to be activated to the surface of the support.
- Suitable metal complexes for use in combination with the foregoing cocatalysts include any complex of a metal of Groups 3-10 of the Periodic Table of the Elements capable of being activated to polymerize monomers, especially olefins by the present activators. Examples include Group 10 diimine derivatives corresponding to the formula:
- N N is Ar" -N N-Ar *
- X' is halo, hydrocarbyl, or hydrocarbyloxy
- Ar * is an aryl group, especially 2,6-diisopropylphenyl or aniline group;
- CT-CT is 1 ,2-ethanediyl, 2,3-butanediyl, or form a fused ring system wherein the two T groups together are a 1 ,8-naphthanediyl group; and
- a " is the anionic component of the foregoing charge separated activators.
- Additional complexes include derivatives of Group 3, 4, or Lanthanide metals containing from 1 to 3 ⁇ -bonded anionic or neutral ligand groups, which may be cyclic or non-cyclic delocalized ⁇ -bonded anionic ligand groups.
- ⁇ -bonded anionic ligand groups are conjugated or nonconjugated, cyclic or non-cyclic dienyl groups, allyl groups, boratabenzene groups, and arene groups.
- ⁇ -bonded is meant that the ligand group is bonded to the transition metal by a sharing of electrons from a partially delocalized ⁇ -bond.
- Each atom in the delocalized ⁇ -bonded group may independently be substituted with a radical selected from the group consisting of hydrogen, halogen, hydrocarbyl, halohydrocarbyl, hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from Group 14 of the Periodic Table of the Elements, and such hydrocarbyl- or hydrocarbyl-substituted metalloid radicals further substituted with a Group 15 or 16 hetero atom containing moiety.
- hydrocarbyl C-
- two or more such radicals may together form a fused ring system, including partially or fully hydrogenated fused ring systems, or they may form a metallocycle with the metal.
- Suitable hydrocarbyl-substituted organometalloid radicals include mono-, di- and tri-substituted organometalloid radicals of Group 14 elements wherein each of the hydrocarbyl groups contains from 1 to 20 carbon atoms.
- hydrocarbyl-substituted organometalloid radicals include trimethylsilyl, triethylsilyl, ethyldimethylsilyl, methyldiethylsilyl, triphenylgermyl, and trimethylgermyl groups.
- Group 15 or 16 hetero atom containing moieties include amine, phosphine, ether or thioether moieties or divalent derivatives thereof, e. g. amide, phosphide, ether or thioether groups bonded to the transition metal or Lanthanide metal, and bonded to the hydrocarbyl group or to the hydrocarbyl- substituted metalloid containing group.
- Suitable anionic, delocalized ⁇ -bonded groups include cyclopentadienyl, indenyl, fluorenyl, tetrahydroindenyl, tetrahydrofluorenyl, octahydrofluorenyl, pentadienyl, cyclohexadienyl, dihydroanthracenyl, hexahydroanthracenyl, decahydroanthracenyl groups, and boratabenzene groups, as well as C MO hydrocarbyl-substituted or C M0 hydrocarbyl-substituted silyl substituted derivatives thereof.
- Preferred anionic delocalized ⁇ -bonded groups are cyclopentadienyl, pentamethylcyclopentadienyl, tetramethylcyclopentadienyl, tetramethylsilylcyclo-pentadienyl, indenyl, 2,3-dimethylindenyl, fluorenyl, 2- methylindenyl, 2-methyl-4-phenylindenyl, tetrahydrofluorenyl, octahydrofluorenyl, and tetrahydroindenyl.
- boratabenzenes are anionic Iigands which are boron containing analogues to benzene. They are previously known in the art having been described by G. Herberich, et al., in Or ⁇ anometallics. 1995, 14, 1 , 471-480. Preferred boratabenzenes correspond to the formula:
- R" is selected from the group consisting of hydrocarbyl, silyl, or germyl, said R" having up to 20 non-hydrogen atoms.
- R" is selected from the group consisting of hydrocarbyl, silyl, or germyl, said R" having up to 20 non-hydrogen atoms.
- Suitable metal complexes for use in the catalysts of the present invention may be derivatives of any transition metal including Lanthanides, but preferably of Group 3, 4, or Lanthanide metals which are in the +2, +3, or +4 formal oxidation state meeting the previously mentioned requirements.
- Preferred compounds include metal complexes (metallocenes) containing from 1 to 3 ⁇ -bonded anionic ligand groups, which may be cyclic or noncyclic delocalized ⁇ -bonded anionic ligand groups. Exemplary of such ⁇ -bonded anionic ligand groups are conjugated or nonconjugated, cyclic or non-cyclic dienyl groups, allyl groups, and arene groups.
- ⁇ - bonded is meant that the ligand group is bonded to the transition metal by means of delocalized electrons present in a ⁇ bond.
- Each atom in the delocalized ⁇ -bonded group may independently be substituted with a radical selected from the group consisting of halogen, hydrocarbyl, halohydrocarbyl, and hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from Group 14 of the Periodic Table of the Elements.
- hydrocarbyl include C-
- two or more such radicals may together form a fused ring system or a hydrogenated fused ring system.
- Suitable hydrocarbyl- substituted organometalloid radicals include mono-, di- and trisubstituted organometalloid radicals of Group 14 elements wherein each of the hydrocarbyl groups contains from 1 to 20 carbon atoms.
- suitable hydrocarbyl- substituted organometalloid radicals include trimethylsilyl, triethylsilyl, ethyldimethylsilyl, methyldiethylsilyl, triphenylgermyl, and trimethylgermyl groups.
- Suitable anionic, delocalized ⁇ -bonded groups include cyclopentadienyl, indenyl, fluorenyl, tetrahydroindenyl, tetrahydrofluorenyl, octahydrofluorenyl, pentadienyl, cyclohexadienyl, dihydroanthracenyl, hexahydroanthracenyl, and decahydroanthracenyl groups, as well as C ⁇ _ 10 hydrocarbyl-substituted derivatives thereof.
- Preferred anionic delocalized ⁇ -bonded groups are cyclopentadienyl, pentamethylcyclopentadienyl, tetramethylcyclo- pentadienyl, indenyl, 2,3-dimethylindenyl, fluorenyl, 2-methylindenyl and 2-methyl-4- phenylindenyl. More preferred are metal complexes corresponding to the formula:
- L is an anionic, delocalized, ⁇ -bonded group that is bound to M, containing up to 50 nonhydrogen atoms, optionally two L groups may be joined together through one or more substituents thereby forming a bridged structure, and further optionally one L may be bound to X through one or more substituents of L;
- M is a metal of Group 4 of the Periodic Table of the Elements in the +2, +3 or +4 formal oxidation state;
- X is an optional, divalent substituent of up to 50 non-hydrogen atoms that together with L forms a metallocycle with M;
- X' is an optional neutral Lewis base having up to 20 non-hydrogen atoms;
- X" each occurrence is a monovalent, anionic moiety having up to 40 non- hydrogen atoms, optionally, two X" groups may be covalently bound together forming a divalent dianionic moiety having both valences bound to M, or form a neutral, conjugated or nonconjugated diene that is ⁇ -bonded to M (whereupon M is in the +2 oxidation state), or further optionally one or more X" and one or more X' groups may be bonded together thereby forming a moiety that is both covalently bound to M and coordinated thereto by means of Lewis base functionality;
- I is 1 or 2; m is 0 or 1 ; n is a number from 0 to 3; p is an integer from 0 to 3; and the sum, l+m+p, is equal to the formal oxidation state of M.
- Such preferred complexes include those containing either one or two L groups.
- the latter complexes include those containing a bridging group linking the two L groups.
- Preferred bridging groups are those corresponding to the formula (ER * 2) X wherein E is silicon or carbon, R * independently each occurrence is hydrogen or a group selected from silyl, hydrocarbyl, hydrocarbyloxy and combinations thereof, said R * having up to 30 carbon or silicon atoms, and x is 1 to 8.
- R* independently each occurrence is methyl, benzyl, tert-butyl or phenyl.
- Examples of the foregoing bis(L) containing complexes are compounds corresponding to the formula:
- M is titanium, zirconium or hafnium, preferably zirconium or hafnium, in the +2 or +4 formal oxidation state;
- R 3 in each occurrence independently is selected from the group consisting of hydrogen, hydrocarbyl, silyl, germyl, cyano, halo and combinations thereof, said R 3 having up to 20 non-hydrogen atoms, or adjacent R 3 groups together form a divalent derivative (that is, a hydrocarbadiyl, siladiyl or germadiyl group) thereby forming a fused ring system, and
- X" independently each occurrence is an anionic ligand group of up to 40 nonhydrogen atoms, or two X" groups together form a divalent anionic ligand group of up to 40 nonhydrogen atoms or together are a conjugated diene having from 4 to 30 non-hydrogen atoms forming a ⁇ -complex with M, whereupon M is in the +2 formal oxidation state, and
- R * , E and x are as previously defined.
- the foregoing metal complexes are especially suited for the preparation of polymers having stereoregular molecular structure. In such capacity it is preferred that the complex possess C2 symmetry or possess a chiral, stereorigid structure.
- the first type are compounds possessing different delocalized ⁇ -bonded systems, such as one cyclopentadienyl group and one fluorenyl group. Similar systems based on Ti(IV) or Zr(IV) were disclosed for preparation of syndiotactic olefin polymers in Ewen, et al., J. Am. Chem. Soc. 110, 6255-6256 (1980). Examples of chiral structures include bis-indenyl complexes. Similar systems based on Ti(IV) or Zr(IV) were disclosed for preparation of isotactic olefin polymers in Wild et al., j Or ⁇ anomet. Chem. 232, 233-47, (1982).
- Exemplary bridged Iigands containing two ⁇ -bonded groups are: (dimethylsilyl- bis-cyclopentadienyl), (dimethylsilyl-bis-methylcyclopentadienyl), (dimethylsilyl-bis- ethylcyclopentadienyl, (dimethylsilyl-bis-t-butylcyclopentadienyl), (dimethylsilyl-bis- tetramethylcyclopentadienyl), (dimethylsilyl-bis-indenyl), (dimethylsilyl-bis- tetrahydroindenyl), (dimethylsilyl-bis-fluorenyl), (dimethylsilyl-bis-tetrahydrofluorenyl), (dimethylsilyl-bis-2-methyl-4-phenylindenyl), (dimethylsilyl-bis-2-methylindenyl), (dimethylsilyl-cyclopentadien
- Preferred X" groups are selected from hydride, hydrocarbyl, silyl, germyl, halohydrocarbyl, halosilyl, silylhydrocarbyl and aminohydrocarbyl groups, or two X" groups together form a divalent derivative of a conjugated diene or else together they form a neutral, ⁇ -bonded, conjugated diene. Most preferred X" groups are C ⁇ _2fj hydrocarbyl groups.
- a further class of metal complexes utilized in the present invention correspond to the formula:
- L is an anionic, delocalized, ⁇ -bonded group that is bound to M, containing up to 50 nonhydrogen atoms;
- M is a metal of Group 4 of the Periodic Table of the Elements in the +2, +3 or +4 formal oxidation state;
- X is a divalent substituent of up to 50 non-hydrogen atoms that together with L forms a metallocycle with M;
- X' is an optional neutral Lewis base ligand having up to 20 non-hydrogen atoms;
- X" each occurrence is a monovalent, anionic moiety having up to 20 nonhydrogen atoms, optionally two X" groups together may form a divalent anionic moiety having both valences bound to M or a neutral C5.30 conjugated diene, and further optionally X' and X" may be bonded together thereby forming a moiety that is both covalently bound to M and coordinated thereto by means of Lewis base functionality;
- Preferred divalent X substituents preferably include groups containing up to 30 nonhydrogen atoms comprising at least one atom that is oxygen, sulfur, boron or a member of Group 14 of the Periodic Table of the Elements directly attached to the delocalized ⁇ -bonded group, and a different atom, selected from the group consisting of nitrogen, phosphorus, oxygen or sulfur that is covalently bonded to M.
- a preferred class of such Group 4 metal coordination complexes used according to the present invention correspond to the formula:
- M is titanium or zirconium in the +2 or +4 formal oxidation state
- R 3 in each occurrence independently is selected from the group consisting of hydrogen, hydrocarbyl, silyl, germyl, cyano, halo and combinations thereof, said R 3 having up to 20 non-hydrogen atoms, or adjacent R 3 groups together form a divalent derivative (that is, a hydrocarbadiyl, siladiyl or germadiyl group) thereby forming a fused ring system
- each X" is a halo, hydrocarbyl, hydrocarbyloxy or silyl group, said group having up to 20 nonhydrogen atoms, or two X" groups together form a C5.30 conjugated diene;
- Y is -O-, -S-, -NR * -, -PR * -;
- Illustrative Group 4 metal complexes that may be employed in the practice of the present invention include: cyclopentadienyltitaniumtrimethyl, cyclopentadienyltitaniumtriethyl, cyclopentadienyltitaniumtriisopropyl, cyclopentadienyltitaniumtriphenyl, cyclopentadienyltitaniumtribenzyl, cyclopentadienyltitanium-2,4-pentadienyl, cyclopentadienyltitaniumdimethylmethoxide, cyclopentadienyltitaniumdimethylchloride, pentamethylcyclopentadienyltitaniumtrimethyl, indenyltitaniumtrimethyl, indenyltitaniumtriethyl, indenyltitaniumtripropyl, indenyltitaniumtriphenyl, tetra
- Bis(L) containing complexes including bridged complexes suitable for use in the present invention include: biscyclopentadienylzirconiumdimethyl, biscyclopentadienyltitaniumdiethyl, biscyclopentadienyltitaniumdiisopropyl, biscyclopentadienyltitaniumdiphenyl, biscyclopentadienylzirconium dibenzyl, biscyclopentadienyltitanium-2,4-pentadienyl, biscyclopentadienyltitaniummethylmethoxide, biscyclopentadienyltitaniummethylchloride, bispentamethylcyclopentadienyltitaniumdimethyl, bisindenyltitaniumdimethyl, indenylfluorenyltitaniumdiethyl, bisindenyltitaniummethyl(2-(dimethylamino)benzyl),
- Suitable polymerizable monomers include ethylenically unsaturated monomers, acetylenic compounds, conjugated or non-conjugated dienes, and polyenes.
- Preferred monomers include olefins, for examples alpha-olefins having from 2 to 20,000, preferably from 2 to 20, more preferably from 2 to 8 carbon atoms and combinations of two or more of such alpha-olefins.
- alpha- olefins include, for example, ethylene, propylene, 1 -butene, 1 -pentene, 4- methylpentene-1 , 1 -hexene, 1-heptene, 1-octene, 1 -nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, or combinations thereof, as well as long chain vinyl terminated oligomeric or polymeric reaction products formed during the polymerization, and C10-30 ⁇ -olefins specifically added to the reaction mixture in order to produce relatively long chain branches in the resulting polymers.
- the alpha-olefins are ethylene, propene, 1-butene, 4-methyl-pentene-1 , 1- hexene, 1-octene, and combinations of ethylene and/or propene with one or more of such other alpha-olefins.
- Other preferred monomers include styrene, halo- or alkyl substituted styrenes, tetrafluoroethylene, vinylcyclobutene, 1 ,4-hexadiene, dicyclopentadiene, ethylidene norbornene, and 1 ,7-octadiene. Mixtures of the above- mentioned monomers may also be employed.
- the polymerization may be accomplished at conditions well known in the prior art for Ziegler-Natta or Kaminsky-Sinn type polymerization reactions. Examples of such well known polymerization processes are depicted in WO 88/02009, U.S. Patent Nos. 5,084,534, 5,405,922, 4,588,790, 5,032,652, 4,543,399, 4,564,647, 4,522,987, and elsewhere.
- Preferred polymerization temperatures are from 0-250°C.
- Preferred polymerization pressures are from atmospheric to 3000 atmospheres.
- Molecular weight control agents can be used in combination with the present cocatalysts.
- examples of such molecular weight control agents include hydrogen, silanes or other known chain transfer agents.
- a particular benefit of the use of the present cocatalysts is the ability (depending on reaction conditions) to produce narrow molecular weight distribution ⁇ -olefin homopoiymers and copolymers in greatly improved cocatalyst efficiencies and purity, especially with respect to residual aluminum containing contaminants.
- Preferred polymers have Mw/Mn of less than 2.5, more preferably less than 2.3. Such narrow molecular weight distribution polymer products are highly desirable due to improved tensile strength properties. Gas phase processes for the polymerization of C 2 .
- olefins especially the homopolymerization and copolymerization of ethylene and propylene, and the copolymerization of ethylene with C 3 - 6 ⁇ -olefins such as, for example, 1 -butene, 1- hexene, 4-methyl-1-pentene are well known in the art.
- Such processes are used commercially on a large scale for the manufacture of high density polyethylene (HDPE), medium density polyethylene (MDPE), linear low density polyethylene (LLDPE) and polypropylene.
- the gas phase process employed can be, for example, of the type which employs a mechanically stirred bed or a gas fluidized bed as the polymerization reaction zone.
- Preferred is the process wherein the polymerization reaction is carried out in a vertical cylindrical polymerization reactor containing a fluidized bed of polymer particles supported above a perforated plate, the fluidization grid, by a flow of fluidization gas.
- the gas employed to fluidize the bed comprises the monomer or monomers to be polymerized, and also serves as a heat exchange medium to remove the heat of reaction from the bed.
- the hot gases emerge from the top of the reactor, normally via a tranquilization zone, also known as a velocity reduction zone, having a wider diameter than the fluidized bed and wherein fine particles entrained in the gas stream have an opportunity to gravitate back into the bed. It can also be advantageous to use a cyclone to remove ultra-fine particles from the hot gas stream.
- the gas is then normally recycled to the bed by means of a blower or compressor and a one or more heat exchangers to strip the gas of the heat of polymerization.
- a preferred method of cooling of the bed is to feed a volatile liquid to the bed to provide an evaporative cooling effect.
- the volatile liquid employed in this case can be, for example, a volatile inert liquid, for example, a saturated hydrocarbon having 3 to 8, preferably 4 to 6, carbon atoms.
- the monomer or comonomer itself is a volatile liquid, or can be condensed to provide such a liquid this can be suitably be fed to the bed to provide an evaporative cooling effect.
- olefin monomers which can be employed in this manner are olefins containing from 3 to eight, preferably from 3 to six carbon atoms.
- the volatile liquid evaporates in the hot fluidized bed to form gas which mixes with the fluidizing gas. If the volatile liquid is a monomer or comonomer, it will undergo some polymerization in the bed.
- the evaporated liquid then emerges from the reactor as part of the hot recycle gas, and enters the compression/heat exchange part of the recycle loop.
- the recycle gas is cooled in the heat exchanger and, if the temperature to which the gas is cooled is below the dew point, liquid will precipitate from the gas. This liquid is desirably recycled continuously to the fluidized bed.
- the polymerization reaction occurring in the gas fluidized bed is catalyzed by the continuous or semi-continuous addition of catalyst.
- the catalyst can also be subjected to a prepolymerization step, for example, by polymerizing a small quantity of olefin monomer in a liquid inert diluent, to provide a catalyst composite comprising catalyst particles embedded in olefin polymer particles.
- the polymer is produced directly in the fluidized bed by catalyzed (co)polymerization of the monomer(s) on the fluidized particles of catalyst, supported catalyst or prepolymer within the bed.
- Start-up of the polymerization reaction is achieved using a bed of preformed polymer particles, which, preferably, is similar to the target polyolefin, and conditioning the bed by drying with inert gas or nitrogen prior to introducing the catalyst, the monomer(s) and any other gases which it is desired to have in the recycle gas stream, such as a diluent gas, hydrogen chain transfer agent, or an inert condensable gas when operating in gas phase condensing mode.
- supported catalysts for use in slurry polymerization may be prepared and used according to previously known techniques. Generally such catalysts are prepared by the same techniques as are employed for making supported catalysts used in gas phase polymerizations.
- Slurry polymerization conditions generally encompass polymerization of a C 2 . 20 olefin, diolefin, cycloolefin, or mixture thereof in an aliphatic solvent at a temperature below that at which the polymer is readily soluble in the presence of a supported catalyst. It is understood that the present invention is operable in the absence of any component which has not been specifically disclosed.
- room temperature refers to a temperature from 20 to 25 °C
- overnight refers to a time from 12 to 18 hours
- mixed alkanes refers to the aliphatic solvent, Isopar ® E, available from Exxon Chemicals Inc.
- MMAO-3A Modified methalumoxane
- TMA trimethylaluminum
- FAL Tris(perfluorophenyl)aluminum
- All solvents were purified using the technique disclosed by Pangbom et al, Organometallics, 1996, 15, 1518-1520. All compounds and solutions were handled under an inert atmosphere (dry box).
- Example 1 was repeated, except that the residue remaining after devolatilization and aging was dissolved in mixed alkanes (Isopar ® E).
- a 1 gallon computer-controlled stirred autoclave was charged with approximately 1450 g of mixed alkanes solvent (Isopar ® E), and about 125 g of 1 - octene. 10 mmoles Of H 2 was added as a molecular weight control agent. The mixture was stirred and heated to 130 degrees C. The solution was saturated with ethylene at 450 psig (3.4 MPa).
- Catalyst/ co-catalyst solutions were prepared by combining solutions of [(tetramethylcyclopentadienyl) dimethylsilyl-N-tert-butylamido] titanium (II) (1 ,3-pentadiene) (0.005 M in mixed alkanes), and either a combination of tris(pentafluorophenyl) borane (0.015M in mixed alkanes) and MMAO-3A (0.5 M in mixed alkanes) without solvent devolatilization or aging (comparative); MMAO-3A alone (comparative); or pentafluorophenyl-exchanged alumoxane from Examples 1 or 2 (invention).
- the catalyst solution was added to the reactor via a pump.
- the reactor temperature was controlled by controlling the temperature of the reactor jacket.
- the resulting solution was removed from the reactor into a nitrogen-purged collection vessel.
- the vessel was removed to the air and 10 mL of a solution of a phosphorous containing antioxidant and a hindered phenol stabilizer was added.
- the stabilizer solution was prepared by combining 6.67 g of IRGAPHOSTM 168 (available from Ciba-Geigy Corp.) and 3.33 g of IRGANOXTM 1010 (available from Ciba-Geigy Corp.) with 500 mL of toluene.
- the polymer was recovered by removal of the solvent under reduced pressure in a vacuum oven for 2 days.
- the reaction conditions are shown in Table 1 below.
- the polymer characterization results are shown in Table 2.
- Catalyst soln A was prepared by adding 0.5 mL of 0.05M MMAO-3A to 13 mL of mixed alkanes. To this was added 0.5 mL of 0.01 M tris(pentafluorophenyl) borane, followed by 0.5 mL of 0.005 M [(tetramethylcyclopentadienyl) dimethylsilyl-N-tert-butylamido] titanium (II) (1 ,3-pentadiene). Catalyst soln.
- B was prepared by combining the indicated amounts of pentafluorophenyl- exchanged alumoxane from Example 1 with 13 mL of mixed alkanes, followed by the addition of a 0.005 M solution of [(tetramethylcyclopentadienyl) dimethylsilyl-N-tert- butylamido] titanium (II) (1 ,3-pentadiene).
- Catalyst soln. C was prepared by combining the indicated amounts of pentafluorophenyl- exchanged alumoxane from Example 2 with 13 mL of mixed alkanes, followed by the addition of a 0.005 M solution of [(tetramethylcyclopentadienyl) dimethylsilyl-N-tert- butylamido] titanium (II) (1 ,3-pentadiene).
- Catalyst soln. D was prepared by combining 1.07 mL of 0.05M MMAO-3A to 13 mL of mixed alkanes. To this was added 0.5 mL of 0.005 M [(tetramethylcyclopentadienyl) dimethylsilyl- N-tert-butylamido] titanium (II) (1 ,3-pentadiene).
- Catalyst soln. E was prepared by combining 2.14 mL of 0.05M MMAO-3A to 13 mL of mixed alkanes. To this was added 0.5 mL of 0.005 M [(tetramethylcyclopentadienyl) dimethylsilyl- N-tert-butylamido] titanium (II) (1 ,3-pentadiene). Table 2
- silica supported methylalumoxane (Witco 02794/HLJ04) was slurried in 25 mL toluene. To this slurry was added 0.511 g [B(C 6 F 5 ) 3 ] as a dry solid. The mixture was agitated for 3 days. At this time, the solids were collected on a fritted funnel, washed three times with 15 mL portions of toluene and once with 20 mL pentane, and dried in vacuo.
- Example 2 The polymerization conditions of Example 2 were substantially repeated using a 0.1 g sample of the above supported catalyst to prepare approximately 200 g of ethylene/octene copolymer at a catalyst efficiency of 3.1 Kg polymer/gTi).
- Continuous gas phase polymerization is carried out in a 6 liter gas phase reactor having a two inch diameter 12 inch long fluidization zone and an eight inch diameter eight inch long velocity reduction zone connected by a transition section having tapered walls.
- Typical operating conditions ranged from 40 to 100°C, 100 to 350 psig (0.7 to 2.4 MPa) total pressure and up to 8 hours reaction time.
- Monomer, comonomer, and other gases enter the bottom of the reactor where they pass through a gas distributor plate.
- the flow of the gas is 2 to 8 times the minimum particle fluidization velocity [Fluidization Engineering. 2nd Ed., D. Kunii and O. Levenspiel, 1991 , Butterworth-Heinemann]. Most of the suspended solids disengag in the velocity reduction zone.
- the polymer is allowed to accumulate in the reactor over the course of the reaction.
- the total system pressure is kept constant during the reaction by regulating the flow of monomer into the reactor.
- Polymer is removed from the reactor to a recovery vessel by opening a series of valves located at the bottom of the fluidization zone thereby discharging the polymer to a recovery vessel kept at a lower pressure than the reactor.
- the pressures of monomer, comonomer and other gases reported refer to partial pressures.
- the catalyst prepared above, 0.05 g, is loaded into a catalyst injector in an inert atmosphere glove box.
- the injector is removed from the glove box and inserted into the top of the reactor.
- the catalyst is added to the semi-batch gas phase reactor which is under an ethylene (monomer) pressure of 6.5 bar (0.65 MPa), a 1 -butene (comonomer) pressure of 0.14 bar (14 kPa), a hydrogen pressure of 0.04 bar (4 kPa) and a nitrogen pressure of 2.8 bar (0.28 MPa).
- the temperature of polymerization throughout the run is 70°C. Polymer is conducted for 90 minutes.
- the total system pressure is kept constant during the reaction by regulating the flow of monomer into the reactor.
- the yield of ethylene/ 1-butene copolymer powder is 43 g, corresponding to an activity of 37 g/gHrBar (0.22 Kg/gHrMPa).
- a comparative polymerization using the same metal complex and Witco 02794/HL/04 supported MAO (without treatment with [B(C 6 F 5 ) 3 ]) (0.2 g) produces 16 g ethylene/hexene copolymer, corresponding to an activity of 6 g/gHrBar (0.06 Kg/gHrMPa).
- Tris(pentafluorophenyl)boron (5.775 gram, 11.3 mmol) was dissolved in toluene (100 ml).
- a solution of MMAO-3A in heptane (11.6 ml of a 7.1 wt. percent Al solution) was added and the mixture agitated for 15 minutes. The volatile components were removed under reduced pressure to give a pale yellow glass.
- 200 ml of toluene was added to dissolve the material and the resulting solution was added to 2 g of silica (DavisonTM 948, available from Grace Davison Company) that had been heated at 250°C for 3 hours in air.
- the mixture was agitated for 3 days.
- Example 3 The gas phase polymerization conditions of Example 3 are substantially repeated using as a catalyst the supported composition prepared above. After 90 minutes of operation the yield of dry, free flowing powder is 64.7 gram which corresponds to an activity of 96.7 g/gHrBar (0.97 Kg.gHrMPa).
- the comparative catalyst gives an activity of 3.4 g/gHrBar (0.03 Kg/gHrMPa) under identical polymerization conditions.
- the toluene adduct of trispentafluorophenylaluminum (FAAL) (0.25 g, 0.403 mmol, prepared by the exchange reaction of tris(pentafluoropnenyl)boron with trimethylaluminum (TMA) according to the technique of US-A-5,602,269) was dissolved in 50 mL of dry toluene in a flask and solid MAO was added (0.47 g, heated to 80 °C under reduced pressure for 8 h to remove TMA and volatile components, 8.06 mmol Al). The reaction mixture was stirred for 4 h at room temperature and the solvent was removed under reduced pressure.
- FAL trispentafluorophenylaluminum
- the exchange reaction was essentially complete in 20 min at room temperature (FAAL undetectable in the reaction mixture) and the products were found to be a mixture of two new species: the adduct of FAAL with a stoichiometric to sub- stoichiometric amount of TMA, emperical formula: ((C 6 F 5 ) Z » AI 2 (CH3)6- Z »), where z" is about 1 , and a mixture of pentafluorophenyl-substituted aluminoxy oligomers and methyl-substituted aluminoxy oligomers: [(MeAIO) z ((C 6 F 5 )AIO) z ].
- the ratio, z/z' was about 6/1.
- the ratio of two products (aluminum compound/ aluminoxy compound) was approximately 1.2/1. There were no noticeable spectral changes with longer reaction times.
- Example 6 In a glove box, FAB (0.005 g, 0.01 mmol) and solid MAO (0.017 g, after removal of toluene and free TMA under vacuum drying for 8 h, 0.20 mmol Al) were dissolved in 0.7 mL of toluene-d 8 at room temperature and loaded into a J-Young NMR tube. NMR spectra were recorded after mixing these reagents in the NMR tube for 20 min. No FAB was detected in the reaction mixture and four new species were found to form from the alkyl/aryl B/AI exchange reaction:
- FAB (0.15 g, 0.293 mmol) was dissolved in 50 mL of dry toluene in a flask and solid MAO was added (1.70 g after removal of toluene and free TMA under vacuum drying for 8 h, 29.3 mmol Al). The reaction mixture was stirred for 2 h at room temperature and the solvent was removed under reduced pressure. The residue was dried in vacuum for a few hours to afford a white solid (85 percent yield).
- [(M ⁇ AIO) z ((C 6 F 5 )AIO) z ' exhibits very broad peaks (W 1/2 > 600Hz) for AIC 6 F 5 group resonated at a typical AIC 6 F 5 region in the 19 F NMR spectrum.
- MMAO-3A (11.48 mL, 0.56 M in heptane, 6.42 mmol) was loaded in a flask and the solvent was removed under reduced pressure, the residue was dried in vacuo overnight to afford a white solid.
- a mixture of solvents (20 mL of hexane and 5 mL of toluene) and FAB (0.077 g, 0.15 mmol). The reaction mixture was stirred for 4 h at room temperature and the solvent was removed under reduced pressure. The residue was dried under reduced pressure for a few hours to afford a white solid (85 percent yield).
- Catalyst ((t-butylamido)(tetramethylcyclopentadienyl)dimethylsilanetitanium 1 ,3-pentadiene) and cocatalyst, as dilute solutions in toluene, were mixed and transferred to a catalyst addition tank and injected into the reactor. The polymerization conditions were maintained for 15 minutes with ethylene added on demand.
- Run Activator catalyst/ Exotherm Yield Efficiency Density MMI activator* (°C) (g) (Kg poly. /mgTi) g/ml
- CE comparative example, not an example of the invention * ⁇ mole metal complex / ⁇ mole activator
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Toxicology (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5957397P | 1997-09-19 | 1997-09-19 | |
US5957497P | 1997-09-19 | 1997-09-19 | |
US5957297P | 1997-09-19 | 1997-09-19 | |
US59574P | 1997-09-19 | ||
US59573P | 1997-09-19 | ||
US59572P | 1997-09-19 | ||
PCT/US1998/019314 WO1999015534A1 (en) | 1997-09-19 | 1998-09-16 | Modified alumoxane catalyst activator |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1019415A1 true EP1019415A1 (en) | 2000-07-19 |
Family
ID=27369678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98947065A Withdrawn EP1019415A1 (en) | 1997-09-19 | 1998-09-16 | Modified alumoxane catalyst activator |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP1019415A1 (zh) |
JP (1) | JP2001517714A (zh) |
KR (1) | KR20010024121A (zh) |
CN (1) | CN1270595A (zh) |
AU (1) | AU9393498A (zh) |
BR (1) | BR9812485A (zh) |
CA (1) | CA2302173A1 (zh) |
HU (1) | HUP0004655A3 (zh) |
ID (1) | ID24920A (zh) |
NO (1) | NO20001405D0 (zh) |
PL (1) | PL339339A1 (zh) |
TR (1) | TR200000688T2 (zh) |
WO (1) | WO1999015534A1 (zh) |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6214760B1 (en) * | 1998-08-11 | 2001-04-10 | The Dow Chemical Company | Catalyst activator composition |
ATE226963T1 (de) * | 1998-09-16 | 2002-11-15 | Dow Chemical Co | Funktionalisierter katalysatorträger und geträgerte katalysatorsysteme |
US6211311B1 (en) * | 1999-05-25 | 2001-04-03 | Equistar Chemicals, L.P. | Supported olefin polymerization catalysts |
US6294626B1 (en) * | 1999-11-15 | 2001-09-25 | Equistar Chemicals, Lp | Olefin polymerization catalysts containing modified boraaryl ligands |
WO2002008303A1 (en) | 2000-07-20 | 2002-01-31 | The Dow Chemical Company | Expanded anionic compounds comprising hydroxyl or quiescent reactive functionality and catalyst activators therefrom |
US6495484B1 (en) | 2000-08-28 | 2002-12-17 | Univation Technologies, Llc | Catalyst system and its use in a polymerization process |
JP4770044B2 (ja) * | 2001-03-30 | 2011-09-07 | 住友化学株式会社 | オレフィン重合用触媒成分、オレフィン重合用触媒、およびオレフィン重合体の製造方法 |
WO2002102863A1 (en) | 2001-06-15 | 2002-12-27 | Dow Global Technologies Inc. | Alpha-olefin based branched polymer |
WO2003037937A1 (en) | 2001-10-18 | 2003-05-08 | The Dow Chemical Company | Diene functionalized catalyst supports and supported catalyst compositions |
PT1446428E (pt) | 2001-11-19 | 2007-01-31 | Ineos Europe Ltd | Processo de controlo de polimerização |
EP1312625A1 (en) * | 2001-11-20 | 2003-05-21 | BP Chemicals SNC | Gas phase polymerization process |
US7442669B2 (en) * | 2002-03-05 | 2008-10-28 | Tda Research, Inc. | Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn |
EP1352913B1 (en) * | 2002-04-08 | 2016-06-01 | Tosoh Finechem Corporation | Preparation of modified methylaluminoxane olefin polymerisation catalyst component |
US7223822B2 (en) | 2002-10-15 | 2007-05-29 | Exxonmobil Chemical Patents Inc. | Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom |
EP2261292B1 (en) | 2002-10-15 | 2014-07-23 | ExxonMobil Chemical Patents Inc. | Polyolefin adhesive compositions |
RU2359979C2 (ru) | 2004-03-17 | 2009-06-27 | Дау Глобал Текнолоджиз Инк. | Композиция катализатора, содержащая агент челночного переноса цепи для образования сополимера этилена |
RU2375381C2 (ru) | 2004-03-17 | 2009-12-10 | Дау Глобал Текнолоджиз Инк. | Состав катализатора, содержащий челночный агент, для формирования мульти-блок-сополимера высшего олефина |
NZ549262A (en) | 2004-03-17 | 2010-08-27 | Dow Global Technologies Inc | Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation |
EP3009459B1 (en) | 2004-06-16 | 2017-08-02 | Dow Global Technologies LLC | Olefin polymerization process using a modifier |
EP1805226A1 (en) | 2004-10-29 | 2007-07-11 | Exxonmobil Chemical Patents Inc. | Catalyst compound containing divalent tridentate ligand |
JP5623699B2 (ja) | 2005-03-17 | 2014-11-12 | ダウ グローバル テクノロジーズ エルエルシー | レジオイレギュラーなマルチブロックコポリマーを形成するための可逆的移動剤を含む触媒組成物 |
US9410009B2 (en) | 2005-03-17 | 2016-08-09 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
AU2006227977A1 (en) | 2005-03-17 | 2006-09-28 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
TWI417304B (zh) | 2005-09-15 | 2013-12-01 | Dow Global Technologies Llc | 藉由多中心穿梭劑來控制聚合物之架構及分子量分佈 |
US8153243B2 (en) | 2005-12-09 | 2012-04-10 | Dow Global Technologies Llc | Interpolymers suitable for multilayer films |
EP2024399B1 (en) | 2006-05-17 | 2014-04-09 | Dow Global Technologies LLC | Ethylene/ alpha-olefin/ diene solution polymerization process |
ITMI20070877A1 (it) | 2007-05-02 | 2008-11-03 | Dow Global Technologies Inc | Processo per la produzione di copolimeri a blocchi multipli con l'utilizzo di solventi polari |
ITMI20070878A1 (it) | 2007-05-02 | 2008-11-03 | Dow Global Technologies Inc | Processo per la polimerizzazine di polimeri tattici con l'uso di catalizzatori chirali |
MX2010002085A (es) * | 2007-08-29 | 2010-03-26 | Albemarle Corp | Activaciones de catalizador de aluminoxano derivados de agentes precursores de cation dialquilaluminio, procesos para su elaboracion, y su uso en catalizadores y polimerizacion de olefinas. |
TW200936619A (en) | 2007-11-15 | 2009-09-01 | Univation Tech Llc | Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom |
CN102245698B (zh) | 2008-12-15 | 2014-01-08 | 埃克森美孚化学专利公司 | 热塑性烯烃组合物 |
CN102421807B (zh) | 2009-03-06 | 2015-03-18 | 陶氏环球技术有限责任公司 | 催化剂、制备催化剂的方法、制备聚烯烃组合物的方法和聚烯烃组合物 |
WO2011016992A2 (en) | 2009-07-29 | 2011-02-10 | Dow Global Technologies Inc. | Polymeric chain transfer/shuttling agents |
EP2459598B1 (en) | 2009-07-29 | 2017-10-18 | Dow Global Technologies LLC | Dual- or multi-headed chain shuttling agents and their use for the preparation of block copolymers |
MY149647A (en) | 2009-10-19 | 2013-09-30 | Sasol Tech Pty Ltd | Oligomerisation of olefinic compounds with reduced polymer formation |
WO2011078923A1 (en) | 2009-12-23 | 2011-06-30 | Univation Technologies, Llc | Methods for producing catalyst systems |
CN102803308B (zh) | 2010-02-18 | 2015-04-01 | 尤尼威蒂恩技术有限公司 | 用于操作聚合反应器的方法 |
KR102009103B1 (ko) | 2010-02-22 | 2019-08-08 | 유니베이션 테크놀로지즈, 엘엘씨 | 폴리올레핀 생산물을 생산하기 위한 촉매 시스템 및 이의 사용 방법 |
KR101821026B1 (ko) | 2010-10-21 | 2018-01-22 | 유니베이션 테크놀로지즈, 엘엘씨 | 폴리에틸렌 및 그의 제조 방법 |
CN103298843B (zh) | 2010-11-30 | 2015-08-19 | 尤尼威蒂恩技术有限责任公司 | 具有改进的流动特征的催化剂组合物及其制造和使用方法 |
RU2587080C2 (ru) | 2010-11-30 | 2016-06-10 | Юнивейшн Текнолоджиз, Ллк | Способы полимеризации олефинов с использованием экстрагированных карбоксилатов металлов |
BR112013029135B1 (pt) | 2011-05-13 | 2020-12-15 | Univation Technologies, Llc | Composição e processo de polimerização |
WO2013028283A1 (en) | 2011-08-19 | 2013-02-28 | Univation Technologies, Llc | Catalyst systems and methods for using same to produce polyolefin products |
ES2729280T3 (es) | 2011-11-08 | 2019-10-31 | Univation Tech Llc | Métodos para producir poliolefinas con sistemas catalíticos |
EP2750797B1 (en) | 2011-11-08 | 2020-04-01 | Univation Technologies, LLC | Methods of preparing a catalyst system |
US10280283B2 (en) | 2012-12-28 | 2019-05-07 | Univation Technologies, Llc | Supported catalyst with improved flowability |
BR112015018250B1 (pt) | 2013-01-30 | 2021-02-23 | Univation Technologies, Llc | processo para produzir uma composição catalisadora e processo de polimerização |
RU2654061C2 (ru) | 2013-02-07 | 2018-05-16 | ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи | Получение полиолефина |
WO2014143421A1 (en) | 2013-03-15 | 2014-09-18 | Univation Technologies, Llc | Tridentate nitrogen based ligands for olefin polymerisation catalysts |
EP2970526B1 (en) | 2013-03-15 | 2017-08-09 | Univation Technologies, LLC | Ligands for catalysts |
EP3004032B1 (en) | 2013-06-05 | 2017-12-13 | Univation Technologies, LLC | Protecting phenol groups |
EP3747913B1 (en) | 2014-04-02 | 2024-04-17 | Univation Technologies, LLC | Continuity compositions and olefin polymerisation method using the same |
CN106714967B (zh) | 2014-08-19 | 2020-07-17 | 尤尼威蒂恩技术有限责任公司 | 氟化催化剂载体和催化剂系统 |
CN107148316B (zh) | 2014-08-19 | 2020-10-09 | 尤尼威蒂恩技术有限责任公司 | 氟化催化剂载体和催化剂系统 |
EP3183059A1 (en) | 2014-08-19 | 2017-06-28 | Univation Technologies, LLC | Fluorinated catalyst supports and catalyst systems |
CN107428875B (zh) | 2015-03-10 | 2021-02-26 | 尤尼威蒂恩技术有限责任公司 | 喷雾干燥催化剂组合物、制备方法以及在烯烃聚合工艺中的用途 |
SG11201708410UA (en) | 2015-04-20 | 2017-11-29 | Univation Tech Llc | Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom |
US10252967B2 (en) | 2015-04-20 | 2019-04-09 | Univation Technologies, Llc | Bridged bi-aromatic ligands and transition metal compounds prepared therefrom |
US10519256B2 (en) | 2015-04-27 | 2019-12-31 | Univation Technologies, Llc | Supported catalyst compositions having improved flow properties and preparation thereof |
US10351647B2 (en) | 2015-05-29 | 2019-07-16 | Exxonmobil Chemical Patents Inc. | Polymerization process using bridged metallocene compounds supported on organoaluminum treated layered silicate supports |
US10759886B2 (en) | 2015-06-05 | 2020-09-01 | Exxonmobil Chemical Patents Inc. | Single reactor production of polymers in gas or slurry phase |
WO2016197037A1 (en) | 2015-06-05 | 2016-12-08 | Exxonmobil Chemical Patents Inc. | Catalyst system comprising supported alumoxane and unsupported alumoxane particles |
CN107922537B (zh) | 2015-06-05 | 2021-07-27 | 埃克森美孚化学专利公司 | 气相或淤浆相中多相聚合物的制备 |
EP3353217A4 (en) | 2015-09-24 | 2018-11-07 | ExxonMobil Chemical Patents Inc. | Polymerization process using pyridyldiamido compounds supported on organoaluminum treated layered silicate supports |
WO2017058910A1 (en) | 2015-09-30 | 2017-04-06 | Dow Global Technologies Llc | Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same |
GB201607989D0 (en) * | 2016-05-06 | 2016-06-22 | Scg Chemicals Co Ltd | Catalytic support and the uses thereof |
TWI756272B (zh) | 2016-09-30 | 2022-03-01 | 美商陶氏全球科技有限責任公司 | 適用於鏈梭移之封端多頭或雙頭組合物及其製備方法 |
TW201840572A (zh) | 2016-09-30 | 2018-11-16 | 美商陶氏全球科技有限責任公司 | 適用於鏈梭移之多頭或雙頭組合物及其製備方法 |
EP3519474B1 (en) | 2016-09-30 | 2024-09-25 | Dow Global Technologies LLC | Process for preparing multi- or dual-headed compositions useful for chain shuttling |
US11542350B2 (en) * | 2018-03-30 | 2023-01-03 | Dow Global Technologies Llc | Binuclear olefin polymerization activators |
CN113474405A (zh) | 2018-12-28 | 2021-10-01 | 陶氏环球技术有限责任公司 | 包括不饱和聚烯烃的可固化组合物 |
JP2022516119A (ja) | 2018-12-28 | 2022-02-24 | ダウ グローバル テクノロジーズ エルエルシー | テレケリックポリオレフィンを含む硬化性組成物 |
CN113412264B (zh) | 2018-12-28 | 2024-06-25 | 陶氏环球技术有限责任公司 | 有机金属链转移剂 |
US20220081500A1 (en) | 2018-12-28 | 2022-03-17 | Dow Global Technologies Llc | Curable compositions comprising unsaturated polyolefins |
SG11202107051UA (en) | 2018-12-28 | 2021-07-29 | Dow Global Technologies Llc | Telechelic polyolefins and processes for preparing the same |
CN112645973B (zh) * | 2019-10-11 | 2023-11-21 | 浙江大学 | 一种改性烷基铝氧烷的可控制备方法 |
US20230242745A1 (en) | 2020-06-03 | 2023-08-03 | Exxonmobil Chemical Patents Inc | Process for Production of Thermoplastic Vulcanizates using Supported Catalyst Systems and Compositions Made Therefrom |
KR20230039700A (ko) | 2020-07-17 | 2023-03-21 | 다우 글로벌 테크놀로지스 엘엘씨 | 구속된 기하학 전촉매를 위한 히드로카르빌-개질된 메틸알루미녹산 공촉매 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5939346A (en) * | 1992-11-02 | 1999-08-17 | Akzo Nobel N.V. | Catalyst system comprising an aryloxyaluminoxane containing an electron withdrawing group |
IT1273701B (it) * | 1994-07-29 | 1997-07-09 | Enichem Elastomers | Derivati metallorganici del grupo iiia e procedimento per la loro preparazione |
ES2116188B1 (es) * | 1994-12-30 | 1999-04-01 | Repsol Quimica Sa | Proceso de obtencion de poliolefinas con distribuciones de pesos moleculares anchas, bimodales o multimodales. |
US5670682A (en) * | 1995-10-19 | 1997-09-23 | Albemarle Corporation | Liquid clathrate aluminoxane compositions |
-
1998
- 1998-09-16 PL PL98339339A patent/PL339339A1/xx unknown
- 1998-09-16 HU HU0004655A patent/HUP0004655A3/hu unknown
- 1998-09-16 CA CA002302173A patent/CA2302173A1/en not_active Abandoned
- 1998-09-16 EP EP98947065A patent/EP1019415A1/en not_active Withdrawn
- 1998-09-16 TR TR2000/00688T patent/TR200000688T2/xx unknown
- 1998-09-16 JP JP2000512839A patent/JP2001517714A/ja active Pending
- 1998-09-16 CN CN98809281A patent/CN1270595A/zh active Pending
- 1998-09-16 BR BR9812485-4A patent/BR9812485A/pt not_active Application Discontinuation
- 1998-09-16 WO PCT/US1998/019314 patent/WO1999015534A1/en not_active Application Discontinuation
- 1998-09-16 ID IDW20000502A patent/ID24920A/id unknown
- 1998-09-16 KR KR1020007002877A patent/KR20010024121A/ko not_active Application Discontinuation
- 1998-09-16 AU AU93934/98A patent/AU9393498A/en not_active Abandoned
-
2000
- 2000-03-17 NO NO20001405A patent/NO20001405D0/no not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO9915534A1 * |
Also Published As
Publication number | Publication date |
---|---|
HUP0004655A3 (en) | 2003-05-28 |
NO20001405L (no) | 2000-03-17 |
HUP0004655A2 (hu) | 2001-04-28 |
WO1999015534A1 (en) | 1999-04-01 |
AU9393498A (en) | 1999-04-12 |
BR9812485A (pt) | 2000-09-19 |
TR200000688T2 (tr) | 2000-08-21 |
ID24920A (id) | 2000-08-31 |
KR20010024121A (ko) | 2001-03-26 |
CN1270595A (zh) | 2000-10-18 |
NO20001405D0 (no) | 2000-03-17 |
PL339339A1 (en) | 2000-12-18 |
CA2302173A1 (en) | 1999-04-01 |
JP2001517714A (ja) | 2001-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6696379B1 (en) | Supported modified alumoxane catalyst activator | |
US6214760B1 (en) | Catalyst activator composition | |
WO1999015534A1 (en) | Modified alumoxane catalyst activator | |
US6211111B1 (en) | Activator composition comprising aluminum compound mixture | |
EP1115752B1 (en) | Functionalized catalyst supports and supported catalyst systems | |
US6528449B1 (en) | Three coordinate aluminum catalyst activator composition | |
US6248914B1 (en) | Metalloid salt catalyst/activators | |
US6291614B1 (en) | Dinuclear fluoroaryl aluminum alkyl complexes | |
EP1246854B1 (en) | Preparation of polymerization catalyst and related polymerization process | |
US6673735B1 (en) | Preparation of catalyst compositions | |
MXPA00002740A (en) | Modified alumoxane catalyst activator | |
CZ2000981A3 (cs) | Modifikovaný aluminoxanový aktivátor katalyzátoru, katalytický systém a způsob polymerace | |
MXPA01002794A (es) | Soportes de catalizador funcionalizado y sistemas de catalizador soportado | |
WO2004048388A1 (en) | Triphenylcarbenium salts of group 13 fluoroaryl complexes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000419 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FI FR GB IT LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 20020205 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: STEVENS, JAMES, C. Inventor name: JACOBSEN, GRANT, B. Inventor name: CHEN, EUGENE, Y. Inventor name: CARNAHAN, EDMUND, M. |