EP1015665B1 - Elektrolyseapparat - Google Patents

Elektrolyseapparat Download PDF

Info

Publication number
EP1015665B1
EP1015665B1 EP98948931A EP98948931A EP1015665B1 EP 1015665 B1 EP1015665 B1 EP 1015665B1 EP 98948931 A EP98948931 A EP 98948931A EP 98948931 A EP98948931 A EP 98948931A EP 1015665 B1 EP1015665 B1 EP 1015665B1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
housing
hydrophobic
cell
electrolysis apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98948931A
Other languages
English (en)
French (fr)
Other versions
EP1015665A1 (de
Inventor
Thomas Borucinski
Jürgen Gegner
Karl-Heinz Dulle
Martin Wollny
Carola Schneider
Horst-Michael Prasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Krupp Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Uhde GmbH filed Critical Krupp Uhde GmbH
Publication of EP1015665A1 publication Critical patent/EP1015665A1/de
Application granted granted Critical
Publication of EP1015665B1 publication Critical patent/EP1015665B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type

Definitions

  • the invention relates to an electrolysis apparatus for Implementation of electrochemical processes with at least a plate-shaped electrolytic cell, which is a housing having, the housing means for feeding of electrolysis current and electrolysis input materials and devices for discharging the electrolysis current and which has electrolysis products and an anode and cathode, the anode and the cathode being separated by a partition separated from each other and with the respectively assigned Rear wall of the housing electrically connected is.
  • Such an electrolysis apparatus with several side by side arranged in a stack and in electrical contact standing plate-shaped electrolytic cells with each its own housing is, for example, from EP 0 189 535 B1 known to the applicant.
  • This electrolysis machine is used to produce chlorine from aqueous alkali halide solution.
  • electrolysis apparatus but generally for performing electrochemical Suitable reactions in which gases are evolved, for example in chlor-alkali electrolysis, water electrolysis or hydrochloric acid electrolysis or at galvanic processes, in which layers on carrier materials to be deposited, in which often gas formation also takes place, for example cathodic hydrogen evolution as a side reaction or in response to the counter electrode.
  • electrolysers in a hanging stack construction, but also electrolysis equipment in Filter press type used.
  • Foaming can also vary impact.
  • the condition increases Current density decreasing amount of electrolyte in the concerned Cell volume an uneven concentration distribution, whereby the current density distribution due to the increasing Electrolyte resistance in areas with high Foam is inhomogeneous. It has one immediately result in higher cell voltage.
  • Second is the maximum Current density due to the high gas content in the cell just as limited as the lifespan of active cell components, such as diaphragms, membranes or electrolytic catalysts to reduce overvoltages.
  • foam can become one insufficient wetting of the diaphragm, leading to for example in chlor-alkali electrolysis or alkaline water electrolysis the product gases in the cell mix and explosive mixtures can arise.
  • membrane electrolysis processes the membrane is in Foam zones insufficiently wetted, which is less Lifespan and usually a lower power yield means.
  • the object of the invention is therefore to provide a solution create one with the simplest possible means Foaming is prevented.
  • This task is the beginning of an electrolysis apparatus according to the invention, that at least in the housing of the respective electrolytic cell in a housing half delimited by the partition wall hydrophobic Internals are provided.
  • the invention is surprisingly simple provided a solution with which the aforementioned harmful foaming can be prevented.
  • the hydrophobic internals have the effect that the gas contents in the electrochemical reactors drastically reduce which leads to that in the reactor Electrolyte volume is increased. This will increase the lifespan the active parts of the reactors, such as electrodes, Diaphragms or membranes increased because the current density distribution, compared to reactors without such coalescence-promoting Built-in, becomes more homogeneous. Another positive The effect is that the hydrophobic internals Reactor volume can become smaller. Because they are high Foam levels in electrochemical cells without hydrophobic Built-in components, then a critical volume must not be undercut otherwise the current density distribution even more inhomogeneous and the lifespan of active cell components gets too small. This critical volume is at Electrolysis with coalescence-promoting hydrophobic internals smaller. This can due to the decreasing use of materials the investment costs for the electrolytic cell itself lowered and the space requirement of the electrochemical Reactors are minimized.
  • the hydrophobic internals in the area of origin the primary bubbles are arranged.
  • the internals are basically integrated into the electrolytic cell, whereby this both between the electrode and the membrane or the diaphragm behind the electrode or in the back of the Electrode can be arranged.
  • the only essential thing is that the developed gas with the hydrophobic internals comes into contact immediately after its formation, whereby the optimal state is reached when the concentration the hydrophobic internals at the point of origin the primary bubbles are particularly high.
  • the foam content in the anode compartment of a chlor-alkali electrolysis cell can be reduced by around 55% from 70 to 75% to below 20% at a current density of 7 kA / m 2 .
  • the hydrophobic internals are preferably in the form of Screen fabrics, wire mesh, nets or packing educated. Here are the requirements for the material the hydrophobic internals chemical, mechanical and thermal resistance in relation to that in the electrolytic cell occurring temperatures, pressures and entering or formed media.
  • the open Sieve surface of the mesh, wire mesh or nets in Range is 30 to 80%.
  • Hydrophobic internals of this type can also be used in the Electrolysis cell downstream gas / electrolyte separation devices be introduced. Because the essential Separation can already take place in the cell itself the apparatus dimensions become smaller, which also means the investment costs and the space requirements become smaller.
  • flow influencing internals are provided.
  • These internals can for example be designed as flow plates, one of which can be arranged, for example, in the upper region to improve the use of the partition while in the lower Area a flow plate can be arranged an internal circulation due to the density difference and thus mixing the electrolyte Has. This improves the concentration for distribution in the respective chamber.
  • a generally designated 1 electrolysis apparatus for Performing electrochemical processes has several, arranged side by side in a stack and in electrical Contacting plate-shaped electrolytic cells 2 on, of which two such electrolysis cells 2 are shown arranged side by side.
  • Any of these Electrolysis cells 2 have a housing made of two half-shells 3, 4, which are provided with flange-like edges are, between each of which by means of seals 5 Partition (membrane or diaphragm) 6 is clamped.
  • the partition 6 can optionally also be clamped onto others Way.
  • the housing half 3 forms together with the partition 6 and the cathode 9 a cathode chamber, the housing half 4 with the partition 6 and the anode 8 an anode chamber.
  • a suitable one is to supply the electrolysis products Device provided for the respective electrolysis cell 2, such a device is not in the drawings shown. There is also one in each electrolysis cell Device for discharging the electrolysis products provided, however, this is also not indicated.
  • the electrodes (anode 8 and cathode 9) are designed such that they are the electrolysis input product or the Flow through raw materials or let them flow freely, for which purpose slots or the like can be provided.
  • the series of several plate-shaped electrolysis cells 2 happens in a framework, the so-called Cell frame.
  • the plate-shaped electrolytic cells are between the two upper longitudinal beams of the cell frame suspended so that their plate plane perpendicular to Longitudinal axis stands. So that the plate-shaped electrolysis cells 2 their weight on the upper flange of the Can transmit side members, they have on the top Plate edge a cantilever-like on each side or comparable holder.
  • the holder extends horizontally in the direction of the Plate level and protrudes beyond the edge of the flanges. With the plate-shaped ones suspended in the scaffold Electrolysis cells lie the lower edge of the cantilever-like Holder on the upper flange.
  • the plate-shaped electrolysis cells 2 hang comparatively like folders in a hanging file in the cell structure.
  • the plate surfaces of the electrolysis cells are in the cell frame in mechanical and electrical contact, as if they were stacked. Electrolysers of this type are called electrolysers in a hanging stack design.
  • the electrolytic cells hung in the cell frame according to the filter press principle and by means of corresponding clamping devices against each other pressed.
  • hydrophobic internals are arranged in Housing of the respective electrolysis cell 2 .
  • These hydrophobic internals can for example in the form of screen fabrics, wire mesh, Nets or fillers can be formed, as in shown individually from Figures 2 to 4.
  • This hydrophobic Internals are indicated in Figures 2 to 4 and generally designated there by reference number 12.
  • hydrophobic internals 12 are preferably in the Anode chamber arranged. You can have different geometric Have designs, these are in detail shown in Figures 2 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

Die Erfindung betrifft einen Elektrolyseapparat zur Durchführung elektrochemischer Prozesse mit wenigstens einer plattenförmigen Elektrolysezelle, die ein Gehäuse aufweist, wobei das Gehäuse Einrichtungen zum Zuführen des Elektrolysestromes und der Elektrolyseeingangsstoffe und Einrichtungen zum Abführen des Elektrolysestromes und der Elektrolyseprodukte und eine Anode und Kathode aufweist, wobei die Anode und die Kathode von einer Trennwand voneinander getrennt und mit der jeweils zugeordneten Rückwand des Gehäuses elektrisch leitend verbunden ist.
Ein solcher Elektrolyseapparat mit mehreren nebeneinander in einem Stapel angeordneten und in elektrischem Kontakt stehenden plattenförmigen Elektrolysezellen mit jeweils eigenem Gehäuse ist beispielsweise aus der EP 0 189 535 B1 der Anmelderin bekannt. Dieser Elektrolyseapparat dient zur Herstellung von Chlor aus wässriger Alkali-Halogenidlösung. Grundsätzlich sind solche Elektrolyseapparate aber allgemein zur Durchführung elektrochemischer Reaktionen geeignet, bei denen Gase entwickelt werden, beispielsweise bei der Chloralkalielektrolyse, der Wasserelektrolyse oder der Salzsäureelektrolyse oder bei galvanischen Prozessen, bei denen Schichten auf Trägermaterialien abgeschieden werden sollen, bei denen häufig ebenfalls eine Gasbildung stattfindet, beispielsweise die kathodische Wasserstoffentwicklung als Nebenreaktion oder als Reaktion an der Gegenelektrode.
Für diese Zwecke werden nicht nur Elektrolyseure in Hängestapelbauweise, sondern auch Elektrolyseapparate in Filterpressenbauart eingesetzt.
Bei der Gasentwicklung während eines solchen elektrochemischen Prozesses werden in der Regel kleine Primärblasen mit einem Blasendurchmesser von etwa 1 µm bis 20 µm gebildet, die sich aufgrund dieses geringen Blasendurchmessers durch eine geringe Auftriebsgeschwindigkeit auszeichnen. Dies führt insbesondere bei koaleszenzgehemmten Stoffsystemen zu einer hohen Verweilzeit der Gase im Elektrolytraum bzw. im aktiven Elektrodenbereich. Wird die Stromdichte erhöht, so füllt sich der Elektrolytraum zunehmend mit Gas. Aufgrund der steigenden Schwarmbehinderung der Gasblasen untereinander infolge höherer Gasgehalte werden die Blasen noch langsamer. Deshalb füllt sich die Zelle vom Zellenkopf her mit steigender Stromdichte immer mehr mit Schaum, wodurch die Zirkulation bzw. die Vermischung der Flüssigkeit, insbesondere im Schaumbereich, immer mehr behindert wird und schließlich nahezu vollständig zum Erliegen kommt. In jedem Fall bedingt der Schaum eine verminderte Vermischungsleistung des frisch eintretenden Elektrolyten mit dem im Elektrodenraum vorhandenen Elektrolyten. Somit sind diese elektrochemischen Reaktoren bezüglich ihrer maximalen Stromdichte aufgrund geringer Gasvolumenstromdichten begrenzt.
Die Schaumbildung kann sich darüber hinaus noch unterschiedlich auswirken. Zum einen bedingt die mit zunehmender Stromdichte sinkende Elektrolytmenge im betreffenden Zellenvolumen eine ungleichmäßige Konzentrationsverteilung, wodurch die Stromdichteverteilung aufgrund des zunehmenden Elektrolytwiderstandes in Bereichen mit hohen Schaumanteilen inhomogen wird. Das hat unmittelbar eine höhere Zellspannung zur Folge. Zum anderen ist die maximale Stromdichte durch den hohen Gasgehalt in der Zelle ebenso limitiert wie die Lebensdauer von aktiven Zellenkomponenten, wie Diaphragmen, Membranen oder Elektrolytkatalysatoren zur Verminderung von Überspannungen.
In Diaphragmaelektrolyseverfahren kann Schaum zu einer mangelnden Benetzung des Diaphragmas führen, wodurch sich beispielsweise in der Chloralkali-Elektrolyse oder der alkalischen Wasserelektrolyse die Produktgase in der Zelle vermischen und explosive Gemische entstehen können. Bei Membranelektrolyseverfahren wird die Membran in Schaumzonen nur unzureichend benetzt, was eine geringere Lebensdauer und in der Regel eine geringere Stromausbeute bedeutet.
Aufgabe der Erfindung ist es deshalb, eine Lösung zu schaffen, mit der mit möglichst einfachen Mitteln eine Schaumbildung verhindert wird.
Diese Aufgabe wird bei einem Elektrolyseapparat der eingangs bezeichneten Art erfindungsgemäß dadurch gelöst, daß im Gehäuse der jeweiligen Elektrolysezelle wenigstens in einer von der Trennwand begrenzten Gehäusehälfte hydrophobe Einbauten vorgesehen sind.
Mit der Erfindung wird auf überraschend einfache Weise eine Lösung zur Verfügung gestellt, mit der die vorerwähnte schädliche Schaumbildung verhindert werden kann. Die hydrophoben Einbauten haben den Effekt, die Gasgehalte in den elektrochemischen Reaktoren drastisch zu verringern, was dazu führt, daß das im Reaktor befindliche Elektrolytvolumen erhöht wird. Dadurch wird die Lebensdauer der aktiven Teile der Reaktoren, wie Elektroden, Diaphragmen oder Membranen erhöht, da die Stromdichteverteilung, verglichen mit Reaktoren ohne solche koaleszenzfördernden Einbauten, homogener wird. Ein weiterer positiver Effekt ist, daß durch die hydrophoben Einbauten das Reaktorvolumen kleiner werden kann. Liegen nämlich hohe Schaumgehalte in elektrochemischen Zellen ohne hydrophobe Einbauten vor, dann darf ein kritisches Volumen nicht unterschritten werden, da sonst die Stromdichteverteilung noch inhomogener und die Lebensdauer aktiver Zellenkomponenten zu klein wird. Dieses kritische Volumen ist bei Elektrolysen mit koaleszenzfördernden hydrophoben Einbauten kleiner. Dadurch können aufgrund des sinkenden Materialeinsatzes die Investitionskosten für die Elektrolysezelle selbst gesenkt und der Platzbedarf der elektrochemischen Reaktoren minimiert werden.
Ein weiterer positiver Effekt ist, daß durch die Verringerung des Schaumgehaltes in der Elektrolysezelle Druckschwankungen vermindert werden, die sich auf eine Membran oder ein Diaphragma lebensdauermindernd auswirken, da diese Druckschwankungen zu einer mechanischen Belastung dieser Zellenkomponenten führen. Hierzu gibt es bereits andere Lösungsansätze, wie die Integration eines Gas/Elektrolyt-Separationskanales im Kopf der Elektrolysezelle (US-PS 5,571,390). Dieser Lösungsansatz hat aber den entscheidenden Nachteil, daß nur Druckschwankungen minimiert werden, alle anderen Vorteile, wie beispielsweise die Homogenisierung der Stromdichte und eine damit verbundene Verlängerung der Lebensdauer aktiver Zellenkomponenten, werden nicht beeinflußt, da das eigentliche Problem, die Schaumbildung im elektroaktiven Bereich, unverändert bestehen bleibt. Weiterhin hat der Einsatz von hydrophoben Einbauten den Vorteil, daß sich die Stromspannungscharakteristik verbessert. Dadurch wird der spezifische Energiebedarf der Verfahren gesenkt, der in der Regel den größten Anteil an den Produktkosten ausmacht.
In besonders vorteilhafter Ausgestaltung ist vorgesehen, daß die hydrophoben Einbauten im Bereich der Entstehung der Primärblasen angeordnet sind. Die Einbauten sind grundsätzlich in die Elektrolysezelle integriert, wobei diese sowohl zwischen der Elektrode und der Membran bzw. dem Diaphragma hinter der Elektrode oder im Rückraum der Elektrode angeordnet sein können. Wesentlich ist lediglich, daß das entwickelte Gas mit den hydrophoben Einbauten sofort nach dessen Bildung in Kontakt kommt, wobei der optimale Zustand dann erreicht wird, wenn die Konzentration der hydrophoben Einbauten am Ort der Entstehung der Primärblasen besonders hoch ist.
So kann, wie experimentell nachgewiesen wurde, der Schaumgehalt im Anodenraum einer Chloralkalielektrolysezelle bei einer Stromdichte von 7 kA/m2 um rund 55 % von 70 bis 75 % auf unter 20 % gesenkt werden.
Die hydrophoben Einbauten sind bevorzugt in Form von Siebgeweben, Drahtgestricken, Netzen oder Füllkörpern ausgebildet. Dabei sind die Anforderungen an das Material der hydrophoben Einbauten chemische, mechanische und thermische Beständigkeit in Bezug auf die in der Elektrolysezelle auftretenden Temperaturen, Drücke und eintretenden bzw. gebildeten Medien.
Es ist des weiteren bevorzugt, eine möglichst gleichmäßige räumliche Verteilung der hydrophoben Einbauten in der Elektrolysezelle zu erreichen. Dabei soll ein möglichst großer freier Strömungsquerschnitt bzw. ein hoher Lückengrad erhalten bleiben. Deshalb sollten die Einbauten ein geringes Eigenvolumen einnehmen. Dazu ist vorteilhaft vorgesehen, daß der Leerraumanteil im Gehäuse der Elektrolysezelle etwa zwischen 60 bis 98 % beträgt.
Weiterhin ist vorteilhaft vorgesehen, daß die offene Siebfläche der Siebgewebe, Drahtgestricke oder Netze im Bereich von 30 bis 80 % liegt.
Hydrophobe Einbauten dieser Art können auch in ggf. der Elektrolysezelle nachgeschaltete Gas/Elektrolyt-Separationseinrichtungen eingebracht werden. Da die wesentliche Separation bereits in der Zelle selbst erfolgt, können die Apparatdimensionen kleiner werden, wodurch ebenfalls die Investitionskosten und der Platzbedarf kleiner werden.
Ferner ist vorteilhaft vorgesehen, daß zusätzlich zu den hydrophoben Einbauten strömungsbeeinflussende Einbauten vorgesehen sind. Diese Einbauten können beispielsweise als Strömungsplatten ausgebildet sein, von denen eine beispielsweise im oberen Bereich angeordnet sein kann, um die Benutzung der Trennwand zu verbessern, während im unteren Bereich eine Strömungsplatte angeordnet sein kann, die aufgrund der Dichtdifferenz eine interne Zirkulation und somit eine Vermischung des Elektrolyten zur Folge hat. Dies verbessert die Konzentration zur Verteilung in der jeweiligen Kammer.
Die Erfindung ist nachstehend anhand der Zeichnung beispielsweise näher erläutert. Diese zeigt in:
Fig. 1
einen Schnitt durch zwei nebeneinander angeordnete Elektrolysezellen eines Elektrolyseapparates,
Fig. 2 bis 4
verschiedene Beispiele für hydrophobe Einbauten in einer Elektrolysezelle.
Ein allgemein mit 1 bezeichneter Elektrolyseapparat zur Durchführung elektrochemischer Prozesse weist mehrere, nebeneinander in einem Stapel angeordnete und in elektrischem Kontakt stehende plattenförmige Elektrolysezellen 2 auf, von denen beispielhaft zwei solche Elektrolysezellen 2 nebeneinander angeordnet dargestellt sind. Jede dieser Elektrolysezellen 2 weist ein Gehäuse aus zwei Halbschalen 3, 4 auf, die mit flanschartigen Rändern versehen sind, zwischen denen mittels Dichtungen 5 jeweils eine Trennwand (Membran oder Diaphragma) 6 eingespannt ist. Die Einspannung der Trennwand 6 kann ggf. auch auf andere Weise erfolgen.
Über der gesamten Tiefe der Gehäuserückwände 4A der jeweiligen Elektrolysezelle 2 sind beim dargestellten Ausführungsbeispiel parallel zueinander eine Mehrzahl von Kontaktstreifen 7 angeordnet, die durch Schweißen oder dergl. an der Außenseite der betreffenden Gehäuserückwand 4A befestigt oder aufgebracht sind. Diese Kontaktstreifen 7 stellen den elektrischen Kontakt zur benachbarten Elektrolysezelle 2, nämlich zur betreffenden Gehäuserückwand 3A, her, an welcher kein eigener Kontaktstreifen vorgesehen ist.
Innerhalb des jeweiligen Gehäuses 3, 4 sind jeweils an die Trennwand 6 angrenzend eine ebenflächige Anode 8 und eine ebenflächige Kathode 9 vorgesehen, wobei die Anode 8 bzw. die Kathode 9 jeweils mit fluchtend mit dem Kontaktstreifen 7 angeordneten Versteifungen verbunden sind, die als Stege oder sonstige Verbindung ausgebildet sind und der besseren Übersichtlichkeit halber nicht dargestellt sind. Diese Stege stellen gleichzeitig die elektrische Verbindung der Anode bzw. Kathode 8, 9 zur jeweiligen Gehäuserückwand her.
Die Gehäusehälfte 3 bildet gemeinsam mit der Trennwand 6 und der Kathode 9 eine Kathodenkammer, die Gehäusehälfte 4 mit der Trennwand 6 und der Anode 8 eine Anodenkammer.
Zur Zuführung der Elektrolyseprodukte ist eine geeignete Einrichtung für die jeweilige Elektrolysezelle 2 vorgesehen, eine solche Einrichtung ist in den Zeichnungen nicht dargestellt. Ebenfalls ist in jeder Elektrolysezelle eine Einrichtung zum Abführen der Elektrolyseprodukte vorgesehen, diese ist jedoch ebenfalls nicht angedeutet.
Die Elektroden (Anode 8 und Kathode 9) sind derart gestaltet, daß sie das Elektrolyseeingangsprodukt bzw. die Ausgangsprodukte frei durchfließen bzw. durchströmen lassen, wozu Schlitze oder dergl. vorgesehen sein können. Die Aneinanderreihung mehrerer plattenförmiger Elektrolysezellen 2 geschieht in einem Gerüst, dem sogenannten Zellengerüst. Die plattenförmigen Elektrolysezellen werden zwischen den beiden oberen Längsträgern des Zellengerüstes so eingehängt, daß ihre Plattenebene senkrecht zur Längsträgerachse steht. Damit die plattenförmigen Elektrolysezellen 2 ihr Gewicht auf den Oberflansch des Längsträgers übertragen können, besitzen sie an der oberen Plattenkante auf jeder Seite einen kragarmartigen oder vergleichbaren Halter.
Der Halter erstreckt sich horizontal in Richtung der Plattenebene und ragt über die Randung der Flansche hinaus. Bei den in das Gerüst eingehängten plattenförmigen Elektrolysezellen liegt die Unterkante des kragarmartigen Halters auf dem Oberflansch auf.
Die plattenförmigen Elektrolysezellen 2 hängen vergleichsweise wie Ordner in einer Hängekartei im Zellengerüst. Im Zellengerüst stehen die Plattenflächen der Elektrolysezellen in mechanischem und elektrischem Kontakt, so als ob sie gestapelt seien. Elektrolyseure dieser Bauform werden Elektrolyseure in Hängestapelbauart genannt. In einer anderen Ausführungsform werden die Elektrolysezellen nach dem Filterpressenprinzip im Zellengerüst eingehängt und mittels entsprechender Spannvorrichtungen gegeneinander gepreßt.
Durch Aneinanderreihung von mehreren Elektrolysezellen 2 in Hängestapelbauweise mittels bekannter Spanneinrichtungen werden die Elektrolysezellen 2 über die Kontaktstreifen 7 jeweils mit benachbarten Elektrolysezellen in einem Stapel elektrisch leitend verbunden. Von den Kontaktstreifen 7 fließt der Strom dann durch die Halbschalen über Stege oder Wellbänder in die Anode 8. Nach Durchtritt durch die Trennwand 6 wird der Strom von der Kathode 9 aufgenommen, um über Stege oder Wellbänder in die andere Halbschale bzw. deren Rückwand 3A zu fließen und hier in den Kontaktstreifen 7 der nächsten Zelle überzutreten. Auf diese Art und Weise durchsetzt der Elektrolysestrom den gesamten Elektrolysezellenstapel, wobei er an der einen Außenzelle eingeleitet und an der anderen Außenzelle abgeleitet wird.
Um während der Durchführung des elektrochemischen Prozesses in dem Elektrolyseapparat 1 eine Schaumbildung zu vermeiden, ist nun erfindungsgemäß vorgesehen, daß im Gehäuse der jeweiligen Elektrolysezelle 2 hydrophobe Einbauten angeordnet sind. Diese hydrophoben Einbauten können beispielsweise in Form von Siebgeweben, Drahtgestrikken, Netzen oder Füllkörpern ausgebildet sein, wie im einzelnen aus den Figuren 2 bis 4 dargestellt. Diese hydrophoben Einbauten sind in Figur 2 bis 4 angedeutet und dort allgemein mit dem Bezugszeichen 12 bezeichnet.
Diese hydrophoben Einbauten 12 sind vorzugsweise in der Anodenkammer angeordnet. Sie können verschiedene geometrische Gestaltungen aufweisen, diese sind im einzelnen in Figuren 2 bis 4 dargestellt.
Zusätzlich zu diesen hydrophoben Einbauten 12 können auch noch strömungsbeeinflussende Einbauten vorgesehen werden, wie am besten aus Figur 1 hervorgeht. Diese Einbauten können mit den erfindungsgemäßen hydrophoben Einbauten 12 sinnvoll kombiniert werden. Beispielhaft sind zwei verschiedene Strömungsplatten gezeigt. Im oberen Bereich der Anodenkammer ist eine Strömungsplatte 13 angeordnet, die die Benetzung der Trennwand 6 verbessert, während im unteren Teil der Anodenkammer eine Strömungsplatte 14 dargestellt ist, die aufgrund der Dichtedifferenz eine interne Zirkulation und somit eine Vermischung des Elektrolyten zur Folge hat. Dies verbessert die Konzentrationsverteilung in der betreffenden Kammer.

Claims (6)

  1. Elektrolyseapparat zur Durchführung elektrochemischer Prozesse mit wenigstens einer plattenförmigen Elektrolysezelle, die ein Gehäuse aufweist, wobei das Gehäuse Einrichtungen zum Zuführen des Elektrolysestromes und der Elektrolyseeingangsstoffe und Einrichtungen zum Abführen des Elektrolysestromes und der Elektrolyseprodukte und eine Anode und Kathode aufweist, wobei die Anode und die Kathode von einer Trennwand voneinander getrennt und mit der jeweils zugeordneten Rückwand des Gehäuses elektrisch leitend verbunden sind,
    dadurch gekennzeichnet, daß im Gehäuse (3,4) der jeweiligen Elektrolysezelle (2) wenigstens in einer von der Trennwand (6) begrenzten Gehäusehälfte hydrophobe Einbauten (12) vorgesehen sind.
  2. Elektrolyseappparat nach Anspruch 1,
    dadurch gekennzeichnet, daß die hydrophoben Einbauten (12) im Bereich der Entstehung der Primärblasen angeordnet sind.
  3. Elektrolyseapparat nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß die hydrophoben Einbauten (12) in Form von Siebgeweben, Drahtgestricken, Netzen oder Füllkörpern ausgebildet sind.
  4. Elektrolyseapparat nach Anspruch 1 oder einem der folgenden,
    dadurch gekennzeichnet, daß der Leerraumanteil im Gehäuse der Elektrolysezelle etwa zwischen 60 bis 98 % beträgt.
  5. Elektrolyseapparat nach Anspruch 3,
    dadurch gekennzeichnet, daß die offene Siebfläche der Siebgewebe, Drahtgestricke oder Netze im Bereich von 30 bis 80 % liegt.
  6. Elektrolyseapparat nach Anspruch 1 oder einem der folgenden,
    dadurch gekennzeichnet, daß zusätzlich zu den hydrophoben Einbauten (12) strömungsbeeinflussende Einbauten (13,14) vorgesehen sind.
EP98948931A 1997-09-16 1998-09-09 Elektrolyseapparat Expired - Lifetime EP1015665B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19740673 1997-09-16
DE19740673A DE19740673C2 (de) 1997-09-16 1997-09-16 Elektrolyseapparat
PCT/EP1998/005698 WO1999014402A1 (de) 1997-09-16 1998-09-09 Elektrolyseapparat

Publications (2)

Publication Number Publication Date
EP1015665A1 EP1015665A1 (de) 2000-07-05
EP1015665B1 true EP1015665B1 (de) 2002-02-13

Family

ID=7842501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98948931A Expired - Lifetime EP1015665B1 (de) 1997-09-16 1998-09-09 Elektrolyseapparat

Country Status (9)

Country Link
EP (1) EP1015665B1 (de)
JP (1) JP4346235B2 (de)
AR (1) AR010945A1 (de)
AU (1) AU9537798A (de)
DE (2) DE19740673C2 (de)
JO (1) JO2044B1 (de)
MA (1) MA24648A1 (de)
TN (1) TNSN98172A1 (de)
WO (1) WO1999014402A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249508A1 (de) 2002-10-23 2004-05-06 Uhde Gmbh Elektrolysezelle mit Innenrinne
EP2753202B1 (de) 2011-09-06 2016-04-27 British American Tobacco (Investments) Ltd Erwärmung eines rauchmaterials
GB201217067D0 (en) 2012-09-25 2012-11-07 British American Tobacco Co Heating smokable material
GB201311620D0 (en) 2013-06-28 2013-08-14 British American Tobacco Co Devices Comprising a Heat Source Material and Activation Chambers for the Same
GB201500582D0 (en) 2015-01-14 2015-02-25 British American Tobacco Co Apparatus for heating or cooling a material contained therein
US20170055575A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Material for use with apparatus for heating smokable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US20170055584A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US20170119047A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Article for Use with Apparatus for Heating Smokable Material
US20170119046A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Apparatus for Heating Smokable Material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455639A1 (fr) * 1979-05-04 1980-11-28 Creusot Loire Procede et dispositif de traitement du melange gaz-liquide issu d'un electrolyseur
FR2486414B1 (fr) * 1980-07-09 1985-09-27 Gaz De France Procede et dispositif pour la coalescence d'une phase finement dispersee d'un melange fluide
DE3501261A1 (de) * 1985-01-16 1986-07-17 Uhde Gmbh, 4600 Dortmund Elektrolyseapparat
US4950371A (en) * 1989-03-24 1990-08-21 United Technologies Corporation Electrochemical hydrogen separator system for zero gravity water electrolysis
DE4224492C1 (de) * 1992-07-24 1993-12-09 Uhde Gmbh Vorrichtung zum elektrolytischen Behandeln von Flüssigkeiten mit einer Anoden- und einer Kathodenkammer sowie deren Verwendung
JP3555197B2 (ja) * 1994-09-30 2004-08-18 旭硝子株式会社 複極型イオン交換膜電解槽

Also Published As

Publication number Publication date
JP4346235B2 (ja) 2009-10-21
EP1015665A1 (de) 2000-07-05
JP2001516811A (ja) 2001-10-02
DE59803086D1 (de) 2002-03-21
AR010945A1 (es) 2000-07-12
TNSN98172A1 (fr) 2000-12-29
WO1999014402A1 (de) 1999-03-25
DE19740673A1 (de) 1999-03-18
JO2044B1 (en) 1999-05-15
MA24648A1 (fr) 1999-04-01
AU9537798A (en) 1999-04-05
DE19740673C2 (de) 2001-10-31

Similar Documents

Publication Publication Date Title
DE4444114C2 (de) Elektrochemische Halbzelle mit Druckkompensation
DE2616614C2 (de) Elektrolyseeinrichtung
DE3751157T2 (de) Elektrolysezelle.
EP0591293B1 (de) Elektrolysezelle sowie kapillarspaltelektrode für gasentwickelnde oder gasverbrauchende elektrolytische reaktionen und elektrolyseverfahren hierfür
DE2445579C2 (de) Elektrolytische Zelle
DE2435185A1 (de) Bipolare elektrolytzelle
DE2809333C2 (de) Monopolare Elektrolysezelle in Filterpressenbauweise
DE3401636A1 (de) Elektrochemisches verfahren zur behandlung von fluessigen elektrolyten
EP1015665B1 (de) Elektrolyseapparat
DE2856882A1 (de) Vorrichtung zum elektrolysieren und verfahren zum herstellen von chlor durch elektrolysieren
DE4306889C1 (de) Elektrodenanordnung für gasbildende elektrolytische Prozesse in Membran-Zellen und deren Verwendung
EP1073780B1 (de) Elektrolyseapparat zur herstellung von halogengasen
EP0479840B1 (de) Elektrolysezelle für gasentwickelnde elektrolytische prozesse
DE2622118A1 (de) Rahmen fuer bipolare filterpressen- elektrolysezellen
DE69213362T2 (de) Elektrolyseur und Herstellung davon
EP1743051A2 (de) Verfahren zum erzeugen einer gleichmässigen durchströmung eines elektrolytraumes einer elektrolysezelle
DE2538000A1 (de) Elektrodenkonstruktion, insbesondere fuer die verwendung in einem bipolaren elektrolytgeraet
DE2828621C2 (de)
DD269171A5 (de) Dichtung aus einem elektrisch isolierenden material
DE2947789C2 (de) Verfahren zur elektrolytischen Gewinnung von Wasserstoff und dafür geeignete Elektrolysezelle
DE3640584A1 (de) Elektrodenanordnung fuer gasbildende elektrolyseure mit vertikal angeordneten plattenelektroden
DE2510396B2 (de) Verfahren zur Elektrolyse wäßriger Elektrolytlösungen
EP0150019B1 (de) Elektrolyseverfahren mit flüssigen Elektrolyten und porösen Elektroden
DD250138A5 (de) Elektrolytische zelle
DE2709093A1 (de) Elektrode fuer die erzeugung eines gases in einer zelle mit einer membran

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010723

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRASSER, HORST-MICHAEL

Inventor name: SCHNEIDER, CAROLA

Inventor name: WOLLNY, MARTIN

Inventor name: DULLE, KARL-HEINZ

Inventor name: GEGNER, JUERGEN

Inventor name: BORUCINSKI, THOMAS

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT SE

REF Corresponds to:

Ref document number: 59803086

Country of ref document: DE

Date of ref document: 20020321

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021114

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150922

Year of fee payment: 18

Ref country code: GB

Payment date: 20150917

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150923

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59803086

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160910

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160909