EP1012455A2 - Katalytischer konverter für einen kleinmotor - Google Patents

Katalytischer konverter für einen kleinmotor

Info

Publication number
EP1012455A2
EP1012455A2 EP97950069A EP97950069A EP1012455A2 EP 1012455 A2 EP1012455 A2 EP 1012455A2 EP 97950069 A EP97950069 A EP 97950069A EP 97950069 A EP97950069 A EP 97950069A EP 1012455 A2 EP1012455 A2 EP 1012455A2
Authority
EP
European Patent Office
Prior art keywords
stack
housing
catalytic converter
sheet metal
silencer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97950069A
Other languages
English (en)
French (fr)
Other versions
EP1012455B1 (de
Inventor
Rolf BRÜCK
Wolfgang Maus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1012455A2 publication Critical patent/EP1012455A2/de
Application granted granted Critical
Publication of EP1012455B1 publication Critical patent/EP1012455B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2842Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration specially adapted for monolithic supports, e.g. of honeycomb type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2885Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with exhaust silencers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/40Honeycomb supports characterised by their structural details made of a single sheet, foil or plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/02Fitting monolithic blocks into the housing

Definitions

  • the present invention relates to a catalytic converter for a small motor, in which a honeycomb body coated with catalytically active material is arranged in a silencer housing arranged close to the motor.
  • DE-OS 38 29 668 already provides an example of an exhaust silencer for two-stroke engines, which contains a catalytic converter for exhaust gas purification in its interior.
  • EP 0 470 113 B1 also discloses a metallic catalyst carrier body which is particularly suitable for fastening in the partition of a silencer housing.
  • the object of the present invention is therefore a catalytic converter for a small engine, which is very inexpensive to manufacture, requires the smallest possible design changes to existing small engines and their exhaust systems, and yet can remove a considerable proportion of the pollutants from the exhaust gas catalytically.
  • a catalytic converter according to claim 1 is used to achieve this object, a corresponding manufacturing method being specified in claim 11.
  • Advantageous refinements are specified in the respective dependent claims.
  • Catalytic converters usually contain honeycomb bodies in order to provide a sufficiently large surface for a catalytic conversion in a partial volume of the exhaust system.
  • honeycomb bodies are produced in particular from metal sheets, at least some of these metal sheets being structured in such a way that channels which are permeable to exhaust gas result overall.
  • alternating smooth and corrugated sheet layers are used.
  • a large number of structures come into consideration for the present invention, so that sheet metal layers with two different corrugations or sheet metal layers with corrugations arranged alternately obliquely to one another can also be used.
  • this method has many advantages in terms of production technology and leads to a simple, but durable catalytic converter.
  • a silencer housing for small engines consists of two or more individual parts, in particular half-shells and a partition, which can be connected by means of a simple connection process, e.g. B. flanging or welding. These housing parts can Assembling can be used simultaneously for the shaping of the honeycomb body, without the need for additional tools.
  • a stack of sheet metal layers with a larger volume than the partial volume to be filled in the muffler housing is simply placed in the intended position when the housing is assembled and squeezed into its final position and shape when the housing parts are assembled. Even if 15 to 30% of the channels are plastically and / or elastically deformed, namely at the lateral ends of the stack and in the outer edge areas, enough cells remain gas-permeable, so that effective catalytic cleaning is ensured.
  • the lateral ends of the stack should be held on or in the walls of the housing in a preferred embodiment.
  • the sheets are already coated with catalytically active material before being fitted in the silencer housing, either by using sheets already coated for the entire production process or by coating a prefabricated stack of sheet metal layers as a whole.
  • a major advantage of the catalytic converter according to the invention is that the considerable deformation of the channels is partly plastic and partly elastic, so that the honeycomb body remains under a pretension which prevents the sheet metal layers from loosening under all operating conditions, in particular thermal alternating loads.
  • the honeycomb body will be under maximum prestress in a catalytic converter manufactured according to the invention, since it is deformed everywhere beyond the elastic limit. This prevents relative movements between the sheet layers even with decreasing elasticity with increasing temperature.
  • sheet metal layers with so-called transverse microstructures which are known in the prior art, are also particularly suitable for the present invention. These microstructures increase the effectiveness of the catalytic conversion and also cause the sheet metal layers to be clamped together, so that they cannot move against each other, especially under the high elastic preload, even under the most unfavorable conditions. This also applies if not all sheet metal layers, but only a part of them, are attached to the silencer housing with their ends.
  • the stack to be squeezed into the muffler housing is adapted in its initial form to the shape of the partial volume to be filled and to the degree of deformation of the individual regions to be expected during the crushing, although the volume of the stack is preferably at least 5%, preferably should be at least 10% larger than the partial volume to be filled.
  • silencer housings composed of at least two parts
  • clamp the crimped ends of the stack in the joint between these parts in order to enclose the honeycomb body to fix overall.
  • This can be carried out both in the case of stacks formed from individual sheets, and in the case of stacks which are wound, folded or laid in a meandering shape from one or more sheets after the ends have been squeezed together.
  • the ends of the stack can be included in the technology previously used for assembling the silencer housing, so that the attachment can be carried out, for example, by flanging, welding with a weld seam or spot welding.
  • the catalytically active coating on the metal sheets generally does not interfere, so that no additional processing steps are necessary to remove them.
  • FIG. 1 shows a longitudinal section through a muffler housing with a schematically indicated installation location of a catalytic converter
  • FIG. 2 shows in cross section the parts of a silencer housing, including a stack, shortly before assembly,
  • FIG. 3 shows a cross section along the section line III-III in Figure 1 by a silencer housing after assembly
  • Figures 4, 5, 6, 7 and 8 different forms of stacks of at least partially structured sheet metal layers.
  • Figure 1 shows schematically in longitudinal section a silencer housing 3 for a small engine.
  • the exhaust gas enters the exhaust gas inlet 1
  • Lower part 3.2 of the muffler housing from where it reaches the upper part 3.1 of the muffler housing through openings in a partition 3.3. From here it flows through the channels 7 of a honeycomb body 4 and then reaches the exhaust gas outlet 2.
  • Upper part 3.1 and lower part 3.2 of the muffler housing and the partition 3.3 are connected to one another in the area of a parting joint 3.4, for example by flanging or by a weld.
  • FIG. 2 schematically illustrates in cross section the joining of upper part 3.1, lower part 3.2, partition 3.3 of the muffler housing and a stack 8 of sheet metal layers 5, 6, the process of joining being indicated by arrows.
  • the stack 8 is formed from alternately arranged individual smooth sheet metal layers 5 and corrugated sheet metal layers 6, which together form a multiplicity of channels 7 which are permeable to the exhaust gas.
  • the sheet metal layers 5, 6 are coated with catalytically active material 10. This coating can either be applied to the sheet metal layers 5, 6 in a continuous process before all other processing steps, or else can be applied together after the stack 8 has been layered.
  • FIG. 3 shows in cross section along the line III-III in Figure 1 an essentially completely assembled silencer housing with a crimped honeycomb body. It can be seen that the lateral ends 9 of the stack 8, which is still undeformed in FIG. 2, are now squeezed together, with numerous channels 7.1 also being plastically deformed in the edge regions of the honeycomb body. Nevertheless, especially in the inner region of the honeycomb body, there remain sufficient channels which are not plastically deformed and which are sufficient for the catalytic conversion of exhaust gas passed therethrough. However, these channels 7 are deformed considerably elastically by the squeezing forces exerted on the entire honeycomb body, so that the whole honeycomb body is under considerable pretension.
  • the crimped lateral ends 9 of the stack of sheets are clamped between the upper part 3.1 and the partition 3.3 of the muffler housing and can be included in the usual connection technology of the muffler housing. As shown on the right side of FIG. 3, this can be a flanging 3.5. However, a welded connection 3.6 indicated on the left side of FIG. 3 is also possible, which also includes the ends of the sheet metal layers 5, 6 of the upper part 3.1, the lower part 3.2 and the partition 3.3.
  • FIGS. 4, 5, 6, 7 and 8 show different initial shapes for the honeycomb body 4 to be integrated into the silencer housing 3 as a selection of the shapes that are possible overall.
  • Figure 4 shows a trapezoidal sheet metal stack 11, made of smooth sheet metal layers 5 and corrugated sheet metal layers 6, in the lateral end regions 9 of the sheet metal stack 11 those sheet metal layers are longer, the ends of which have a longer path to the parting joint after assembly. In this way it is ensured that the ends of practically all sheet metal layers can be held reliably.
  • FIG. 5 shows a meandering stack of sheets 12.1 in which a corrugated sheet layer 6 is layered in a meandering manner, with individual smooth sheets 5 being arranged between the individual layers. A similar configuration is shown in FIG.
  • FIG. 7 shows an oval sheet stack 13 made of a smooth 5 and a corrugated sheet 6 as the starting stack.
  • Such a stack can be achieved in a conventional manner by flattening a spiral sheet stack stacked with a cylindrical cavity.
  • Figure 8 finally shows a particularly preferred embodiment in which only the smooth sheet metal layers 5 are to be included in the connection of the parting line. For this reason, the ends of the smooth sheet metal layers protrude to different degrees, depending on their way to the parting line.
  • the corrugated sheet metal layers 6 are shorter and in their respective lengths adapted to the cross-sectional shape of the muffler housing and in turn equipped with a certain excess of volume, which is later reduced by plastic deformation.
  • the smooth 5 and the corrugated sheet metal layers 6 are equipped with interlocking structures. Microstructures extending transversely to the direction of flow, as are known from the prior art, are particularly suitable for this purpose.
  • the present invention creates the possibility of being able to apply exhaust gas catalysts to small engines on a broad basis in order to relieve the environment and the operating personnel of the small engines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die vorliegende Erfindung betrifft einen katalytischen Konverter für einen Kleinmotor und Verfahren zu seiner Herstellung. Um die Herstellungskosten zu senken, wird in einem motornah angeordneten Schalldämpfergehäuse eines Kleinmotors ein mit katalytisch aktivem Material beschichteter Wabenkörper aus zumindest teilweise strukturierten Blechlagen (5, 6) mit für Abgas durchlässigen Kanälen (7) so angeordnet, dass zumindest ein überwiegender Teil des Abgases des Kleinmotors den Wabenkörper durchströmen muss, wobei der Wabenkörper ein geschichteter, gewickelter oder gefalteter Stapel von Blechlagen (5, 6) ist, der unter plastischer Verformung von wenigstens 10 %, vorzugsweise 20 bis 30 %, der Kanäle (7) in das Schalldämpfergehäuse (3.1, 3.2, 3.3) gequetscht ist, so dass er zumindest ein Teilvolumen des Gehäuses vollständig ausfüllt. Durch die erhebliche plastische Verformung eines Teils der Kanäle (7) entsteht auch in dem übrigen Wabenkörper eine hohe elastische Verformung, die die Stabilität des Wabenkörpers auch unter thermischen Wechselbelastungen sicherstellt.

Description

Katalytischer Konverter für einen Kleinmotor
Die vorliegende Erfindung betrifft einen katalytischen Konverter für einen Kleinmotor, bei welchem in einem motornah angeordneten Schalldämpfergehäuse ein mit katalytisch aktivem Material beschichteter Wabenkörper angeordnet ist.
Im Zuge eines stärker werdenden Umweltbewußtseins und strengerer Emissionsvorschriften in vielen Ländern hat sich das Bedürfnis verstärkt, nicht nur bei Kraftfahrzeugen, sondern auch bei Kleinmotoren eine katalytische Abgasreinigung vorzunehmen. Unter Kleinmotoren werden im folgenden Motoren mit einem Hubraum von weniger als 250 ccm, insbesondere weniger als 50 ccm gemeint. Solche Motoren treten insbesondere bei Rasenmähern, Motorsägen, transportablen Stromaggregaten, Zweirädern und ähnlichen Anwendungen auf. Insbesondere bei Motorsägen, Rasenmähern und sonstigen Gartengeräten befindet sich die das Gerät betreibende Person oft über einen längeren Zeitraum direkt im Abgasbereich des Kleinmotors, weshalb eine katalytische Abgasreinigung besonders wichtig ist.
Aus der DE-OS 38 29 668 ist bereits ein Beispiel für einen Abgasschalldämpfer für Zweitaktmotoren angegeben, welcher in seinem Inneren einen katalytischen Konverter zur Abgasreinigung enthält.
Auch aus der EP 0 470 113 Bl ist ein metallischer Katalysator-Trägerkörper bekannt, der insbesondere für die Befestigung in der Trennwand eines Schalldämpfergehäuses geeignet ist.
Die beschriebenen Anordnungen zur katalytischen Abgasreinigung von Kleinmotoren benötigen speziell gefertigte Wabenkörper, deren Herstellung, katalytische Beschichtung und Einbau relativ viele Arbeitsschritte verlangen und daher im Vergleich zu dem Kleinmotor selbst und einem zugehörigen Gerät verhältnismäßig teuer sind. Um zu einer weiteren Verbreitung der katalytischen Abgasreinigung bei Kleinmotoren zu kommen, ist es aber notwendig, die Kosten für solche Abgasreinigungsvorrichtungen drastisch zu reduzieren.
Aufgabe der vorliegenden Erfindung ist daher ein katalytischer Konverter für einen Kleinmotor, der sehr preisgünstig herstellbar ist, möglichst geringe konstruktive Änderungen an schon existierenden Kleinmotoren und deren Abgasanlagen verlangt, und trotzdem einen erheblichen Anteil der Schadstoffe aus dem Abgas katalytisch entfernen kann.
Zur Lösung dieser Aufgabe dient ein katalytischer Konverter gemäß dem Anspruch 1, wobei ein entsprechendes Herstellungsverfahren im Anspruch 11 angegeben ist. Vorteilhafte Ausgestaltungen sind in den jeweils abhängigen Ansprüchen angegeben.
Katalytische Konverter enthalten üblicherweise Wabenkörper, um in einem Teilvolumen des Abgassystems eine genügend große Oberfläche für eine katalytische Umsetzung bereitzustellen. Solche Wabenkörper werden insbesondere aus Metallblechen hergestellt, wobei zumindest ein Teil dieser Metallbleche so strukturiert ist, daß sich insgesamt für Abgas durchlässige Kanäle ergeben. Im einfachsten Fall werden abwechselnde glatte und gewell- te Blechlagen verwendet. Für die vorliegende Erfindung kommen allerdings eine Vielzahl von Strukturen in Betracht, so daß auch Blechlagen mit zwei unterschiedlichen Wellungen oder Blechlagen mit abwechselnd schräg zueinander angeordneten Wellungen verwendet werden können. Im Stand der Technik ist es bisher üblich, ein für den Wabenkörper vorgesehenes Teilvo- lumen möglichst gleichmäßig mit Kanälen auszufüllen, wobei alle bekannten Herstellungsverfahren es nach Möglichkeit vermeiden, einen größeren Anteil an Kanälen beim Einbau des Wabenkörpers in ein Abgassystem zu deformieren oder zu zerstören. Zwar werden Wabenkörper gelegentlich unter einer Vorspannung in ein Mantelrohr oder ein Gehäuse eingefügt, jedoch werden dabei im allgemeinen die Kanäle nicht oder nur zu einem geringen Anteil plastisch verformt. Gemäß der erfindungsgemäßen Lösung wird dieser Weg für katalytische Konverter von Kleinmotoren verlassen, um die Herstellung drastisch zu vereinfachen. Schalldämpfergehäuse für Kleinmotoren weisen im allgemeinen ein größeres Volumen auf als für die Unterbringung eines Katalysator-Trägerkörpers zur vollständigen Abgasreinigung notwendig ist. Es kommt daher nicht auf die optimale Ausnutzung des vorhandenen Volumens oder die Minimierung eines Gehäuses an. Man kann daher in Kauf nehmen, daß ein Teil des Volumens durch plastisch deformierte Kanäle teilweise versperrt wird, ohne daß dies die Funktion oder die Abgasreinigung beein- trächtigt. Dies eröffnet die Möglichkeit, als Wabenköφer einfach einen geschichteten, gewickelten oder anderweitig gefalteten Stapel von mit katalytisch aktivem Material beschichteten Blechlagen zu verwenden, die unter plastischer Verformung von einem großen Anteil der Zellen, beispielsweise 10, 20 oder bis zu 30 %, in das Schalldämpfergehäuse gequetscht wird, so daß er zumindest ein Teilvolumen des Schalldämpfergehäuses vollständig ausfüllt.
Diese Methode hat, wie im folgenden anhand bevorzugter Ausführungsbeispiele beschrieben wird, viele fertigungstechnische Vorteile und führt zu einem einfachen, aber im Betrieb haltbaren katalytischen Konverter.
Im allgemeinen besteht ein Schalldämpfergehäuse für Kleinmotoren aus zwei oder mehr einzelnen Teilen, insbesondere Halbschalen und einer Trennwand, die mittels eines einfachen Verbindungsvorganges, z. B. Umbördeln oder Verschweißen, zusammengefügt werden. Diese Gehäuseteile können beim Zusammensetzen gleichzeitig für die Formgebung des Wabenköφers eingesetzt werden, ohne daß es zusätzlicher Werkzeuge bedarf. Ein Stapel von Blechlagen mit größerem Volumen als dem auszufüllenden Teilvolumen des Schalldämpfergehäuses wird einfach beim Zusammenfügen des Gehäuses an die vorgesehene Stelle gelegt und beim Zusammenfügen der Gehäuseteile in seine endgültige Position und Form gequetscht. Auch wenn 15 bis 30 % der Kanäle dabei plastisch und/oder elastisch verformt werden, nämlich an den seitlichen Enden des Stapels und in den äußeren Randbereichen, so bleiben doch genügend Zellen gasdurchlässig, so daß eine effektive katalytische Reinigung sichergestellt ist.
Um ein Verrutschen des Wabenköφers im Schalldämpfergehäuse in Gasströmungsrichtung zu vermeiden, sollten die seitlichen Enden des Stapels in einer bevorzugten Ausführungsform an oder in den Wänden des Gehäuses gehaltert sein.
Wichtig für einen einfachen Herstellungsprozess ist auch, daß die Bleche vor der Anbringung in dem Schalldämpfergehäuse bereits mit katalytisch aktivem Material beschichtet sind, entweder indem für die gesamte Fertigung schon beschichtete Bleche verwendet werden, oder indem ein vorgefertigter Stapel von Blechlagen als ganzes beschichtet wird.
Ein wesentlicher Vorteil des erfindungsgemäßen katalytischen Konverters besteht darin, daß die erhebliche Verformung der Kanäle zum Teil plastisch und zum Teil elastisch ist, so daß der Wabenköφer unter einer Vorspannung verbleibt, die bei allen Betriebsbedingungen, insbesondere thermischen Wechselbelastungen, ein Lockern der Blechlagen verhindert. Im allgemeinen wird in einem erfindungsgemäß hergestellten katalytischen Konverter der Wabenköφer unter maximaler Vorspannung sein, da er überall über die Elastizitätsgrenze hinaus verformt ist. Dies unterbindet Relativbewegungen zwischen den Blechlagen auch bei mit steigender Temperatur abnehmender Elastizität.
An dieser Stelle sei darauf hingewiesen, daß für die vorliegende Erfindung insbesondere auch Blechlagen mit sogenannten transversalen MikroStrukturen in Betracht kommen, welche im Stand der Technik bekannt sind. Diese MikroStrukturen erhöhen die Effektivität bei der katalytischen Umsetzung und bewirken außerdem eine Verklammerung der Blechlagen untereinander, so daß diese sich insbesondere unter der hohen elastischen Vorspannung selbst unter ungünstigsten Bedingungen nicht gegeneinander verschieben können. Dies gilt auch dann, wenn nicht alle Blechlagen, sondern nur ein Teil mit ihren Enden am Schalldämpfergehäuse befestigt ist.
Besonders günstig ist es, wenn der in das Schalldämpfergehäuse einzuquet- sehende Stapel in seiner Ausgangsform an die Form des auszufüllenden Teilvolumens und an den bei der Quetschung zu erwartenden Verformungsgrad der einzelnen Bereiche angepaßt ist, wobei allerdings das Volumen des Stapels um mindestens 5 %, vorzugsweise mindestens 10 % größer als das auszufüllende Teilvolumen sein soll.
Daher kommen als Querschnittsformen für einen Stapel verschiedene Formen in Betracht, insbesondere Rechteck, Trapez, Oval oder im Einzelfall auch unregelmäßigere Formen. Zu beachten ist auch, daß einzelne Blechlagen, deren Enden an den Enden des Stapels entlang gebogen werden, länger sein sollten als weniger stark gebogene Blechlagen, wenn ihre Enden nach dem Quetschprozeß noch bis zur Gehäusewand oder eine Teilfuge reichen sollen.
Besonders bevorzugt ist es, bei aus mindestens zwei Teilen zusammengesetzten Schalldämpfergehäusen die zusammengequetschten Enden des Stapels in der Fuge zwischen diesen Teilen einzuklemmen, um den Wabenköφer insgesamt zu fixieren. Dies kann sowohl bei aus einzelnen Blechen gebildeten Stapeln, als auch bei aus einem oder mehreren Blechen gewickelten, gefalteten oder mäanderförmig gelegten Stapeln nach dem Zusammenquetschen der Enden durchgeführt werden. Dabei können die Enden des Stapels in die für das Zusammenfügen des Schalldämpfergehäuses bisher verwendete Technik mit einbezogen werden, so daß die Befestigung beispielsweise durch Umbördeln, Verschweißen mit einer Schweißnaht oder durch Punktschweißun- gen erfolgen kann. Insbesondere beim Umbördeln, aber auch beim Einbinden in eine Schweißnaht stört im allgemeinen die katalytisch aktive Beschichtung auf den Blechen nicht, so daß keine zusätzlichen Bearbeitungsschritte zu deren Entfernung erforderlich sind.
Vorteilhafte Ausgestaltungen und Ausführungsbeispiele der Erfindung werden im folgenden anhand der Zeichnung erläutert, wobei die Erfindung jedoch nicht auf die gezeigten Ausführungsbeispiele beschränkt ist. Es zeigen:
Figur 1 einen Längsschnitt durch ein Schalldämpfergehäuse mit schematisch angedeutetem Einbauort eines katalytischen Konverters,
Figur 2 im Querschnitt die Teile eines Schalldämpfergehäuses einschließlich eines Stapels kurz vor dem Zusammenbau,
Figur 3 einen Querschnitt entlang der Schnittlinie III-III in Figur 1 durch ein Schalldämpfergehäuse nach dem Zusammenbau und
die Figuren 4, 5, 6, 7 und 8 verschiedene Formen von Stapeln zumindest teilweise strukturierter Blechlagen.
Figur 1 zeigt schematisch im Längsschnitt ein Schalldämpfergehäuse 3 für einen Kleinmotor. Durch einen Abgaseintritt 1 gelangt das Abgas in das Unterteil 3.2 des Schalldämpfergehäuses, von wo es durch Öffnungen in einer Trennwand 3.3 in das Oberteil 3.1 des Schalldämpfergehäuses gelangt. Von hier durchströmt es die Kanäle 7 eines Wabenköφers 4 und gelangt dann zum Abgasaustritt 2. Oberteil 3.1 und Unterteil 3.2 des Schalldämpfer- gehäuses sowie die Trennwand 3.3 sind im Bereich einer Teilfuge 3.4 miteinander verbunden, beispielsweise durch Umbördeln oder durch eine Schweißnaht.
Figur 2 veranschaulicht schematisch im Querschnitt das Zusammenfügen von Oberteil 3.1, Unterteil 3.2, Trennwand 3.3 des Schalldämpfergehäuses und eines Stapels 8 von Blechlagen 5, 6, wobei der Vorgang des Zusammen- fügens durch Pfeile angedeutet ist. Der Stapel 8 ist im vorliegenden Ausführungsbeispiel aus abwechselnd angeordneten einzelnen glatten Blechlagen 5 und gewellten Blechlagen 6 gebildet, die zusammen eine Vielzahl von für das Abgas durchlässigen Kanälen 7 bilden. Die Blechlagen 5, 6 sind mit katalytisch aktivem Material 10 beschichtet. Diese Beschichtung kann entweder schon in einem kontinuierlichen Prozeß vor allen übrigen Bearbeitungsschritten auf die Blechlagen 5, 6 aufgebracht sein, oder aber nach dem Schichten des Stapel 8 gemeinsam aufgebracht werden.
Figur 3 zeigt im Querschnitt entlang der Linie III-III in Figur 1 ein im wesentlichen fertig zusammengebautes Schalldämpfergehäuse mit eingequetschtem Wabenköφer. Man erkennt, daß die seitlichen Enden 9 des in Figur 2 noch undeformiert dargestellten Stapels 8 nunmehr zusammengequetscht sind, wobei außerdem auch in den Randbereichen des Wabenköφers zahlreiche Kanäle 7.1 plastisch deformiert sind. Trotzdem verbleiben, insbesondere im inneren Bereich des Wabenköφers, noch genügend nicht plastisch deformierte Kanäle, welche für die katalytische Umsetzung von hindurch geleitetem Abgas ausreichen. Diese Kanäle 7 sind jedoch durch die auf den gesamten Wabenköφer ausgeübten Quetschkräfte erheblich elastisch verformt, so daß sich der ganze Wabenköφer unter einer erheblichen Vorspannung befindet. Die gequetschten seitlichen Enden 9 des Blechstapels sind zwischen Oberteil 3.1 und Trennwand 3.3 des Schalldämpfergehäuses eingeklemmt und können in die übliche Verbindungstechnik des Schalldämpfergehäuses miteinbezogen werden. Wie auf der rechten Seite der Figur 3 dargestellt, kann dies eine Umbördelung 3.5 sein. Möglich ist aber auch eine auf der linken Seite der Figur 3 angedeutete Schweißverbindung 3.6, welche die Enden der Blechlagen 5, 6 des Oberteils 3.1, des Unterteils 3.2 und der Trennwand 3.3 miteinbezieht.
In den Figuren 4, 5, 6, 7 und 8 sind verschiedene Ausgangsformen für den in das Schalldämpfergehäuse 3 zu integrierenden Wabenköφer 4 als Auswahl der insgesamt möglichen Formen dargestellt. Figur 4 zeigt dabei einen trapezförmigen Blechstapel 11, aus glatten Blechlagen 5 und gewellten Blechlagen 6, wobei in den seitlichen Endbereichen 9 des Blechstapels 11 gerade diejenigen Blechlagen länger sind, deren Enden bis zur Teilfuge einen längeren Weg nach dem Zusammenbau haben. Auf diese Weise wird sichergestellt, daß die Enden praktisch aller Blechlagen zuverlässig gehaltert werden können. In Figur 5 ist ein mäanderförmiger Blechstapel 12.1 darge- stellt, bei dem eine gewellte Blechlage 6 mäanderförmig geschichtet ist, wobei zwischen den einzelnen Lagen einzelne glatte Bleche 5 angeordnet sind. Eine ähnliche Konfiguration ist in Figur 6 dargestellt, wobei dort allerdings nur ein einziges Blech, welches abschnittsweise glatt und gewellt ist, zu einem mäanderförmigen Blechstapel 12.2 geschichtet wurde. Figur 7 zeigt einen ovalen Blechstapel 13 aus einem glatten 5 und einem gewellten Blech 6 als Ausgangsstapel. Ein solcher Stapel kann in herkömmmlicher Weise durch Flachdrücken eines mit einem zylindrischen Hohlraum gewickelten spiralförmigen Blechstapels erreicht werden. Figur 8 zeigt schließlich eine besonders bevorzugte Ausführungsform, bei der nur die glatten Blechlagen 5 in die Verbindung der Teilfuge einbezogen werden sollen. Aus diesem Grunde stehen die Enden der glatten Blechlagen unterschiedlich weit über, entsprechend ihrem Weg bis zur Teilfuge. Die gewellten Blechlagen 6 sind kürzer und in ihrer jeweiligen Länge der Querschnittsform des Schalldämpfergehäuses angepaßt und wiederum mit einem gewissen Überschuß an Volumen, welches später durch plastische Deformation reduziert wird, ausgestattet. Um ein Verrutschen der gewellten Blechlagen 6 im fertigen Wabenköφer in Gasströmungsrichtung zu ver- meiden, sind die glatten 5 und die gewellten Blechlagen 6 mit formschlüssig ineinander greifenden Strukturen ausgestattet. Hierzu eignen sich insbesondere quer zur Strömungsrichtung verlaufende MikroStrukturen, wie sie aus dem Stand der Technik bekannt sind.
Die vorliegende Erfindung schafft durch preisgünstige Herstellungsteclmik die Möglichkeit, Abgaskatalysatoren auch bei Kleinmotoren auf breiter Basis anwenden zu können, um die Umwelt und das Bedienungspersonal der Kleinmotoren zu entlasten.
Bezugszeichenliste
1 Abgaseintritt
2 Abgasaustritt 3 Schalldämpfergehäuse
3.1 Oberteil des Schalldämpfergehäuses
3.2 Unterteil des Schalldämpfergehäuses
3.3 Trennwand im Schalldämpfergehäuse
3.4 Teilfuge 3.5 Umbördelung
3.6 Verbindungsschweißung
4 Wabenköφer
5 glatte Blechlage
6 gewellte Blechlage 7 Kanal
7.1 deformierter Kanal
8 Stapel von Blechlagen
9 gequetschtes seitliches Ende des Blechstapels
10 katalytisch aktives Material (Beschichtung) 11 trapezförmiger Blechstapel
12.1 mäanderförmiger Blechstapel mit eingelegten glatten Blechlagen
12.2 mäanderförmiger Blechstapel aus unterschiedlichen Abschnitten
13 ovaler Blechstapel
14 Blechstapel mit überstehenden glatten Blechlagen

Claims

Patentansprüche
1. Katalytischer Konverter für einen Kleinmotor, bei welchem in einem motornah angeordneten Schalldämpfergehäuse (3) ein mit katalytisch aktivem Material (10) beschichteter Wabenköφer (4) aus zumindest teilweise strukturierten Blechlagen (5, 6) mit für Abgas durchlässigen Kanälen (7) so angeordnet ist, daß zumindest ein überwiegender Anteil des Abgases des Kleinmotors den Wabenköφer (4) durchströmen muß, dadurch gekennzeichnet, daß der Wabenköφer (4) ein geschichteter, gewickelter oder gefalteter
Stapel von Blechlagen (8) ist, die unter plastischer Verformung von wenigstens 10 %, vorzugsweise 20 bis 30 %, der Kanäle (7) in das Schalldämpfergehäuse (3) gequetscht ist, so daß er zumindest ein Teilvolumen des Schalldämpfergehäuses (3) vollständig ausfüllt.
2. Katalytischer Konverter nach Anspruch 1, dadurch gekennzeichnet, daß die seitlichen Enden (9) des Stapels (8) an oder in den Wänden des Gehäuses (3) gehaltert sind.
3. Katalytischer Konverter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Blechlagen (5, 6) vor der Anbringung in dem Schalldämpfergehäuse (3) mit katalytisch aktivem Material (10) beschichtet sind.
4. Katalytischer Konverter nach Anspruch 1, 2 oder 3, dadurch gekenn- zeichnet, daß die Verformung der Kanäle (7.1) zum Teil plastisch und zum Teil elastisch ist, so daß der Wabenköφer (4) unter einer Vorspannung verbleibt, die bei allen Betriebsbedingungen, insbesondere thermischen Wechselbelastungen, ein Lockern der Blechlagen (4, 5) verhindert.
5. Katalytischer Konverter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stapel (8) eine der Form des auszufüllenden Teilvolumens des Schalldämpfergehäuses (3) angepaßte Ausgangsform aufweist, allerdings mit einem um mindestens 5%, vorzugsweise mindestens 10 % , größeren Volumen.
6. Katalytischer Konverter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stapel (8) vor der Einbringung in das Schalldämpfergehäuse (3) im Querschnitt rechteckig ist.
7. Katalytischer Konverter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Stapel (11) vor der Einbringung in das Schalldämpfergehäuse (3) im Querschnitt trapezförmig ist.
8. Katalytischer Konverter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Stapel (13) vor der Einbringung in das Schalldämpfergehäuse (3) im Querschnitt oval ist.
9. Katalytischer Konverter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stapel (8; 11 ; 14) aus einzelnen, zumindest teilweise strukturierten Blechlagen (4, 5) geschichtet ist, deren Enden zusammengequetscht (9) und am Schalldämpfergehäuse (3) fixiert sind, vorzugsweise in einer Fuge (3.4) zwischen zwei Teilen (3.1, 3.3) des Schalldämpfergehäuses (3) eingeklemmt.
10. Katalytischer Konverter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Stapel (11 ; 12.1 ; 12.2; 13) aus einem oder mehreren zumindest teilweise strukturierten, mäanderförmig gelegten oder oval gewickelten Blechen (5, 6) gebildet ist, wobei die seitlichen Enden (9) des Stapels (11; 12.1; 12.2; 13) jeweils zusammengequetscht und am Schalldämpfergehäuse (3) fixiert sind, vorzugsweise in einer Fuge (3.4) zwischen zwei Teilen (3.1, 3.3) des Schalldämpfergehäuses (3) eingeklemmt.
11. Verfahren zum Herstellen eines katalytischen Konverters in einem Schalldämpfergehäuse (3) für einen Kleinmotor mit folgenden Schritten:
es wird ein Stapel (8; 11; 12.1; 12.2; 13; 14) von zumindest teilweise strukturierten Blechlagen (5, 6) gebildet, der für ein Abgas durchlässige Kanäle (7) aufweist,
der Stapel (8; 11; 12.1; 12.2; 13; 14) wird unter plastischer Verformung von mindestens 15 %, vorzugsweise 20 bis 30 %, der Kanäle (7) in ein Teilvolumen des Schalldämpfergehäuses (3) gequetscht, wobei dieses Teilvolumen vollständig ausgefüllt wird,
die seitlichen Enden (9) des gequetschten Stapels (8; 11 ; 12.1; 12.2; 13; 14) werden an oder in der Wand des Schalldämpfergehäuses (3) fixiert.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Bleche (5, 6) vor dem Bilden des Stapels (8; 11; 12.1; 12.2; 13; 14) oder zumindest vor dem Einbau in das Schalldämpfergehäuse (3) mit katalytisch aktivem Material (10) beschichtet werden.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Quetschung des Stapels (8; 11; 12.1; 12.2; 13; 14) durch Zusammensetzen von zwei oder mehr Gehäuseteilen (3.1, 3.2, 3.3) des Schalldämpfergehäuses (3) erfolgt, zwischen die der Stapel (8; 11; 12.1 ; 12.2; 13; 14) eingefügt wird.
4. Verfahren nach Anspruch 11, 12 oder 13, dadurch gekennzeichnet, daß der Stapel (8; 11; 12.1; 12.2; 13; 14) etwas breiter als das Schalldämpfergehäuse (3) hergestellt wird, so daß seine seitlichen Enden (9) nach dem Quetschen und Zusammenfügen des Schalldämpfergehäuses (3) an einer oder zwei Seiten aus dem Gehäuse (3) vorstehen und dort durch Umbördeln (3.5) oder eine fügetechnische Verbindung (3.6) in die Verbindung der Schalldämpfergehäuseteile (3.1, 3.2, 3.3) mit einbezogen werden können.
EP97950069A 1996-11-08 1997-11-03 Katalytischer konverter für einen kleinmotor Expired - Lifetime EP1012455B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19646242 1996-11-08
DE19646242A DE19646242C2 (de) 1996-11-08 1996-11-08 Katalytischer Konverter für einen Kleinmotor
PCT/EP1997/006044 WO1998021453A2 (de) 1996-11-08 1997-11-03 Katalytischer konverter für einen kleinmotor

Publications (2)

Publication Number Publication Date
EP1012455A2 true EP1012455A2 (de) 2000-06-28
EP1012455B1 EP1012455B1 (de) 2002-03-20

Family

ID=7811120

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97950069A Expired - Lifetime EP1012455B1 (de) 1996-11-08 1997-11-03 Katalytischer konverter für einen kleinmotor

Country Status (12)

Country Link
US (1) US6403039B1 (de)
EP (1) EP1012455B1 (de)
JP (1) JP3251299B2 (de)
KR (1) KR100495383B1 (de)
CN (1) CN1093908C (de)
AU (1) AU5316098A (de)
DE (2) DE19646242C2 (de)
ES (1) ES2174315T3 (de)
MY (1) MY122028A (de)
RU (1) RU2160371C1 (de)
TW (1) TW364038B (de)
WO (1) WO1998021453A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090487B2 (en) * 2002-01-22 2006-08-15 Catacel Corp. Catalytic combustor having high cell density
DE10339468B4 (de) * 2003-08-27 2008-11-13 Oberland Mangold Gmbh Katalysatorkörper und Abgasanlage für einen Kleinmotor sowie Verfahren zur Herstellung des Katalysatorkörpers
DE10345910A1 (de) * 2003-10-02 2005-04-21 Emitec Emissionstechnologie Verfahren zur Herstellung eines metallischen Wabenköpers mit einer Lagenlängendifferenz
US7464543B2 (en) * 2004-05-25 2008-12-16 Cameron International Corporation Two-stroke lean burn gas engine with a silencer/catalytic converter
DE102005028044A1 (de) 2005-06-17 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Herstellung von, insbesondere großen, Wabenkörpern für die mobile Abgasnachbehandlung
DE102010039082A1 (de) * 2010-08-09 2012-02-09 Behr Gmbh & Co. Kg Verfahren zur Herstellung eines Abgaswärmetauschers für ein Kraftfahrzeug
US9388718B2 (en) 2014-03-27 2016-07-12 Ge Oil & Gas Compression Systems, Llc System and method for tuned exhaust
DE102017205147B4 (de) 2017-03-27 2019-04-04 Continental Automotive Gmbh Verfahren zur Herstellung eines Wabenkörpers
US10385745B2 (en) * 2017-10-23 2019-08-20 Honda Motor Co., Ltd. Exhaust purifying device for internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094645A (en) * 1977-01-24 1978-06-13 Uop Inc. Combination muffler and catalytic converter having low backpressure
DE2856030A1 (de) * 1978-12-23 1980-06-26 Sueddeutsche Kuehler Behr Patrone fuer abgasreinigung
DE3532408A1 (de) * 1985-09-11 1987-03-19 Sueddeutsche Kuehler Behr Traegermatrix, insbesondere fuer einen katalytischen reaktor zur abgasreinigung bei brennkraftmaschinen
DE3729477C3 (de) * 1987-09-03 1999-09-09 Stihl Maschf Andreas Abgasschalldämpfer für Zweitaktmotoren, insbesondere für tragbare Arbeitsgeräte wie Motorkettensägen
SE467315B (sv) * 1987-12-08 1992-06-29 Stihl Maschf Andreas Avgasljuddaempare foer tvaataktsmotorer, i synnerhet foer baerbara arbetsredskap
DE8817162U1 (de) * 1987-12-08 1993-08-05 Fa. Andreas Stihl, 71336 Waiblingen, De
US4894987A (en) * 1988-08-19 1990-01-23 Ap Parts Manufacturing Company Stamp formed muffler and catalytic converter assembly
DE8905415U1 (de) * 1989-04-28 1990-08-30 Emitec Emissionstechnologie
JPH04122418A (ja) * 1990-09-13 1992-04-22 Nippon Steel Corp 自動車排ガス浄化用触媒コンバータ
JP2603033B2 (ja) * 1991-08-30 1997-04-23 ブリッグス アンド ストラットン コーポレイション 排気装置用マフラ
DE4243079C2 (de) * 1992-12-18 1996-03-14 Oberland Mangold Gmbh Wabenkörper und Verfahren zu seiner Herstellung
US5548955A (en) * 1994-10-19 1996-08-27 Briggs & Stratton Corporation Catalytic converter having a venturi formed from two stamped components
US6109386A (en) * 1998-02-03 2000-08-29 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Honeycomb body with a flattened cross-sectional region and a method for producing the honeycomb body
JP4122418B2 (ja) * 1998-02-17 2008-07-23 東芝電池株式会社 空気亜鉛電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9821453A2 *

Also Published As

Publication number Publication date
JP3251299B2 (ja) 2002-01-28
KR20000053136A (ko) 2000-08-25
KR100495383B1 (ko) 2005-06-14
MY122028A (en) 2006-03-31
TW364038B (en) 1999-07-11
CN1258336A (zh) 2000-06-28
WO1998021453A3 (de) 1999-12-23
US6403039B1 (en) 2002-06-11
CN1093908C (zh) 2002-11-06
RU2160371C1 (ru) 2000-12-10
AU5316098A (en) 1998-06-03
WO1998021453A2 (de) 1998-05-22
DE59706715D1 (de) 2002-04-25
JP2001505274A (ja) 2001-04-17
EP1012455B1 (de) 2002-03-20
ES2174315T3 (es) 2002-11-01
DE19646242A1 (de) 1998-05-14
DE19646242C2 (de) 2001-02-22

Similar Documents

Publication Publication Date Title
EP1830042B1 (de) Statischer Mischer und Abgasbehandlungseinrichtung
EP0635097B1 (de) Konischer wabenkörper
EP2027372B1 (de) Nebenstromfilter mit verbessertem filterwirkungsgrad
WO1999036681A1 (de) Katalytischer konverter für einen schalldämpfer eines kleinmotors
EP2285560B1 (de) Metallischer wabenkörper mit definierten verbindungsstellen
EP1012455B1 (de) Katalytischer konverter für einen kleinmotor
EP0988443B1 (de) Radialkatalysator, insbesondere für kleinmotoren
DE10392744B4 (de) Nicht-zylindrischer Katalysator-Trägerkörper sowie Verfahren zu seiner Herstellung
EP1644620B1 (de) Verfahren zur herstellung einer metallischen wabenstruktur
EP1495215B1 (de) Kalibrierter katalysator-trägerkörper mit wellmantel und verfahren zu dessen herstellung
WO1998053187A1 (de) Wabenkörper mit einem system zur vermeidung mechanischer schwingungen
EP0959988B1 (de) Wabenkörper mit im inneren eingerahmtem querschnittsbereich, insbesondere für kleinmotoren
EP1525378B1 (de) Metallische lage mit bereichen unterschiedlicher materialdicke, verfahren zur herstellung einer solchen metallischen lage und zumindest teilweise aus solchen metallischen lagen hergestellter wabenk rper
EP0812246A1 (de) Wabenkörper mit nur teilweiser anbindung an ein mantelrohr
EP0988109B1 (de) Metallischer katalysator-trägerkörper zur reinigung eines abgasstromes, insbesondere von einem kleinmotor
WO1998034727A1 (de) Wabenkörper mit abgeflachtem querschnittsbereich
EP2864604A1 (de) Konischer wabenkörper mit schräg radial nach aussen verlaufenden kanälen
DE4243079A1 (de) Wabenkörper und Herstellungsverfahren für einen Wabenkörper
DE10223452A1 (de) Partikelfilter für Abgase von Brennkraftmaschinen
EP1828557B1 (de) Gehäuse für ein bauteil einer abgasanlage
DE10218856A1 (de) Kalibrierter Katalysator-Trägerkörper mit Wellmantel und Verfahren zu dessen Herstellung
EP1333164A1 (de) Abgasanlage für Verbrennungsmotoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990521

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010510

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 59706715

Country of ref document: DE

Date of ref document: 20020425

ET Fr: translation filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2174315

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081113

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081120

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081117

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141126

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59706715

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601